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Table 3.2

Ring collapsing time prediction.

Initial radius Ring collapsing time
One-ring case Two-rings case Three-rings case

Method ODE Ours ODE Ours ODE Ours
0.5 0.143 0.144 0.100 0.101
1 0.251 0.251 0.145 0.145 0.101 0.101
1.5 0.103 0.103

the radius by directly solving (3.12) and (3.13); Figures 3.5(b), 3.5(d), and 3.5(f) are
the plot of the radius computed using (1.2) and (2.5). In each example, all rings
have initial density ρ = 1. Table 3.2 shows the blow-up times for each case, and the
agreement between our method and the solutions to the ODEs is excellent.

4. Kernels of mixed type.

4.1. Example 1: Superfluids. We now turn our attention to examples where
the kernels are of mixed type. In this section, we consider a family of equations
parameterized by θ that arises in the modeling of vortex dynamics for superfluids
described in [12]. This family of equations takes the form

∂ρ

∂t
+∇ · (uρ) = 0, (t, x) ∈ (0,∞)× R

2,(4.1)

u =M∇�−1ρ, ρ|t=0 = ρ0,(4.2)

where ρ is known as a vortex density function of the superfluid andM(θ) is a constant
orthogonal matrix of the form

M(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

This model is derived from the hydrodynamic equations for Ginzburg–Landau
vortices [14]. In [12, 27] the authors found that when cos θ = 0, smooth solutions to
(4.1) and (4.2) may blow up in finite time. In addition, if ρ0 changes sign, it was shown
that concentration phenomena exist in the approximate solutions sequence of (4.1)
and (4.2) regardless of the initial data’s degree of regularity. Thus it is interesting to
study the vortex sheet problem for (4.1) and (4.2), which is simply a generalization
of the classic vortex sheet problem studied in section 3.2.1.

To match our notation, we may write �−1ρ = G ∗ ρ, where G(r) = − 1
2π ln r is

the fundamental solution of the Laplace equation in R
2. Notice that the parameter θ

controls the contribution to the kernel given by both the incompressible and gradient
parts, which can be explicitly written out as

(4.3) K(x, y) = K1(x, y) cos θ −K2(x, y) sin θ,

where K1(x, y) = −(x, y)/(2πr2) and K2(x, y) = (−y, x)/(2πr2). Thus if we take
θ = 0, M(θ)∇�−1ρ = K1 ∗ ρ is purely a gradient flow of the Newtonian potential.
However, if we take θ = −π/2, M(θ)∇�−1ρ = K2(x, y) = (−y, x)/(2πr2), we recover
the Biot–Savart kernel exactly. For the purpose of our study we consider values of
0 ≤ θ ≤ −π/2 which yield kernels of mixed type (except, of course, the end points).
This regime of parameter values ensures the correct sign of the gradient part of the
kernel K1(x, y) is attractive.
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Fig. 4.1. Plot of the vortex density sheet for several values of θ with initial conditions at
t = 1. From outside to inside θ = −π/2, −5π/12, −π/3, −π/4,−π/6, −π/12, and 0. The asterisks
represent the point that was initially positioned at (1, 0).

We are specifically interested in using our model to better understand the dy-
namics of vortex density sheets as we vary the parameter θ. From our discussion
above it is clear that as θ increases from θ = −π/2 to θ = 0 the amount of con-
tribution to our kernel K from the gradient component (attraction) increases while
simultaneously the amount of incompressible component (rotation) decreases. What
is surprising, though, is that linearly increasing θ has several nonlinear effects on the
curve dynamics.

To begin, we use our model to solve for the curve solutions by simply replacing
(4.1) with (2.5). Since K1 and K2 are singular, we use Krasny’s desingularization
method for both kernels K1ε = −(x, y)/(2π(r2+ ε2)) and K2ε = (−y, x)/(2π(r2+ ε2))
with ε = 0.1. We take perturbations of a ring of vorticity as our first example with
the following initial conditions:

(x(α), y(α)) = (r(α) cos(2πα), r(α) sin(2πα)), ρ(α) = 1,(4.4)

where r(α) = (1 + 0.01 cos(20πα)). We solve (2.5) and (4.2) with initial conditions
(4.4) for θ = −π/2, −5π/12, −π/3, −π/4,−π/6, −π/12, and 0, plotting in Figure 4.1
the position of the sheet at t = 1.

