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Abstract 

 In this thesis, electrochemical approaches are used to determine the properties of 

deoxyribonucleic acid (DNA) by electrostatic denaturation. The electrochemical routine involves 

an application of a destabilization potential, an equilibration potential, and a square wave 

voltammogram (SWV) to monitor the extent of melting. Our method uses a monolayer 

consisting of thiol modified DNA and mercaptohexanol on a gold electrode. These electrodes are 

then incubated in a complementary sequence tagged with methylene blue. By using our 

electrostatic denaturation technique, different parameters are explored, such as surface densities, 

surface coverages, and ionic strengths. As proof of concept, these techniques were applied 

toward detecting cisplatin interactions on a DNA surface. Depending on the surface coverage, 

cisplatin changes DNA stability accordingly.  
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Chapter 1 Electrochemical Biosensors 

1.1 Chemical Sensors  

 

 Chemical sensors are a powerful tool used to convert a chemical or physical change into 

a measurable signal [1]. These sensors are designed to detect a specific analyte and minimize 

interference from other compounds. A biosensor is a chemical sensor that utilizes a biologically 

derived analyte from a biological system and/or detects such molecules. Once the sensor detects 

an analyte, a part of the sensor called a transducer produces a signal. The signal is then 

transferred to a signal processor, which amplifies and displays the resulting signal.  

An electrochemical biosensor is a subclass of a biosensor that uses an electrochemical 

method for signal transduction, typically measuring changes in current or potentials to detect the 

presence of a specific biological molecule. A schematic of an electrochemical biosensor can be 

seen in Figure 1. An electrochemical biosensor can be further broken down into two different 

types. These types are biocatalytic devices and affinity sensors. A biocatalytic device utilizes an 

enzyme or cell to recognize and react with the specific analyte and produces an electroactive 

species as a product [1]. This product is typically the measured species. The most common and 

commercially successful example of this type of electrochemical biosensor is a glucose meter. 

Other examples include lactose and xanthine meters [1].  On the other hand, an affinity biosensor 

relies on the analyte binding to a biological component, such as an antibody or DNA strand, to 

produce a signal. The work presented in this thesis is based on DNA hybridization affinity 

sensing.  
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1.2 A Brief Description of Biocatalytic Devices and Affinity Censors.  
 

The history of glucose meters dates to 1962 when the first sensors were developed at the 

Cincinnati Children’s Hospital [2]. The first generation of glucose meters consisted of a layer of 

the enzyme glucose oxidase, GOx, on an oxygen-sensitive electrode by use of a semipermeable 

membrane [1,2]. When glucose is introduced, oxygen is consumed by GOx, leading to a 

detectable change in oxygen concentration at the electrode. The reaction is shown in Equation 1. 

The consumption of glucose also leads to the formation of hydrogen peroxide, H2O2. Hydrogen 

peroxide is electrochemically active and, more recently, has been used to detect the presence of 

glucose. The oxidation of H2O2 can be seen in equation 2: 

          (1)  

             (2) 

Another type of biosensor is the affinity sensor. An affinity sensor uses the specificity of 

biomolecular interactions, such as the interactions between an antibody and antigen, to improve 

selectivity. Thus, the electrode is typically modified with a macro biomolecule to serve as a 

Figure 1: A schematic of an electrochemical biosensor [1]. 
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recognition element. The electrochemical measurement must be designed such that the binding 

of this analyte causes an electrical signal to be created. The recognition of this analyte is often 

determined by the shape of the analyte or the shape of the analyte and recognition element. 

These specifications make the affinity sensor highly selective and sensitive [1].  

A common type of affinity sensor is an immunosensor. An immunosensor uses antibodies 

to detect an antigen sample. For instance, Ligar et al. examined a fluorescence-based 

immunosensor that is used to detect antigens [3]. Yersinia. pestis (Y. pestis) is one of the main 

bacteria that caused the Black Death to occur in the 14th century. The F1 antigen is a major 

component of Y. pestis and is secreted in the species once Y. pestis has invaded a mammalian 

host. In this experiment, the F1 antigen was being detected, and monoclonal antibodies were 

used as a recognition element. F1 antigen was spiked into six different biological samples, saliva, 

nasal, urine, serum, plasma, and blood. A buffer sample was also prepared to act as a control. 

Four different concentrations of antigen were used 0, 25,125, and 625 ng/mL. The samples were 

then assayed on slides to detect F1 antigen. The results can be seen in Figure 2 [3]. When 

comparing the two high concentrations of 125 and 625 ng/mL, a 5-fold increase in concentration 

only led to a 2.3-fold increase in normalized signal. Ligar et al. determined that the use of a 

fluorescence-based immunosensor can detect F1 antigen as low as 25 ng/mL in all matrix 

solutions.  
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Another type of affinity sensor is a DNA biosensor. The type of DNA biosensor most 

relevant in this work is a DNA hybridization biosensor. In a hybridization biosensor, a short 

DNA sequence, usually around 20 to 40 base pairs, is immobilized on the electrode surface. A 

signal is produced when the complementary strand attaches to the bounded strand [4]. This 

binding of the two strands is called hybridization. The complementary strand often has an 

electrochemically-active label (also known as a “tag”) on it that allows the creation of an 

electrochemical signal. There are many ways to create a DNA biosensor, but some 

commonalities are that they contain an immobilized sequence called probe, a complementary 

sequence called target, a passivation layer to prevent non-specific adsorption of the DNA. 

Furthermore, many involve a redox-active label that is either covalently attached or specifically 

binds to double-stranded DNA [4]. DNA biosensors have many applications, including in the 

Figure 2: F1 antigen was spiked into 7 different solutions each at different concentration: 0 

(blank), 25 (dotted), 125 (black), and 625 (stripe) ng/mL. Each bar is the mean normalized plot for 4 

samples. Detection of F1 antigen can be seen as low as 25 ng/mL [3]. 
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food and environmental industries. They allow one to obtain sequence-specific information 

rapidly and at a lower potential cost than other traditional benchtop methods. Also, unlike the 

enzyme-based sensors such as a glucose meter, or the antibody meters, DNA sensors can be 

regenerated and used multiple times and are typically more stable [4]. This research uses 

electrochemical techniques to do an in-depth analysis of detected DNA via electric field-induced 

melting.  
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Chapter 2: Electrochemical Concepts 

To better understand the structure and stability of DNA, electrochemical techniques can 

be used. The understanding of the physical and chemical properties of DNA at an 

electrochemical interface is necessary to optimize DNA biosensors. Thus, it is essential to 

understand electrochemical techniques to get a better understanding of how electrochemical 

DNA biosensors work. This section will cover the following: (1) electrochemical concepts such 

as electrochemical cell and electrochemical equilibrium, (2) electrochemical techniques, their 

usage and purpose.  

2.1 Electrochemical Equilibrium 

 

Figure 3: Schematic of a galvanic cell. When the copper cathode and zinc anode are connected, 

electrons flow and potential is measured by a voltmeter. [5] 

3 
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 Electrochemistry involves the measurement of electrical potentials or currents related to 

chemical processes that occur at the interface of electrical conductors and electrolyte solutions. 

These currents and potentials are measured through the transfer of electrons. This transfer of 

electrons can be separated into two separate reactions. When a substance gains an electron, the 

element is reduced. When a substance loses an electron, the element is oxidized [5]. In 

electrochemistry, the transfer of electrons occurs at an electrode. The electrode at which a 

substance (analyte of interest) gets reduced is called the cathode, while the electrode at which a 

substance gets oxidized is called the anode. This flow of electrons occurs by cations flowing to 

the cathode and cations leaving the anode. To balance each side, counterions are added as well. 

Each one of these vessels containing an electrode and an electrolyte solvent is called a half cell. 

Two half cells can be seen in Figure 3. In Figure 3, the Zn(s) is oxidized producing Zn2+. 

Likewise, the Cu2+ is reduced and Cu(s) is deposited on solid copper. These two relationships 

can be seen in equations 3 and 4: 

Zn(s)→ Zn2+(aq) +  2e− (3) 

Cu2+(aq) + 2e−
→ Cu(s) (4) 

The oxidation of zinc creates a positive charge at the electrode surface while a negative 

charge is created in the copper solution. Since a neutral charge is needed for the proper function 

of a galvanic cell, a salt bridge is added. For oxidation and reduction to take place, the two cells 

must be connected by a close circuit which allows electrons to flow. This electron transfer from 

the anode to the cathode causes electrical energy stored on each electrode to be utilized to pushed 

electrons through an external circuit. The difference in electrical potential between these two 

interfaces is known as the cell potential. A shorthand notation, called cell notation or a cell 

diagram, is shown below in equation 5, where Zn(s) represents the anode, the Zn2+ represents the 



8 

 

solution of the anode, the Cu2+ represents the solution of the cathode and the Cu(s) represents the 

cathode. 

Zn(s)|Zn2+||Cu2+|Cu(s) (5) 

The single dash line represents a phase change and the double dash lines represent a salt 

bridge connection. The cell described in equation 3 is known as a galvanic cell. If an outside 

electrical source is used to drive the redox reaction, the cell is called an electrolytic cell [6]. An 

example of an electrolytic cell would be a rechargeable battery. Once a battery runs out of 

power, all the electrons have transferred from the anode to the cathode. To recharge the battery, 

an electrolytic cell is created, and an outside power source transfers the electrons from the 

cathode to the anode [6].  

 A more common system used today for electrochemical measurements is a three-

electrode cell. A three-electrode system, as seen in Figure 4, consists of the working, counter and 

Figure 4: A schematic of a three-electrode system. A reference, working and counter electrode are 

connected to a potentiostat to apply a voltage between the working and references electrodes. [7] 
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reference electrode. The reaction of interest takes place at the working electrode and potentials 

are applied to this electrode relative to the reference electrode. A reference electrode is a half-cell 

where a stable reversable redox reaction takes place separated from the sample by a salt bridge. 

Potentials on the working electrode are measured or applied in reference to this electrode.  

One of the first reference electrodes was the standard hydrogen electrode, or S.H.E. This 

redox reaction is defined as the following: 

2H+(aq) +  2e− ⇌  H2(g) (6) 

 

The S.H.E is assigned a potential of zero volts. This means that if a potential measured at a 

working electrode reads a voltage of + 0.3 V while using S.H.E, then the potential is positive 0.3 

V of the S.H.E. The actual potential at the electrode, and even the charge of the electrode is not 

readily determined; much like energies, potentials are only known in reference to a reference 

potential. One disadvantage of using the S.H.E is that it is difficult to set up in a three-electrode 

system [7]. Another type of reference electrode is the silver-silver chloride reference electrode, 

as seen in Figure 5. The silver-silver chloride reference electrode consists of silver wire coated 

with silver chloride immersed in a solution of potassium and silver chloride. The half reaction 

can be seen in Equation 7: 

Figure 5: A redox reaction occurs between the silver and the silver chloride at the electrode, resulting 

in formation of standard reduction potential. [7] 
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AgCl(s) +  𝑒− − ⇌ Ag(s) + 𝐶𝑙−(𝑎𝑞) (7) 

With saturated potassium chloride, ~ 3 M, the standard reduction potential of the reference 

electrode is +0.197 V in relationship to the S.H.E. [7]. A counter or auxiliary electrode, is used to 

complete the circuit between the working electrode, electrolyte, and the potentiostat. It closes the 

loop of the electrical current. It is important for the counter electrode to be an inert metal to 

prevent generation of byproducts that could interfere with the reactions of the working electrode. 

A common counter electrode used in a three-electrode system is platinum.  

 

 Under standard conditions, the cell potential can be represented by Equation 8, where Eo 

(reduction) and Eo (oxidation) represent the reduction and oxidation electrical energy 

respectively.  

Eo = Eo (reduction) − Eo (oxidation) (8) 

Thermodynamically, Eo is related to ΔGo by Equation 9. Where ΔGo is Gibbs free energy at 

standard conditions, n is the number of electrons transferred in a balanced equation, F is 

Faraday’s constant (96485 C mol-1) and Eo is the potential difference at standard conditions. If Eo 

is positive, the reaction is spontaneous while if Eo is negative, the reaction is nonspontaneous. 

Under non-standard conditions, the relationship between E and Delta G is given in equation 10: 

ΔGo =  −nFEo (9) 

ΔG =  −nFE (10) 
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By substituting Equation 9 and 10 into the Gibbs free energy change under nonstandard 

conditions Equation 11 is derived. Where R is a constant of 8.314 J/mol K, and Q is the reaction 

quotient.  

