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Abstract 

Different species can be difficult to distinguish from one another when they are morphologically 

similar. Such cryptic species are the reason many anuran species go undetected. For this study, 

the taxonomic identity of the Occidozyga complex across Myanmar was investigated. An 

integrated approach was used combining molecular, morphological and phylogeographic data to 

better assess its taxonomy. Results indicate the presence of three new candidate species within 

Occidozyga, and three evolutionarily significant unit (ESU) lineages. Two mitochondrial gene 

fragments (16S, COI) and one nuclear gene fragment (Rhodopsin) were examined from DNA 

isolated from forty-seven preserved specimens from the California Academy of Science (CAS). 

Spatial data from collection localities for specimens was integrated into phylogeographic 

analyses. Additionally, morphological data was analyzed for morphometrics and principal 

component analysis (PCA) from 259 specimens at the CAS and National Museum of Natural 

History (NMNH). Significant molecular differentiation was observed, uncovering a novel 

species from central Tanintharyi. Additional evolutionary significant units were identified. From 

these findings, we advocate for adequate protection of each of these distinct evolutionary 

lineages.  
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I. Introduction 

 Over the past two decades, the need for conservation measures to protect global amphibian 

populations has been increasing at a rapid pace. Numerous threats to survival are confronting 

amphibian populations such as habitat loss, environmental pollution, competition with invasive 

species or predation by invasive species, diseases and fungal pathogens, and as well as various 

anthropogenic factors from use and trade (Collins and Storfer, 2003; Mendelson et al., 2006; 

McLeod, 2010; Grant et al., 2016). Since amphibians are environmental indicators for both 

overall habitat health and climate change, the focus on research efforts towards their 

conservation is not a misguided priority. The most recent IUCN Red List report implicates that 

40% of all 6,724 recognized amphibian species (32-53% lower and upper estimates respectively) 

are currently threatened with extinction. In contrast, for anurans specifically, 2,560 species are 

considered to be of “low risk/least concern” and 1,281 species are “data deficient” (IUCN et al., 

2019).  

 Many of the taxa categorized as “least concern” based on an assumption of widespread 

distribution, local abundance, and tolerance to anthropogenic disturbance yet they do not actually 

represent a single species, but instead, are a complex of several cryptic species. Multiple 

morphologically similar or indistinguishable phenotypes that are actually multiple separate 

species can often remain ‘hidden’ in a complex under a single species name, despite absence of 

inbreeding or gene flow among them (Kotaki et al., 2008). These “cryptic” species by their very 

nature are often left unaccounted for in field surveys, despite being another species entirely. 

Cryptic species are neither taxonomically nor biogeographically unique but are instead common 
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among many taxa and are found across the globe (Pfenninger and Schwenk, 2007). Many recent 

studies have revealed cryptic diversity among species of Southeast Asian anurans (Evans et al., 

2003; Stuart et al., 2006, Inger et al., 2009;). In Stuart et al. (2006) it is even suggested that no 

single wide-spread species of forest-dwelling anuran Southeast Asia exists, and that cryptic 

lineages occurring in sympatry is likely the rule rather than the exception. 

 

In the frog genus Occidozyga, there are currently twelve described species which have a history 

of widespread presence across Indonesia, Malaysia, Laos, Thailand south of the Isthmus of Kra, 

Cambodia, northern Vietnam, and China, but only two species have confirmed presence in 

Myanmar, O. lima and O. martensii ( Mulcahy et al., 2018 ; Frost, 2019;). Most commonly 

known as Javan, puddle, or floating frogs, members of this genus have primarily been found in 

streamside puddles, seepages, lowland plains, as well as in temporary rain puddles or small pools 

along edges of areas with human activity. Typically, they reside in forest clearings and edges 

rather than in actual forest, along foothills on flatter ground with highly seasonal rainfall (Ali and 

Khan, 2001). Occidozyga is a rather enigmatic assemblage of species, with quite a long history 

of taxonomic turmoil and a multitude of synonymous names for each of the recognized species. 

The lack of comprehensive phylogenetic and morphological analysis has long prevented a 

resolution to these controversies. 

