Document Type
Article
Publication Date
2012
Abstract
The BioharnessTM device is designed for monitoring physiological variables in free-living situations but has only been proven to be reliable and valid in a laboratory environment. Therefore, this study aimed to determine the reliability and validity of the BioharnessTM using a field based protocol. Twenty healthy males participated. Heart rate (HR), breathing frequency (BF) and accelerometry (ACC) were assessed by simultaneous measurement of two BioharnessTM devices and a test-retest of a discontinuous incremental walk-jog-run protocol (4 – 11 km·h-1) completed in a sports hall. Adopted precision of measurement devices were; HR: Polar T31 (Polar Electro), BF: Spirometer (Cortex Metalyser), ACC: Oxygen expenditure (Cortex Metalyser). For all data, precision of measurement reported good relationships (r = 0.61 to 0.67, p < 0.01) and large Limits of Agreement for HR (>79.2 b·min-1) and BF (>54.7 br·min-1). ACC presented excellent precision (r = 0.94, p < 0.01). Results for HR (r= ~0.91, p < 0.01: CV <7.6) and ACC (r > 0.97, p < 0.01; CV <14.7) suggested these variables are reliable. BF presented more variable data (r = 0.46-0.61, p < 0.01; CV < 23.7). As velocity of movement increased (>8 km·h-1) data became more erroneous. A data cleaning protocol removed gross errors in the data analysis and subsequent reliability and validity statistics improved across all variables. In conclusion, the BioharnessTM HR and ACC variables have demonstrated reliability and validity in a field setting, though data collected at higher velocities should be treated with caution. Measuring human physiological responses in a field based environment allows for more ecologically valid data to be collected and devices such as the BioharnessTM could be used by exercise professionals to begin to further investigate this area.
Recommended Citation
Johnstone, James A.; Ford, Paul A.; Hughes, Gerwyn; Watson, Tim; Mitchell, Andrew C.S.; and Garrett, Andrew T., "Field based reliability and validity of the Bioharness multivariable monitoring device" (2012). Kinesiology (Formerly Exercise and Sport Science). 38.
https://repository.usfca.edu/ess/38
Comments
Originally published in the Journal of Sports Science and Medicine (2012) 11, 643-652 http://www.jssm.org