E = 𝐸𝑜 −  (RT/nF) lnQ (11) 

As the reaction reaches equilibrium, Q = K and ΔG = 0 thus E = 0. Knowing this, Equation 11 

can be rewritten as Equation 12 here where K is the equilibrium constant.  

log (K)  = nEo/0.0592V (12) 

Equation 12 indicates that K is proportional to Eo. If Eo is positive, K is greater than 1 and the 

reaction favors the products. If Eo is negative, K is less than 1 and the reaction favors the 

reactants [8]. 

 Anytime an electrode is inserted in an electrolyte solution, an interfacial potential will 

develop as charge separates across the interface. To counter that charge, a set potential can be 

applied to the electrode until the total voltage is zero [9]. This point is called the point of zero 

charge. If a more negative potential is applied then the point of zero charge, the electrode will 

have a negatively charged surface. A more positive potential will cause the surface to have a 

positively charged surface. Note, these charges are absolute, unlike the potentials, which are 

relative. Also note that the point of zero charge is different than the cell potential in most 

systems.  

2.2 Surface Reactions (Electrochemical Double Layer)  

 

When a metal electrode is placed in an electrolyte solution, the various charges and 

dipoles in the solution will reorient and redistribute. As this process occurs, electrons located in a 
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negatively charged electrode (point more negative than the point of zero charge) will create a 

layer that is equal to the charge of cations in solution. This formation of an ionic layer that is 

equal and opposite of the ions in the metal is called a double-layer. The double-layer can further 

be divided into three different layers, the Inner Helmholtz Plane (IHP), Outer Helmholtz Plane 

(OHP), and the diffusion layer. The IHP consists of ions of opposite charge of the metal (and 

possible neutral species, as well) and is distance d1 from the electrode surface. The OHP consist 

of the ions surrounded by solvent molecules. These solvated molecules can only approach the 

surface of the electrode distance d2. Finally, the diffusion layer consists of solvated ions attracted 

to the electrode surface through weak electrostatic forces. Due to the fact that attraction forces on 

the diffusion layer are weaker, these ions move freely in solution. The thickness and structure of 

the double-layer depends on the ionic strength of the solvent used. A schematic of the electrode 

double layer can be seen in Figure 6. 
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2.3 Electrochemical Technique 

 

When running electrochemical experiments, an instrument called a potentiostat must be 

used. A potentiostat controls or measures the voltage between a working and counter electrode 

pair. It forces or measures a current through the working electrode [10]. This current and 

potential are then recorded and analyzed. Depending on the goal of the experiment, different 

electrochemical techniques can be used. Some common techniques are chronoamperometry, 

cyclic voltammetry, and square wave voltammetry.  

Chronoamperometry (CA) is an electrochemical technique in which the potential is 

stepped from an initial potential to another potential and current is measured versus time. CA is 

useful for quantitatively analyzing redox reactions. An initial potential, where no redox reaction 

Figure 6: A schematic showing the approximate distances of the IHP, OHP and diffusion layer. As ions and 

solvent molecules move away from the electrode surface, electric fields are less pronounced [11]. 
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occurs, is applied and then stepped up or down to a potential where reduction or oxidation is very 

fast (current limited by diffusion to the electrode surface) and the current is measured in time 

[12]. An example of CA can be seen in Figure 7. The current is proportional to the concentration 

of the analyte, providing the analytical information. 

Cyclic voltammetry (CV) is a powerful electrochemical technique used to observe the 

oxidation and reduction behaviors of a redox species [7]. Figure 8 shows a cyclic voltammogram 

of a “reversible” redox couple, for instance ferrocenium/ferrocene. The redox reaction between 

ferrocenium (Fc+) and ferrocene (Fc) can be seen in equation 13, where Cp is a cyclopentadienyl. 

The CV begins at an initial potential, labeled as A, and moves to a final potential, labeled as D. 

As the electrode scans more negative, the species at the electrode surface, in this example Fc+, is 

reduced leading to an increasing current. As the current continues to grow, most of the surface 

Fc+ has been reduced, and additional Fc+ from the bulk solution is brought to the electrode 

Figure 7: Schematic of chronoamperometry. Quiet time represents the time at the initial potential and each 

step represents a different potential [12]. 
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surface. This slow transport of Fc+
 through the so-called diffusion layer results in the eventual 

decrease of current seen after point C. The reverse occurs in the opposite direction. Fc is 

converted back into Fc+
. The two peak potentials, C and F can be used to determine Eo through 

the average of both peaks [7]. The peaks and the peak separation seen in a CV are due to the 

balance between kinetic controlled current (a lower potentials) and diffusion controlled current 

(at higher potentials). Depending on the peak separation, a reaction is seen as reversible or 

irreversible. Ideally, a clean electrode with a fast, reversible redox couple, peak separation 

should be 57 mV/n, where n is the number of electrons transferred. One negative aspect of the 

CV is that, due to relatively large charging current, i.e. current due to redistribution of ions 

instead of Faradaic processes, it is not sensitive enough to detect trace amounts or low surface 

coverage of adsorbed analyte on an electrode surface.  

[Fe (𝐶𝑝)2] +  +  𝑒− → [Fe (𝐶𝑝)2] (13) 
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 A more sensitive technique to detect trace amounts or surface coverage on an electrode is 

square wave voltammetry (SWV). SWV superimposes a square wave on a staircase waveform, 

resulting in the waveform seen in Figure 9 [11]. The SWV is characterized by the pulse size, the 

distance from the dotted line, as seen in Figure 9, to the top of the square wave and the pulse 

width, the width of each square wave. The scan begins at an initial voltage and increases the 

pulse size for pulse width time. At the end of the pulse width time, a current value is measured 

known as the forward current. The potential then drops down twice the pulse size and scans for 

the pulse width time. At the end of this time, another current value is measured called the reverse 

sample. To get the true current value, a difference current is taken, which subtracts the reverse 

current from the forward current. Once this point is measured, the staircase shifts upward by the 

step size and repeats this process over again. SWV is often used in DNA biosensors in the 

presence of a redox tag, such as methylene blue (MB). The quick and sensitive technique of 

Figure 8: A schematic of a cyclic voltammetry waveform [11]. 
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SWV allows for a clear peak to be shown. The effective scan rates are higher than typically 

possible using CV. Furthermore, the subtraction of currents effectively reduces the charging 

current. The peak currents are proportional to concentration, allowing quantitative interpretation. 

  

The understanding of electrochemistry is essential to understand how biosensors work. 

Chronoamperometry, cyclic voltammetry and square-wave voltammetry are used in this thesis to 

detect the chemical and physical properties of DNA as well as drug-DNA interactions. Another 

important aspect of understanding a DNA biosensor is understanding the structure and 

replication methods of DNA which will be discussed in the next chapter.  

  

Figure 9: A schematic of a square wave voltammetry waveform [11]. 
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Chapter 3 Biochemistry of DNA 

  DNA was first discovered in 1869 by Friedrich Miescher [13]. He was studying the 

composition of white blood cells and ended up isolating DNA in the process. In 1951, Rosalind 

Franklin managed to distinguish two forms of DNA strands, A and B form, by using x-ray 

diffraction [14]. In 1953, Watson and Crick used the research of Friedrich Miescher, Rosalind 

Franklin, and others to identify the double-helical structure of DNA using diffraction [14]. After 

the discovery of the double-helical structure of DNA, studies continued to be done on DNA to 

further explain the function of DNA in the cell and structure of DNA. Many researchers 

confirmed that DNA consisted of the genetic code of all living organisms. Currently, various 

fields of study use DNA, such as archeology, forensics, and medicine, to solve and explain 

specific problems. Due to DNA’s importance, it is imperative to know how the building blocks 

of DNA fit together, the mechanism of replication of DNA, and how it can be used today in 

analytical and biosensing applications (including electrochemical approaches) to provide 

diagnostic information.  

3.1 Structure of Deoxyribonucleic Acid 

 

 DNA is composed of two linear polynucleotide chains wrapped in a helical structure. 

Each chain consists of multiple monomers that contain a phosphate group attached to the 5’ 

carbon of a sugar called deoxyribose [15-16]. These monomers also contain one of four different 

bases, which include cytosine (C), thymine (T), adenine (A), and guanine (G). The bases attach 

to the OH group on the 1’carbon through condensation in the deoxyribose. The specific 

monomer that contains phosphate, deoxyribose, and a base is called a nucleotide. To form a 

chain of nucleotides, a condensation reaction occurs binding the 3’ hydroxyl group to the 

previous phosphate group. At neutral pH, the phosphate on the chain has a negative charge. To 
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link two chains together, hydrogen bonding and pi-pi stacking occur between the bases of the 

nucleotides, overcoming the electrostatic repulsion between the two backbones. Because of the 

base structure, C and G bind together by three hydrogen bonds while A and T bind by two 

hydrogen bonds. For these base pairs to bind correctly, they must be antiparallel to one another. 

C and G are known to be a stronger base-pair interaction than A and T [16]. An example of so-

called complementary base pairs can be seen in Figure 10. The binding of these base pairs 

through hydrogen bonding to form a double-stranded DNA structure is called hybridization [15]. 

An example of a hybridized DNA structure can be seen in Figure 11.  

 

 

 

Figure 10: An example of the four base pairs. The shape and structure of each base allows the paring of G 

to C and A to T. Three hydrogen bonds occur between the C to G and two hydrogen bonds occur between 

the A to T. The DNA strand is typically antiparallel for base pairing to occur. [15] 
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3.2 Forms of double-stranded DNA 

 

  There are three main forms of double-stranded DNA: B, A, and Z-form. B-form is the 

most common type of helical DNA at neutral pH and physiological salt concentrations. It is a 

right-handed helix and consists of 3.4 nm rise per turn, 10 base pairs (bp) per turn, and a 2 nm 

diameter [17]. The A-form of DNA is primarily present in RNA-DNA interactions and in RNA-

RNA duplexes, as well as dehydrated samples. It is a slightly thicker right-handed helix with a 

2.8 nm rise per turn, 11 bp per turn, and 2.3 nm diameter. The Z-form is primarily present when 

alternating between a purine and a pyrimidine, such as G and C repeating [17]. It is a zigzag 

formation with a left-handed helix. Because of this zigzag formation, the bp sequence is much 

Figure 11: The double helical structure of DNA is shown containing the sugar-phosphate backbone and 

base pairs. When the base pairs bind, hybridization occurs which leads to a double stranded helical structure 

of DNA to form. [15] 
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more spread out with 22.8 nm rise per turn, 12 bp per turn, and a 1.8 nm diameter. A diagram 

showing the three different forms can be seen in Figure 12. 

 

3.3 DNA Replication  

 

 DNA provides the genetic instructions to create proteins which are necessary for cellular 

and bodily function. Proteins are used for transportation within the cell, catalysts for chemical 

reactions, and muscle formation, amongst other functions. Improper function of proteins can lead 

to cellular or organism death. DNA mutations often result in proteins that are made improperly 

during replication. Because the detection of DNA mutations is essential to monitor protein 

Figure 12: The three forms of DNA, B-form (left), A-form (middle), and Z-form (right) [17]. 
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function, it is vital to understand the mechanism of DNA replication and what types of mutations 

are possible. In this section, an overview of DNA replication is given [18]. 

 DNA replication is the process of copying double-stranded DNA into two identical 

copies. The first step in DNA replication is the unwinding of the DNA. This is done through an 

enzyme called helicase, which breaks the hydrogen bonds between the base pairs. While helicase 

is unwinding the DNA, another enzyme called primase will attach and create a short set of 

nucleotides called a primer [18]. Starting at the primer, another enzyme, DNA polymerase III, 

begins to construct the secondary strand. Single-stranded DNA binding proteins (SSB) prevent 

DNA from hybridizing once separate. There are two different strands the DNA polymerase III 

can bind to; the leading strand and the lagging strand. The leading strand is synthesized in the 5’ 

to 3’ direction and the DNA is synthesized toward the replication fork. The lagging strand is 

synthesized in the 3’to 5’ direction and the DNA is synthesized away from the replication fork. 

Depending on which strand DNA polymerase binds to, it will behave differently. On the leading 

strand, DNA polymerase III will go through the stand with no stops. On the lagging strand, since 

DNA is being replicated in the reverse direction of the replication fork, the DNA polymerase 

does not go continuously but creates Okazaki fragments [18]. Once these fragments are made, 

they are sealed together by DNA ligase, creating a continuous strand. A diagram illustrating 

DNA replication can be seen in Figure 13.  
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 Sometimes, genetic mutations can occur during DNA replication leading to the change in 

base-pair sequences. Genetic mutations can have minimal, dramatic, or no effect of the function 

of the proteins created. An insertion mutation is defined by an addition of a nucleotide during 

replication. This type of mutation shifts the open reading frame of the sequence leading to a 

different or nonexistent amino acid formation. A deletion mutation removes a set number of 

nucleotides during replication which shifts all nucleotides downstream. Finally, a nonsense 

mutation changes one base pair which leads to a stop codon during amino acid formation mid-

stream [20]. 