 Conservation Concerns 

Frogs historically identified as O. lima (colloquially known as the Puddle Frog) are include at 

least three distinct morphotypes, with taxa varying in size and coloration as well as variance in 

toe webbing (Smith et al., 1916; Mulcahy et al., 2018). The southern region of the Tanintharyi 

division, “O. lima” is observed to be smaller and possess bold black and white ventral patterns, 
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lacking in the “O. lima” from the more northern Mon State and in the adjacent region of Bago, 

but it does share the same bold, dark thigh stripe pattern of the northern frogs (Mulcahy et al., 

2018). Martin’s floating frog is morphologically similar to O. lima but smaller and nothing is 

known about its status in Myanmar yet Mulcahy (et al., 2018) observed a high degree of 

genetic variation within the group. Current population estimates for Occidozyga are likely to be 

inaccurate given the high probability for the presence of unidentified cryptic species within the 

genus.  At the time of both historical and even more recent biodiversity surveys, these cryptics 

could not have been taken into consideration due to a lack of appropriate molecular technology, 

they could be far more critically threatened than the known described species.  

Myanmar’s relatively recent shift from military rule towards a democratic leaning 

government has largely ended decades of economic and political isolation. Although Myanmar 

currently remains heavily forested, increased development over the past decade has been 

accompanied by exceptionally high rates of forest loss. Myanmar has an ambitious policy target 

of including 10% of the country's area in its Protected Area System by 2030, with the 

overarching goals of preserving both biodiversity and unique pattern of mountainous and 

lowland ecosystems (MOECAF, 2011). However, low land wet evergreen forest is currently 

underrepresented in the Protected Area System (MOECAF, 2011), and long delays informally 

designating protected areas have corresponded with an ongoing period of intense deforestation 

countrywide.  

This is potentially problematic because Myanmar is already designated as part of the 

Indo-Burman biodiversity hotspot with many identified threatened species, however no species 

within the genus Occidozyga has been classified with a conservation status above ‘vulnerable’ as 

evidenced by the Conservation International and the International Union for Conservation of 
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Nature’s Red List of Threatened Species (conservation.org; iucnredlist.org). The amount of time 

and funding invested in monitoring genera of lesser concern is consequently lower, and over 

time a lack of accurate, present-day data ultimately develops. Currently, eight out of eleven 

IUCN recognized species of Occidozyga have outdated species information, with the last 

assessment having been conducted in 2004 (IUCN, 2019). 

Assessing the state of amphibian genera in ecosystems represents one of the larger 

challenges conservation biologists face in the age of modern science. Despite the known diversity 

of anurans, the number of described species is underestimated, particularly in their tropical, semi-

aquatic habitats of Southeast Asia which are some of the most threatened biomes in the world 

(Collins & Storfer, 2003; Mendelson, 2006). Although Myanmar currently retains one of the 

largest forest areas in Southeast Asia, increased rates of development and trade in recent years 

have been accompanied by incredibly high rates of deforestation (Connette et al., 2017). 

Myanmar experienced the third highest rate of forest acreage lost globally from 2010–2015 

(FAO, 2015), but recent annual rates of deforestation for primarily closed-canopy ‘intact forest’ 

are even higher (Bhagwat et. al, in review). Most of this forest clearing and habitat encroachment 

is due to logging, but some habitat disruption is due to mining and the ongoing Rohingya refugee 

crisis. There are 120,000 people settled in camps for Internally Displaced Persons (IDP) centered 

in the Rakhine capital, near in the outskirts of Sittwe alone (Aung and Lewis, 2018). Mining in 

primarily the northern regions around and within Kachin was reported at  902,025.300 MMK mn 

in Mar 2018, an increase from the previous number of 835,279.500 MMK mn for Mar 2017 

(CEIC.com) , and residents from over twenty-two villages in the region have submitted formal 

complaints to the government due to polluted water sources from unregulated mine chemical 

packing (RFA.org). 
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The following is a report on the molecular and morphological analyses conducted on 

Occidozyga specimens collected from distinct locations within Myanmar. This project was done 

to examine the biodiversity within Occidozyga and highlight any exisiting lineage divergence 

within the genus. 

