Document Type
Article
Publication Date
2017
Abstract
Ubiquitous tyrosinase catalyses the aerobic oxidation of phenols to catechols through the binuclear copper centres. Here, inspired by the Fischer indole synthesis, we report an iridium-catalysed tyrosinase-like approach to catechols, employing an oxyacetamide-directed C–H hydroxylation on phenols. This method achieves one-step, redox-neutral synthesis of catechols with diverse substituent groups under mild conditions. Mechanistic studies confirm that the directing group (DG) oxyacetamide acts as the oxygen source. This strategy has been applied to the synthesis of different important catechols with fluorescent property and bioactivity from the corresponding phenols. Finally, our method also provides a convenient route to 18O-labelled catechols using 18O-labelled acetic acid.
DOI
10.1038/ncomms14227
Recommended Citation
Wu, Q., Yan, D., Chen, Y., Wang, T., Xiong, F., Wei, W., Lu, Y., Sun, W.-Y., Li, J.J., Zhao, J. A redox-neutral catechol synthesis (2017) Nature Communications, 8, art. no. 14227. http://dx.doi.org/10.1038/ncomms14227
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/