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Abstract 
 

Researchers, fire ecologists and wildlife managers are concerned about impact to 

endangered and threatened species and their critical habitat due to the projected increase in 

future wildfires. Wildfires have been studied in California for the last six decades and have been 

increasing at an alarming rate since the 1980’s. In this study, I use the 2018 spatial dataset for 

critical habitat of federally endangered and threatened species located in the state boundaries 

of California and compare it to a spatial dataset for wildfires that have occurred over the span 

of 32 years (1984 to 2016). Trends are derived from spatial data by using ArcGIS and Tableau 

software. A macroscale analysis was conducted to determine what species types are most 

sensitive to wildfire encroachment. Then I conducted a microscale to determine which specific 

endangered and threatened species are threatened by wildfire to determine which recovery 

plans should be reviewed. Analyses indicted that critical habitat for amphibian, bird and insect 

endangered or threatened species types are most sensitive to wildfire encroachment. Five 

specific species that are more impacted than others: Arroyo southwestern toad, California red-

legged frog, California condor, coastal California gnatcatcher, and Quino checkerspot butterfly. 

Life traits were researched for these species and recovery plans were examined for wildfire 

mitigation strategies. Modifications were made based on these considerations and life traits. 

Results and future recommendations include specific recovery plan updates that should include 

wildfire mitigation strategies, research on wildfire impacts on these species, and ideas with 

regards to how this data can be used in the best interest of the species, ecosystem, and wildlife 

managers.  
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Introduction 

 
With wildfires on the rise throughout the United States, managers are concerned about the 

impact on critical habitat for endangered (ES) and threatened (TS) species found under the 

United States Endangered Species Act (USESA). Wildfires have increased in size, number, 

intensity and severity for decades throughout the United States (Barrett et al. 1997, Jain et al. 

2004). Currently in California, the average annual area burned and quantity of wildfires that are 

more than 1000 acres in size have more than doubled since the 1980’s (State Board of Forestry 

and Fire Protection 2018). These metrics are estimated to continue to keep rising in the future 

based on current predictions (van Wagtendonk et al. 2018). Wildfires often impact safe havens 

in wildlife refugia to vulnerable species that are endangered or close to extinction (Guo et al.  

2017, Kolden et al.  2017). However, there has yet to be a widely available direct spatial 

comparison of critical habitat for ES and TS found under the USESA and historical wildfire data. 

This is likely due to confusing decision making for when to add species to the USESA and the 

complexity of wildfire ecology in ecosystems throughout California (Martin et al. 2017, van 

Wagtendonk et al. 2018). Regardless, a spatial analysis could give insight in respect to critical 

habitats for ES and TS that could be impacted in the future, and how recovery plans for ES and 

TS can be adjusted to account for this impending increase in wildfire activity in California.  

An increase in wildfire attributes is partially due to factors pertaining to past changes in fire 

regimes due to complete fire suppression, changes in land use, and vegetation types. Fire 

regimes changed a considerable amount in the early 20th century due to policy changes 

surrounding complete wildfire suppression (van Wagtendonk 2007). These changes in policy 

have created California’s vegetation to be poorly maintained and ecosystems have been made 

vulnerable to disease and pests (Commission on California State Government Organization and 

Economy 2018). Research shows that there is also a projected increase in lightning strikes and 

warmer weather due to climate change in the future (Romps et al. 2014). Global warming is 

expected to create warmer temperatures and earlier snowmelt, causing soil and vegetation to 

be drier than normal during late wildfire season (Westerling et al. 2006). A lack of soil moisture 

and precipitation has been forecasted to increase wildfire severity during fire season 

(Westerling et al. 2003). Increasing area, quantity and severity in wildfires have been seen in 
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ecosystems found throughout California that contain vegetation. This includes northern 

forested areas in Klamath National Park, grassland ecosystems in the San Joaquin Valley, 

riparian and coastal areas found in southern California, and high desert areas found in eastern 

California (Westerling et al. 2006, Cheney et al. 1998, Bendix et al. 2017, Zedler et al. 1983, 

Brooks 2002).  The human population is expected to continue to increase in the future as well, 

and data shows that the wildland-urban interface (WUI) is linked to an increase in wildfires 

(Syphard et al. 2007). 

ES and TS found under the USESA can also be found in a variety of ecosystem. California 

contains 85 million acres of land classified as wildlands, which make up commercially, privately 

and government-owned areas (CAL FIRE 2012). These wildlands provide critical habitat for over 

100 federally ES and TS protected under the USESA, which is a law to help conserve ecosystems 

where ES and TS are housed to prevent species extinction (Williams 1973). Not only do ES and 

TS play an active role in valuable ecosystem services for humans, but species extinction and a 

lack of biodiversity can also cause ecological disasters that lead to more extinction (Pimm et al. 

2014, Srinivasan et al. 2007).  

In order for a species to be considered protected under the USESA, the United States Fish 

and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS) are required to 

produce a recovery plan and designate an area for their recovery. This recovery plan outlines 

goals, management practices and timelines to predict how long it would take to get the 

endangered species back to recovered population values. A protected spatial area is also 

established, also known as critical habitat, in order to estimate where and how much area the 

ES or TS would need to rebound in population (USFWS 2011). Recovery plans will sometimes 

include wildfire protection or wildfire mitigation strategies that help best protect the species. 

Although recovery plans and critical habitat are helpful and thoroughly put together, they are 

not always regularly updated with the most up to date science because of costly analysis and 

long congressional litigation or court proceedings (Taylor et al. 2005). They are also sometimes 

neglected to be made completely due to a lack of funds and time. 

This paper evaluates federally ES and TS types by groups and individual species that are 

most vulnerable to increasing wildfire encroachment in necessary critical habitat in California. 
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Recovery plan examination helped determine how current federal recovery plans can be 

changed in the future to mitigate these increasing future wildfires. A Geographical Information 

System (GIS) analysis using Environmental Systems Research Institute (ESRI) software was 

performed. Spatial datasets were used to compare critical habitat for each ES and TS type 

(USFWS 2018) to wildfire encroached areas in California from 1984 to 2016 (Eidenshink et al. 

2007). Analysis on a macroscale was performed to determine what species types are most 

sensitive to wildfire encroachment. To further this analysis, I performed a microscale analysis to 

determine which specific ES and TS critical habitat is most threatened by wildfire 

encroachment. For each critical habitat that was heavily impacted by wildfire, a literature 

search was performed for each ES or TS to determine the biology and physical habitat needed 

in order to define the best method of fire suppression and mitigation. Finally, recovery plans for 

each heavily impacted species was reviewed to determine if any type of fire mitigation 

strategies are being utilized in the current methods of the species management. By performing 

this GIS analysis and thoroughly examining recovery plans for specific ES and TS, I provide 

recommended updates to current recovery plans for California’s species found under the USESA 

to prepare for increased wildfires that are predicted to occur in the future. 

 

Methods 

I. GIS Datasets 

I used several datasets to conduct my macro and micro analysis (Table 1). A shapefile was 

used to define the entire state of California as a boundary. This boundary file was sourced by 

the United States Census Bureau website and contains the boundaries of each state found in 

the United States. It includes one shapefile in polygon form for the entire United States, while 

attributes are divided by state names and areas. This file was used to prepare the critical 

habitat for ES or TS. The shapefile was set to decimal degrees and the geographical coordinate 

system was downloaded as GCS_North_American_1983 with D_North_American_1983 Datum.  

The federal ES and TS critical habitat dataset were sourced by the Data.gov website via the 

US Department of the Interior, the USFWS, and the Environmental Conservation Online System 

(ECOS). This dataset consisted of critical habitat for 688 out of the total 1634 ES and TS found 
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throughout the United States and was recorded in 2018. Attributes include common names, 

scientific names, and species codes given by the Threatened and Endangered Species System 

(TESS) created by the United States Geographic System (USGS) which can be seen in Table 2. 

Spatial data were downloaded as shapefiles in polygon form. These spatial files are intended to 

show where ES and TS are expected to live and successfully increase in population size during 

the recovery process. These polygons were clipped using the state of California shapefile in 

order to determine where ES or TS are located in California. There are 14 types of species found 

within California according to TESS. Critical habitat spatial data found within California included 

9 out of the 14 total species types found in California within the TESS system. Critical habitat 

spatial data were not available for all 14 species types, nor was it available for every species 

found in each type. This is due to a lack of available resources and funding that go to the USESA. 

Data were set to decimal degrees and the geographical coordinate system was downloaded as 

GCS_WGS_1984 with D_WGS_1984 Datum.  

Wildfire raster data were obtained from the Monitoring Trends in Burn Severity (MTBS) 

website (Eidenshrink et al. 2007). This data is a collection of major wildfires that have happened 

each year since 1984 to 2016. Wildfires in this analysis include all fires burning to 1000 acres or 

greater and is dissected through an institutionalized and steady system, creating pixels at a 30-

meter resolution. Burn severity interpretation is ranked in values from 1 to 6, with each value 

being resembled by a different color:  

• 1 or Dark Green resembles unburned (not used in this project) 

• 2 or Light Blue resembles low severity burned areas 

• 3 or Yellow resembles moderate severity burned areas 

• 4 or Red resembles high severity burned areas 

• 5 or Bright Green resembles increased greenery areas compared to previous years (not 

used in this project) 

• 6 or White resembles bodies of clouds or shadows (not used in this project) 

This data is set to linear units of meters and the XY coordinate system used was 

Albers_Conical_Equal_Area with D_North_America_1983 Datum.  
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II. GIS Macro Analysis 

For this GIS macro analysis, I changed the projection of all datasets to keep consistency 

throughout the project. The shapefile for the state of California was selected using the “Select 

by Attribute” tool. Boundary data was exported for downstream analysis. Critical habitat 

shapefiles for ES and TS were clipped using the California state boundary in order to use only ES 

and TS critical habitat found within California. This gave a total of 115 ES and TS spatial datasets 

Three of the ES and TS in this list had spatial datasets that were broken up between regions. 

These datasets were added together, making a total of 112 ES and TS critical habitat spatial 

datasets. A field was added in the attribute table to determine what the species code meant 

according to TESS (Table 2). Wildfire raster data by year was obtained and an attribute table 

was built for each dataset using the “Build Raster Attribute Table” and was kept for 

downstream analysis. Shapefiles for ES and TS critical habitat were given a geometry field in the 

attribute table for area. Each polygon was grouped and dissolved according to TESS code. 

Groupings were split into separate shapefiles by using the “Split by Feature Class” tool.  

MTBS raster data were used as a classifier and the new ES and TS critical habitat shapefiles 

were used as the habitat in order to use the “Tabulate Area” tool for every year in each TESS 

species grouping. This was done using an iterator in a model. A field was added as well to 

produce the area in meters squared for all wildfires found in the habitat for each species 

grouping. Total area in meters squared for total ES and TS critical habitat was also added. The 

files produced in this model were dbf files. All of these files were merged using another model, 

with the year and species grouping being added to depict which year the data came from.  

Finally, dbf files were exported into an excel file. Each wildfire category (low, moderate, 

high) found in critical habitat for ES and TS grouping was normalized using the total amount of 

ES and TS critical habitat found in the state of California for each species group. The data was 

then graphed and analyzed using Tableau software to show trends needed for further analysis.  

III. GIS Micro Analysis and Species Selection 

Using the results of the macro analysis, I examined further using the three most impacted 

species groups. ES and TS groups most impacted by wildfire encroachment were defined and 

ungrouped to determine five ES and TS individual species impacted most by wildfire inundation. 
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Literature searches to determine biological, physiological, and life traits for these five species 

were done to determine how fire can impact their biology and to define the best methods for 

wildfire management strategies. Informative information was found on the federally funded 

Environmental Conservation Online System, or ECOS, website (US Fish and Wildlife Service 

2018), the California state funded California Wildlife Habitat Relationships, or CWHR, website 

(California Department of Fish and Wildlife 2018), and the Center for Biological Diversity, or 

CBD, website (Center for Biodiversity 2019).  