3.4 Polymerase Chain Reaction 

 

 Methods based on polymerase chain reactions (PCR) are routinely utilized in genetics 

and molecular biology to amplify DNA and RNA fragments. Various fields have applied PCR, 

Figure 13: An example of DNA replication is shown. DNA unzips through helicase. Once a primer is 

attached, DNA polymerase constructs the complementary sequence of DNA on both the leading and lagging 

strand. [19] 
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including forensics, diagnosis of heredity diseases, and DNA sequencing [21-22]. Amplification 

of DNA using PCR occurs in 3 steps: denaturation, annealing, and elongation. These three steps 

are repeated 20-40 times, resulting in 2n copies of DNA where n is the number of cycles [22]. 

Figure 14 summarizes the three steps of PCR.  

 

First, a reaction vessel containing primers, deoxyribose nucleotide triphosphate, dNTP, 

DNA polymerase, and double-stranded DNA (dsDNA) is heated at 95 C for 5 minutes. This 

heating allows for activation of the polymerase, denaturation of any contaminants, and lysing of 

cells to release the dsDNA [21]. During the denaturation step, the vessel is heated at 95 C for 8 

minutes. Thus, allowing hydrogen bonds to be broken between the strands of DNA, resulting in 

the melting of the dsDNA into single stranded DNA (ssDNA). Next, during the annealing step, 

the temperature is lowered to between 50 C and 65 C and a primer is attached to the ssDNA. A 

primer is a small segment of DNA that DNA polymerase III attaches to create the 

Figure 14: PCR can be summarized in three steps: denaturation, annealing and elongation. 1) Denaturation 

allows for DNA to completely melt. 2) annealing attaches the primer 3) DNA polymerase creates the 

complementary strand of DNA. Each cycle, the amount of DNA is increased by 2n. [22] 
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complementary strand of DNA. The temperature is lowered to create ideal conditions for the 

annealing of the primer. If the temperature is too high, the primer will not anneal or attach. If it is 

too low, non-specific binding will occur, and the primer will not duplicate the section of DNA to 

which it is targeted. Primers are often in large excess to favor hybridization over reannealing of 

the dsDNA. In the last step, elongation, DNA polymerase binds to the primer and uses 

deoxyribonucleoside triphosphate (dNTP) to create a complementary strand to the primer and 

DNA. The temperature during elongation depends on the heat resistance of DNA polymerase and 

is usually around 72 C. The time of elongation depends on the length of the DNA strand and the 

speed of the DNA polymerase. DNA polymerase typically run at about 1.5kb/min. This means 

that there are 1.5 kilobase pairs are copied per minute at optimal temperatures [22]. After the 

aliquoted amount of cycles has been reached, final elongation is done at 75 C for 10 minutes to 

ensure all DNA strands have been fully elongated. Short-term storage is done between 4-15 C.  

 

In a typical PCR reaction, DNA will continue to increase by 2n (where n is the number of 

iterations of PCR) until all the substrates have been used or the user stops the reaction. However, 

DNA does not extend at this rate for all cycles. The PCR reaction occurs in three phases, 

exponential, linear, and plateau phases [23]. In the exponential phase, DNA doubles after each 

period. After a certain amount of time, the PCR reaction will enter the linear phase or the non-

exponential phase. During this phase, DNA duplication slows down and no longer increases 

exponentially. This primarily occurs because of increased competition of the reannealing of 

dsDNA and annealing of the primer and the rates of specific components being depleted. 

Eventually, the PCR reaction runs out of resources to continue and enters the plateau phase. 

These different phases are shown in Figure 15 [23]. 
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 Once DNA is duplicated, various other tests need to be done to verify that the target 

DNA is present and has been duplicated. These may include high performance liquid 

chromatography (HPLC), gel electrophoresis, or capillary electrophoresis [19]. These extra 

processing methods can make PCR unfavorable for some application due to lack of automation, 

high costs, reprocessing steps, and false positives [21]. False positives primarily occur due to 

amplification of contaminating nucleic acid sequences. To minimize error from reprocessing and 

increase efficiency, an improvement of PCR was created called quantitative PCR (qPCR).  

 

3.5 qPCR 

 

Figure 15: In PCR, the amount of DNA is predicted to increase exponentially until the no more reagents are 

available, as shown in the theoretical line. It is observed in the experimental line that due to competition 

between the primer and reannealing DNA, and depletion of resources at different times, the amount of DNA 

does not continue exponentially for the full length of the reaction. [23] 
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Quantitative polymerase chain reactions (qPCR), also known as real-time polymerase 

chain reactions, includes a method to quantify the amount of DNA present with minimal post-

processing. The first generation of qPCR utilized a florescent dye in the PCR mix. The 

fluorescent dye was chosen for its ability to bind to the hydrophobic region of double-stranded 

DNA between base pairs. The signal is directly proportional to the amount of DNA present. 

Originally ethidium bromide (EtBr) was the primary dye used in qPCR. The fluorescence 

intensity of ethidium bromide is dependent upon how much is bound to the DNA. Free EtBr has 

the lowest fluorescent signal whereas EtBr bound to ssDNA is higher and EtBr bound to dsDNA 

is the highest [21]. As qPCR takes place, the ethidium bromide binds to the new dsDNA and the 

fluorescent signal increases. Once the reaction is complete, most of free EtBr dye will be bound 

to dsDNA. While some of the EtBr will bind to ssDNA, the binding efficiency is much less, and 

the signal is assumed to be the signal of just EtBr-dsDNA. The fluorescence can be measured 

before, during, or after the PCR reaction [21]. A more common type of dye used in qPCR is 

SYBR Green I due to it having an affinity 100 times larger than ethidium bromide to dsDNA and 

having a low cost [21,24]. SYBR Green is also favorable for having a strong emission signal at 

520 nm that becomes 1000 times stronger when bound to dsDNA versus free dye [21]. Figure 16 

illustrates SYBR Green I binding to dsDNA during qPCR. Although SYBR Green I is highly 

effective at binding dsDNA and provides a strong signal, it also has its downside in qPCR. For 

example, it has been observed that SYBR Green I can inhibit PCR elongation, affects DNA 

melting temperature, and in some cases lacks adequate specificity for dsDNA [23-25]. 
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 PCR can also be used as a diagnostic tool to detect foreign substances in the body. 

Safeukui et al. recently developed a method using PCR to detect different strands of parasites 

that cause malaria [26]. Safeukui worked with four different parasites that cause malaria, P. 

falciparum, P.vivax, P.ovale, and P.malariae. A probe sequence was developed by taking 

advantage of a mismatch that is present on the P. falciparum versus the other three sequences. 

The probe was also labeled with a fluorescein isothiocyanate (FITC) at the 5’ end of the DNA 

sequence. The type quantification of PCR used in this experiment is fluorescence resonance 

energy transfer (FRET) [26]. The FRET signal was used in parallel with melting. FRET was 

done on three different samples of blood and one control to see if FRET could distinguish 

between parasites. The results of this can be seen in Figure 17.  

Figure 16: When SYBR Green binds to dsDNA, it has a fluorescent increase 1000 times more than 

unbounded dye. Signal increase is detected during the elongation step [25]. 
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Through these results, it can be concluded that not only can PCR detect the different 

strands of parasite present, it can also distinguish between blood samples that have multiple 

types of parasites. The use of FRET fixes a common problem that SYBR Green I has, in that it 

allows the specificity of DNA strand to be shown.  

Figure 17: Four melting curves are shown using three different blood samples. The three blood samples 

were P. falciparum, P. ovale, and P. falciparum + P. ovale. The negative control that was run consisted of 

the reaction mixture with water [26].  
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3.6 Biosensors and qPCR 

 

While various forms of PCR exist, and are powerful tools for genetic analysis, DNA 

biosensors are promising for applications where benchtop equipment and long analysis times are 

not ideal, e.g. point-of-care diagnosis and monitoring. Biosensors have the potential to be 

cheaper, faster, and more portable. Biosensors rely on specific interactions between a recognition 

element and the target, followed by transduction to an electrical signal, often employing optical, 

gravimetric or electrochemical detection. Electrochemical detection is particularly promising due 

to the minimal electronics, miniaturization, ability to multiplex, and fast measurement times. 

Often in qPCR, small molecules of microRNA (miRNA) are used. miRNA is a small nucleotide 

sequence, around 22-nucleotides, whose primary goal is to regulate gene expression. Due to its 

small size, finding a flexible primer for miRNA is difficult [21]. Furthermore, miRNA lacks 

specificity in qPCR meaning the sample must be free of any other RNA or DNA sequences and 

denaturing agents that could negatively affect polymerases such as inhibitors. A DNA 

electrochemical biosensor can potential avoid these and other drawbacks of benchtop techniques 

[28]. 

For example, the principle of one electrochemical DNA biosensor is illustrated in Figure 

18 [29]. A gold electrode is used and a layer of thiolated DNA acts as a probe for miRNA to 

hybridize with. Thioglycolic acid is then used to fill any remaining gaps on the monolayer. Once 

miRNA has been added duplex specific nuclease (DSN), removes DNA and miRNA duplexes. 

DSN has been shown to selectively cleave DNA-DNA interactions (duplexes) and DNA-RNA 

duplexes and not RNA-RNA duplexes. The miRNA is recycled and reattaches to another strand 

of DNA probe which is then removed by DSN. This cycle continues until all DNA probe is 

removed by DSN. An electrochemical impedance spectroscopic test, EIS, is preformed using 
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Fe(CN)6
4- and Fe(CN)6

3- redox probes to determine the amount of miRNA present in the original 

sample. This method can detect miRNA as low as 1.0 fM, or 1 x10-15 M [29]. While this 

particular approach still relied on miRNA, it illustrates the potential for adaptation of existing 

methodology towards development of DNA biosensors. 

 

 

 Rather than remove qPCR completely, another method is to combine electrochemical 

sensors with qPCR. This method is called electrochemical real-time polymerase chain reaction or 

ERT-PCR. ERT-PCR is typically carried out on an integrated silicon chip, which allows qPCR 

and electrochemical detection to be done simultaneously on the same device. Figure 19 shows 

both a glass chip and a silicon chip set-up for ERT-PCR. For ERT-PCR to work correctly, it 

must fulfill all the requirements of qPCR, i.e., thermal stability and no PCR inhibition. To do 

this, a platinum (Pt) temperature sensor and heater is incorporated in the chip to allow for proper 

Figure 18: An alternative method to detect miRNA other than qPCR is the use of an 

electrochemical biosensor. miRNA hybridizes with probe DNA and is cleaved by DSN. miRNA is reused 

and the process is repeated. EIS is performed to determine the concentration of miRNA present. [29] 
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thermal cycling. A Pt electrode patterned in the silicon acts as the working electrode. Also, on 

the chip is a PCR chamber. A DNA blank probe is incubated in the chamber overnight. Next, the 

master mix is added, consisting of reaction buffer, dNTP, forward primer, reverse primer, and 

DNA polymerase and Fe-dUTP. Fe-dUTP is a labeled nucleotide that can show the progress of 

qPCR. A total of 30 cycles of qPCR is carried out followed by voltammetric measurements [30].  

 

 

Figure 19: A) Shows the front, back and side view of the silicon chip. B) shows the PCR chamber 

before PCR begins and C) shows the PCR chamber after PCR is completed. [30] 
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 Other electrochemical biosensing approaches use PCR in conjunction with subsequent 

detection via electrochemical measurement. In these cases, the PCR step is used to amplify the 

target. In Bartlett’s et al. research, two different bacteria were analyzed: Yersinia pestis, one of 

the main causing bacteria of the plague, and its closely related species Y. pseudotuberculosis 

[31]. To do this experiment, a gold surface was modified with a thiol probe and a passivation 

layer consisting of mercaptohexanol. The probe was then hybridized with the target sequence 

previously amplified using PCR. A dye, Texas Red, was used as a surface enhanced Raman 

indicator for this experiment. Surface-enhanced Raman spectroscopy (SERS) was used to 

analyze the melting behavior of each sequence as the electrode potential is scanned in the 

negative direction, causing electrostatic repulsion on the negatively-charged DNA backbone and 

the electrode surface. This method of melting DNA is known as electrochemical melting, 

electrostatic denaturation, or electric field-assisted dehybridization. A summary of the results can 

be seen in Figure 20 [31]. DNA sequences were taken from two different genes groEL and metH 

of the two bacteria species. Once hybridization occurred, the sequence was melted. Using PCR, 

the target sequence can be in large enough concentration to hybridize with the probe. DNA 

melting can then be used to distinguish between the two different bacteria in two different genes. 