 

Taxonomic Concerns 

Assessments of evolutionary history and biodiversity of Occidozyga puddle frogs are often 

challenging due to their relatively conserved morphological evolution and homoplasy (Noble, 

1931; Mulcahy et al., 2018). There has long been debate as to whether this genus belongs in 

either the Ranidae or Dicroglossidae family. The taxonomy of these families has a convoluted 

history, and still is not fully resolved but there is one monophyletic clade generally recognized as 

possessing two subfamilies: Occidozyginae and Dicroglossinae (Frost, 2019). The genera of 

Occidozyga and Phyrnoglossus were recognized by Dubois (1992) as belonging to the 

subfamilies Raninae Rafinesque-Schmaltz, (1814) and Dicroglossinae by Anderson (1871) 

respectively. However, from Marmayou et al. (2000) the two genera- Occidozyga Kuhl and Van 

Hasselt, (1822) and Phrynoglossus Peters, (1867)- form an independent well-supported clade and 

are a sister-group to all other Ranidae. They argued the clade should be excluded from the latter 

group. The particular characteristics of the tadpoles of these two aforementioned genera had 

already led Fei et al. (1991) and Ye et al. (1993) to consider both as a subfamily of their own 

within the Ranidae, the Occidozyginae Fei et al. (1991). Dubois (1987) had further suggested 

that Occidozyga shared several characters: “development passes through a free tadpole stage and 

whose lateral line persists in general in the adult” with the genus Euphlyctis. Fitzinger (1843), 

and had proposed to place the genera Euphlyctis, Occidozyga and Phrynoglossus in a group 
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called Dicroglossini of the subfamily Dicroglossinae. The characteristics of Occidozyga in this 

comparison were based on Gravenhorst’s (1829) O. lima diagnosis and the description given 

earlier by Dubois (1987). Within Occidozygidae, Fei et al., (2010) recognized two subfamilies: 

Occidozyginae and Liuraninae. Within Occidozyginae, the authors recognized Occidozyga and 

Phrynoglossus (although recognition of Phrynoglossus on their terms essentially renders 

Occidozyga paraphyletic. Also noteworthy, is that Phrynoglossus, and consequently Occidozyga, 

is paraphyletic with respect to Ingerana on the tree of Pyron and Wiens (2011), where 

Occidozyga fall squarely within Dicroglossidae based on molecular analysis of 12 genes (three 

mitochondrial, nine nuclear). Ranidae have historically been characterized as having upper jaw 

toothed; diapophyses of sacral vertebra cylindrical, or very slightly dilated, versus 

Dicroglossidae which are historically characterized as also having upper jaw toothed; 

diapophyses of sacral vertebra dilated; short ribs articulated to the anterior diapophyses 

(Boulenger, 1882).  

Morphologically, Occidozyga tend to most closely reflect the other members of the very diverse 

Dicroglossidae family, but their species descriptions in the literature are often contradictory and 

teeth are typically not detectable in specimens. Formalized morphological distinctions between 

most Occidozyga species have been incongruent, with distinctions primarily based upon webbing 

of the toes, and metatarsal tubercle presence, but these characteristics have historically been 

dismissed of much value for species delimitation (Smith, 1916). Generally, Occidozyga are small 

(15-55 mm adult SVL), with webbed feet and pointed digits.  A lateral-line system is present in 

adults, and some species exhibit inguinal rather than axillary amplexus (Vitt & Caldwell, 2008). 

Dorsum color is typically dark gray-brown, with the ventral side of the head being a speckled 

dark gray, and infrequent pale whiteish yellow tinged venter and undersides of the thighs. 
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However, some specimens exhibit a thick light or dark stripe down the dorsum (Inger and 

Stuebing, 2005). Due to their cryptic morphology, species within the genus are difficult to 

differentiate from each other based on qualitative characteristics alone. Mulcahy et al. (2018) 

found GenBank specimens identified as O. lima (AF215398 and AB488903) were misidentified 

as they were not closely related to known O. lima specimens based upon phylogenetic analysis. 

A closer reexamination of morphological characters may unveil that suitable diagnostic 

characters are present. Yet, morphology alone cannot delineate species. Molecular phylogenetic 

analysis is needed especially for cryptic species (Fouquet et al., 2007; Elmer and Cannatella, 

2008; Funk et al., 2012; Ron et al., 2012; Elmer et al., 2013; Jungfer et al., 2013; Caminer and 

Ron, 2014). 