IV. Recovery Plan Comparison 

Federal recovery plans for the five most impacted ES and TS were reviewed and compared 

with information relating to documentation found in the previous literature search. The most 

recent recovery plans were used to determine what kind of management plan is being 

exercised and if it includes any type of wildfire inundation and wildfire mitigation techniques. 

Federal grey literature was also researched to determine what is currently being done to help 

determine what can be added to recovery plans that helps document what else can be done to 

learn more about the species and how wildfire impacts them. 

 

Background 

I. Fire Regimes 

Changes in fire regimes have made a large impact on why there has been an increase in 

wildfires. Fire regimes are complex fire patterns driven by fuels, topography, and weather (van 

Wagtendonk et al. 2018). All ecosystems being made up of different vegetation, landscapes, 

and climate mean that each area is characterized by a different fire regime and a different time 

interval between when fires happen. They are structured by natural characteristics related to 

the ecosystem, climate and human impact. Land slope, elevation, and accumulation of wildfire 

ignition are all ecological factors that play an important role in how fire patterns are initially 

defined (Taylor et al. 2003). The kinds of vegetation, height of vegetation, and time of season 

can also play a role in how fire regimes are originally structured. Past fuel management in the 

ecosystem, changing weather patterns, and the introduction of invasive plants (Morgan et al. 

2001) are all modifications that can act in changing fire regimes and cause original patterns to 
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shift. Humans can complicate fire regimes with manmade structures that can easily catch on 

fire. Concurrently, humans as a population create a uniquely unpredictable environment 

because of the easy accessibility to fire. People accidentally or purposefully start fires that can 

quickly become out of control in the perfect wind storm. These features are always evolving, 

making fire regimes dynamic and often changing.  

The species type and size of vegetation found in an ecosystem is one of the most influential 

factors for how fire regimes advance. Surface fires are defined as wildfires that spread in the 

understory or low-lying layer of an ecosystem (Pausas et al. 2014). This can be grasslands, 

deserts, and savannas. They usually occur at higher frequencies and at a lower intensity. 

However, crown fires are characterized as fires that impact all vegetation in an ecosystem 

(Pausas et al. 2014). Examples of these kinds of fires include wildfires that start in chaparral or 

shrubland and closed-cone pine forests. Crown fires usually occur at a higher intensity. 

Examples of each type of fire are not limited to the specific ecosystems stated and can occur in 

other ecosystems if given the appropriate circumstantial conditions. For example, newer and 

healthy tree stands in less dry conditions can undergo a surface fire with no impact to the top 

layer of the tree stands.   

Ecosystems are sensitive to wildfires and how often they occur. In some habitats 

throughout California and beyond, fires can implement rejuvenating qualities that produce 

healthier and more efficient ecosystems. A common example of this are evolutionary traits 

acquired by plants in historically fire prone areas (Rowe 1983). Some plant types, known as 

endurers, re-sprout a new shoot or dormant bud upon encroachment of wildfires, while other 

plant types, known as evaders, generate a fire-resistant bank in the top layer of soil that relies 

on fires to germinate. Invaders are short lived and are early arrivers in the season, causing a 

large abundance of them by the time fire season normally starts. Resisters are plant species 

that are resistant to fires at the adult stage due to specific phenotypic traits, such as thick bark 

and a lack of ladder fuel. Finally, there are avoiders, which are sometimes argued to not be a 

direct adaptation to fire. These are plant types that arrive late in the season. It is clear that 

some plant species heavily rely on wildfires for propagation. Because of this reason, it can 

appear that some plant species follow the spread of wildfires.  
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Simultaneously, plants are also known to live their life cycle based on the number of fire 

intervals that happen over a certain amount of time (Pausas et al. 2014). Some plants cannot 

live past one fire interval, while others can live through several fire intervals. Although most 

examples of fire facilitating species are plant species, animal species can also have a symbiotic 

relationship with these fire dependent plants, and therefore can also be positively impacted by 

fire regimes. This usually happens over long periods of times to species that undergo an 

increase of selective pressure in a very specific habitat (Moran 2006). For example, some 

insects will sometimes use plants for shelter and feeding that are reliant on fires in some way.  

Despite some plants and ecosystems being highly evolved to utilize wildfires throughout 

time, other ecosystems that have either very long fire regimes or too many wildfires in too 

short of time can suffer. The impact of wildfires in areas that are not historically prone to fire 

can drastically change the distribution and abundance of some plant types (McKenzie et al. 

2004). These fire intolerant plants can sometimes disappear from an ecosystem entirely after a 

wildfire. Damage to soil has also been recorded in some ecosystems (Certini 2005). Nutrients 

become depleted in the soil and cannot be replenished fast enough for the plants to 

successfully thrive. In addition, animals and insects that once relied on these plants for food 

and shelter are ultimately pushed to find an alternative support system.  

Plants clearly play a major role in how fire regimes are shaped throughout California’s 

numerous ecosystems. Hence, it would not be a surprise to detect changes in fire regimes when 

new plant species are introduced to formerly unstable habitats. Humans and animals often 

times act as accidental transportation for invasive plant species through seeds or plant clippings 

attached to skin, fur, clothing, or shoe apparel. This spreads by way of migration patterns, 

hiking trails, camping, or outdoor sporting events. Remnant plant parts that get tracked in to 

sensitive ecosystems near susceptible areas can be disastrous if followed by a wildfire. If a fire 

occurs in an area full of fire intolerant plant species, an invasive fire facultative plant could take 

over the habitat that was once used by native species (Brooks et al. 2004). Ecosystem services 

can take a negative toll when this occurs, while animal species can also suffer. Wildfire 

ecologists are often mindful of this topic and restoration efforts recurrently attempt to attack 

this ongoing problem before it gets out of control by performing invasive removal projects. 
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II. Past Wildfires in California and the United States 

Historically, wildfires and fire regimes were once much different in California. Habitats were 

not deconstructed or changed because of land use purposes, invasive plants were much less 

likely to be tracked into sensitive habitat, and there was less human development and 

structural settlements. In “A Summary of Fire Frequency Estimates for California Vegetation 

before Euro-American Settlement”, the author (van de Water et al. 2011) estimates what fire 

intervals were prior to Euro-American settlements moving into California. This was done by 

performing an exhaustive review of published and unpublished literature and consulting with 

28 fire ecology experts. Data was recorded for vegetation found in the area and mean, median, 

minimum and maximum fire returns in years prior to the mid 19th century. Averages were taken 

of all metrics in order to consider a more simplified result. Averages range to as low as 11 years 

in habitats containing yellow pine species and dry mixed conifer species, while habitats 

containing desert mixed shrub species had an average fire interval of 610 years. While 

reviewing this literature, van de Water clearly shows that these fire interval estimates are 

extremely variable, therefore finding the average of several pieces of literature was critical in 

this reference. 

Although these differences in fire regimes stem from several reasons, policy changes 

throughout history play a major role for the differences seen. From 1872 to 1967, it was 

thought best to completely suppress any wildfire that might start in fear of the fire becoming 

out of control (van Wagtendonk 2007). In fact, US Forest Service (USFS) was established in 1905 

and complete fire suppression was its main objective.  That may have seemed like a great idea 

at the time due to the lack of modern technology used to fight wildfires. Unfortunately, little 

was known about the restorative properties of fires in some ecosystems and how some species 

may even rely on it for regrowth. In 1934, national forest supervisors and wilderness advocates 

proposed to not use fire suppression in backcountry areas where it would not be impactful to 

humans (Pyne 1982). This was overturned and full fire suppression continued to be the 

management policy of the USFS until the 1970’s.  

In the middle of the 20th century, there was a shift in policy change. Dr. Starker Leopold, the 

Secretary of the Interior at the time, helped put out a report in regards to how wildlife interacts 
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with several ecosystems within an area and how fire can impact this. The report, released in 

1962, also suggested that areas should be managed by ecosystems and less by how borders are 

made by state or national park lines (Leopold et al. 1963). This idea encouraged ecological 

management teams to recognize fire as an ecological process and to start experimenting on 

how wildfires could be mitigated instead of by complete suppression. Wildfire simulation 

methods with break lines were attempted as opposed to complete fire containment. With the 

help of forest and fire ecologists from several National Parks and Monuments all over the 

western United States, there was a huge push to move towards methods that allow areas to 

burn under supervision, sometimes for months at a time.  

This policy was well accepted until the 1990’s, when three major wildfire events showed 

that prescribed burns can also become out of control if not done properly (van Wagtendonk 

2007). This caused criticism of fire mitigation techniques and caused officials to stop all 

prescribed burns from happening in all areas. Plans were rewritten in accordance to this 

change, but natural wildfires continued to get bigger and out of control despite no prescribed 

burns. Agencies throughout the United States were unable to decide on a final conclusion in 

how to move forward, so by the year 2000, agencies that manage wildlands had differing 

implementation tactics in how to deal with wildfires. Departments that have historically fought 

wildland fires include the Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), 

USFS, USFWS, National Park Service (NPS), and state ran fire protection agencies such as the 

California Department of Forestry and Fire Protection (CAL FIRE). 

III. Current Wildfire Occurrences in California 

Wildfires have been rapidly increasing in size and number throughout the United States. 

This has been a common theme found in research done in the last 30 years (Westerling 2016). 

Situated within this fire inclined territory is California. In this state alone between the years of 

2010 and 2017, records show that wildfires have doubled in size and average annual area 

burned since the 1980’s, approximately 20 years after policy had changed to stop the complete 

suppression of wildfires (State Board of Forestry and Fire Protection 2018, Figure 1). Size and 

area are not the only increasing metrics related to wildfires occurring in California. There have 

also been an increase in severity and intensity of how quickly wildfires burn (Jain et al. 2004). 
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Wildfire intensity is the rate at which the fire consumes fuel, while wildfire severity is the 

impact at which the fire has on vegetation, soils, buildings, watersheds, and so forth. 

Some of the largest and most destructive California wildfires in recent history have occurred 

in the last couple years (CAL FIRE 2019). The River Fire and Ranch Fire collided in July of 2018 

creating the Mendocino Complex, a wildfire impacting Colusa, Lake, Mendocino and Glenn 

counties. It took approximately two months to completely extinguish and burned 459,123 

acres, the most area burned on record by a wildfire in the last 85 years. In November 2018, the 

Camp Fire started in Paradise, California in Butte County. This fire ripped through the entire 

town of Paradise, causing approximately 18,804 structures to burn and 85 deaths. It essentially 

destroyed the entire town, displacing many of the people that were able to survive the fire and 

escape in time. More locally, the Tubbs Fire started in October 2017 and burned large portions 

of Napa, Sonoma, and Lake counties. It burned approximately 5,643 structures and there were 

22 fatalities. Because of the large population of people living in these and surrounding counties, 

it also caused a lot of issues with unhealthy air quality. The cause of wildfires range from fallen 

powerlines, lightning strikes, or human related causes (CAL FIRE 2019) 

Current policy related to wildlands and how fire containment occurs in the state of 

California is decided upon two main departments:  state funded CAL FIRE and federally funded 

USFS. Fire fighters that work for CAL FIRE cover over 31 million acres of wildlands across the 

state. Specific counties with high concentrations of human populations and large areas of 

wildlands also contract out CAL FIRE to act as their main providers of wildland fire 

management. Fire management provided by CAL FIRE is regulated by the State Board of 

Forestry and Fire Protection. The 2018 Strategic Fire Plan for California states that the most 

updated goals revolve around fire protection, natural resource management, and fire 

suppression efforts (State Board of Forestry and Fire Protection 2018). The goals focus on 

teaching fire resilience of wildland environments, promote local planning, and integrating 

implementation of fire and vegetative fuels management practices that align with similar 

priorities of the landowner or manager (State Board of Forestry and Fire Protection 2018). CAL 

FIRE works with land managers to perform wildfire mitigation techniques when necessary.  
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Jointly, the USFS manages areas that are located in national forests. They also work closely 

with state, tribal, and municipal areas to help determine what would work best in each 

scenario. The USFS recognizes that fire suppression has become a major influencer for longer 

wildfire seasons and has recently developed a new framework to determine where areas 

should focus on fire mitigation strategies, such as prescribed burns, and other areas that should 

focus on complete fire suppression when needed (US Department of Agriculture 2018). Areas 

with a higher UWI and human population would most likely use complete fire suppression for 

safety reasons. They also focus on introducing new technologies and management tools that 

may have not been utilized by state programs in the past. Finally, they similarly feel that doing 

the right work locally for what is best for the surrounding community is important.  