If we record the angular coordinates of the asterisks in Figure 4.1 to the horizontal
axis we can use this to measure the amount of angular rotation of the ring. The inner-
most curve corresponds to θ = 0, which is the pure gradient case for the kernel, and
the curve clearly exhibits no rotation. The outermost curve corresponds to θ = −π/2,
which is the purely incompressible case for the kernel; we measure the rotation angle
to be approximately 0.187π. One may expect that as we move from the outermost to
the innermost curve (increasing θ by π/12 between any of the two consecutive curves)
we should observe a monotonic decrease in rotation angle. Instead, Figure 4.1 shows
that the amount of rotation actually increases initially (and peaks near θ = −π/3),
before eventually decreasing to zero.

We separately plot this rotation angle at t = 1 as a function of θ for both the
perturbed ring (4.4) and an unperturbed ring in Figure 4.2, seeing that in both
cases a maximum occurs on the interior of this range of θ. The maximum angle
for the perturbed case is 0.7123, attained at θ ≈ −14/36π; while the maximum
angle for the unperturbed case is 0.5835, attained at θ ≈ −11/36π. In general, the
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Fig. 4.2. Plot of the rotation angles at t = 1 with respect to parameter θ. The solid curve
corresponds to the initial condition of a perturbed ring. The dashed curve corresponds to an initial
condition of an unperturbed ring.

value of θ for which the maximum angle of rotation occurs is time-dependent but
for t � 0 we observe that a maximum is always found in the interior of (−π/2, 0).
For t sufficiently small, the maximum angle occurs at the parameter θ = −π/2,
corresponding to a purely incompressible kernel. Hence, the incompressible kernel
dominates the initial rotation dynamics but for slightly longer times the aggregation
term plays an important role.

The second aspect of the curve dynamics we would like to study as we vary θ is
the amount of roll-up that occurs as a result of the perturbation to the ring. We are
also interested in the amplification in time of the perturbation as measured from the
unperturbed ring as we vary θ. To study these aspects we selected θ = −π/2, −5π/12,
−π/3, and −π/4 and plotted the position of the curve at the later time t = 1.5 in
Figure 4.3. Noting the initial position (marked by an asterisk), it becomes clear that
the solutions with θ = −π/3 and −π/4 rotate more than θ = −π/2. In addition,
we can see in Figure 4.3 that the amplitude of the perturbation also decreases as θ
decreases from θ = −π/2 to θ = −π/4. The amount of roll-up appears to decrease,
but unfortunately it is difficult to see in Figure 4.3 due to the smaller amplitude. To
better investigate this phenomenon we focus in Figure 4.4 on one of the roll-ups shown
in Figure 4.3(d). Figure 4.4 shows that there are many roll-ups seen by zooming in
on the wind up structure. We remark as well that this roll-up structure is robust and
does not change when we halve either the error tolerance or the time step. In order to
calculate the wind-up numbers precisely, we calculate the tangential angle φ at each
point numerically using the following formula:

φi = arctan

(
yi+1 − yi−1

xi+1 − xi−1

)
.(4.5)

Based on this, we calculate the absolute value of the increase of φ by

dφi = |φi+1 − φi|.(4.6)

In one period, the roll-up rotates first counterclockwise and then clockwise an identical
amount. Thus, since the perturbation has 10 periods, we define the wind-up number
as

∑
i dφi/20. As seen in Table 4.1, the amount of roll-up actually increases with θ,

eventually peaking at around θ = −π/3, where there are approximately 2.92 rounds
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Fig. 4.3. The solution at time t = 1.5 for four different values of θ. The asterisk indicates the
position of the point initialized at (1, 0).

Fig. 4.4. Subsequent enlargements of a particular roll-up in picture in Figure 4.3(d) using
12,530 grid points.

Table 4.1

Table of wind-up numbers.

Parameter θ −π/2 −5π/12 −π/3 −π/4
Wind-up number 1.5 2.45 2.92 2.47
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Fig. 4.5. The solution to the periodic line problem at time t = 1 with initial condition ε sin(2πα).
(a) θ = −π/2, wind-up number = 2.64; (b) θ = −5π/12, wind-up number = 5.04; (c) θ = −π/3,
wind-up number = 4.12; (d) θ = −π/4, wind-up number = 1.60.

of roll-up. The amount of roll-up then begins to decrease. At θ = −π/4, which
represents an equal amount of incompressible part and gradient part for the kernel,
there are only 2.47 rounds of roll-up in the picture.

