Document Type


Publication Date



Mental, neurological, and neurodevelopmental (MNN) disorders impose an enormous burden of disease globally. Many MNN disorders follow a developmental trajectory. Thus, defining symptoms of MNN disorders may be conceived as the end product of a long developmental process. Many pharmaceutical therapies are aimed at the end symptoms, essentially attempting to reverse pathological brain function that has developed over a long time. A new paradigm is needed to leverage the developmental trajectory of MNN disorders, based on measuring brain function through the life span. Electroencephalography (EEG) is ideally suited for this task. New developments in several fields, including consumer EEG hardware, ubiquitous access to the Internet and electronic health records, and nonlinear mathematics to extract information from physiological signals have converged to enable new approaches to integrating EEG into routine health care. Research continues to demonstrate that EEG analysis can be used to discover digital biomarkers for a wide range of MNN disorders, including autism, attention-deficit/hyperactivity disorder (ADHD), schizophrenia and dementias, and likely many others. When EEG-derived information about brain function is stored with an electronic health record, clinical decision support software may use these data to detect atypical brain development in the earliest stages, thus opening a potential window for early intervention. These developments create an opportunity for neurodiagnostics to merge with biomedical informatics to create clinical tools for monitoring brain function through the life span. Advanced professionals with neurodiagnostics and biomedical informatics skills and training are needed to lead the way in this emerging field.