Current fire intervals can be found by using the LANDFIRE website (Rollins et al. 2009). All 

estimates are wavering, most ranging from either 0 to 35 years or 35 to 200 years. There are 

currently a total of 5 fire intervals. Although intervals are extremely variable, the value of this 

data appears when using it in addition with an updated fire interval map. This map can be 

found on the LANDFIRE website. The locations of specific fire regimes is defined by vegetation 

dynamics, fire spread, fire effects and spatial context (Rollins et al. 2009). All 5 fire intervals can 

be found in the state of California, with the 0 to 35 year intervals running along the coast, north 

part of the state and eastern part of the state. The southern part of the state contains mostly 

areas that have fire intervals of 35 to 200 years. This is currently useful for wildland managers 

and fire ecologists in order to predict how wildfires will move and how wildfires may interfere 

with known vegetation in fire imperiled ecosystems. 

IV. Future Wildfire Projections in California 

Climate change is expected to shape future wildfire patterns in a significant way. Ozone 

depleting substances, such as greenhouse gases, have increased in the last three centuries, 

causing CO2 to be trapped in the atmosphere and the global temperature to have increased.  

As indicated by recent studies reported in 2006, the average global temperature increases by 

roughly 0.2° every 30 years (Hansen et al. 2006). This temperature change is expected to 

increase over the span of less time in the future and will assume a critical role in fire regimes in 

all ecosystems and wildfires. Higher temperatures will prompt longer summers, less snow melt 
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and drier ecosystems overall, which will likewise expand the window for when wildfires can 

happen in a single season (Westerling et al. 2006). Lightning strikes currently play a major role 

in how wildfires start in rural areas during hot, summer months. Romps et al.(2014) made a 

model to determine the rise of lightning strikes in the future. Their study demonstrated that 

there is expected to be an increase of lightning strikes by about 12% for every degree Celsius 

rise in global average air temperature. 

Humans have a noteworthy impact in where wildfires take place, how they spread and how 

often they occur. In the article titled 'Human Influence on California Fire Regimes' by Alexandra 

Syphard (2007), researchers demonstrate how human lives and structures can change spatial 

patterns of fire regimes for any given ecosystem. Population trends in California have continued 

to almost triple since the 1960’s, and with increased populations comes more urban 

development and unpredictable fire activity. This means that there is a larger WUI and more 

potential for fire risk, possibly adding to an increase in wildfire size and number. 

The mismanagement in ecosystems throughout California’s history has assumed a major 

role in creating unhealthy and undesirable habitats for many species types. The constant 

putting out of wildfires in less urban areas has caused shrubs, grasses and tree stands to be 

older and more over crowded than what they been in the past, with less biodiversity. With over 

crowded flora comes less water and nourishment for each individual and more fire risk. For 

those individuals that cannot make the intolerable drought and hot weather, bark beetles can 

also play a role in decomposing the tree for regrowth. In a healthy habitat, this is normal. But in 

a habitat that is overran by already unhealthy and competing vegetation, more dry and 

decomposing plant matter can lead to more severe and intense wildfires (Commission on 

California State Government Organization and Economy 2018).  

Lastly, wildfires have been recorded in a wide range of ecosystems where vegetation is 

present and acts as a fuel source. Forested areas are a clear example of an ecosystem that is 

impacted by wildfires, causing devastation to large portions of northern California (Westerling 

et al. 2006). Grasslands can likewise be a problem however, highlighted by N. Philip Cheney (et 

al. 1998) in Australia and horrifically documented in the more recent wildfires occurring in the 

more urbanized areas of Santa Rosa, California during the Tubbs fire in 2017. Riparian regions 
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and riverine environments additionally regularly burn (Bendix et al. 2017), causing water ways 

to be contaminated and obstructed throughout California. Rapidly spreading wildfires in 

Southern California’s chaparral and coastal scrub ecosystems can aggressively burn, causing 

significant erosion problems and abrupt changes in the area (Zedler et al. 1983). Deserts 

situated in the southeastern part of California can also burn, as highlighted in “Spatial and 

Temporal Patterns of Wildfires in the Mojave Desert, 1980-2004” by Matthew Brooks (et al. 

2006). Here, he documents wildfires occurring in lower and middle elevation deserts, possibly 

due to non-native species plants that have accumulated in the area over many decades. This 

information shows that all ecosystems are at risk for a possibility of increased wildfire 

encroachment if predictions about warmer global temperatures and increased drought are 

true.  

V. Wildfire Mitigation 

There are many ways to implement wildfire mitigation strategies that do not include 

complete fire suppression. As mentioned previously, fires are sometimes beneficial to species 

and ecosystem health and growth. For example, fire helps with seed germination and self-

pruning for a higher population in pine trees (Rodríguez-Trejo et al. 2003). Fire has also been 

known to help eliminate invasive species for native species that are more resilient to burning by 

wildfires (Brooks et al. 2006). In the case of all species that fall under the USESA, populations 

are extremely small and diminishing. The idea behind the USESA is to do everything possible 

and within reach to save these vulnerable and unique species. Along these lines, even though 

different ecosystems may have different fire regimes, it is most essential to take into 

consideration the biological, physiological and life traits of these ES and TS. Specialists have 

argued that conservation should happen at the ecosystem level (Lindenmayer 2007). In most 

cases, this is the best strategy, as it not only helps the one species of interest, but it can also 

help restore the ecosystem for surrounding species and relied upon ecosystem services. 

However, ES and TS are special cases where species conservation and preservation should be 

top priority. Therefore, it is crucial for the appropriate wildfire mitigation strategy to be used 

near ES and TS critical habitat. 
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Besides complete fire suppression, there are numerous methods for wildfire mitigation 

techniques that occur across the country and throughout the world. Prescribed burns are a 

noteworthy method, which consists of purposefully setting fires in a controlled manner, so that 

wildfires do not burn at high intensity or severity. Prescribed burns are a method that utilize a 

controlled fire situation that is started by a fire technician. It is monitored and put out over time 

to mimic a low intensity burn. The primary goal of a prescribed burn is to prevent surface or 

tree replacing fires that could otherwise be threatening to nearby structures and natural 

resources (Arkle et al. 2010). Another popular method is thinning clippings of shrubs, bushes, 

and trees (Brunson et al. 2004). This creates space for incoming growth of nearby plants and 

allows for natural wildfires to have less accessibility to jump from plant to plant. Brush removal 

is also another method where any extra plant surface matter that has built up in the ecosystem 

floor is collected and transferred to another site (Brunson et al. 2004). This stops natural 

wildfires from spreading across the ecosystem floor more quickly than they would have 

otherwise. Fire breaks are also often utilized in areas where there is space to deplete plant 

matter on the ground as to create a line in the vegetation and stop fire from spreading. Finally, 

livestock grazing is also sometimes used in areas where there are large amounts of vegetation 

on the ecosystem floor. Livestock will eat grasses and extra plant matter that may have built up 

on the ecosystem floor so that natural wildfires will spread less quickly. 

VI. Federal Lands and the Endangered Species Act 

Strategies for federal wildland conservation, preservation, and protection throughout North 

America are unique to other places on earth. The model used, referred to the North American 

Model of Wildlife Conservation (Organ et al. 2012), paints an extremely clear picture. Wildlands 

are intended to be made for all public use, giving universal ownership to every citizen. These 

areas should be designated and managed respectfully and responsibly in a way that keeps 

wildlife conservation efforts as the primary objective. These values are likewise upheld in the 

state of California, found on the west coast of the United States. California contains 85 million 

acres of land classified as wildlands, which make up commercially, privately and government-

owned areas (CAL FIRE 2012). These wildlands provide wildlife critical habitat for many species 

populations that are dwindling in size.  
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Permitting the protection of these dwindling populations, the federal government began an 

environmental law in 1973, called the Endangered Species Act. The USESA was enacted into 

legislation by President Richard Nixon and was designed to implement provisions found in The 

Convention on International Trade in Endangered Species of Wild Fauna and Flora or CITES 

(USFWS 2015). Scientists, lawyers, and politicians came together to write the final legislature 

measure, which states that this law is required to provide conservation and ecosystem 

preservation for species that are considered either endangered or threatened (Williams 1973). 

In order for the law to work properly and efficiently, there are two main requirements that are 

necessary. The first is a spatial area that can be protected in order for the species to thrive, also 

known as critical habitat. The other essential requirement is a recovery plan, which creates 

goals, tasks, future threats and the estimated cost to carefully manage and increase population 

sizes. Both requirements will be explained in detail in later reading material. 

According to ECOS, there are approximately 1634 ES or TS that live in the United States. 

When being organized by species group specified by TESS, there are a total of 14 unique species 

types in California: Amphibian, Arachnid, Bird, Clam, Conifer and Cycad, Crustacean, Fern, Fish, 

Flowering Plant, Insect, Lichen, Mammal, Reptile, and Snail. Each species found within these 

categories are extraordinary in their own way and hold an important value that is irreplaceable. 

When one of these unique species winds up jeopardized, it is an indication that the biological 

community and surrounding ecosystem is gradually becoming less stable and resourceful. 

Without healthy ecosystems and ES and TS that help provide them, humans run the risk of 

giving up ecosystem services that are depended on regularly.  

Most ecosystem services provided by ES and TS are often overlooked and forgotten about 

because of their continual role in our everyday lives. Ecosystem services are divided into four 

categories (Daily et al. 2008). Provisioning services include natural services that provide directly 

for human use. This includes medicinal plants and animals as a food source. Regulating services 

are benefits that are not necessarily seen but are taken advantage of regularly by all species on 

earth. Air and water purification, decomposition of wastes, and stabilizing processes are 

examples of regulating services. Cultural services support spaces that are accommodating to 

people for their enjoyment. This can be for reasons that represent esthetic beauty or spiritual 
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stimulation. Finally, supporting services are the preservation of many of the services listed 

above. This can come from humans as maintenance of other services to make sure that 

ecosystems as functioning as they should. Ecosystem services are provided through very 

complicated processes, and wildlife is needed as part of the equation in finalizing these 

necessary ecological processes. 

 Many species that are found under the USESA are involved in ecosystem services in some 

form or another, and would cause instant catastrophe if they suddenly became extinct. For 

example, many species of oysters are ES or TS and are known to be a part of the regulating 

ecosystem service as water purifiers. Likewise, many insects that are either an ES or TS act as 

pollinators to provisioning crops. Some plant ES or TS even play an ecosystem service role in 

climate control, flood protection, and carbon sequestration (Endangered Species Coalition 

2018). Extinction causes interruptions within the food chain, which can decrease populations 

and biodiversity in a community and throughout the food web even further (Polidoro et al. 