Thus, we find that both the maximum amount of rotation of the vortex density
ring and the amount of roll-up are not monotone functions of θ. For a fixed time t > 0
these maxima occur when there is a fully mixed kernel, i.e., a contribution from both
the gradient part and the incompressible part. The amplitude of the perturbation
monotonically decreases as θ increases from θ = −π/2 to θ = 0. Ultimately, as θ
increases and the gradient flow (the attraction) becomes the dominant contributor to
the velocity field, both the roll-up and the rotation are damped out.

To explain this behavior physically and mathematically, we consider the linear
stability analysis associated with the Kelvin–Helmholtz instability for this more gen-
eral problem of a fully mixed kernel. Specifically, we study the linear stability theory
of perturbations of a flat constant solution on a periodic domain. Recall that the
linear stability analysis of the classic vortex sheet problem [26] demonstrates that the
kth Fourier mode grows like e|k|t/2, which implies that the linear evolution problem
is linearly ill-posed. This ill-posedness explains the rapid development of the compli-
cated roll-up behavior seen in section 3.2.1, classically known as the Kelvin–Helmholtz
instability. Following the calculations in [26] we choose the flat vortex density solution
to perform this calculation.

Our initial conditions for the flat density sheet problem can be expressed as
z(α, 0) = α + η(α, 0) with α ∈ [−∞,∞], where η = η2 + η1i is a small perturbation
to the position of the sheet. By choosing ρ|zα| = 1 over a fixed period, it is clear
that η also represents a perturbation of the density which takes the form ρ = 1 −
η′2 + O(η′21 ) +O(η′22 ). η1 represents a perturbation which is perpendicular to the flat
sheet. η2 is a parallel perturbation and is the leading order contribution to the density
perturbation. Figure 4.5 shows the evolution of the curve at t = 1 for several different
values of θ where η1 is a small Fourier mode 1 perturbation and η2 = 0.
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We observe all the same phenomena that we saw in the ring perturbation calcu-
lation. As θ increases from −π/2 to −π/4, the number of roll-ups first increases and
then decreases. Second, the roll-ups become smaller and smaller in structure as the
amplitude of the perturbation (measured from the flat line) lowers as θ increases.

For our stability calculation we use K(x, y) = λ1K1(x, y) + λ2K2(x, y), where
λ1 = cos θ and λ2 = − sin θ. By (2.5) it is sufficient to understand the linearized
evolution equation for z(α, t), which has the form

(4.7)
∂z̄(α, t)

∂t
=
λ2 − λ1i

2πi
PV

∫
dα′

z(α, t)− z(α′, t)
.

By linearizing around our flat sheet z(α, t) = α+ η(α, t), we get the equation

(4.8)
∂η̄

∂t
=
λ2 − λ1i

2
Hη′,

where Hη′ is the Hilbert transform of η′, where η′ is the derivative of η with respect
to the parameterization and η̄ is the complex conjugate of η.

Remark 4.1. Note that if λ1 = 0 and λ2 = 1, then (4.8) recovers the classical
Kelvin–Helmholtz instability calculation. Thus, the inclusion of a gradient term can
be seen directly in the −λ1i term in (4.8).

Letting η(α, t) = Ak(t)e
i2πkα +Bk(t)e

−i2πkα, we get the relations

A′
k = (λ1 − λ2i)πkB̄k, B′

k = (λ1 − λ2i)πkĀk,(4.9)

which yield solutions of the form

Ak(t) = A+
k e

πkt +A−
k e

−πkt, Bk(t) = B+
k e

πkt +B−
k e

−πkt.(4.10)

We now select an initial condition for our perturbation that contains both a spatial
displacement perturbation (perpendicular to the flat sheet in the y direction) and
a density perturbation (parallel to the flat sheet in the x direction). If we choose
η(α, 0) = ε1i sin 2πm1α + ε2 sin 2πm2α, then for k �= m1 or m2 we get Ak(t) =
Bk(t) = 0. Otherwise,

A+
m1

=
ε1
4
(1− λ1 + λ2i), A−

m1
=
ε1
4
(1 + λ1 − λ2i),(4.11)

B+
m1

=
ε1
4
(−1 + λ1 − λ2i), B−

m1
=
ε1
4
(−1− λ1 + λ2i),(4.12)

A+
m2

= − iε2
4
(1− λ1 + λ2i), A−

m2
= − iε2

4
(1 + λ1 − λ2i),(4.13)

B+
m2

= − iε2
4
(−1 + λ1 − λ2i), B−

m2
= − iε2

4
(−1− λ1 + λ2i).(4.14)

The solution to the linearized problem is then

(4.15)

η(α, t)

= i[ε1(sin 2πm1α cosh(πm1t)−λ1 sin 2πm1α sinh(πm1t))+ ε2λ2 sin 2πm2α sinh(πm2t)]

+ ε2(sin 2πm2α cosh(πm2t)−λ1 sin 2πm2α sinh(πm2t))− ε1λ2 sin 2πm1α sinh(πm1t).