Gravenhorst (1829), first described O. lima from a specimen from Java, which serves as the type 

species of the genus, by subsequent designation of Stejneger (1925).  Since that time, numerous 

additional specimens have been collected and are now available for a more thorough 

morphological examination. With an increased sample size, even slight deviations in 

morphological characters could reasonably emerge as reliable and distinctive enough to 

distinguish among Occidozyga species.  Furthermore, reports of Occidozyga sightings from 

differing countries would likely result in the identification of additional Occidozyga subspecies 

or cryptics, as distribution maps for the known species are generally poor and ranges are only 

assumed to be broad (Frost, 2019).  

Even if morphological characters are detected, the morphological species concept used to 

delimitate species has limitations in contrast with a unified and general lineage concepts that are 

now applied thanks to available tools that exist for genetic analysis. Mulcahy et al. (2018), 
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uncovered four novel groups of genetically divergent Occidozyga using the 16S molecular 

marker.  It was noted as being a species complex, and that each new clade should be treated as 

separate, unidentified candidate species (Mulcahy et al., 2018).  

 

Molecular Genetics  

Recent improvements in molecular-based methods of identification are revealing a large number 

of new species (Gehara et al., 2014; Dever, 2017; Mulcahy et al., 2018; Grismer et al., 2019; 

Labisko et al., 2019). The molecular markers with greatest utility for animal species 

identification are from the mitochondrial DNA (mtDNA), which are maternally inherited, are 

highly variable, easily amplified, has a relatively low rate of recombination, and are nearly 

neutral in its evolution, (Avise, 1987; Lin et al., 2010; Chen et al., 2017). For anurans, preference 

has been shown for the 16S and COI markers to determine interspecific variation (Dever et al., 

2015; Vences et al., 2016; Dever 2017; Gao et al., 2019). In fact, many analyses of mtDNA 

have shown to be effective for not only amphibian phylogenetics at different taxonomic levels 

but even for prediction of divergence periods of more than three hundred million years ago 

(Zhang et al., 2008; P. Zhang et al., 2009; Wiens and Morrill, 2011). Nuclear genes (nuDNA) 

when appropriate sample size of multiple taxa and sufficient phylogenetic analyses in animal 

systems and are useful to better support observed patterns of mtDNA evolution (Reyes et al., 

2003). Phylogenies based on the nuDNA gene rhodopsin provide some additional support for 

close relationships of anuran genera in combined marker analyses but are less unequivocal when 

analyzed individually (van der Meijden et al., 2005). 

The major issue with DNA barcoding of amphibians- a method of species identification 

using a short section of DNA from a specific gene or set of genes- is related to high 
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mitochondrial variability. Intra- and interspecific divergence values sometimes overlap in 

mitochondrial markers, thereby reducing the inherent value of a barcoding gap to identify 

candidate species (Vences et al., 2005, Vieites et al., 2009). The accuracy of the method depends 

on the ‘barcoding gap’ between intraspecific and interspecific divergences, but previous work on 

amphibians has shown a wide overlap of these values and absence of a distinct barcoding gap 

(Vences et al., 2005). Ideally, a barcoding gene should have a definitively observable gap 

between intra- and interspecific divergence levels and, and perhaps most critically, correctly 

identify species. In Vences et al. (2005) high intraspecific COI divergence values of 7–14% were 

observed within the whole set of amphibian sequences analyzed, however the high values were 

not caused by particularly high substitution rates of the gene but by generally deep mitochondrial 

divergences within and between species. Despite the high divergences, COI sequences were able 

to identify the correct species, including geographic variants. Two primary issues with COI 

barcoding of amphibians are the high variability of priming sites which hinder the application of 

universal primers to all species and the observed distinct overlap of intraspecific and 

interspecific divergence values, which implies difficulties in the definition of threshold values to 

identify candidate species (Collins and Cruickshank, 2012). Common discordances between 

geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a 

single-locus approach to phylogeny revision can be problematic when high accuracy DNA 

barcoding is required, as mitochondrial DNA diverges at a faster rate for vertebrates. 