2010, Srinivasan et al. 2007). Extinction can also decrease ecotourism and recreational activity, 

which can lower overall revenue and income in some industries (Yoskowitz et al. 2009). Lastly, 

ES and TS can provide natural medicinal cures for diseases, as well as act as pollinators in 

agriculture (Endangered Species Coalition 2018). ES and TS play a very important role to 

humans and the surrounding ecosystems that they consider critical habitat.  

VII. Critical Habitat and Recovery Plans  

Critical habitat is extremely important in assuring that each ES and TS gets the appropriate 

space needed for the conservation and protection of the specific species found under the 

USESA. Regional areas recorded as critical habitat are locations that are needed to sustain and 

fulfill the physical and biological traits of species to protect and sustain populations. Physical 

and biological traits include cover and shelter, essential nutritional requirements, space for the 

population to grow, and sites needed for breeding and rearing offspring (USFWS 2017). Because 

of this reason, critical habitats are unique and individualized to capture the species’ needs. 

These regions usually consist of habitat that are currently being utilized by the species, along 

with areas that may be essential to their conservation in the future. Hopes are that, in these 

designated areas, destruction and modification to the area will be prohibited, and funding will 
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continue to be allocated by the United States federal government to ensure the protection and 

studying of the species. 

 Critical habitat is supposed to be designated within one year after being listed as a species, 

as specified by section 7 of the USESA. Biologists, species specialists and spatial analysists from 

the USFWS and NMFS cooperate and work together to determine where critical habitat should 

be located. These areas are not often updated to reflect current ecosystem changes, despite 

how helpful these revisions could be for the conservation of these species (Hodges 2008). It is 

also sometimes difficult to find this data in a spatial format. Because of this, many ES and TS are 

often underrepresented in spatial analysis. For example, out of the 1634 ES and TS found in the 

United States under the USESA, only 688 of them have critical habitat spatial data. In total, 

there are approximately 297 ES and TS found in California today, and only about one-third of 

them have critical habitat spatial data. In this study, approximately 112 ES and TS are analyzed. 

These 112 ES and TS make up some of the 9 out of 14 ES and TS types found in California 

according to TESS. These species are either land or freshwater dwelling due to the nature of 

how this GIS project was performed.  

While the USESA requires the USFWS and NMFS to designate and assign critical habitat to 

these species, not all of the essential habitat available makes it into this spatial reference. Pre-

existing developed areas are often excluded, such as buildings, roads, airports, parking lots, etc. 

Privately owned lands are also often excluded as long as an on-site examination has been 

performed. On the off chance the ES or TS of interest is found on private land, the private 

landowner may be affected by USESA laws. If the ES or TS of interest is not found despite the 

area being prime critical habitat, the private landowner will not be impacted. If critical habitat is 

found in military areas, the military branch owner will be the acting member to participate in 

conservation and preservation efforts for the ES or TS.  

Recovery plans are required in order for a species to be considered as an ES or TS within the 

USESA. They act as mandatory provisional goals and tasks in attempts to increase population 

sizes, while including any future threats that may impact the overall goal. Recovery plans 

introduce timelines and estimated costs that may add any additional stress to the project. They 

help in providing speedy, step-by-step guidance to the recovery process for an ES or TS and 
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must include a description of site-specific management actions (Mahoney et al. 2018). They are 

written by wildlife biologists and species specialists. Although recovery plans are mandatory, a 

recent study in 2018 by Jessica Mahoney showed that a quarter of ES and TS throughout the 

United States were lacking recovery plans and over half of them were more than 20 years old. 

This means that they also most likely do not include wildfire encroachment if wildfires were less 

of a problem when they were written. Data recorded in this study hopes to ultimately help with 

recovery plan updates to include fire ecology and mitigation strategies in future plans. 

VIII. Wildlife and Wildfires 

While wildfires can occur in all ecosystems and habitats where vegetation is present, 

reports show that wildfires similarly impact all kinds of wildlife. This can be seen directly 

through research that has been done on different kinds of wildlife and what symbiotic 

relationships one species might have on another. Wildfire impacts wildlife in various ways. For 

example, small mammals that are less adaptable than their counterparts have been 

documented to cover less range in ground cover that is burned compared to more generalist 

species similar in size (Roberts et al. 2015). This could eventually prevent some small mammals 

from using once accessible critical habitat, and creating less biodiversity in a particular area. 

Similarly, birds are impacted by wildfires. California spotted owl nesting habitat is impacted by 

wildfires regularly due to the increase in wildfire severity and by decreasing the amount of tree 

stands available for future nesting (Stephens et al. 2016). These areas that once burned 

regularly did not take as long to recover from a wildfire. But since fire regimes have changed, 

the ecosystem where nesting is now found can take much longer to recover. Insects decrease in 

population directly after a wildfire because of the overall slower mobility of insects (Swengel et 

al. 2001). Fish species are also often impacted by wildfires (Dunham et al. 2003). Wildfires can 

produce contamination that enters the water table through run off. This run off creates 

sediment that can impact fish and amphibian health and reproduction. In most cases, not 

enough research has been done on wildfire mitigation techniques and how it can impact ES and 

TS critical habitat. It is therefore very important to continue research and determine how ES 

and TS interact with their ecosystems when fire is present. 
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Analysis Chapter 

I. Macro GIS Analysis Results 

A story map demonstrating information for all raster files by year from MTBS (Figure 2) and 

separated ES and TS total critical habitat shapefiles categorized by TESS (Figure 3) were used in 

this analysis. I found critical habitat spatial data for 9 out of the 14 unique ES and TS groups in 

California, with each of them having a different assortment of species categorized in each group 

(Table 3). Among the nine unique ES and TS groups, eight of them had some kind of wildfire 

inundation in their critical habitat. The snails group was not exposed to wildfire in their critical 

habitat at some point between 1984 and 2016. The amphibian, bird, crustacean, fish, flowering 

plants, insect, mammal, and reptile groups were exposed to wildfire between the years of 1984 

to 2016. 

Wildfire severity was separated between low, moderate, high and total wildfire severity 

between each year to determine whether there were differences between wildfire severity and 

if one severity impacted ES and TS critical habitat more than another. Affected regions for each 

ES and TS grouping was normalized by the total area of critical habitat for each group. Figure 4 

summaries this data. There was a low correlation between wildfires that produced specific burn 

severity over time and wildfire encroachment in ES and TS critical habitat for any of the species 

groups. There was also a low correlation between total area impacted by total wildfire 

exposure and ES and TS critical habitat.  

Because of the low correlation between wildfire inundation over time and ES and TS critical 

habitat, a table calculation was utilized in Tableau software. This table calculation, called a 

window sum analysis, adds data points together within a certain defined window to determine 

what future trends can approximately occur if the past trends hold any truth. A window value 

of 11 years was used to reflect historical fire regime data produced by van de Water in 2011 

(van de Water et al. 2011). Eleven years was determined to reflect the lowest average time 

interval between historical fire regimes in all ecosystems in California. As expressed previously, 

fire intervals are complex and have recently undergone drastic change due to human 

intervention and changes in the ecosystem. In this initial analysis, species categorized under the 
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TESS system as ES and TS amphibians, birds, and insects were expected to have more wildfire 

inundation and exposure in their critical habitat when using all wildfire severity types (Figure 5).  

II. Micro GIS Analysis Results 

ES and TS amphibians, birds, and insects were presumed to have more wildfire inundation 

and exposure in their critical habitat in the future by way of using a window sum analysis. All 

three species categories were ungrouped to show individual ES and TS critical habitat from 

2018. These individual shapefiles were overlaid utilizing GIS and compared to wildfire raster 

datasets from MTBS starting from 1984 to 2016 similarly to what was done in the above 

analysis. There were a total of six ES or TS amphibian species, nine bird species, and eight insect 

species located in California (Figure 6). Metadata for these ES or TS include common names, 

scientific names, total critical habitat area in hectares and results of wildfire impact (Table 4). 

All six amphibian species, eight out of nine bird species and two out of eight insect species were 

directly impacted by exposure to wildfire, resulting in a total of 16 species. Tableau software 

was used to visualize the results (Figure 7, Figure 8, Figure 9). Species with the most wildfire 

exposure directly impacting their critical habitat were chosen in order to move forward with. 

Biological, physiological, and life traits were researched for these species, while recovery plans 

and grey literature were compared for these five species, which is highlighted below. 

III. Arroyo Southwestern Toad (Anaxyrus californicus) 

The Arroyo southwestern toad (Anaxyrus californicus) is a federally endangered amphibian 

species that is found in patchy coastal regions between central and southern California, ranging 

in elevation below 1950 meters above sea level. Populations are found near riparian areas with 

light shade and clear, standing water. Regions needed for this species to thrive are usually 

naturally wooded and sandy, and can often be found in valley foothill or desert ecosystems that 

also contain willows, cottonwoods, and sycamore trees. The tree cover is used to keep the 

toads cool during hot temperatures. Approximately 6 out of the 22 historical populations 

contain up to 12 individuals only. These toads are mostly nocturnal, but younger Arroyo 

southwestern toads can tolerate higher temperatures, which means they are sometimes active 

during the day. They feed during the night and often walk when feeding instead of hopping. 

These toads feed on snails, crickets, beetles, ants, and other insects. While these toads do not 
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migrate, they can travel up to 2.5 miles along riparian areas looking for potential mates. Pools 

of water are required for procreation of this species, as eggs are deposited on the bottom of 

quiet and clear streams or ponds. The eggs attach to gravel, leaves, or sticks. Adult sexual 

maturity can take up to two years. Breeding season for this species is between March to July 

and can last till September, while immediately hibernating after until February or March by 

creating a hole into the ground or stream channel.  

The recovery plan for this species was finalized on July 24th, 1999, approximately 4.5 years 

after this species was added to the USESA (USFWS 1999). The plan is approximately 120 pages 

and highlights many tasks that need to be done in order to assure the species recovery. Some 

of these tasks include finding ways that humans can minimize habitat impact in camping areas, 

construct paths under roads to increase safety from vehicles, and identifying breeding sites in 

order to focus on restoration efforts. This species lives in a very dynamic region and has evolved 

to be able to withstand wildfires in the past because of it. Due to human interference, this may 

not be the case anymore. Studies in the past have shown that fire regimes have changed in 

more upland areas due to invasive plant species. This leads to downstream erosion in Arroyo 

southwestern toad habitat, causing reduced breeding areas. In the recovery plan, wildfires are 

named as large events that can impact population metrics, synonymous to human recreational 

disturbances, floods and introduced invasive predators.  

One of the tasks in the recovery plan, task 4.9, is specifically there to direct the assessment 

regarding wildfires effect Arroyo southwestern toads. This includes research in regard to 

wildfires impact the vegetation patterns of the toad, reproduction and recruitment, and habitat 

suitability. Information stated in the recovery plans show that this was supposed to be done 

between 1999 to 2003. Unfortunately, there is not an area on the USESA website to determine 

the progress of this research. However, there is an area that states that a graduate student 

worked on a project to determine how the recovery plan should be updated to reflect data 

gathered concerning wildfire related impacts to critical habitat. This research was supposedly 

done between 1995 and 1999, but again, there is not a link or anywhere to find progression of 

the updated recovery plan reflecting this information. There was not any further information or 
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biological opinions on the federal ECOS site related to wildfires and critical habitat for the 

Arroyo southwestern toad. 