From (4.15), we can now explain the effect of including a gradient term on the
dynamics of the flat vortex density sheet and the Kelvin–Helmholtz instability. If we
first consider purely perpendicular perturbations to the vortex density sheet (corre-
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Fig. 4.6. The solution to the linearized problem at time t = 1.3 with initial condition
ε1 sin(2πα). The solid curve is for θ = −π/2; the dashed curve is for θ = −5π/12; the dotted-
dashed curve is for θ = −π/3.

sponding to ε2 = 0), our calculation above yields that the kth Fourier mode grows
like e|k|t/2. This implies that the linear evolution problem is still linearly ill-posed in
the fully mixed case. Hence, just as in the classical Kelvin–Helmholtz instability, we
expect a singularity in the curvature of our solution in finite time. The linearization
calculation provides the mechanism for the dampened amplitude that we see in the
nonlinear calculations in Figure 4.5.

When θ is a bit greater than −π/2, λ1 is a small positive number. We can see
from (4.15) that this is the direct cause of the dampening out of the growth in the y
direction. This is observed in Figure 4.5 and is explicitly exhibited in the linearized
solutions plotted in Figure 4.6 for various θ values. We can now also argue why we
observe more roll-up in fully mixed kernels as opposed to just incompressible motion.
At the point of a roll-up, the dampened amplitude along with the added attractive
behavior of the gradient kernel forces the vorticity to remain closer together and
aggregate at the roll-up point. Thus, by having more “mass” in a closer proximity,
the rotational rate of r−1 causes this aggregated mass to rotate more quickly than if
no gradient dynamics were included.

We can also understand from (4.15) the linearized dynamics of a pure density
perturbation to the curve which corresponds to ε1 = 0. The linearized solution also
predicts that the kth Fourier mode in the density grows like e|k|t/2, implying that the
linear evolution problem is also linearly ill-posed. Thus another effect of including a
gradient term is the growth of singularities in the density in addition to the singu-
larities in the curvature. In general, an arbitrary small perturbation to the vortex
density sheet will generate singularities in both the curvature and the density; an
example of this phenomenon is plotted in Figure 4.7. In this example, it appears that
the curvature and density singularities occur at the same spatial point. Whether cur-
vature singularities and density singularities must occur at the same place and time
is unknown and is an interesting open question.

4.2. Biological swarming. We conclude this section by turning our atten-
tion from vortex density sheets to a biological model for swarming. In [36], Topaz
and Bertozzi study the continuum model (1.1) and (1.2) with the Gaussian kernel

Gd(x, y) = 1
d2 e

−(x2+y2)/d2

. The parameter d is the relevant length scale and Gd is
used as a biological kernel to model swarming and milling behavior for both incom-
pressible motion N and gradient motion G. They considered localized continuous
distributions of the density but ultimately study the dynamics of the incompressible
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Fig. 4.7. Time evolution of both the curve and density with η(α, 0) = 0.01 sin(2πα) with
θ = −5π/12. This pure density perturbation leads to both a curvature and density singularity
formation.

motion and the gradient motion separately. Using our model, we study the dynamics
of curve solutions with a fully mixed kernel of the form K = λ1∇Gd+λ2∇⊥Gd, where
λ1 is a weight for the gradient contribution to the kernel and λ2 is a weight for the
incompressible contribution to the kernel. Using the same approach as the superflu-
ids example, we would like to understand how incompressible motion and gradient
motion affect each other by controlling the weights λ1 and λ2 for each.

We study the initial value problem (1.1) and (1.2) using a perturbed density ring
with initial condition of the form (4.4), where

(4.16) r(α) = r̄ + r̃ cos (12πα) with α ∈ [0, 1].

For our first two experiments we take d = 3 for both ∇Gd and ∇⊥Gd in the kernel
and choose r̄ = 1 with the very large perturbation of r̃ = 0.2. We fix the weight of
the gradient part in our first simulation to be λ1 = 1 and vary the amount of the
incompressible part from λ2 = 0 to λ2 = 9, plotting the solution curves at t = 50
in Figure 4.8. By keeping λ1 = 1 fixed we can observe how changing the value of
λ2 (the incompressible motion) affects the dynamics with a fixed rate of contraction.
From Figure 4.8 it is clear that the amount of rotational shear that occurs on the
“spiral arms” increases as λ2 increases, as one would expect. It is also easy to see
that the rate of contraction (using the magnitude of the scale of the curves 5× 10−5)
is identical regardless of how much incompressible part is added to the kernel. This
is also consistent with the superfluids example.

