Major
Data Science
Research Abstract
Deep learning algorithms have become widely popular, with considerable success in fields where datasets have hundreds of thousands or million points. As deep learning is increasingly applied to the fields of medical physics and radiation oncology, a reasonable question follows: are these techniques the best approach, given the unique conditions in our field? In this study, we investigate the dependence of dataset size on the performance of deep learning algorithms compared with more traditional radiomics-based methods.
Faculty Mentor/Advisor
Yannet Interian
Deep Learning, Medical Physics and Cargo Cult Science.
Deep learning algorithms have become widely popular, with considerable success in fields where datasets have hundreds of thousands or million points. As deep learning is increasingly applied to the fields of medical physics and radiation oncology, a reasonable question follows: are these techniques the best approach, given the unique conditions in our field? In this study, we investigate the dependence of dataset size on the performance of deep learning algorithms compared with more traditional radiomics-based methods.