IV. California Red-Legged Frog (Rana draytonii) 

The California red-legged frog (Rana draytonii) is a federally threatened amphibian species 

that is found in isolated areas starting as far as north as the Mendocino coastal ranges down to 

the most southern coast of California. This frog is also found in areas wrapping around the 

eastern most parts of the San Joaquin Valley in the Sierra Nevada mountain range. These frogs 

can be found below 1200 meters above sea level. California red-legged frogs can be found near 

ponds and riparian areas that are located near upland regions that contain densely wooded 

vegetation and open areas. They need permanent pools throughout the year in streams, 

marshes, or ponds. They use plants on the shoreline of the ponds they live in for shade and 

larval development. Current populations have declined 90% in all critical habitat. In coastal 

areas, these frogs are active all year round, whereas in non-coastal areas, they are known to 

hibernate throughout late summer and early winter by burrowing into gravel or sand. They 

have a highly diverse diet of insects, crustaceans, worms and snails. These frogs are highly 

active in their aquatic environment. They have been known to travel up to 2 miles during rainy 

nights looking for food. Predation of this species mostly occurs from other aquatic vertebrates 

and invertebrates throughout the frog’s life cycle. Breeding occurs from January to July for frogs 

that are located in southern California, while in northern California, it occurs from March to 

July. Females can lay as many as 4000 eggs in one harvest, but they need the proper vegetation 

in the area to attach the eggs below the water surface so that they do not wash away. Adults 

take up to three years to become sexually mature. 

The recovery plan for this species was finalized on May 28th, 2002, 6 years after this species 

was added to the USESA (USFWS 2002). This plan is 180 pages and includes recovery guidelines 

that focus on the major issues that are decreasing the population of the California red-legged 

frog. This includes removing dams to develop proper water flow regimes to restore habitat, 

control invasive plants that could be impacting the species, and eliminate contaminants from 

entering the ecosystem. The recovery plan also suggests that the authors are fully aware that 
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wildfires are a problem for this species. But unfortunately, there was not a direct reason given 

as to why wildfires could have such an impact.  

Recovery action number 9 states that guidelines for fire management practices should be 

developed to decrease incidental impacts to the California red-legged frog. In this guideline, 

there are strict recommendations on how to undergo wildfire mitigation and management 

without contaminating the habitat. Techniques include prescribed burns in the upland habitats 

only in times when the species is known to be done breeding for the year. Prior to doing this, 

regions that are often used for breeding will be fenced off and specialists need to inspect and 

monitor the area to make sure frogs are not located in the prescribed burn areas. When 

performing the prescribed burns, fire retardants are restricted to be dropped anywhere near 

wetland habitat areas. This recovery plan recommends that state and federal parks evaluate 

compatibility with these methods in the current fire management plan in these specific 

ecosystems and watersheds where these frogs are found. Unfortunately, there is no 

information on how wildfires directly impact this species or the effects of wildfire exposure to 

this species critical habitat. Biological opinion articles also do not have any mention of wildfires 

in relation to critical habitat for the California red-legged frog. 

V. California Condor (Gymnogyps californianus) 

The California condor (Gymnogyps californianus) is a federally endangered bird species that 

is found in the semi-arid, rugged mountain ranges cupping the southern most regions of the 

San Joaquin Valley. These birds can be found up to 3000 meters in elevation. They require 

isolated cliffs, caves, and large trees to roost in, along with large areas of remote country for 

scavenging, such as savannah foothills, grasslands or foothill chaparral. They get most of their 

water from their diet. It is unclear as to historically what the population size was for the 

California condor, but in the mid 1980’s, it dropped to approximately 27 individuals in the wild. 

Currently, there are approximately 440 individuals in the wild. This was done in part by 

collecting all condors from their wild habitat, breeding them in zoos, and slowly releasing them 

back into the wild when they were sexually mature. This is still currently being done to increase 

population metrics. These birds can live up to be 45 years old and take about 6 years to become 

sexually mature. They forage in wide open spaces on scavenged carrion, mostly deer, cattle, or 
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sheep. These birds are not migratory, but they have been known to travel up to 100 miles in 

search of food. California condors do not have any direct predators, as they are the largest bird 

in North America, having a wingspan of up to 10 feet. The decreases in population trends are 

directly related to many factors, including pesticides, habitat destruction, lead from bullets 

found in scavenged food, and mistaking larger windmills for areas that are safe to land on. 

These birds lay their eggs on to a bare surface. They breed annually and court one another in 

October. Eggs are laid between February and May. Fledglings rely on their parents for several 

months before becoming independent. 

The first recovery plan for this species was finalized in December of 1974, approximately 7.5 

years after this species was added to what would then lead to the USESA. Since then, there has 

been a total of four revisions for this plan; one in February of 1980, another one in July of 1984, 

and the most recent revision on April 25th, 1996 (USFWS 1996). Since 1996, there have been 

many reviews and regional conservation plans, but the most recent official recovery plan is 

from 1996. This plan is approximately 70 pages and focuses on the new population of California 

condors who are being released into the wild. Main strategies include how to monitor condor 

populations, how to release condors, how to minimize death of the condor, and how to 

conserve habitat for the condor. Unfortunately, there is not any information in the recovery 

plan about wildfires or wildfire mitigation related to the California condor despite critical 

habitat being drastically sensitive to wildfire encroachment. There is also no proposed recovery 

plan changes or biological opinion articles related to wildfires and how California condors can 

be less drastically impacted by them. 

VI. Coastal California Gnatcatcher (Polioptila californica californica) 

The coastal California gnatcatcher (Polioptila californica californica) is a federally threatened 

bird species that is found in fragmented coastal regions in southern California, located north of 

the San Diego area and running as far as south as Baja California. Highest recorded elevations 

that they have been found include areas below 1000 meters above sea level. Coastal California 

gnatcatchers require a low coastal scrub habitat that is plentiful of drought deciduous plants for 

roosting, nesting, and cover. In 1997, populations were estimated to be approximately 2900 

pairs left in the entire United States. These birds are active all year round and do not migrate. 
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They forage for ground and shrub insects, and use low lying plants for cover. They get most of 

their water from their diet and do not need a permanent water pond of any kind. Coastal 

California gnatcatchers weave small, deep nests from many kinds of material, including leaves, 

fibers, plants and spider silk. They are monogamous and lay their eggs between April and May. 

Fledglings are dependent on their parents for approximately 10 days before becoming 

independent. 

This species was added to the USESA on March 30th, 1993, but unfortunately there is not yet 

a recovery plan for this species. Because of this, there are not any proposed suggestions on 

how to change it. There are two biological opinion articles relating wildfire and critical habitat 

for the coastal California gnatcatcher. Both of these articles are specific to regions located in 

San Diego county. These articles are not related to how wildfire impacts the species or critical 

habitat, but more relates to wildfire mitigation practices and how they could impact 

populations.   

In the first opinion, the city of Chula Vista proposed vegetation management in Rice Canyon 

to help with wildfire management (USFWS 2016a). By doing this, vegetation would be thinned 

and removed. The article, written by appointees from the USFWS, addresses on if the thinning 

will impact coastal California gnatcatcher populations. The author determines that there should 

not be a decline in population by doing this.  

The second opinion addresses a firebreak that was being requested by a naval base that 

also shares critical habitat for the coastal California gnatcatcher (USFWS 2016b). The firebreak 

only impacts approximately 2% of the critical habitat found in this area. By doing this, 

herbicides would be used to eliminate grasses from growing in these areas. Although the 

herbicides used do not impact animal health in a lab setting, this may not be the case in a 

wildlife setting. The herbicides suggested would be used less overtime due to the nature of how 

herbicides work. Since the coastal California gnatcatcher would most likely find other areas to 

nest outside of the firebreak zone where there is no shrublands, they found this to be a 

satisfactory plan if followed up by a few specific details. The herbicide used for this purpose has 

to be registered with the Environmental Protection Agency. Lastly, in time, mowing will work 

just as well as using herbicides. The naval base responsible for directing the generation of the 
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firebreak is required to use as little herbicide as possible and use mowing as an alternative 

when appropriate. 

VII. Quino Checkerspot Butterfly (Euphydryas editha quino) 

The Quino checkerspot butterfly (Euphydryas editha quino) is a federally endangered insect 

species that is found in patchy southern California regions, starting at the coast and running 

east to drier, desert ecosystems. This includes areas near major metropolitan cities, such as 

Santa Ana, down to the southern border of California, and as far east as the Anza-Borrego 

Desert. These butterflies are dependent on specific plants populations in their habitat, such as 

the dwarf plantain (Plantago erecta) and the white snapdragon (Antirrhinum coulterianum). 

Ecosystems that support these plant species include grasslands, coastal scrub, chaparral, 

woodlands, and desert scrub. Population values are extremely low for this species. In 2000, all 

but three out of the historical eight population sights contained less than five individuals. These 

species do not migrate and do not fly over objects that are approximately 8 feet tall. Predators 

include larger invertebrates. Individuals still in the larval stage feed on leaves produced by the 

host plant, while adults feed on plant nectar and are dependent on flower blooms. The adult 

life span usually runs from February through May. As summer arrives, butterflies still in the 

larval stage can go into dormancy if the host plant dries out. During this dormancy stage, larvae 

will slowly move to the ground and use ground leaf litter as cover from the elements. Host 

plants become rejuvenated by rains throughout the winter months, quickly progressing the 

larvae from being in the dormancy stage back to the larval stage.  This back and forth 

movement from larval to dormancy stages can occur for up to two years. Because of this 

reason, they are directly dependent on rain fall in winter months. Adults only hatch once a year. 

Eggs are laid in clusters at the base of the host plant once a day for two weeks between March 

and April. 

The recovery plan for this species was finalized on August 11th, 2003, approximately 6.5 

years after this species was added to the USESA (USFWS 2003). This plan is a little over 190 

pages and contains very specific recovery criteria in order to increase population metrics for 

this species. Major topics in the recovery plan include protecting the remaining habitat, assess 

and study the current populations, and find methods to recreate historic habitat and guide 
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conservation efforts in relation to fire regimes and how they impact plant populations. This 

recovery plan does refer to how wildfire impacts this species, but it does not make any specific 

suggestions on what fire suppression methods should be done or ways to help increase native 

plant populations (USFWS 2003). The recovery plan directly notes that the changes in fire 

regime in the past due to human caused wildfires in the chaparral ecosystem is one of the 

major causes for the population decrease in this species. Wildfires in these areas are occurring 

too often, causing drastic landscape changes that wildly impact the plants that the Quino 

checkerspot butterfly relies on.  

 

Future Management Recommendations 

I. Recovery Plans and Critical Habitat 

The USESA utilizes both recovery plans and critical habitats in order to fulfill restoration 

efforts in hopes to re-establish ES and TS populations. Recovery plans help with organizing 

ideas and tasks that are set to determine why, when, and how specific ES and TS populations 

can increase (Mahoney et al. 2018). Critical habitat regions for ES and TS populations determine 

where restoration efforts should occur for maximum population increases (USFWS 2017). The 

lack of a recovery plan or critical habitat could therefore eliminate restoration efforts and 

potentially cause a detrimental drop in population metrics.  Furthermore, the USESA is a very 

useful and effective law when it is followed and utilized properly. Documentation has shown 

that, when priorities shift away from information found in the recovery plan or away from life 

traits of the species completely, restoration attempts can turn sour and not work as well 

(Mahoney et al. 2018). The following information addresses recovery plan tasks and goals, 

while comparing this data to information found during the progression of this project. 

Suggestions are made in hopes to make the recovery plans for each species more effective and 

efficient. Table 5 describes current recovery plan suggestions related to wildfire mitigation 

efforts for all five ES or TS studied in this project.  