Next, we fix the incompressibility coefficient λ2 = 1 and vary the gradient co-
efficient λ1 to see how the increase of the gradient affects the rotation and shear of
the curve solutions. Figure 4.9 gives the solutions for different λ1’s at time t = 25.
There are several important features to observe in Figure 4.9. First, it is clear from
the axis that as λ1 increases the rate of contraction increases as expected. Second,
we note that the rotational shear of the arms decreases and the amount of rotation of
the shape increases as λ1 increases. We calculate the degree of rotation by measuring
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Fig. 4.8. The solution at time t = 50 for λ1 = 1 and varying values of λ2.
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Fig. 4.9. The solution at time t = 25 for λ2 = 1 and varying values of λ1.

the angle from the asterisks to the point (1, 0); the values are recorded in Table 4.2.
One noticeable change in the angle occurs between λ1 = 0.1 to λ1 = 0.5, where the
angle of rotation changes from 1.23π to 1.47π. Increasing values of λ1 beyond λ1 > 1
yields only small increases in the angle of rotation. Thus, even with a much smoother
Gaussian kernel the same theme from the superfluids example persists: the gradient
contribution can have a strong effect on the rotational dynamics but the reverse does
not occur.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

400 HUI SUN, DAVID UMINSKY, AND ANDREA L. BERTOZZI

Table 4.2

Table of wind-up numbers.

Parameter λ1 0 0.1 0.5 1 2 5
Rotation angle 1.0976 1.2276 1.4700 1.5358 1.5693 1.5894

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a). λ1=0, λ2=1, d=3, r=1, t=2
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Fig. 4.10. By choosing parameters d and r, the spin directions of the outer arms are different.

Perhaps the most interesting behavior we observe in this example is that different
spin directions of the perturbation arms occur depending on the relationship between
the size of the ring r and the length scale of the kernel d. In our examples ρ > 0;
the curve thus rotates counterclockwise by the right-hand rule. In Figure 4.10(a),
which corresponds to d = 3 and r = 1, the outer arms spin slower in the clockwise
direction relative to the curve’s speed of rotation; hence the arms appear to be “falling
behind.” In contrast, Figure 4.10(b) uses the parameters d = 1 and r = 1, producing
a counterclockwise spin of the arms, which is faster than the curve’s speed of rotation.
This forces the arms to “get ahead” of the curve. We can suppose, then, that there
must be a critical ratio γ0 = d/r in the behavior of the spiral arms as we increase the
parameter d from 1 to 3 where the speeds match.

To estimate γ0 we first consider the simpler problem of an unperturbed ring and
the velocity ε away from the ring depicted in Figure 4.11. Let us assume our initial
condition is a circle with radius r and density normalized to ρ = 1. For this estimate
we also set λ1 = 0 and λ2 = 1 in our model to isolate the effect of the incompressible
velocity field (which is the cause of the rotation rates). This results in a constant radius
r (as opposed to a contracting one), allowing us to pinpoint γ0 more precisely. We have
seen that the amount of gradient in the kernel has an effect on the rotational shearing,
but we will observe below that the predicted γ0 seems to be independent of λ2.

To find the value of γ0 we need to compute the angular velocity ωp of a point
p = (1 + ε, 0) just outside the ring, i.e., where ε � 1; see Figure 4.11. This point
represents a small radial perturbation of the circle. If this point is moving faster than
on the ring, then perturbations of the ring will result in spiral arms that shear in the
counterclockwise direction relative to the ring, as in Figure 4.10(b). If the point is
moving slower than on the ring the spiral arms will fall behind the ring, as in Figure
4.10(a). To calculate the angular velocity ωp of the point p which is distance ε from
the circle we compute the integral

(4.17) ωp =
1

r + ε

∫ 2π

0

∂xGd(r + ε− r cos θ,−r sin θ)rdθ.
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r

ωp

Fig. 4.11. The initial condition as a cir-
cle, with the angular velocity it generates to
a point with distance ε on the right of the
circle.
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Fig. 4.12. Integral I as a function
of γ. I(0.879) = 0.000171 and I(0.878) =
−0.003721, indicating that the zero lies be-
tween 0.878 and 0.879.