Due to its current limitations, DNA barcoding is best used as a tool for preliminary 

identification of candidate species, and it is best practice to favor a conservative approach that 

minimizes the error probability of false positives (Vieites et al., 2009). This approach may miss 

species of more recent origin, but it will more efficiently help taxonomists to focus on those 
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genealogical lineages likely to be undescribed species. Others argue that it is better to over-

estimate rather than under-estimate species in more rapid molecular focused biodiversity surveys 

in order to secure sufficient protection of the area, and consequently for its evolving lineages (or 

Operational Taxonomic Units, OTUs) which acknowledges the genetic diversity contained 

within a lineage (even if multiple lineages are eventually found to be the same species) (Moritz, 

1994; Sanders et al., 2006; Mulcahy et al., 2018; Labisko et al., 2019).   

Li et al. (2014) found a novel vertebrate mtDNA gene rearrangement in Occidozyga 

martensii, which serves to further clarify the phylogenetic relations of this genus within anurans.  

They found that in the WANCY tRNA-gene cluster, the tRNA-Asn gene was located between 

the tRNA-Tyr and COI genes instead of between the tRNA-Ala and tRNA-Cys genes. 

Additionally, Li et al. (2014) found that Occidozyga have two tandem tRNA-Met genes rather 

than one, and that the tandem duplication of the tRNA-Met gene can be regarded as a 

synapomorphic character of Dicroglossidae. Some multiple deletions of redundant genes appear 

to be incomplete in O. martensii, which might be responsible for the non-coding regions 

occurring around the genes involved in the rearrangements. Their phylogenetic results were also 

consistent with the latest taxonomic systems, with Dicroglossidae being a sister clade to 

(Ranidae +(Mantellidae+ Rhacophoridae)), and the monophyly of Ranidae and Dicroglossidae 

was well supported (BP= 100% and BPP=1.00), which is in accordance with the analysis of mt 

genome rearrangement (Dicroglossidae retains tandem duplication oftRNA-Met, (Ranidae has 

only one copy) (Li et al., 2014). Moreover, O. martensii was found to occupy the basal 

phylogenetic position among the dicroglossids studied. This is indicative that Occidozyginae 

represents the ancient/ancestral lineage in Dicroglossidae, which is consistent with the opinion of 

Roelants et al. (2004). 
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As of now, the current dominant choice among most herpetologists conducting 

systematics research is the use of 16S gene for species delimination (Vences et al., 2005; 

Fouquet et al., 2007; Garg and Biju, 2019; Labisko et al., 2019). Assessments of specimen 

identification based on 16S data alone should be done on a case-by-case basis, considering the 

geographic placement between specimen and whether or not specimens met the morphological 

description of the species they cluster with (Mulcahy et al., 2018). Alternatively, more than 95% 

of animal species genetically examined possess a diagnostic COI sequence array, and COI 

divergences rarely exceed 2% within a named species, while members of different species tend 

to show higher divergence, making it a useful locus for species delineation in conjunction with 

16S (Hebert et al., 2003a; Hebert et al., 2003b). Speciation cases linked to mitochondrial 

introgression cannot be resolved through mtDNA analysis alone but can be partitioned through 

the analysis of one or more nuclear genes, suggesting that improvement for species delineation in 

rarer complex cases should involve tactful incorporation of nuclear gene information from 

multiple loci (Ratnasingham and Hebert, 2013). Since a comprehensive COI barcode library is 

still lacking for most southeast Asian anurans, it will be necessary for this study to include 16S 

sequence data as a supplemental barcode marker to help identify specimens, as well as including 

a nuclear marker to compare with known sequence materials already published in GenBank. 

However, it’s important to remember that nuDNA and mtDNA have been co-evolving 

synergistically in ensuring the survival of the organism that carries them, but antagonistically in 

their race for long term existence. The nucleus is under selective pressure to impose/maintain 

uniparental inheritance of mtDNA and increase its independence from mtDNA via effectively 

“borrowing” functional genes from it. Mitochondrial DNA, on the other hand, undergoes 

constant pressure to avoid uniparental inheritance, mutational meltdowns, while simultaneously 
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increasing its indispensability for the organism by incorporating novel information that is 

necessary for the organism’s functionality in its ecosystem. Therefore, it’s important to consider 

the importance of both markers when looking at divergence across populations. 