The recovery plan for the Arroyo southwestern toad states that wildfires in upland areas 

can cause soil erosion in direct habitat in riparian areas due to fire regime changes (USFWS 

1999). Erosion can cause suitable reproduction habitat to no longer be accessible due to water 
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not being clear and the appropriate nearby plants and soil types not being accommodating to 

the toads. The recovery plan also states that prescribed burns should be done in some upland 

areas to manage for abnormal build-up of fuels due to shifted fire regimes by humans. Specific 

tasks and notes include that research was being done or was being planned to assess the 

effects of fire on the toad and critical habitat and how it can impact populations. An updated 

recovery plan for the Arroyo southwestern toad needs to be revised to include research results 

related to wildfires and how they impact the toad. Any current research being done also needs 

to be included. Another issue to address is to specifically say when and where prescribed burns 

or other wildfire mitigation strategies can occur. In this way, there is no confusion as to what 

could be labelled as upland. Suggesting when this should be done is also important. Breeding 

season is clearly the worst time for this to be done, therefore sometime between October and 

January might be best. This should be stated in the recovery plan so that there is less ambiguity 

declaring how actions should be done when moving forward. Native plants should be planted in 

the upland areas to eliminate any erosion that could occur in breeding season. This should 

happen directly after any prescribed burns occur. Finally, similar to what is stated in the 

recovery plan for the California red-legged frog (USFWS 2002), a species specialist should be 

present during the process of performing prescribed burns to make sure that the area is safe to 

burn for the species of interest. 

The recovery plan for the California red-legged frog outlines that wildfires are a problem for 

this species and can impact population values (USFWS 2002). However, it does not specifically 

say how these wildfires impact the species. One can only assume that wildfires impact this 

species in similar ways that wildfires impact the Arroyo southwestern toad. An item that this 

recovery plan does do well is create guidelines in respect to how to prepare wildfire mitigation 

efforts and how to put out prescribed fires. There are very specific actions that should be 

considered during an emergency effort or in a prescribed fire situation. For example, how far 

away should a prescribed burn be started from riparian areas and how the fire should be put 

out. This is to avoid contaminating critical habitat for these frogs. This is a great addition to a 

recovery plan in order to accumulate all data needed to move forward with recovery efforts. 
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This recovery plan update needs to include more research on the actual species. As 

mentioned above, it should include how wildfires specifically hurt this species so that better 

recommendations can be made. Another recommendation that is also suggested for the Arroyo 

southwestern toad, the timing in season for when prescribed burns occur is critical and should 

be mentioned in the recovery plan. Breeding season runs from January to July and prescribed 

burns should not be started during this time. Finally, similarly to the Arroyo southwestern toad 

(USFWS 1999), since these ecosystems contain riparian areas, would it be best to stay away 

from mitigation techniques that require a fire retardation use? It may be possible to get similar 

results by using livestock thinning. More research should be done to determine best practices in 

these ecosystems.   

The recovery plan for the California Condor was the first to be made in the history of the 

USESA and has been revised many times, for a total of four revisions. This analysis was done on 

the most recent recovery plan, which is the fourth revision (USFWS 1996). There is no 

information about wildfires in this recovery plan. That is not to be said that past recovery plans 

do not include information about wildfires. Past revisions actually do include information about 

wildfires and wildfire mitigation strategies. So, what changed? Over 14% of the critical habitat 

for the California condor burned in recent history. Therefore, it is important to keep this 

information in the recovery plan for future reference.  

A couple reasons come to mind as to why this information may have been excluded in the 

most recent recovery plan. First, the most recent plan was created in 1996. Data shows that 

wildfires did not drastically increase in critical habitat for this species until the early 2000’s. 

Therefore, wildfires were not as drastic of a situation when the recovery plan was written. 

Second, the California condor has had a long history of being detrimentally impacted by 

humans. This includes exposure to an insecticide that decreases reproductive rates, poisoning 

from hunters that use lead bullets and do not take their kills, and being struck by wind turbines. 

Currently, wildfires may pose less of an impact than other issues that the California condor is 

sensitive to. But as populations increase, wildfires could pose another detrimental problem for 

California condors, especially if the current recovery plan does not reflect wildfire mitigation 

efforts. 
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Wildfire mitigation technique suggestions to add to the recovery plan of the California 

condor include utilizing current technology surrounding the species. Individuals released into 

the wild are discharged with a GPS tracker around their neck. This is done so that researchers 

can visit their nests to determine their health and reproductive rates. Nesting areas can be 

tracked and mapped so that small prescribed burns can be performed around the nests during 

times when it is not the breeding period. In this way, the vegetation surrounding the nests can 

be slowly burned so that space can still be utilized by the condor. 

The coastal California gnatcatcher does not have a recovery plan. Unfortunately, there is no 

information as to why there is not a recovery plan. This could be related to the lack of time and 

funding people in this industry often have (Taylor 2005). Regardless, there has been funding 

and recovery efforts done to help restore areas for the coastal California gnatcatcher. Recovery 

efforts also seem to include wildfire mitigation in some areas. This shows that recovery efforts 

can move forward without a recovery plan, but one may wonder if this is due to the fact that 

critical habitat for this species is much smaller than other species. Recovery efforts take a 

considerable amount of organization to move forward with. If there is less critical habitat to 

recover, efforts are most likely easier to proceed and finish with. 

A biological opinion mentioning the coastal California gnatcatcher suggests that small 

amounts of thinning would not impact the population of this species (USFWS 2016a). A 

recommendation that could be added to the new recovery plan is to determine if this is true for 

the entire critical habitat. Eliminating all shrublands would not create a healthy ecosystem for 

this species because of species cover and the use of twigs and vegetation for creating nests. 

However, livestock thinning could be useful in eliminating some wildfire fuel, leaving just 

enough vegetation suitable for the species of interest. This would need to be done in times 

other than spring in order to not get in the way of breeding season.  

The Quino checkerspot butterfly has an excellent recovery plan already put into place. 

There are full explanations as to how wildfire impacts the species, but more informative 

suggestions should be made for wildfire management strategies in the area (USFWS 2003). 

Wildfire management practices have always been a controversial issue in the chaparral 

ecosystem of Southern California. Maintaining a natural fire regime can be difficult in an area 
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with such a large, growing human population. Most current wildfires in these areas are ignited 

by humans and carried by the Santa Ana winds. When this occurs too often, it can account for 

landscape changes from chaparral to nonnative grasslands. Therefore, large amounts of wildfire 

management practices have been studied in these areas. For the case of the Quino checkerspot 

butterfly and the plant species associated with them, wildfire management strategies currently 

being performed in the chaparral ecosystem should help make a positive impact for the small 

population. This includes complete fire suppression, mechanical fuel treatment (such as fire 

breaks) and clipping or cutting the vegetation (van Wagtendonk et al. 2018). If wildfires are 

occurring at a rate that is more similar to their natural fire intervals, it should keep plant species 

needed to sustain butterfly population growth. Using common fire suppression and vegetation 

clipping or cutting as a method for decreasing the amount of vegetation for fuel burning will 

help decrease the amount of likelihood that there could be an unnatural fire. However, since 

accidental wildfires are incredibly common in this area due to the large human population, it 

may be worth finding alternative measures to help increase these plant species, therefore 

helping to boost butterfly population metrics.  

There are future predictions of increased wildfires in California due to climate change, 

warmer temperatures, and lightning strikes (Hansen et al. 2006, Westerling et al. 2006, Romps 

et al. 2014). This will cause fire regimes to change and wildfire patterns to shift. Because of this 

reason, recovery plans for these species need to be updated to reflect this possible 

encroachment in critical habitat. Realistically, it would be most helpful if all species that were 

impacted by wildfire incorporated some type of wildfire mitigation strategy and research 

related to the species in each recovery plan. Even a small mention of wildfire mitigation is a 

start and would be helpful in the future when new updates are written. Otherwise, this 

information could be forgotten about and not ever incorporated.    

One surprising discovery from this project is the lack of studies that have previously 

occurred on how fire impacts specific ES and TS. The Quino checkerspot butterfly had detailed 

information on exactly how wildfire encroachment impacts the population metrics (USFWS 

2003). Otherwise, there was very little data on the remaining four species as far as how fire can 

impact the actual species. This is important in knowing what wildfire mitigation practices should 
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be done. Adding information about fire regimes and how invasive species impact these fire 

regimes would also be helpful to include in recovery plans. Often times the ecosystem needs to 

be restored in order for the population metrics to increase. Furthermore, some wildfire 

mitigation strategies may work more efficiently than others in the situation of ES and TS. For 

example, fire breaks are hard to utilize in this situation since most species utilize several 

ecosystems. By making a fire break, a fragmented ecosystem is accidentally being made. This 

could possibly decrease population metrics. Knowing when to do mitigation strategies 

according to life traits is important and should be further mentioned in recovery plans.  

II. Ecosystem vs Single Species  

Ecosystems are often complex and play significantly different roles to different individuals. 

Species benefit from ecosystem services identified as either provisionary, supportive, 

regulating, or cultural (Daily et al. 2008, Endangered Species Coalition 2018). Researchers often 

suggest that ecosystem-based restoration is more profitable and efficient than single-species  

restoration. For example, restoring an entire riparian area for all species use is seen to be more 

cost effective than restoring one single area for one single species. Lindenmayer et al. (2007) 

debates whether a single-species or a more ecosystem-based approach to conservation and 

research better prioritizes funding, time and expertise for conservation managers. Ecosystem-

oriented research is more widely used presently in conservation research and restoration 

efforts due to its umbrella effect in helping several species. Unfortunately, the USESA must be 

seen as an exception. Goals defined by the USESA explicitly site that saving specific species or 

subspecies from being threatened with extinction is top priority. In a perfect world, both 

restoration strategies would be used. However, financial aid is often cut short, and one will 

have to take priority. Species specific research should always be done in the case for species 

under the USESA, but that doesn’t mean that ecosystem restoration and research should be 

completely eliminated if funds are available.  

This project demonstrates that wildfire encroachment can impact critical habitat for ES and 

TS at different rates in all types of ecosystems. One trend appeared upon researching where 

the critical habitat was for all five severely impacted species and how they each utilize their 

surrounding ecosystems. More of these species use several ecosystems, as opposed to just one. 
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This suggests that, if ecosystem-oriented research is capable, restoration efforts should be 

employed in areas that border several ecosystems as opposed to performing restoration in the 

center of an ecosystem. Multiple ecosystem-based restoration projects that are smaller and all 

border each other may be beneficial when funds are available. It is also important to remember 

this when researching wildfire mitigation methods in these sensitive ecosystems. Wildfires 

impact ecosystems differently, and therefore should attempt to alleviate wildfire sensitivities in 

all utilized ecosystems.  

III. GIS 

Results derived from this GIS analysis aide in recognizing GIS as a newer and emerging 

technology that can be used to examine large spatial datasets and direct quicker management 

decisions. For example, GIS was used to analyze wildfire encroachment sensitivity in smaller 

riparian areas to determine management strategies (Bendix et al. 2017). However, in this 

project, a large dataset was overlaid upon another dataset to determine what areas within an 

entire state are more impacted by wildfire encroachment than others. GIS has not yet been 

utilized in this manner for an entire state using ES and TS critical habitat and wildfire area. Upon 

analysis, these results give a positive outlook as far as how spatial data can be used to get 

specific answers about unique critical habitat. By simplifying fire regime data, this data could be 

utilized by environmental managers and policy makers to help update recovery plans with 

wildfire mitigation methods that can positively impact ES and TS critical habitat. GIS is a novel 

research tool that can be used in the future for other states and can direct future wildfire 

mitigation projects.  

There are constraints to using GIS for this type of analysis though. Unfortunately, during the 

macro analysis of this project, a statistical correlation between the actual increase in wildfires 

and ES or TS critical habitat was not found. P-values were not low enough to be statistically 

relevant and R2 values were somewhat low, showing little pattern over time. One suggestion 

for this lack of pattern could be related to human impact to fire regimes and the complete 

suppression of wildfires to save human lives and structures. Another suggestion could be 

related to the large WUI found in California, causing an increased probability as to when fires 
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start. Both theories could be researched more in order to indicate a harder time in finding 

statistical relevance in the data provided.  