We then differentiate (4.17) with respect to ε and we get to leading order

(4.18)
dωp

dε
=

2

d5
· I, where I =

∫ 2π

0

[
− r
d
2(1− sin θ)2 +

d

r
sin θ

]
e−2(1−sin θ) r2

d2 dθ.

We see that the sign of dω
dε depends solely on γ = r/d. When I < 0, i.e., dω

dε < 0,
the points on the arm which are closer to the circle have a faster angular velocity.
Then the arms appear to wind up in the opposite direction of the spin. When I > 0,
i.e., dω

dε > 0, the points on the arm which are outside the circle have a faster angular
velocity, which makes the arms appear to wind up in the same direction as the spin.
Thus, our critical value γ0 is precisely when I(γ0) = 0, which is the critical ratio of
radius-to-kernel length scale. Figure 4.12 is a numerical calculation of I as a function
of γ. From this we see that γ0 ≈ 0.88 for our example.

The existence of a critical γ0 provides the explanation of why we see qualitatively
different dynamics in the spiral arms between Figures 4.10(a) and 4.10(b). Since the
ratio r/d is what determines the shearing behavior in our simpler problem, we can
measure the accuracy of γ0 = 0.88 once we include both a nonzero λ1 and λ2 in
our fully nonlinear perturbation problem. By including a positive value for λ1 the
curve solution will attract toward the origin. Thus, if we start with a ring whose
large perturbations initially start outside of the critical radius, we should initially
see the arms shear faster than the ring. This faster rotation will cause the arms to
move ahead of the ring. However, as the entire curve shrinks and crosses our critical
estimate of γ0 = 0.88, we would expect the spiral arms to reverse directions. The
initial conditions we use for this experiment are described in (4.4) and (4.16), with
d = 1, r̄ = 1, and r̃ = 0.2. In addition, we take λ1 = 0.01 and λ2 = 0.5. The plot of
the initial condition in Figure 4.13 shows that the large perturbations do in fact lie
outside the critical radius.

As predicted from our calculation, the t = 3 plot shows the arms located outside
the critical radius moving faster in the counterclockwise direction. However, by t = 11
most of the spiral arm has contracted inside the critical radius and begins to reverse
course. By t = 15 the entire curve and spiral arms are inside the critical radius and the
rotational shear becomes pronounced in the reverse direction—shown in Figure 4.13.
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Fig. 4.13. The solution at time t = 0, 3, 11, 15 with initial conditions (4.4) and (4.16) with
d = 1, r̄ = 1, r̃ = 0.2, λ1 = 0.01, and λ2 = 0.5.

Thus, our idealized calculation for the critical radius based on the assumption of an
unperturbed ring approximates the reversal quite well, though it appears that the
reversing of the spiral arm direction in the t = 11 picture of Figure 4.13 does occur
just outside the ring.

5. Discussion. In this paper we have derived the evolution equations for the
solutions to the general 2D active scalar problem in the case when the active scalar
lies on 1D curves. We implement an adaptive Lagrangian scheme which is second
order in space and fourth order in time. The model is then shown to reproduce classi-
cal vortex sheet dynamics as compared to the desingularized Birkhoff–Rott equation.
When the velocity is purely a gradient, the model accurately predicts the finite time
collapse of power law aggregation equations. When the velocity field contains both an
incompressible and a gradient component, our model exhibits new dynamics, which
include an increased roll-up associated with the Kelvin–Helmholtz instability for vor-
tex density functions of superfluids. In the second example of mixed-type velocity
fields we consider a model for biological swarming and aggregation and show that the
length scale of the kernel plays an important role in the milling and rotational shear
behavior of the active scalar curve.

The active scalar curve equation has made an immediate impact in the study
of the active scalar problem in the context of attraction-repulsion kernels found in
swarming models. It has been successfully used to understand and predict complex
patterns that arise (see [21]) when the interaction kernel is purely gradient and has a
long-range attraction and short-range repulsion structure. Moreover, this model has
been generalized to n dimensions (see [38]) and used to perform the same stability
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analysis for predicting complex patterns that aggregate on the n sphere; see also [39].
In the context of studying attraction-repulsion kernels the model developed in this
paper has been of great use and we expect it to find uses in many other contexts.

Finally, another interesting direction of future research is to better understand
the interaction between gradient and incompressible components, which we have seen
provides very rich and nonlinear dynamics. In the superfluids example it would be
an interesting physical and mathematical question to better understand the different
types of singularity formation (curvature versus density) and their relation.
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