 

Phylogeography and Population Distributions 

In Myanmar, one of the most prominent topographical features is its elongate and inverted U-

shaped mountainous border that naturally surrounds its centralized basin lowlands to the north, 

east and west. Ranging from west to east, the Irrawady Basin’s borders consists of the Indo 

Burman Range, eastern Himalayan syntaxis, Sinoburman Range, Shan Highlands, and the 

Tenasserim Range (Lieberman, 2010; Oh, 2016). All these ranges together create substantial 

geographic borders between Myanmar and the neighboring countries of India, Tibet, China, 

Laos, and Thailand. This topographic layout facilitates potential geographic isolation of species 

due to constrained gene flow from migration limitations in Myanmar. In this region, these huge 

mountain ranges (e.g. the highest peak believed to be Hkakabo Razi at 5,881 m in Kachin) and 

deep valleys (e.g. less than 700 m elevation in Rakhine)-as noted in Oh, 2016-were expected to 

promote diversification, especially in amphibians (Dever et al. 2012; Grismer et al., 2019). In a 

study of O. semipalmata, by Iskandar et al. (2011), populations from three highland areas 

exhibited congruent body sizes with the population from Mount Tompotika (~1492 m) having 

been composed of larger individuals, similar to those from Mount Karua (~2700 m) as compared 

to those from lower elevations.  Secular migration may be able to occur, with only certain 

species or individuals being able to traverse to other gene pools for mixing. Wherever there an 

overlap in their range exists, one could expect to see phylogenies that follow the respective 

geographic pattern of isolation. This has already been reflected in the phylogeny of the Amolops 
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marmaoratus species complex (Dever et al., 2012). Indeed, the same phylogeographic patterns of 

long-term historical isolation within Myanmar with only relatively recent additions of new 

‘founder genes’ to the previously isolated populations, either by the introduction of founder 

individuals or their genetic material, remains true even for native Asian elephants and Eld’s deer 

(Fleischer et al., 2001; Zhang et al., 2008). Mulcahy et al. (2018), found multiple anuran 

specimens initially identified as four morphospecies in four genera (including Occidozyga). 

Ultimately, DNA barcoding and comparison with northern Myanmar reference specimens 

revealed each genus was likely represented by two to three species based on the fact that at least 

one Tanintharyi clade (within each genus) grouped with specimens from further north, rather 

than with the other clades (of the respective genus) within Tanintharyi. Occidozyga appears to be 

undergoing a similar evolutionary pattern of geographic isolation as previously seen in Amolops, 

with only the majority of sequenced samples clustering with samples from within the same 

regional locality in Myanmar.   

 

I. Materials and Methods 

Over 250 adult Occidozyga samples were available for morphological analysis, and a smaller 

subsample of these were utilized for DNA sequencing through the California Academy of 

Sciences (CAS). Additionally, 72 specimens from the Smithson Museum of Natural History 

(USNM) were provided to better determine the taxonomy and evolutionary relationships of 

species within Occidozyga.  

Morphology. — Comparative morphological data was recorded from 259 specimens 

collected from across Myanmar, fixed in 10% formalin and then stored in 70% ethanol. 

Specimens were analyzed from the CAS and the USNM collections. Morphometric data were 
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taken from the right side of the body (to the nearest 0.1 mm) with digital calipers. Measurements 

include snout-vent length (SVL, from tip of snout to vent); head length (HL, from tip of snout to 

rear of jaws); head width (HW, width of head at the commissure of the jaws); internarial distance 

(IND, distance between nares); interorbital distance (IOD, minimum distance between upper 

eyelids); tympanum diameter (TD, horizontal diameter of tympanum); distance from nostril to 

eye (DNE, from center of a naris to anterior corner of eye on same side); eye width (EW, 

distance from posterior to anterior corners of eye); forelimb length (FLL, from elbow to tip of 

third finger); thigh length (THL, from vent to knee); tibia length (TIL, from knee to ankle); foot 

length (FL, from proximal end of the tarsus to tip of fourth toe). Descriptions of any foot 

webbing were made according to the foot webbing formula by Myers and Duellman (1982) as 

modified by Savage (1997). Any variations in skin texture, dorsal or ventral coloration, presence 

of any supratympanic folds, circummarginal grooves, transverse grooves, dorsolateral folds, 

vomerine teeth, hind limb banding, forelimb banding, ventrolateral margins, metacarpal or 

metatarsal tubercles were also noted for each specimen. While some specimens had been sexed 

as determined by direct observation of mating during life at time of collection, permission was 

received to attempt to determine sex of additional specimens- this entailed some minor dissection 

to locate gonads, since they do not portray any of the common visible secondary sexual 

characters (presence of nuptial pads or vocal sac openings). BioVinci v1.1.5 was used to perform 

principal component analysis (PCA) and summary statistics of the morphological data and to 

visualize the PCA analysis (2017 BioTuring Inc.). 