Other limitations to this project include the progressive manner in how ecosystems are 

always in flux. Reasons for ecosystem change include habitat destruction, planned restoration 

progression, natural disasters or the introduction of invasive species. It is difficult to reflect 

these constant adjustments in ecosystem boundaries. Since specific ecosystems are needed in 

order for these sensitive species to survive, it is important to capture the most accurate 

depiction of each critical habitat. This spatial data is not often updated or accessible overtime 

(Hodges et al. 2008). Because this analysis utilizes critical habitat that is needed by ES and TS 

that may not be completely updated, some results from this investigation may not be 

accurately portrayed in the datasets presented.  

IV. Final Thoughts and Future Direction 

Datasets and scientific literature researched in this project help to conclude the need for 

many changes needed in the USESA system. The recovery plan for the coastal California 

gnatcatcher needs to be created, while the recovery plan for the California condor needs to be 

updated to include wildfire mitigation efforts (USFWS 1996). The recovery plans for both the 

Arroyo southwestern toad (USFWS 2002) and California red-legged frog (USFWS 1999) both 

need to be updated to include specific measures for wildfire mitigation technique and how it 

could impact direct critical habitat and directions specifying how wildfire mitigation should be 

done. Finally, the Quino checkerspot butterfly has a very well written recovery plan that is very 

informative as far as issues related to wildfire and how it impacts the species (USFWS 2003). All 

recovery plans need to be updated to include new research that has been done in the last 15+ 

years. Critical habitat spatial datasets need to be updated as well.  

As wildfires increase in California and seasons become longer, critical habitat is likely going 

to become more sensitive to wildfire encroachment for these species. It is therefore important 

to update recovery plans with well-written and instructive wildfire mitigation methods needed 

for restoration efforts for ES and TS management. This project demonstrates that wildfire 

ecologists that study ES and TS critical habitat should keep a special eye on critical habitat for 

amphibian, bird and insect species, in particular, species studied in this project. 



    

 36 

References 
 

Arkle, R. S., and D. S. Pilliod. 2010. Prescribed Fires as Ecological surrogates for Wildfires: A 
Stream and Riparian Perspective. Forest Ecology and Management 259:893-903. 

Barrett, S. W., J. P. Menakis, and S. F. Arno. 1997. Fire Episodes in the Inland Northwest (1540-
1940) based on Fire History Data. 

Bendix, J., and M. G. Commons. 2017. Distribution and Frequency of Wildfire in California 
Riparian Ecosystems. Environmental Research Letters 12:75008. 

Brooks, M. L., and J. R. Matchett. 2006. Spatial and Temporal Patterns of Wildfires in the 
Mojave Desert, 1980–2004. Journal of Arid Environments 67:148-164. 

Brooks, M. L., C. M. D'Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. 
Hobbs, M. Pellant, and D. Pyke. 2004. Effects of Invasive Alien Plants on Fire Regimes. 
BioScience 54:677-688. 

Brooks, M. L. 2002. Peak Fire Temperatures and Effects on Annual Plants in the Mojave Desert. 
Ecological Applications 12:1088-1102. 

Brunson, M. W., and B. A. Shinder. 2004. Geographic Variation in Social Acceptability of 
Wildland Fuels Management in the Western United States. Society & Natural 
Resources 17:661-678. 

CAL FIRE. 2019. Top 20 Largest California Wildfires. Found at 
http://www.fire.ca.gov/communications/downloads/fact_sheets/Top20_Acres.pdf. 

CAL FIRE. 2012. Resource Management. Found at 
http://calfire.ca.gov/resource_mgt/resource_mgt.  

California Department of Fish and Wildlife. 2018. California Wildlife Habitat Relationships. 
Found at https://www.wildlife.ca.gov/Data/CWHR. 

Center for Biodiversity. 2019. Endangered Species Information. Found at 
https://www.biologicaldiversity.org/species/. 

Certini, G. 2005. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 143:1-10. 

Cheney, N. P., J. S. Gould, and W. R. Catchpole. 1998. Prediction of Fire Spread in Grasslands. 
International Journal of Wildland Fire 8:1-13. 

Commission on California State Government Organization and Economy. 2018. Fire on the 
Mountain: Rethinking Forest Management in the Sierra Nevada. Found at 
https://lhc.ca.gov/sites/lhc.ca.gov/files/Reports/242/Report242.pdf. 

Daily, G., and K. Brauman. 2008. Ecosystem Services. Encyclopedia of Ecology. 1148-1154. 



    

 37 

Dunham, J. B., M. K. Young, R. E. Gresswell, and B. E. Rieman. 2003. Effects of fire on Fish 
Populations: Landscape Perspectives on Persistence of Native Fishes and Nonnative Fish 
Invasions. Forest Ecology and Management 178:183-196. 

Eidenshink, J., B. Schwind, K. Brewer, Z. Zhu, B. Quayle, and S. Howard. 2007. A Project for 
Monitoring Trends in Burn Severity. Fire Ecology 3:3-21. 

Endangered Species Coalition. 2018. Importance of the Endangered Species Act. Found at 
http://www.endangered.org/importance-of-the-endangered-species-act/.  

Guo, X., N. C. Coops, P. Tompalski, S. E. Nielsen, C. W. Bater, and J. Stadt. 2017. Regional 
Mapping of Vegetation Structure for Biodiversity Monitoring using Airborne Lidar Data. 
Ecological Informatics 38:50-61. 

Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade. 2006. Global 
Temperature Change. Proceedings of the National Academy of Sciences of the United 
States of America 103:14288-14293. 

Hodges, K. E., and J. Elder. 2008. Critical Habitat designation under the US Endangered Species 
Act: How are Biological Criteria used? Biological Conservation 141:2662-2668. 

Jain, T. B., S. McCaffrey, and R. T. Graham. 2004. Science Basis for Changing Forest Structure to 
Modify Wildfire Behavior and Severity. 

Kolden, C. A., T. M. Bleeker, A. M. S. Smith, H. M. Poulos, and A. E. Camp. 2017. Fire Effects on 
Historical Wildfire Refugia in Contemporary Wildfires. Forests 8:400. 

Leopold, A. S., S. A. Cain, C. M. Cottam, I. N. Gabrielson, and T. L. Kimbal. 1963. Wildlife 
Management in the National Parks. Wildlife Management Institute, Washington, DC, USA. 

Lindenmayer, D. B., J. Fischer, A. Felton, R. Montague‐Drake, A. D. Manning, D. Simberloff, K. 
Youngentob, D. Saunders, D. Wilson, A. M. Felton, C. Blackmore, A. Lowe, S. Bond, N. 
Munro, and C. P. Elliott. 2007. The Complementarity of Single‐Species and Ecosystem‐
Oriented Research in Conservation Research. Oikos 116:1220-1226. 

Mahoney, J. L., P. E. Klug, and W. L. Reed. 2018. An assessment of the US endangered species 
act recovery plans: using physiology to support conservation. Conservation Physiology 6. 

Martin, T. G., A. E. Camaclang, H. P. Possingham, L. A. Maguire, and I. Chadès. 2017. Timing of 
Protection of Critical Habitat Matters. Conservation Letters 10:308-316. 

McKenzie, D., Z. Gedalof, D. L. Peterson, and P. Mote. 2004. Climatic Change, Wildfire, and 
Conservation. Conservation Biology 18:890-902. 

Moran, N. A. 2006. Symbiosis. Current Biology 16:871. 



    

 38 

Morgan, P., C. C. Hardy, T. W. Swetnam, M. G. Rollins, and D. G. Long. 2001. Mapping fire 
regimes across time and space: Understanding coarse and fine-scale fire patterns. 
International Journal of Wildland Fire 10:329-342. 

Organ, J. F., V. Geist, S. P. Mahoney, S. Williams, P. R. Krausman, G. R. Batcheller, T. A. Decker, 
R. Carmichael, P. Nanjappa, R. Regan, R. A. Medellin, R. Cantu, R. E. McCabe, S. Craven, G. 
M. Vecellio, and D. J. Decker. 2012. The North American Model of Wildlife Conservation. 
The Wildlife Society Technical Review 12-04. The Wildlife Society, Bethesda, Maryland, 
USA.  

Pausas, J. G., and J. E. Keeley. 2014. Evolutionary Ecology of Resprouting and Seeding in Fire-
Prone Ecosystems. New Phytologist 204:55-65. 

Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H. Raven, C. M. 
Roberts, and J. O. Sexton. 2014. The Biodiversity of Species and their Rates of Extinction, 
Distribution, and Protection. Science 344:1246752. 

Polidoro, B. A., K. E. Carpenter, L. Collins, N. C. Duke, A. M. Ellison, J. C. Ellison, E. J. Farnsworth, 
E. S. Fernando, K. Kathiresan, N. E. Koedam, S. R. Livingstone, T. Miyagi, G. E. Moore, V. N. 
Nam, J. E. Ong, J. H. Primavera, S. G. Salmo III, J. C. Sanciangco, S. Sukardjo, Y. Wang, and J. 
W. H. Yong. 2010. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of 
Global Concern. PLoS One 5:e10095. 

Pyne, S. J. 1982. Fire in America. Princeton University Press, Princeton, N.J. 

Roberts, S. L., Douglas, A. K., van Wagtendonk, J. W., Miles, A. K., and M. D. Meyer. 2015. 
Effects of fire on small mammal communities in frequent-fire forests in California. Journal 
of Mammalogy 96:107-119. 

Rodríguez-Trejo, D. A., and P. Z. Fulé. 2003. Fire ecology of Mexican pines and a fire 
management proposal. International Journal of Wildland Fire 12:23-37. 

Rollins, M. G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 
assessment. International Journal of Wildland Fire 18:235-249. 

Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari. 2014. Projected Increase in Lightning 
Strikes in the United States due to Global Warming. Science 346:851-854. 

Rowe, J. S., R. W. Wein, and D. A. MacLean. 1983. The Role of Fire in Northern Circumpolar 
Ecosystems. Scientific Committee on Problems of the Environment of the International 
Council of Scientific Unions by Wiley, New York, New York. 

Srinivasan, U. T., J. A. Dunne, J. Harte, and N. D. Martinez. 2007. Response of Complex Food 
Webs to Realistic Extinction Sequences. Ecology 88:671-682. 

State Board of Forestry and Fire Protection. 2018. 2018 Strategic Fire Plan for California.  Found 
at http://cdfdata.fire.ca.gov/pub/fireplan/fpupload/fpppdf1614.pdf. 



    

 39 

Stephens, S. L., J. D. Miller, B. M. Collins, M. P. North, J. J. Keane, and S. L. Roberts. 2016. 
Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. 
Ecosphere 7. 

Swengel, A. 2001. A Literature Review of Insect Responses to Fire, compared to other 
Conservation Managements of Open Habitat. Biodiversity and Conservation 10:1141-1169. 

Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. 
Hammer. 2007. Human Influence on California Fire Regimes. Ecological 
Applications 17:1388-1402. 

Taylor, M. F. J., K. F. Suckling, and J. J. Rachlinski. 2005. The Effectiveness of the Endangered 
Species Act: A Quantitative Analysis. BioScience 55:360-367. 

Taylor, A. H., and C. N. Skinner. 2003. Spatial Patterns and Controls on Historical Fire Regimes 
and Forest Structure in the Klamath Mountains. Ecological Applications 13:704-719. 

US Department of Agriculture. 2018. Toward Shared Stewardship Across Landscapes: An 
Outcome-Based Investment Strategy. 