Electrostatic denaturation is the focus of the work in this thesis, and will be discussed more later. 
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Due to the importance, and sometimes low concentration of DNA in biological samples, 

methods of DNA replication and amplified detection methods are often needed. PCR and qPCR 

provide excellent methods to amplify DNA. Combining PCR with techniques such as 

fluorescence or electrochemical techniques provide a method to further analyze DNA. It has 

been shown that if a high enough concentration of DNA is present, different strands of DNA can 

be distinguished. Better yet, would be a biosensor with enough inherent amplification so that 

PCR would not be necessary. 

  

Figure 20: Melt curves are shown obtained by SERS. groEL and metH genes were targeted. The black data 

represents the DNA from Y. pestis and the red data represents the data from Y. pseudotuberculosis. The 

samples can be distinguished based on melting curve.[31] 
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Chapter 4 Optimization of DNA Electrodes 

Introduction 

 The development of DNA biosensors is an active area of research due to its practical use 

in medicine, forensics and detection of biomarkers [32]. In many of these sensors, and our 

research, a gold substrate is used due to facile chemistry with thiol-modified DNA, allowing 

monolayer formation. The gold biosensor is first modified with a mix of modified ssDNA called 

probe and a passivating layer such as mercaptohexanol. This modified probe with a thiol allows 

for easy chemisorption to the gold surface. The complementary strand is then added with an 

optical or redox tag that results in a measurable signal. This complementary strand is called the 

target. In the work presented here, we obtain additional information about the hybridized DNA 

by electrostatic denaturation. A constant negative potential is applied to the gold, and the 

phosphate backbone of the DNA is repulsed from the electrode. While the probe strand is 

covalently tethered, the target strand can unzip from the probe and leave the electrode surface, 

i.e. the DNA helix melts. As the redox tag leaves the surface, measured signal decreases. 

Throughout the experiment, SWV is used to measure the reduction of the redox tag, methylene 

blue (MB). In this chapter, optimization of the melting process, and the electrode modification 

procedure is presented. Additionally, the effects of DNA density and ionic strength are explored. 

4.1 Previous Research  

 

 Previous work in our lab showed that electrostatic denaturation can be used to detect 

useful information such as the presence of a single mismatch, the presence of a hairpin, and even 

differences in oligonucleotide length [32]. In thatwork, the effect of melting potential was 

explored, and both constant potential and scanning potential melts were carried out. More 

negative potentials resulted in faster melting, and potentials more positive of ~-300 mV resulted 
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in negligible melting. It was found that using a constant potential of -500 mV minimized thiol 

desorption, which can occur as the thiol bond is reduced at sufficiently negative potentials. While 

comparison of melts at -500 mV allowed discrimination of DNA based on, e.g. presence of 

mismatches, the standard deviation in the surface coverage (and therefore signal) was quite high. 

The goal of the studies presented in this chapter was to improve the reproducibility of these 

measurements by improving the electrode modification procedure. Furthermore, preliminary 

results are presented on the effect of ionic strength and DNA surface coverage, with the goal of 

finding conditions which will improve the reproducibility of the melts. 

4.2 Materials  

 

All chemicals were purchased from Sigma-Aldrich and used as received. The modified 

oligonucleotides used in this work were purified by dual high-performance liquid 

chromatography (LGC Biosearch Technologies, Petaluma, CA). Both probe and target sequences 

contain 18 base pairs and are fully complementary with each other. The DNA strands used can 

be seen in Table 1. 

Table 1: Table of DNA. 

 

Solutions of 6-mercapto-1-hexanol (MCH) and thiolated probe DNA were prepared in 10 mM 

phosphate buffer containing 2.7 mM KCl and 1.14 M NaCl (pH 7). Hybridization of surface-

bound probe and target was carried out in 10 mM Tris containing 1 M NaCl and 1 mM EDTA 

(pH 7). Electrochemical melting was performed in 10 mM Tris buffer (pH 7), and electrodes 

18-bp Duplex (MB on 

target) 

Probe:  5’HS-C6-TTG ATC GGC GTT TTA TTC 3’ 

Target: 3’ (MB)-AAC TAG CCG CAA AAT AAG 5’ 

18-bp Duplex (MB on 

probe) 

Probe:  5’HS-C6-TT(MB)G ATC GGC GTT TTA TTC 3’ 

Target: 3’      AA----C TAG CCG CAA AAT AAG 5’ 
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were rinsed in 5 mM Tris buffer containing 10 mM NaCl (pH 7). All solutions were prepared 

using deionized water.  

All electrochemical experiments were carried out using polycrystalline gold disk working 

electrodes (geometric surface area 0.0314 cm2 and roughness factor ca. 1.4), Ag/AgCl (1 M KCl) 

reference electrode, and platinum wire counter electrode (CH instruments, Austin, TX). 

Electrochemical melting was carried out using a VersaStat 4 potentiostat and VersaStudio 

software (Ametek Scientific Instruments, Berwyn, PA) at a temperature of 30 °C. 

Electrochemical polishing was carried out on either a VersaStat 4 or a WaveNow (Pine 

Research, Durham, NC) potentiostat. 

4.3 Methods 

 

 Gold electrodes (2 mm diameter, CH Instruments, Austin, TX) were cleaned using a 

three-step process. The electrodes were first mechanically polished using a 0.05-micron alumina 

slurry for 2 minutes then sonicated in deionized water for 5 minutes. The gold electrodes were 

then cleaned chemically with a piranha solution: 3:1 concentrated sulfuric acid to 30% hydrogen 

peroxide, for 40 seconds  

[CAUTION]: Piranha is highly corrosive and its acidic vapors cause a severe inhalation hazard 

which can be destructive to the mucosal membranes and result in severe burns. Skin or eye 

exposure to piranha solution can cause severe burns].  

After thoroughly rinsing the electrodes with deionized water, they were electrochemically 

cleaned in a 0.5 M sulfuric acid solution. This polishing process consists of (1) using cyclic 

voltammetry between -0.2 to 1.6 V for 50 cycles at 10 V/s and (2) -0.2 V to 1.6 V for 10 cycles 

at 50 mV/s. The electrodes were then rinsed and stored dry until further use.  
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Tris(2-carboxyethyl)-phosphine-HCl (TCEP) was used to reduce the disulfide bond of the 

probe. A DNA probe solution was then made at 0.5 μM and pulsed from 0.5 V to -0.2 V at room 

temperature at 10 ms intervals for 15 minutes. Electrodes were then rinsed and stored overnight 

in a 9 mM MCH in PBS buffer at 4 o C. After the attachment of probe and MCH, the electrodes 

were rinsed and placed in 60 μL of tagged MB target for 40 minutes. A summary of the 

modification process can be seen in Figure 21.  

 

 

4.3.1 Electrostatic Denaturation Routine 

 

The electrochemical melting routine consists of programmed potential pulses used to 

melt the DNA. First, the electrode is allowed to equilibrate at open cell potential (OCP) for 10 

minutes. Next, chronoamperometry is used to apply a constant potential of -500 mV (vs. 

Ag/AgCl in 1 M KCl) for 8 minutes. This negative potential repels the negatively charged 

phosphate backbone of the DNA resulting in dehybridization. Next, -0.1 V is applied for 10 s. 

This step allows equilibration of the electrode. Finally, SWV is done to monitor the amount of 

target DNA still bound via reduction of the pendant methylene blue label. The voltammogram is 

acquired using the following parameters: initial potential of -0.1 V, final potential of -0.45V, 

Figure 21: A clean gold electrode is used to pulse probe and attach MCH. Then the tagged target is 

hybridized to the complementary strand. [32] 
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amplitude of 25 mV, period 6 ms and increment of 5 mV. Once the SWV is done, the cycle is 

repeated starting at the -500 mV melting step. The cycle is repeated 10 times. The full potential 

waveform applied during the melt is depicted in in Figure 22.  

After the completion of the melt, voltammograms were used to analyze overall melting. 

The voltammograms were baseline-subtracted, normalized to the initial signal, and plotted versus 

time to obtain a kinetic melting curve. An example of the SWVs obtained during a melt can be 

seen in Figure 23, and a kinetic melting curve produced from this data can be seen in Figure 24. 

The kinetic melting curves are fit with the following equation: 

𝑖𝑝(𝑡) = 𝑨𝑒−𝑡/𝝉 + (1 − 𝑨) (14) 

Where τ is the time constant and A is the melting extent. These fitting parameters provide insight 

into the kinetics and thermodynamics of the melting process, and ultimately the stability of the 

Figure 22: The potential waveform applied during electrostatic denaturation at constant potential. (a) 17 

cycles are shown comparing the pulse potential to time. (b) One cycle is shown. After the open cell potential 

(not shown here) the electrode is set at a constant potential of -500 mV for 8 minutes represented by tp (purple 

line in b). The potential is then brought up to -100 mV for 10 s (green line in b), Es before a SWV is acquired 

(red line in b). 
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dsDNA. A slower melt will have a larger time constant while a faster melt will have a smaller 

time constant.  

 

t=0 s 

t=4800 s 

Figure 23: Voltammograms collected during a melt. As the melt progresses, since MB is no longer near 

the surface, the voltammogram current decreases over time. Experiments are done in 10 mM Tris buffer at 

pH 7. Voltammograms are run at an initial potential of -100 mV and a final potential at -450 mV. 
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To determine the surface density of probe on the electrodes, a chronocoulometric 

hexaammineruthenium (III) chloride (RuHex) assay was implemented [33]. A MB-tagged probe 

solution was pulsed on gold electrodes and incubated in a 9 mM MCH solution overnight. A 

potential was applied to the electrode in a 50 μM of RuHex with 10 mM Tris Base. Before 

running, the solution was degassed for 10 minutes using inert argon gas. The experimental 

parameters consisted of an initial potential of 0.1 V for 2 seconds followed by a final potential of 

-0.4 V for 1 second at room temperature [33]. The results of the assay were then analyzed to 

determine the number of DNA molecules per cm2.  

Results and Discussion  

4.4 Optimization of Probe Density 

 

 In our lab, the probe has traditionally been adsorbed to the gold electrode through passive 

methods. This was done by taking a clean gold electrode and incubating it in a 10 μM solution of 

probe overnight at 4 oC. The next day, the electrode was rinsed and placed in a 9 mM MCH 

Figure 24: To analyze each voltammogram, the each SWV is normalized to the initial voltammogram 

peak height and plotted versus time. Using equation 14, the time constant and melting extent are 

determined. 
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solution for 1 hour to form a passivation layer. Finally, the electrodes were placed in a solution 

of 5 μM MB tagged target for 2 hours at room temperature in the dark. This procedure often 

resulted in inconsistent peak heights and consequently a variable melting behavior. To address 

this issue, a potential pulsing technique was implemented for better control over chemisorption 

of the probe. This technique involves pulsing from a high potential, 0.5 V, to a low potential, 0.1 

V at a fast interval, 10 ms at each potential in a solution of the probe. This rapid change results in 

an “ionic stirring effect” which helps facilitate diffusion of the probe to the electrode surface. 

This “ionic stirring effect” has been shown to increase the consistency of probe attaching to the 

gold surface and shorten the time to do so [34-35]. A portion of the pulsing waveform can be 

seen in Figure 25. 

 

Figure 25: The potential pulse routine used for improved pulse chemisorption. The pulsing routine starts 

at + 500 mV for 10 ms followed by +100 mV for 10 ms. The red box represents one cycle of this routine. 
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Two experimental variables were adjusted to test the effectiveness of the pulsing 

technique for obtaining monolayers with consistent and controllable surface densities: total 

pulsing time and concentration of DNA. First, each electrode was pulsed using tagged probe at 

0.5 μM (under the previous stated conditions) for 5, 10 or 15 minutes respectively. A RuHex 

assay was then carried out to estimate the surface coverage. The results shown in Figure 26 

reveal that when the pulse time was increased, the surface density of probe increased. Tarlov et 

al. were only able to obtain 8 x 1012 molecules per cm2 using passive methods [33]. At 15 

minutes of pulsing, a value of 1.2 x 1013 molecules per cm2 is obtained. This larger density 

Figure 26: Pulse time as compared to density using the RuHex assay. As pulse time increases, the density 

of probe on the electrode increase. 
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shows that a higher surface coverage can be obtained using the pulse assisted method in a shorter 

amount of time.  