US Fish and Wildlife Service. 2018. Environmental Conservation Online System. Found at 
https://ecos.fws.gov/ecp0/pub/speciesRecovery.jsp?sort=1. 

US Fish and Wildlife Service. 2017. Critical Habitat under the Endangered Species Act. Found at 
https://www.fws.gov/southeast/endangered-species-act/critical-habitat/. 

US Fish and Wildlife Service. 2016a. Streamlined Formal Section 7 Consultation for the 
Vegetation Management Risk Reduction Project (LPDM-PJ-09-CA-2009-004), City of Chula 
Vista, San Diego County, California. Found at 
https://ecos.fws.gov/tails/pub/document/5045703. 

US Fish and Wildlife Service. 2016b. Reinitiation of Section 7 Consultation for the Wildland Fire 
Management Plan, Naval Weapons Station Seal Beach, Detachment Fallbrook, San Diego 
County, California. Found at https://ecos.fws.gov/tails/pub/document/5370543. 

US Fish and Wildlife Service. 2015. CITES in the United States. Found 
at  https://www.fws.gov/international/cites/. 

US Fish and Wildlife Service. 2011. Critical habitat - What is it? Found at 
https://www.fws.gov/sacramento/es/Critical-Habitat/Documents/critical_habitat.pdf. 

US Fish and Wildlife Service. 2003. Recovery Plan for the Quino Checkerspot Butterfly 
(Euphydryas editha quino). Portland, Oregon. x + 179 pp. 

US Fish and Wildlife Service. 2002. Recovery Plan for the California Red-legged Frog (Rana 
aurora draytonii). US Fish and Wildlife Service, Portland, Oregon. viii + 173 pp. 



    

 40 

US Fish and Wildlife Service. 1999. Arroyo southwestern toad (Bufo microscaphus californicus) 
Recovery Plan. US Fish and Wildlife Service, Portland, Oregon. vi + 119 pp. 

US Fish and Wildlife Service. 1996. California Condor (Gymnogyps californianus) Recovery Plan, 
Third Revision. Portland, Oregon. 62 pp. 

US Geological Survey. 2017. Threatened and Endangered Species System (TESS). Found at 
https://my.usgs.gov/confluence/pages/viewpage.action?pageId=518426757. 

van de Water, K., and H. Safford. 2011. A Summary of Fire Frequency Estimates for California 
Vegetation before Euro-American Settlement. Fire Ecology 7:26-58. 

van Wagtendonk, J. W., N. G. Sugihara, S. L. Stephens, A. E. Thode, K. E. Shaffer, and J. Fites-
Kaufman. 2018. Fire in California's Ecosystems. University of California Press, Oakland, 
California. 

van Wagtendonk, J. 2007. The History and Evolution of Wildland Fire Use. Fire Ecology 3:3-17. 

Westerling, A. L. 2016. Increasing western US forest wildfire activity: sensitivity to changes in 
the timing of spring. Philosophical transactions of the Royal Society of London. Series B, 
Biological sciences 371:20150178. 

Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and Earlier 
Spring Increase Western U.S. Forest Wildfire Activity. Science 313:940-943. 

Westerling, A. L., A. Gershunov, J. T. Brown, D. R. Cayan, and M. D. Dettinger. 2003. Climate and 
Wildfire in the Western United States. Bulletin of the American Meteorological 
Society 84:595-604. 

Yoskowitz, D. W. and P. A. Montagna. Socio-economic Factors that Impact the Desire to Protect 
Freshwater Flow in the Rio Grande. 7th International Conference on Ecosystems and 
Sustainable Development; 8 July 2009 through 10 July 2009; Chianciano Terme, Italy. 2009. 

Zedler, P. H., C. R. Gautier, and G. S. McMaster. 1983. Vegetation Change in Response to 
Extreme Events: The Effect of a Short Interval between Fires in California Chaparral and 
Coastal Scrub. Ecology 64:809-818. 

 
 

 

 

 

 

 

 

 

 

 



    

 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 42 

Table 1.  Necessary datasets needed for this spatial analysis. 
Datasets Sources 

Critical Habitat for Federal ES and TS divided by 
species for the entire United States  

CRITHAB_POLY by www.data.gov or the USFWS site 
using ECOS 

Wildfire Severity Data from years 1984 to 2016 for 
the state of California 

MTBS_CA_1984 to MTBS_CA_2016 (33 total files) 
using the Monitoring Trends Burn Severity data at 
www.mtbs.gov 

State boundaries for the entire United States Cb_2017_us_state_500k by the United States 
Census Bureau website 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.data.gov/
http://www.mtbs.gov/
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Table 2.  United States Geographic Survey Codes for the Threatened and Endangered Species 
System. 

SPECIES CODE First Letter Species Groups 

A Mammals 

B Birds 

C Reptiles 

D Amphibians 

E Fishes 

F Clams 

G Snails 

H Millipedes 

I Insects 

J Arachnids 

K Crustaceans 

L Annelid Worms 

M Flatworms and Roundworms 

N Hydroids 

O Sponges 

P Corals 

Q Flowering Plants 

R Conifers and Cycads 

S Ferns and Allies 

U Lichens 

V Algae 

W Cyanobacteria and Bacteria 
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Table 3.  A summary of how many species are within each wildlife group using TESS, which 
ones are impacted by wildfires, and the total area of critical habitat. 

Wildlife Group Name Number of Species within Wildlife Group Wildfire Impact 

Amphibian 6 Yes 

Bird 9 Yes 

Crustacean 6 Yes 

Fish 9 Yes 

Flowering Plant 62 Yes 

Insect 8 Yes 

Mammal 8 Yes 

Reptile 3 Yes 

Snail 1 No  
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Table 4.  A summary of the most impacted wildlife groups, examining specific species and the 
total area of critical habitat belonging to each species.  

Common Name Scientific Name Wildlife 
Group Name 

Total Area of 
Critical Habitat 
(in Hectares) 

Wildfire 
Impact 

Arroyo Southwestern Toad Anaxyrus californicus Amphibian 40081.6387 Yes 

California Red-Legged Frog Rana draytonii Amphibian 663899.781 Yes 

California Tiger Salamander Ambystoma californiense Amphibian 104275.834 Yes 

Mountain Yellow-Legged 
Frog 

Rana muscosa Amphibian 93011.1584 Yes 

Sierra Nevada Yellow-
Legged Frog 

Rana sierrae Amphibian 441266.071 Yes 

Yosemite Toad Anaxyrus canorus Amphibia 303889.294 Yes 

California Condor Gymnogyps californianus Bird 245523.538 Yes 

Coastal California 
Gnatcatcher 

Polioptila californica 
californica 

Bird 80310.8859 Yes 

Inyo California Towhee Pipilo crissalis 
eremophilus 

Bird 881.191728 No 

Least Bell's Vireo Vireo bellii pusillus Bird 15037.5126 Yes 

Marbled Murrelet Brachyramphus 
marmoratus 

Bird 244071.379 Yes 

Northern Spotted Owl Strix occidentalis caurina Bird 849973.476 Yes 

Southwestern Willow 
Flycatcher 

Empidonax traillii 
extimus 

Bird 15931.1769 Yes 

Western Snowy Plover Charadrius nivosus 
nivosus 

Bird 6073.40986 Yes 

Yellow-Billed Cuckoo Coccyzus americanus Bird 33115.9583 Yes 

Bay Checkerspot Butterfly Euphydryas editha 
bayensis 

Insect 7402.49839 No 

Casey's June Beetle Dinacoma caseyi Insect 242.507891 No 

Delta Green Ground Beetle Elaphrus viridis Insect 392.178088 No 

Laguna Mountains Skipper Pyrgus ruralis lagunae Insect 2553.04348 Yes 

Palos Verdes Blue Butterfly Glaucopsyche lygdamus 
palosverdesensis 

Insect 36.803009 No 

Quino Checkerspot Butterfly Euphydryas editha quino Insect 25350.4698 Yes 

Valley Elderberry Longhorn 
Beetle 

Desmocerus californicus 
dimorphus 

Insect 208.25571 No 

Zayante Band-Winged 
Grasshopper 

Trimerotropis infantilis Insect 4505.54145 No 
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Table 5.  Recovery plan wildfire topics with respect to wildfire impact and wildfire mitigation methods outlined. 
Common 
Name 

USESA 
Date 

Recovery 
Plan Date 

Ecosystem Wildfire Impact Wildfire Mitigation Methods 

Arroyo 
Southwestern 
Toad 

12/16/94 07/24/99 Woody Riparian 
surrounded by 
Valley Foothills or 
Desert Ecosystems 

Invasive plant species in upland areas 
causes changes in fire regimes and more 
fire than usual, causing downstream 
erosion in critical habitat. Fire impacts 
water flow for pools and sand bars 
needed for reproduction and life. 

Prescribed burns may be appropriate as 
a management tool under some 
circumstances, such as where past fire 
suppression efforts have allowed an 
abnormal build-up of fuels. 
 

California 
Red-Legged 
Frog 

05/23/96 05/28/02 Woody Riparian 
Ecosystems 

Wildfires do impact this species but 
there are not defined reasons as to how 
or why. 
 

Prescribed burns should be performed 
in upland areas during specific seasons. 
This should be done at least 150 meters 
away from habitat. Fire retardant 
cannot be used to put out the fire. 

California 
Condor 

03/11/67 04/25/96 
(4th 
Revision) 

Savannah 
Foothills, Open 
Grasslands, 
Foothill Chaparral, 
and Rocky 
Outcrop 
Ecosystems 

No mention of wildfires or how species 
are impacted by wildfires 
 

No mention of wildfire mitigation. 
 

Coastal 
California 
Gnatcatcher 

03/30/93 N/A Coastal Scrub 
Ecosystems 

N/A N/A 

Quino 
Checkerspot 
Butterfly 

01/16/97 08/11/03 Grasslands, 
Coastal Scrub, 
Chaparral, 
Woodlands and 
Desert Scrub 
Ecosystems 

Disrupted fire regimes has caused 
invasive species to invade areas that 
native plants utilize that have a 
symbiotic relationship with the species. 
Fires used to play a huge role, but it is 
now unclear how fire impacts the 
species. 

Prescribed burns should be 
implemented in small patches near 
critical habitat. Research should be 
done to determine what specific wildfire 
mitigation can be done to increase 
populations.   
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Figure 1.  CAL FIRE data showing an overall increase in wildfires throughout California by area 
and number of burns for each decade. The last column does not symbolize a full decade 
(State Board of Forestry and Fire Protection 2018). 
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Figure 2.  The study area displaying the MTBS raster data used over the time span of 33 years 
(Butcher 2018). 
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Figure 3.  The study area displaying ES and TS critical habitat data organized by the wildlife 
classification system TESS used for the GIS macro analysis (Butcher 2018)
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Figure 4.  Data displaying the percentage of ES and TS critical habitat organized by TESS wildlife group impacted by wildfire 
(Butcher 2019). 
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Figure 5.  A running window sum analysis performed to define trends in data to determine the wildlife group that is most 
impacted by wildfire encroachment (Butcher 2019). The running window sum analysis was performed using Tableau Software 
using a span of 11 years. 
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Figure 6.  The study area displaying individual amphibian, bird and insect ES and TS critical 
habitat data used for the GIS micro analysis (Butcher 2019)
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Figure 7.  Data displaying individual amphibian ES and TS critical habitat most impacted by wildfires (Butcher 2019).   
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Figure 8.  Data displaying individual bird ES and TS critical habitat most impacted by wildfires (Butcher 2019).   
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Figure 9.  Data displaying individual insect ES and TS critical habitat most impacted by wildfires (Butcher 2019).
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