 A similar experiment was done to explore the effect of probe concentration. Because 15 

minutes gave the highest probe density of the three tested (see Figure 26), this was the pulse time 

used when exploring the effect of probe concentration. Electrodes were pulsed for 15 minutes at 

the following concentrations, 0.0625, 0.125, 0.5 and 1 μM. Again, the RuHex assay was used to 

quantitate the surface coverage. The results can be seen in Figure 27. As the concentration of 

probe increases, the surface density increases in a non-linear fashion. Beyond 0.5 μM, the 

surface density appears to flatten out as steric and electrostatic hinderance are expected to inhibit 

chemisorption of the probe [33].  

 

Figure 27: Density of probe is related to probe concentration. Given a constant pulsing time, as probe 

concentration increases, the surface density increases until it flattens out at some point beyond 0.5 μM. 
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 While the RuHex test provides a direct electrochemical method for quantifying surface 

coverage, the complexity and time required do not allow it to be used during the electrochemical 

melting routine itself. Also, RuHex has a high affinity for the DNA backbone, and its reduction 

peak overlaps with that of methylene blue, thus complicating data analysis. Therefore, a method 

is needed to compare the surface coverage obtained from the RuHex test to the MB signal 

obtained. To do this, a voltammogram was taken of the tagged MB probe at four different 

concentrations 1 μM, 0.5 μM, 0.125 μM, and 0.0625 μM pulsed one time for 15 minutes. The 

peak currents obtained were then compared to the peak currents obtained during the use of the 

passive method. The results of these measurements can be seen in Figure 28.  

 

Figure 28: Comparison of passive and pulse assisted probe chemisorption. The blue bar is 

passive chemisorption of probe from 10 μM probe. Pulse assisted probe (15 minutes) is shown 

for comparison at 1 μM, 0.5 μM, 0.125 μM, and 0.0625 μM probe in orange, grey, yellow and 

green respectively. The error bars show the standard deviation of triplicate measurements, 

clearly illustrating the improved reproducibility introduced by the pulsing. 
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 Previous studies by Tarlov et al. used passive probe chemisorption resulting in a 

maximum surface coverage of around 8 x 1012 molecules per cm2 [33]. These coverages require 

up to 4 hours of incubation in probe. The pulsing method developed by Schumann et al. (which 

we based our method on) was only able to produce a surface cover of 6.85 x 1012 molecules per 

cm2 using a 1 μM probe solution after 15 minutes [34]. We were able to obtain a maximum 

surface coverge of 1.6x1013 molecules per cm2, higher than that obtained via passive incubation 

as reported by Tarlov et al. and higher than obtained by Schumann using pulsing. Tarlov may 

have obtained a smaller surface coverage because the DNA strands were longer, leading to more 

interstrand repulsion and lower DNA density. In addition to a larger surface coverage, we were 

able to produce that surface coverage in a fraction of the time of the passive method. 

Furthermore, compared with our past results using the passive method, the pulsing routine 

increases the reproducibility significantly. According to Figure 28, the passive method, using our 

standard conditions, resulted in an RSD value of 40% [32]. When using the pulsing method, that 

value shrunk to around 10% for all but the lowest surface densities (i.e the lowest probe 

concentration used here, 0.0625 μM). The introduction of the pulsing method allowed for more 

consistent, reproducible, and rapid preparation of DNA modified electrodes.  

Using Figures 26 and 27, a calibration curve was constructed comparing the surface 

coverage of probe to the MB signal using the pulse assisted procedure. Tagged probe was pulsed 

at 1 μM, 0.5 μM, 0.125 μM, and 0.0625 μM. After modification of the electrode with tagged 

probe and MCH, the SWV of the label was acquired. Next, a RuHex assay was acquired on the 

same electrode. These data points where then used to construct the calibration curve (Figure 29). 

Using the linear best fit line, MB signal can be directly correlated to surface density without the 

use of RuHex assay each time (under a given set of experimental conditions).  
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Next, we investigated the extent of hybridization as a function of surface coverage. 

Previously, 100% hybridization was difficult to achieve in dense DNA monolayers [33]. At high 

DNA densities, both steric and electrostatic effects inhibit complete hybridization. Incomplete 

hybridization could lead to lower MB peak height for otherwise high probe densities. Four 

different hybridization times were applied with the hypothesis that increasing time would lead to 

higher surface densities obtained using the pulsing technique described above. These 

hybridization times were 40 minutes, 2 hours, and 24 hours and the tagged target was hybridized 

at four different probe concentrations. After hybridization, the signals were converted to density 

using the calibration curve from Figure 29. The results are shown in Figure 30, where black dots 

represent the calibration curve (signal of tagged probe), dark blue represents 40 minutes of 

Figure 29: Calibration curve showing the density vs SWV Peak Current. A linear relationship can 

be seen between the two. A larger probe concentration leads to a larger density and MB signal. 
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hybridization, light blue represents 2 hours of hybridization, and orange represents 24 hours of 

hybridization. The data suggests that at least 40 minutes was needed for hybridization for all 

probe densities used here, and 2 hours guaranteed nearly complete hybridization under these 

conditions. Further experimentation has shown 5 μM target solution can be used to hybridize at 

room temperature. Tarlov et al used a lower concentration of target and similar hybridization 

time of 1 μM probe for 1 hour at 35 oC [33].  

 

 

4.5 Electrostatic Denaturation - Effects of Surface Density and Ionic Strength 

 

Figure 30: The calibration curve (black) was compared to three different hybridization times, 40 

minutes (dark blue), 2 hours (light blue), and 24 hours (orange). Within 40 minutes nearly full 

hybridization occurs.  
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 In previous electrochemical melting studies, little attention has been paid to the effects of 

surface density and ionic strength. These two factors are assumed to greatly affect the 

electrostatic repulsion within the DNA monolayers and therefore affect the stability of the DNA 

duplexes and the electric fields within the monolayers. It is essential to understand these factors 

because depending on the electrode conditions, the melting behavior can be different for 

different experimental conditions, even when duplex stability is otherwise the same (i.e. base 

pair sequence is the same) which can lead to a bias interpretation. 

 For the effect of density on electrochemical melting behavior, the pulse-assisted 

procedure was used to prepare electrodes with four different probe surface densities. These 

electrodes were hybridized for 1 hr and then electrochemically melted as described in the 

experimental section. The resulting melting curves were fit to obtain the time constant and 

melting extent. From the calibration curve, the initial signal was converted to density using the 

calibration curve. The time constants and melting extents were plotted versus density to see if a 

correlation was present (Figure 31).  



50 

 

 

 

 The first conclusion is that when density decreases or increases beyond ~8 x 1012 

molecules per cm2, tau and A both increase. The rise in tau gives some indication that melting 

occurs more slowly, while the rise in A gives some insight that the extent of melting is greater. 

The results suggest that at high densities, the steric effects may prevent target from dehybridizing 

efficiently. This leads to sluggish diffusion of DNA away from the electrode, thus slowing the 

apparent melting rate. Furthermore, high surface coverage can lead to cross-linking between 

neighboring strands which will also slow down the melts. Although it’s shown that the kinetics 

are slowed, the overall extent of melting increases due to the increase of electrostatic repulsion, 

which overall destabilizes the DNA, shifting equilibrium toward separated target and probe. On 

the other hand, at low densities, ions from the solution are expected to easily permeate through 

Figure 31: DNA surface density is compared to the tau and A values where tau represents the rate of 

melting and A represents the extent.  At a larger surface density, tau increases or the rate of melting 

decreases. At a smaller value the reverse is true. There does not seem to be a correlation between the 

extent of melting and surface density 
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the DNA monolater to the electrode surface. Thus, allowing for shielding most of the DNA’s 

length from the electric field at the surface. This is expected to not only slow-melting but to 

again increase the extent, since the proximal end of the DNA is expected to experience even 

larger electric fields due to the more rapid drop in potential caused by the efficient screening on 

electrode charge. These factors are balanced at intermediate surface coverages, where melting is 

faster but to lower extents. 

4.6 Effects of Salt Concentration on Melting 

 

 For all the experiments discussed so far, melts are carried out in a 10 mM Tris buffer, pH 

7 without electrolytes. However, the ionic strength of the solution plays a large role in both 

stabilizing DNA duplexes and screening of the electrode charge. A higher ionic strength is more 

effective at shielding the phosphate backbone from the negative electrode charge [36]. This hints 

that a higher ionic strength should increase the stability of DNA when melting, leading to larger 

values of time constant and lower melting extent. To explore this, electrodes were prepared and 

melted using the same routine as above but with different concentrations of NaCl (50, 100, 250, 

500 and 1000 mM) added to the buffer. The results can be seen in Figure 32. The change in ionic 

strength appears to be small except for NaCl concentrations around 500 mM. At an intermediate 

amount of NaCl, an increase in the time constant and a decrease in melting extent can be seen. 

More studies are currently underway to better understand both the effect of ionic strength and 

surface density. 
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 Another aspect that was explored regarding salt concentration was initial signal. The 

initial signals of the electrodes were taken, after the standard probing and hybridization 

procedure. Next, two of the electrodes were placed in a 50 mM NaCl buffer solution while three 

electrodes were placed in a 100 mM NaCl buffer solution. The initial signals in the Tris buffer 

with and without NaCl were then compared. As seen in Figure 33, placing the electrodes in a 50 

mM solution decreases initial signal by around 13 % while placing electrodes in a 100 mM 

solution decreases initial signal by around 20%. This shows that at higher salt concentrations, 

initial peak current varies, even if prepared under standard conditions (the surface densities do 

not change). The reason for this is not currently clear but may indicate that the environment of 

the MB changes depending on the ionic strength. For instance, MB is expected to bind to the 

major groove of DNA and intercalate. Which of these interactions dominates will depend on the 

Figure 32: E-melting was done at different NaCl concentration and compared to Tau and A. Stabilization 

of the duplex occurs most readily at the 500 mM mark as indicated by an increased Tau and a decreased A. 
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ionic strength. This may account for the change in signal strength. This also means that the 

calibration curve listed in Figure 29 only applies to 0 mM NaCl melts and not to other salt 

concentrations. Furthermore, since the concentration of ions in the monolayer may vary as a 

function of DNA density, and even during progress of the melt itself, SWV peak heights of MB 

may change due to both removal of target as the melt proceeds and changes in ionic atmosphere 

in the layer. These factors will be considered more fully in future work. 

 

4.7 Pulse Melting 

 

Another goal of this project was to decrease the amount of time needed to run each 

experiment. Shorter melts will not only decrease analysis time, but also improve the data 

Figure 33: 5 electrodes had initial signals taken in 0 mM NaCl (blue). Then they were placed in either 50 

mM (orange) or 100 mM (grey) and initial signals where compared. In higher ionic strength solutions, MB 

signal decreased. 
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analysis, as longer melts, with time constants on the order of the experiment time cannot be fit as 

accurately. To try to increase melting rate, pulse melting was implemented. During a pulse melt, 

a constant potential is not held during the destabilization phase. Instead, the voltage is pulsed 

between two different voltages [35]. Like the pulse routine used during adsorption of probe, it is 

proposed that varying the potential over the course of the destabilization period will lead to a 

stirring effect, causing an increased ability for melting to occur. The results of pulse melting can 

be seen in Figure 34. In addition to pulse melting, the removal of the equilibration step was also 

explored. It is hypothesized that the 10 seconds at -100 mV is positive enough to rehybridize a 

small fraction of DNA before a SWV can occur. By removing it, DNA melting rate should 

increase. The traditional melt A (8 minutes at -500 mV followed by 10 s equilibration step at -

100 mV), was compared to B (-100 to -500 mV 10 ms each for 8 minutes) and C ( -500 mV 8 

minutes no equilibration). In experiment B, a large tau value was obtained. This large tau value 

was not expected but is most likely due to the pulses being faster than the charging time of the 

electrical double-layer. If the ions cannot respond to the electrode charge, the screening of the 

charge (over 1-3 nm) cannot occur, and thus the necessary electric fields do not have time to 

generate. This hypothesis is currently under investigation. With the removal of the equilibration 

step (experiment C) tau decreased, as expected. This can be interpreted that the equilibration step 

prevents dehybridization of the DNA due to having a more positive potential than the 

destabilization potential (-100 mV vs. -500 mV).  

In addition to comparing pulse melting with and without equilibration steps, a new 

pulsing method called rapid SWV was also compared. It is proposed that multiple SWV scans 

can promote dehybridization due to having a longer exposure to a negative scanning potential. 

During rapid SWV, SWV is done every 10 seconds for the course of the experiment. The 
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experiments that were done with rapid SWV are shown in Figure 34 experiment D (-500 mV 10 

seconds followed by SWV), and E (-500 mV 10 seconds, -100 mV 10 seconds followed by 

SWV). This set of data not only compared with and without equilibration steps once more but 

also looked to see how equilibration steps affected the rapid SWV technique.  

  

Figure 34: 4 different melts where done and compared to the traditional melt (A). (B) -100 to -

500 mV, 10 ms each for 8 minutes, (C) -500 mV for 8 minutes, (D) -500 mV 10 seconds 

followed by SWV, (E) -500 mV 10 seconds, -100 mV 10 seconds followed by SWV. Rapid 

SWV without the equilibration step (D) is shown to have a faster and more consistent melt. 
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 The results imply that the removal of the equilibration steps leads to a faster melt in the 

traditional melt and the rapid SWV melt as indicated in Figure 34D. This faster melt can be 

interpreted as the equilibration step preventing the target from dissociating/diffusion away. Also, 

the fastest out of the four is the rapid SWV melt without the equilibration step.  

Conclusion 

 Utilization of a pulse method to attach probe has led to an increase in the reproducibility 

of the data and better control over surface density has been achieved. A large density of probe 

leads to a longer melt due to steric interactions and small destiny of probe also leads to longer 

melt due to increased stability of the duplex. Increasing the salt concentration decreases the rate 

of melt due to the stability of the duplex with maximum stabilization at 500 mM NaCl. Pulse 

melting can increase or decrease the rate of melting with rapid SWV melts with no equilibration 

step causing DNA to melt the fastest. With the optimization of the biosensor complete, drug-

DNA interactions can be looked at. Specifically, cisplatin will be added and changes in melting 

behavior will be observed.  
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Chapter 5 Biosensors and Cisplatin 

 5.1 Introduction   

 

Cisplatin, or cis-[PtCl2(NH3)2], is a common anti-cancer drug used to treat testicular, 

bladder, ovarian and cervical cancers [37]. It was first discovered in 1965 by Dr. Barnett 

Rosenberg when he was doing an experiment regarding with E. coli. He noticed that when cells 

divided, they looked identical to how iron shavings look under a magnetic field. Because of this 

observation, he proposed an experiment on the effects of electric field on cell division. This 

experiment involved E. coli being placed in an ammonium chloride buffer. A current was then 

applied through “inert” platinum electrodes. It was noticed that as soon as the current was 

applied to the E. coli, the cells stopped dividing. When the current was removed, the E. coli 

began dividing again. At first, Dr. Rosenberg proposed that the electrical current was causing a 

halt in cellular division. After further studies, it was found that cell division was not being 

controlled by electrical current but rather by the platinum electrolysis products formed from the 

platinum electrodes. Out of the many platinum products found, cisplatin was shown to be the 

compound responsible to inhibit cellular growth. Given the effects of cisplatin, it was proposed 

by Dr. Rosenberg that this compound could block cell division in tumors. To investigate this 

hypothesis, two different types of platinum complexes were tested on the tumors in mice. These 

complexes were the Pt (II) complex, cis-[PtCl2(NH3)2], and the Pt (IV) complex, cis-

[PtCl4(NH3)2]. In high doses, both complexes were found to be highly toxic to the mice causing 

kidney failure. [37] In lower doses, the complexes were shown to shrink tumor cells and mice 

were cancer-free within six months. [37-38] 

Cisplatin was first synthesized chemically in 1845 by Michel Peyrone [38]. The early 

synthesis of cisplatin was slow, unreliable and impure. In 1970, S.C. Dhara developed a new 
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quicker method to synthesize cisplatin. It took advantage of the trans effect to create the correct 

stereoisomer. The schematic of the synthesis of cisplatin can be seen in Figure 35. The starting 

material, K2 [PtCl4], is combined with a saturated solution of KI to create K2 [PtI4]. Ammonia is 

then added creating the intermediate triiodo species. Because of the trans effect, the second 

ammonia attaches trans to the first ammonia ligand creating cis-[PtI2(NH3)2]. After the addition 

of AgNO3 and KCl, cisplatin is formed.  

 

 

In aqueous solution, the two chloride ligands in cisplatin are replaced by aqua ligands, 

thus activating the compound for binding to DNA [39]: 

[𝑃𝑡(𝑁𝐻3)2𝐶𝑙2] + 𝐻2𝑂 → [𝑃𝑡(𝑁𝐻3)2𝐶𝑙(𝐻2𝑂)]+ + 𝐶𝑙− (15) 

Figure 35: The synthesis of cisplatin [38]. 
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[𝑃𝑡(𝑁𝐻3)2𝐶𝑙(𝐻2𝑂)]+ + 𝐻2𝑂 → [𝑃𝑡(𝑁𝐻3)2(𝐻2𝑂)2]2+ + 𝐶𝑙− (16) 

The aquated form of cisplatin binds to DNA mainly through the N7 atoms of purine bases [40] 

with a preference for guanine over adenine [41]. This binding interferes with DNA repair and 

inhibits DNA replication in the cell. During treatment, cisplatin is administered in the 

bloodstream. Once it enters the bloodstream, the high chlorine concentrations prevent aquation 

or the binding of water molecules. Because of this, cisplatin is highly vulnerable to attack by 

proteins in the blood. It is shown that around 70% of all cisplatin introduced is bound to proteins. 

The binding causes deactivation of the cisplatin and is part of the reason why severe side effects 

occur [38]. Nonbonded cisplatin then enters the tumor cell through transporting proteins. Due to 

the lower concentration of chloride in the cell membrane, aquation occurs. 98% of cisplatin 

binding occurs with monoaquated cisplatin [38]. The monoaquated cisplatin then preferably 

binds to the N7 guanine. The second chlorine is then aquated allowing binding to a G, C or A 

residue. Around 65% of binding occurs between GG base pairs [38]. Once cisplatin binds, it 

distorts the DNA structure and DNA binding proteins do one of two things: they either signal for 

cell death or for DNA repair. Since bonded cisplatin has a chance to not cause cell death due to 

DNA  
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repair, it can be difficult at times to determine if cisplatin is affecting the cell. A simplified 

schematic of the biochemical pathway of cisplatin can be seen in Figure 36. 

Cisplatin can partake in interstrand and intrastrand binding to DNA, with intrastrand 

binding between adjacent guanine bases being the most common both in vitro and in vivo [42]. 

The double-helix of the resulting cisplatin-DNA adduct is distorted, leading to a perturbation of 

the base stacking, a partial shift from the B-form to the A-form, and a decrease in melting 

temperature by approximately 9 ºC [43]. This reduction in thermal stability is enthalpic in origin. 

Other binding possibilities include intrastrand cross-linking between guanines separated by one 

Figure 36: A simplified diagram showing the interactions of cisplatin. The binding of cisplatin can lead to 

cell death or DNA repair [38] 



61 

 

base, intrastrand cross-linking between an adjacent guanine and adenine, and interstrand cross-

links between guanines and adenines. Interstrand crosslinks have been shown to increase thermal 

stability by up to 12 ºC [44,47]. The overall effect on stability has a strong dependence on the 

ionic strength [45].  

In order to study the effects of cisplatin and other organometallics on DNA, biosensors 

have been developed using electrochemical methods. Due to cisplatin’s affinity toward guanine, 

voltammetry can be used to study the oxidation peak of guanine during cisplatin binding. For 

instance, Bagi et al. created a printed electrode consisting of silver working electrode and 

graphite working and counter electrodes [46]. DNA was then physisorbed on the working 

electrode at +0.5 V for 5 minutes. SWV was then implemented on the printed electrode from 0.2 

V to 1.4 V to measure the oxidation of guanine residue on the electrode surface. Because 

cisplatin interacts directly with guanine, a decrease in oxidation current of guanine was observed 

[47]. In this range, an adenine peak was also detected but was not used due to cisplatin’s higher 

affinity for guanine. An example of the peak heights for adenine and guanine can be seen in 

Figure 37a [46].  
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 Cisplatin and other platinum-based drugs were then introduced into the solution. To 

begin, the electrode was placed in a 0.1 mM cisplatin solution with 5 mM NaCl and 100 mM 

NaCl. A reduction of the peak heights was observed upon introduction of cisplatin, as shown in 

Figures 37b and 38. In particular, Figure 38, shows the time and salt dependence of the effect, 

with a larger decrease occurring at lower NaCl concentration after 3 minutes of equilibration 

time.  

 

 

Figure 37: The oxidation peak of adenine, left peak, and guanine, right peak, are detected through SWV. 

(b) When a denaturing analyte is added, both the adenine and guanine peak have a decrease in current. 

[46]. 

 

B 

 

A 
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 In addition to time of exposure, concentration of cisplatin was also explored. Time and 

salt concentration where kept consistent at 2 min and 5 mM NaCl respectively. The results are 

shown in Figure 39. Cisplatin is seen as having the largest effect on the oxidation of guanine 

Figure 38: The effect of cisplatin binding was determined through a decrease in the oxidation of guanine. 

A low salt cisplatin solution causes the highest amount of destabilization to occur resulting in a lower 

percent signal. [46]. 

 

Figure 39: Comparison of guanine signal change with drug concentration of 5 different drugs. 

Cisplatin is shown to have the largest effect on the oxidation of guanine. [46]  
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compared to other platinum drugs shown in the figure with the effect increasing with 

concentration.  

Electrochemical detection of cisplatin-DNA adducts were also examined by Fojta et al. 

[47]. In this work, DNA was incubated it with cisplatin overnight. Next, the mixture was mixed 

with magnetic beads that only bonded with the DNA if cisplatin was present. The beads were 

then washed allowing separation of the beads and the cisplatin bounded DNA. DNA stands were 

then analyzed using SWV. A diagram of this procedure can be seen in Figure 40. 
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 To test the detection of cisplatin, both a hanging mercury drop electrode (HMDE) and 

graphite electrode were used. The DNA was exposed to four different rb values of cisplatin 

where rb is the number of platinum atoms bound per DNA nucleotide. A SWV was then taken 

and peak current was observed. The results can be seen in Figure 41 [47]. 

Figure 40: A mixture of probe and DNA plasmid was mixed with magnetic beads (DBT). 

This bead captured the probe and left the plasmid behind allowing to isolate DNA cisplatin 

interactions versus plasmid DNA cisplatin interactions [47].  
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In Figure 41 the SWV peaks are shown using both a graphite electrode and HDME. The 

graphite electrode is unable to distinguish the different modification levels of the DNA. It is, 

however, able to discriminate between cisplatin bonded to the DNA and free-floating cisplatin. 

The HDME is not only able to distinguish free-floating cisplatin from bonded cisplatin, but also 

able to clearly show the modification levels of the DNA. The larger the rb value, the larger the 

current. These results demonstrate the power of electrochemical methods for measurement of 

cisplatin-DNA binding.  

More recently, an electrochemical quartz crystal microbalance was used to study the 

effect of cisplatin binding in DNA self-assembled monolayers (SAMs) [48]. In this study, the 

effect of cisplatin binding on the viscoelasticity of the SAMs was evaluated. The authors found 

that extensive cross-linking of the DNA led to increased rigidity and a decrease in the frequency 

response. 

Figure 41: A SWV was taken of the DNA sample. Four different solutions of DNA were used. 

Each one contained a different modification level of rb. The G peak (graphite electrode) saw 

little change when different rb values were done. The P peak (HDME) shows a drastic change. 

More platinum binding (larger rb) gave a larger current. [47] 
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In this work, we utilized self-assembled monolayers (SAMs) of DNA on gold electrodes, 

to analyze DNA-cisplatin interactions. SAMs of double-stranded DNA (dsDNA) have been used 

to study DNA hybridization, thermal melting, and DNA-small molecule interactions. In all of 

these applications, the DNA monolayers are responsive to high electric fields at the electrode-

electrolyte interface [49]. This behavior is typically attributed to the negatively charged sugar-

phosphate backbone at neutral pH. Sufficiently negative electrode charge can cause dsDNA to 

denature, releasing the “target” strand from the electrode in a process termed electrochemical 

melting [50-52]. The potential and rate at which electrochemical melting occurs are dependent on 

the length, sequence, complementarity, and overall stability of the duplex. Thus, electrochemical 

melting analysis can provide biophysical insights into the effects of electric fields on DNA 

structure and stability, which may further our understanding of DNA behavior in the cellular 

environment [53-54]. Furthermore, the possibility of discriminating DNA-containing samples 

based on the presence of particular sequences or mutations opens the way towards diagnostic 

applications of electrochemical melting analysis. For instance, recently our lab has demonstrated 

a purely electrochemical approach that minimizes thiol desorption and allows discrimination 

based on the presence of a single mismatched base pair [32]. Despite these possibilities, the 

mechanism of electrochemical melting is not fully understood [54-56].  

In this work, we report on the electrochemical melting of surface-bound DNA in the 

presence of cisplatin. We find a striking difference in the effect of electrochemical melting 

depending on the method of monolayer preparation. This difference is rationalized in terms of 

the DNA surface coverage and heterogeneity. In particular, we postulate that the local interstrand 

distances and ionic environment determine the mode of cross-linking by cisplatin and thus the 

electrochemical melting behavior. Surface coverage has previously been shown to play an 
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important role in hybridization [57-58], thermal melting [59] at surfaces, and on the electrical 

modulation of DNA orientation [60-61]. Furthermore, the electrostatic environment and the 

distribution of ions within the electrical double-layer are expected to depend on surface coverage 

[61-62]. The effects of DNA surface coverage and the heterogeneity of the surface coverage on 

electrochemical melting have not yet been reported [63]. Our results here suggest (1) 

electrochemical melting analysis can provide details about the mode of cisplatin binding in 

crowded DNA environments, and (2) may lead to a possible electrochemical procedure for 

indirectly assessing the local interstrand distances resulting from different monolayer 

preparations procedures. 

5.2 Methods and Materials  

 

5.2.1 Chemicals and equipment. All chemicals were purchased from Sigma-Aldrich and used as 

received. The modified oligonucleotides used in this work were purified by dual high 

performance liquid chromatography (LGC Biosearch Technologies, Petaluma, CA). Both probe 

and target sequences contain 18 base pairs and are fully complementary with each other. The 

probe oligonucleotide is labeled with a thiol group via a 6-carbon linker on the 5’ end (5’HS-C6-

TTG ATC GGC GTT TTA TTC 3’). The target oligonucleotide is labeled with a methylene blue 

(MB) moiety on the 3’ end (3’ MB-AAC TAG CCG CAA AAT AAG 5’). Five buffers were 

used in this work. Solutions of mercaptohexanol (MCH) and thiolated probe DNA were prepared 

in 10 mM phosphate buffer containing 2.7 mM KCl and 1.14 M NaCl (pH 7.4). Hybridization of 

surface-bound probe and target was carried out in 10 mM Tris containing 1 M NaCl and 1 mM 

EDTA (pH 7.2). Electrochemical melting was performed in 10 mM Tris buffer (pH 7.2). 
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Electrodes were rinsed in 5 mM Tris buffer containing 10 mM NaCl (pH 7.2). All solutions were 

prepared using deionized water.  

All electrochemical experiments were carried out using polycrystalline gold disk working 

electrodes (geometric surface area 0.0314 cm2 and roughness factor ca. 1.4), Ag/AgCl (1 M KCl) 

reference electrode, and platinum wire counter electrode (CH instruments, Austin, 

TX). Electrochemical melting was carried out using a VersaStat 4 potentiostat and VersaStudio 

software (Ametek Scientific Instruments, Berwyn, PA) at a temperature of 30 °C. 

Electrochemical polishing was carried out on either a VersaStat 4 or a WaveNow (Pine 

Research, Durham, NC) potentiostat. 

5.2.2 Electrode cleaning. The gold working electrodes were cleaned in a 3-step process 

consisting of a mechanical polish followed by two electrochemical polishing steps. First the 

electrodes were mechanically polished with 0.3-micron alumina slurry for 3 minutes in a figure-

eight pattern. The electrodes were subsequently sonicated in methanol for 1 minute, rinsed with 

deionized water, and sonicated again in deionized water for 1 minute. These sonication steps 

were repeated a total of 3 times. Next, the electrodes were cycled in 0.5 M H2SO4 with 10 mM 

KCl solution from 0.24 V to 1.54 V at 0.1 V/s for 60 cycles. The electrodes were rinsed with 

deionized water and then cycled in 0.5 M H2SO4 using the same parameters.  

5.2.3 Preparation of DNA-modified gold electrodes. DNA-modified electrodes were prepared 

using one of three different procedures; (1) pulse-assisted backfill, (2) passive insertion, or (3) 

pulse-assisted co-deposition. Details of these methods are presented below. In all cases, prior to 

probe adsorption, tris(2-carboxyethyl)phosphine-HCl was used to reduce the disulfide bonds of 

the as-delivered probe. After probe and mercoptohexanol adsorption, the electrodes were 

incubated in 5 μM target solution for 1-2 hours to allow hybridization. For experiments with 
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cisplatin, 10 μL of 3 mM cisplatin solution (made 24 hours previously) was added to 60 μL of 5 

μM DNA target and the electrode was immediately incubated in this solution for 1-2 hours. 

5.2.4 Pulse-assisted backfill method The probe solution was diluted to 0.5 μM and the gold 

working electrode was pulsed from 0.5 to -0.2 V at room temperature at 10 ms intervals for 15 

minutes. Electrodes were then rinsed for one minute, dried, and incubated in 9 mM 1-

mercaptohexanol (MCH) in PBS buffer overnight at 4 oC.  

5.2.5 Insertion method. Gold electrodes were placed in 9 mM MCH for 1 hour. The electrodes 

were then rinsed for one minute and then placed in 10 µM probe DNA overnight. Finally, the 

electrodes were placed back in 9 mM MCH overnight. 

5.2.6. Pulse-assisted co-deposition method. The probe solution was diluted to 0.5 µM and mixed 

with 9 µM MCH in PBS Buffer. This mixture was pulsed onto the freshly cleaned electrodes 

using the same pulse routine employed in the pulse-assisted backfill method.  

5.2.7 Electrochemical melting. The electrochemical melting routine [32] consisted of a 

programmed sequence of potential pulses, each at -500 mV with a duration of 8 min. Between 

each pulse, square wave voltammograms were acquired to monitor the amount of MB-tagged 

target DNA remaining on the electrode surface. After each pulse, but before the acquisition of 

the voltammogram, the electrode was equilibrated at −100 mV for 10 s. The equilibration step 

was previously found to result in better quality voltammograms. The SWV parameters were as 

follows: initial potential = −100 mV, final potential = −450 mV, amplitude = 25 mV, frequency 

= 167 Hz (unless otherwise noted), and increment = 6 mV. All data in this work was performed 

in triplicate. The baseline subtracted SWV peak currents were normalized to the initial (pre-melt) 

peak current and plotted versus time to obtain melting curves. Fast scan cyclic voltammograms 
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(4 V/s) were obtained before each melting routine in order to assess the DNA surface coverage 

via integration of the methylene blue reduction peak.  

Results and Discussion 

5.3 Comparison of Monolayer Preparation  

 

Self-assembled mixed monolayers of thiolated DNA and alkylthiol (typically 

mercaptohexanol) are routinely used for development of DNA sensors, molecular electronics, 

DNA chips, and other applications. Various procedures have been utilized to prepare these 

mixed monolayers. Three methods were compared in this work: pulse-assisted probe deposition 

with passive MCH backfilling (referred to as the backfill method from here on), passive MCH 

adsorption followed by passive insertion of probe (referred to as the insertion method), and 

pulse-assisted co-deposition of MCH and probe simultaneously (referred to as the co-deposition 

method). 

The resulting distribution of DNA on the electrode surface is expected to affect the 

conformation of the duplexes [64] the extent of interstrand interactions [65], the steric and 

electrostatic barriers to hybridization [66], the melting temperature [67-68], and the 

responsiveness to electric fields [69]. The heterogeneity and overall surface coverage can be 

controlled by choice of deposition method [70]. While measurements of surface coverage are 

possible using electrochemical approaches [33,71], as well as radiolabeling and spectroscopic 

methods [72], these results are averaged over the entire surface, and thus do not provide insight 

into possible heterogeneity in the surface coverage and the resulting interstrand distances. 

Recently, there have been reports that mixed monolayers of DNA and MCH are not as 

homogeneous as previously thought [73]. These studies rely on microscopies techniques utilizing 



72 

 

fluorescence quenching and other techniques which are often necessary for experimentally 

accessing surface properties on the nanoscopic scale. Here we utilize an electrochemical 

approach involving cisplatin to identify heterogeneity in DNA SAMs. In turn, these results allow 

us to optimize our approach for the study of cisplatin-DNA interactions in DNA monolayers. 

Tarlov et al. developed the commonly used backfill method for DNA monolayer 

preparation, which consists of passive immobilization of thiolated ssDNA followed by 

“backfilling” with the MCH layer [72]. The adsorption of MCH was shown to remove some non-

specifically absorbed DNA from the surface, prevent further non-specific adsorption, and to 

orient the tethered DNA in an upright position [73-74]. Further improvements in reproducibility 

and reduction in deposition time can be achieved using pulse-assisted probe mobilization [34] 

followed by backfilling with MCH. Combining pulse-assisted probe adsorption with the backfill 

Figure 42: Comparison of the initial peak currents for various electrode modification methods: Pulse-

assisted probe immobilization followed by MCH backfill for probe concentration of (A) 0.0625 µM, (B) 

0.125 µM and (C) 0.5 µM, respectively; (D) insertion method; (E) pulse-assisted co-deposition. A-E 

lettering is used similarly throughout the text. 
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approach, we have obtained readily controllable and reproducible surface coverages, as shown 

by the initial peak currents in Figure 42. The surface densities are readily varied by controlling 

the concentration of probe in the deposition solution from 0.0625 µM, 0.125 µM, and 0.5 µM 

(A, B, and C in Figure 42, respectively).  

More recent results indicate that MCH does not completely remove strongly absorbed 

DNA [75,70], resulting in heterogeneous surfaces containing DNA aggregates [76]. The 

homogeneity can be improved using the insertion method, which involves reversing the order of 

adsorption, i.e. adsorbing MCH first followed by DNA [70,77-78]. Here we apply this approach 

using passive adsorption (i.e. no pulsing) of both MCH (9 mM, 1 hr) and DNA (10 mM, 

overnight). As seen in Figure 42(D), the insertion method results in relatively low but 

reproducible surface coverages under the conditions used here. Attempts to increase the surface 

coverages by decreasing the MCH incubation time only resulted in lower reproducibility (results 

not shown). 

Finally, co-deposition of MCH and probe has been proposed as another method for 

improving reproducibility and preventing DNA aggregation [79-80]. Here, we combined co-

deposition with the pulse-assisted process used above. The electrode was pulsed (using the 

parameters given in the experimental section) in a solution of 0.5 µM probe and 9 µM MCH. 

The co-deposition method allowed the largest surface densities but with the lowest 

reproducibility, as seen in Figure 42 (E). At higher ratios of DNA to MCH, reproducibility was 

compromised whereas lower ratios of DNA to MCH resulted in very low surface coverages (data 

not shown).  
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5.4 Electrochemical Melting 

 

As we have previously demonstrated [32], application of -500 mV (versus Ag/AgCl 1 M 

KCl) results in denaturation of dsDNA adsorbed to gold electrodes. Covalent modification of the 

target strand with methylene blue allows electrochemical monitoring of the melting using square 

wave voltammetry. Figure 43 shows a series of voltammograms taken at 8-minute intervals 

between application of -500 mV for the 18-bp duplex used in this work. At -500 mV, the 

potential is negative enough to induce melting, but reduction of the thiol bonds is minimized, 

therefore the decrease in signal is attributed primarily to electrochemical melting [32]. The lack 

of significant desorption is also reflected in the constant baseline throughout the duration of the 

melt.  

Figure 43: Example of square-wave voltammograms during a melt. The inset shows the resulting melting 

curve with the best-fit curve given by the dashed line. The DNA-modified electrode was prepared using 

pulse-assisted probe adsorption from 0.5 µM probe followed by passive adsorption of MCH overnight. 

The melt was carried at 30 °C and -500 mV vs. Ag/AgCl (1 M KCl). 
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Melting curves were constructed from the voltammograms by plotting the baseline-

subtracted peak heights versus time, as shown in the inset in Figure 43. The dashed line shows 

the best fit equation: 

𝑖𝑝 = 𝐴𝑒−𝑡/𝜏 + (1 − 𝐴) (17) 

 

Where tau () is the time constant and A is interpreted as the extent of melting. Tau has 

previously been shown to depend on the stability of the dsDNA, and in particular provides 

information about the kinetics of melting and/or the rate of diffusion of released target away 

from the electrode. The extent of melting depends on the ratio of bound and dissociated target at 

equilibrium. Since target is not initially present in the buffer and remains essentially zero during 

the melt due to the large volume used (ca. 5 mL), the extent of melting would presumably be 1, 

indicating complete melting of all duplexes. In our work, and other’s [52,81-82], melting does 

not proceed to 100%. One possibility is that the dissociated target strands diffuse slowly away 

from the surface due to low diffusion coefficient (1.4 x 10-7 cm2/s) [83], allowing a quasi-

equilibrium at the electrode-electrolyte interface (no stirring is used here). Though this quasi-

equilibrium may contribute to the melting behavior, melting experiments measured over long 

times show very little drift in the limiting peak current, as would be expected if the slow 

diffusion were the main reason for this behavior. 

We postulate that the extent of melting is both chemical and electrostatic in nature; that 

the DNA melts until counterions from solution can sufficiently screen the negative charge on the 

electrode. Thus, electrochemical melting is expected to depend on a balance of duplex stability 

and electrochemical double-layer effects. A similar mechanism has been proposed for 
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hybridization at charged surfaces, i.e. hybridization proceeds until counterions can no longer 

sufficiently screen the electrode charge [84]. Of course, such a mechanism is complicated by the 

fact that the DNA itself contributes to the double-layer charge through its phosphate backbone 

and condensed counterions. Another possible factor related to the double-layer effect involves 

the shift in the potential of zero charge (pzc). As the DNA melts, the pzc is expected to shift 

negative, thus decreasing the electrode charge at constant applied potential [49,85]. While more 

work is necessary to fully understand factors affecting electrochemical melting, a complex 

interplay of chemical and electrostatic effects is anticipated, including the ionic strength of the 

buffer, the density of the DNA monolayer, and the stability of the DNA duplexes, among others. 

5.5 Effect of Monolayer Preparation on Melting 

 

While the role of surface coverage on the hybridization and electric-field responsiveness 

of DNA monolayers has been investigated [59], the effect of surface coverage on 

electrochemical melting has not previously been reported. Interstrand distance and overall 

surface coverage are expected to affect the degree of interactions between neighboring strands 

[65], the negative charge density of the polyelectrolyte layer, and control the distribution of ions 

across the monolayer-solution interface [61]. Surface coverages obtained through most 

techniques are surface-averaged and do not reflect the true uniformity of the DNA monolayer. 

Heterogeneity and aggregation of DNA on the surface can result in shorter probe-probe distances 

than anticipated from the average surface coverages alone. These factors are expected to affect 

the electrochemical melting of DNA SAMs. Therefore, we first investigated the melting behavior 

of DNA SAMs obtained via the three different procedures introduced above, i.e. backfill, 

insertion, and co-deposition 
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Given the high degree of control over surface coverages afforded by the backfill method 

(see Figure 42), it is expected that clear trends would be obvious in the melting parameters tau 

and A. As can be seen in Figure 44 (data points A-C), tau values obtained for these films are 

larger than for the other two methods, indicating slower melting. Methods B and C also result in 

larger extents of melting than the other methods. Considering that these films are expected to be 

heterogeneous, and therefore have shorter interstrand distances than anticipated, the larger extent 

of melting indicates a greater degree of interstrand repulsion and lower overall stability. For the 

lowest probe concentration (0.0625 µM), the extent of melting is low indicating that in these 
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Figure 44: Plots of (a) tau versus initial signal and (b) A versus initial signal for electrochemical melting 

of dsDNA: (A-C, blue squares) backfill method for probe concentrations of 0.0625 µM, 0.125 µM, and 0.5 

µM, respectively; (D, orange diamond) insertion method; and (E, green circle) co-deposition method. 

Error bars are standard deviations from triplicate measurements. 
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films the interstrand distances are shorter, presumably due to the lower surface coverage, thus 

less interstrand repulsion. The larger tau values resulting from the backfill method suggests that 

steric effects may be inhibiting the unzipping and/or diffusion of the DNA into bulk solution. 

These effects are alleviated as the DNA continues to melt, easing the steric constraints, and 

eventually allowing the large extents of melting observed. There does not appear to be a linear 

relationship between surface coverage and tau or A, instead the tau and A values reach a 

maximum at intermediate coverages, i.e. 0.125 M probe.  

The insertion method produced the lowest surface coverages and the resulting films have 

the lowest values of tau and A (see Figure 44, data point D). The higher rate of melting suggests 

that these films contain DNA duplexes that are well separated from each other, allowing faster 

melting and diffusion away from the surface. The low extent of melting indicates that counter 

ions readily penetrate the monolayer, allowing sufficient charge screening as melting proceeds to 

inhibit further melting. Finally, while the co-deposition model provided the least control over 

surface coverage, these monolayers melted similarly regardless of the initial peak current (as 

shown by the low standard deviations in Figure 44, data point E). Tau is found to be intermediate 

between the insertion and backfill methods, and A is found to be similar to values found for the 

backfill method. In other words, these films melt fast and to a large extent. Due to the higher 

uniformity expected in these films, interstrand distances are expected to be larger than for the 

backfill method but lower than for the insertion method. Thus, the steric factors that slowed 

melting of backfilled monolayer are not expected to play as large a role here.  

5.6 Electrochemical Melting of cisplatin-DNA 
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Binding of cisplatin to DNA introduces conformational changes in the DNA helix, e.g. a 

shift from the B-form towards the A-form, and a resulting decrease in thermal stability and 

lowering of the melting temperature. These effects are expected to alter the behavior of the DNA 

monolayer during electrochemical melting. There are few reports of electrochemical melting in 

the presence of DNA-binding drugs. Bartlett et al. studied the electrochemical melting of DNA 

bound to the anticancer drug mitoxantrone. Upon intercalation, the melting potential shifted 

negative by 120 mV due to stabilization [86]. There are also reports on the thermal melting of 

surface-bound DNA measured using electrochemical detection. For instance, Robinson et al. 

reported on the thermal melting of DNA in the presence of the intercalator proflavine and the 

minor groove binder diminazene aceturate using a microscale platform with integrated 

microheater [87]. Here, we use a purely electrochemical approach, at constant temperature, to 

probe the stability of DNA in the presence of cisplatin, which is known to cross-link DNA 

strands.  

Representative melting curves of DNA with and without cisplatin are shown in Figure 47. 

Close inspection of the melting curves shows that the cisplatin affects films prepared by the 

backfill method (here shown only for 0.5 µM probe, Figure 45a) in a qualitatively different way 

compared to the insertion (Fig. 45b) and co-deposition methods (Fig. 45c). The time constant 

increases upon introduction of cisplatin for (a) but slightly decreases for insertion (b) and co-

deposition (c). On the other hand, the extent of melting decreases significantly for insertion (b) 

and co-deposition (c), but slightly increases for backfill (a). In all three cases, the presence of 

cisplatin is readily detected. 
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These results suggest that uniform films with well-separated dsDNA (as is the case for 

insertion and co-deposition) melt slightly faster when bound to cisplatin, but to a lesser extent. 
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Figure 45: Melting curves and exponential fits of dsDNA with cisplatin (data: orange squares; fit: dashed 

line) and without cisplatin (data: blue circles; fit: dotted line) for the three preparation methods: (a) 

backfill method with 0.5 µM probe DNA, (b) insertion method, and (c) co-deposition method. 

 

Figure 46: Comparison of the % change in tau upon binding of cisplatin for various electrode 

modification methods: (A), (B), (C) Pulse-assisted probe immobilization followed by MCH backfill for 

probe concentration of 0.0625 µM, 0.125 µM and 0.5 µM, respectively; (D) insertion method; (E) co-

deposition method.   

 

-10	

0

10

20

30

40

50

60

70

%
	c
h
a
n
g
e
	in
	t
a
u

Method

A

B

C

D E



81 

 

The % change in tau for all five preparation methods is shown in Figure 46. The binding of DNA 

by cisplatin is expected to decrease thermal stability, particularly at higher ionic strength [45]. In 

films prepared via insertion (D) and co-deposition (E), ionic strength within the layer is expected 

to be higher than in solution, particularly under the application of a negative potential. The slight 

decrease in tau suggests that in these films, cisplatin primarily cross-links bases on the same 

duplex, destabilizing the DNA and allowing it to melt faster. Previously, we have shown that 

mismatches in the DNA also lead to smaller tau values due to destabilization [32]. The drastic 

decrease in the extent of melting as shown in Figure 47 (D and E) may be explained by 

significant interstrand binding of cisplatin at some duplexes, effectively “tethering” the two 

strands together, preventing release of targets into solution.  

Figure 47: Comparison of the % change in A upon binding of cis-Pt for various electrode modification 

methods: (A), (B), (C) Pulse-assisted probe immobilization followed by MCH backfill for probe 

concentration of 0.0625 µM, 0.125 µM and 0.5 µM, respectively; (D) insertion method; (E) co-deposition 

method.  
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The increased tau for films prepared via backfilling (see Figure 47, A-C) is caused by 

cross-linking between neighboring duplexes, inducing an increase in rigidity as has recently been 

observed using QCM measurements [48]. In that report the authors used the backfill method to 

generate mixed monolayers of DNA and MCH with coverages of 3.13 x 1012 to 3.523 x 1012. In 

our work here, the surface coverages of the films adsorbed via backfilling have surface densities 

of 4.4 x 1012 to 7.3 x 1012 targets/cm2 as determined from cyclic voltammetry. If these films were 

uniform, these coverages would correspond to interstrand distances of approximately 5.4 to 4.2 

nm, respectively. The contour length of the 18-bp duplex is about 5.4 nm (given a 0.3 nm rise per 

base pair) and the 6-carbon linker is ca. 0.8 nm. DNA duplexes with MCH passivation layers are 

known to stand approximately perpendicular to the surface (depending on the surface charge) 

[88-90]. Furthermore, short DNA duplexes like those used here are rigid [91]. Given this, it is 

unlikely that uniform films at these densities could be readily cross-linked by cisplatin. But, 

backfilling with MCH is expected to result in heterogeneous surface coverages, resulting in 

regions of densely packed DNA, or aggregates, where cisplatin can more easily cross-link the 

strands, increase rigidity, and ultimately make the DNA monolayer slower to melt in electric 

fields as evidenced by the large increases in tau. The slight increase in the extent of melting 

indicates that these films are no more stable in the high electric fields. To the contrary, they are 

slightly destabilized, resulting in a higher melting efficiency, although at a slower rate. 

Conclusion 

Here we have studied the effect of anti-tumor drug cisplatin on the electrochemical 

melting of DNA. By applying a purely electrochemical routine, the electric-field-induced 

melting of dsDNA with and without cisplatin was monitored as a function of time. The 

voltammetric peak currents were plotted versus time to construct melting curves which were fit 
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by an exponential function with two parameters, the time constant, tau, and the extent of melting, 

A. Three commonly used methods to prepare DNA monolayers were compared: the backfill 

method, consisting of pulse-assisted adsorption of probe DNA followed by MCH; the insertion 

method, consisting of adsorption of MCH followed by DNA; and the co-deposition method, 

consisting of the pulse-assisted adsorption of both MCH and DNA simultaneously.  

Overall, the effect of cisplatin was found to depend significantly on the method used to 

prepare the monolayer. For co-deposition and insertion, which are assumed to produce more 

homogenous surface coverages, the extent of melting and the time constant were decreased by 

the presence of cisplatin, with the extent being most effected. On the other hand, for the backfill 

method cisplatin resulted in an increase in both time constant and extent of melting, with the 

effect being most pronounced for the time constant. These results suggest that the mode of DNA 

cross-linking by cisplatin is highly dependent on the DNA surface coverage, heterogeneity, and 

interstrand distances. Additionally, these results give a first glimpse into the role of surface 

density and heterogeneity effecting electrochemical melting in general – factors not yet fully 

explored, and which are expected to provide insights into DNA stability in high electric fields. In 

overview, these insights should be useful for interpretation of other electrochemical DNA 

biosensing results which rely on hybridization, melting, and binding of DNA to small molecules 

at electrode surfaces. 
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Conclusion 

In this thesis, we have improved on the electrostatic denaturation routine introduced in 

previous research [32]. The combination of the RuHex assay and potential assisted pulsing 

allows for the quantification of molecules per cm2 using the MB signal. Also, surface coverage 

can be controlled precisely by altering the probe concentration and pulse time. Depending on the 

surface coverage, the extent and rate of electrostatic denaturation changes. Different ionic 

strengths change the rate and extent of melting, and the MB signal obtained. The largest 

stabilization can be seen at 500 mM NaCl. The introduction of the pulse melting routine allows 

for a faster melt than previously used methods. The optimization techniques obtained allows for 

accurate observation of cisplatin-DNA interactions on a gold biosensor. By changing the 

preparation of the DNA monolayer, a more homogenous surface leads to a decreased extent of 

melting, while a less homogenous surface leads to an increase in the extent of melting. These 

results suggest that cross-linking is highly dependent on surface coverage. Cross-linked DNA 

makes the DNA more rigid and, therefore, harder to melt. So, a decrease in the extent of melting 

is most likely caused by interstrand cross-linking. To better understand this observation, more 

studies will need to be performed exploring the effect of surface homogeneity on electrostatic 

denaturation. Other factors can also be introduced, such as temperature and different pulse 

melting parameters, to optimize electrostatic denaturation further. Once optimized, other 

platinum-based drugs could potentially be detected using our techniques.  
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