Molecular taxon sampling. —Total genomic DNA was extracted from liver tissue 

samples collected from forty-seven Myanmar Occidozyga specimens prior to preservation, that 

represented four described species and potentially multiple undescribed species (Table 1). 
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Additional homologous sequences were retrieved from GenBank to expand the number of 

specimens and localities. Tissue of sequenced specimens are from the CAS tissue collection and 

were initially collected into 95% EtOH and subsequently stored at -80 °C. Specimens were 

selected in order to have multiple tissue representatives from ten of the fourteen provinces within 

Myanmar (Ayeyarwade, Shan, Kachin, Yangon, Magway, Rakhine, Bago, Tanintharyi, 

Mandalay, Mon) [See Appendix I]. Using the DNeasy Tissue Kit and protocol (Qiagen, Inc., 

Valencia, California, USA), genomic DNA was eluted in 100 μl of re-suspension buffer. 

Polymerase chain reactions (PCR) were conducted for the mtDNA 16S rRNA (16S), cytochrome 

oxidase subunit I (COI), and nuDNA from the rhodopsin subunit (RHOD) using the primers as 

indicated from Table 1. 

Table 1: Primer pairs for PCR of Occidozyga puddle frogs. 

Locus  Sequences (5’-3’) 

16S (Fwd) CGCCTGTTTACCAAAAACAT 

16S (Rev) CCGGTCTGAACTCAGATCACGT 

COI (Fwd)  CTACAAYCCRCCRCCTRCTCGGCCAC 

COI (Rev) TADACYTCDGGRTGDCCAAARAATCA 

RHOD (Fwd) AACGCAACAGAAGGYCC 

RHOD (Rev) GTAGCGAAGAARCCTTC 

 

For the sequencing region in each sample, one forward and one reverse primer were used, 

0.5 µl each at 5uM, for amplification. The master mix for each singular reaction contained both 

primers, along with 12.5 µl of MyTaq Red, 9.5 µl of ultra-pure water, and 2 µl of the template 

DNA to be amplified. Amplified DNA was produced in 25 μL reactions after 33 cycles of 
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denaturation for 45 s at 95 ºC, annealing for 45 s  at 58ºC, and extension for 1.5 min at 72 ºC for 

16S; for COI there were 6 cycles of 30 s at 94 ºC, 90 s at 45 ºC  and 1 min at 72 ºC  followed by 

35 cycles of 30 s at 94 ºC, 90 s at 53 ºC, and 1 min at 72 ºC; for Rho after 35 cycles of 

denaturation for 45 s at 95 ºC, annealing for 45 s at 57 ºC and extension for 1.5 min at 72 ºC. 

PCR products were held at 12 ºC and then purified using Promega Wizard SV Gel and cleaned 

using Exosap-It. Purified PCR products were then sent off in 10 ul aliquots for sequencing using 

an Automated ABI 3730 sequencer at MCLAB in South San Francisco, CA (2011 Life 

Technologies). Returned forward and reverse sequences were verified as representing the correct 

target marker using a BLAST search against GenBank; raw chromatograms were then edited in 

Sequencher v5.1 (2012 Gene Codes Corp.), complementary strands were aligned and inspected 

for proper translation with Geneious Pro 11.1.4. Alignments were conducted using the MUSCLE 

and ClustalW options in Sequencher and Geneious. Ends of reads were trimmed with an error 

probability limit of 0.05, prior to allowing reads to overlap and assemble.  

Genetic variation and phylogenetic analysis. —After aligning sequences in Sequencher, the 

MAFFT v7.222 100 (Katoh et al. 2002) algorithm in Geneious Pro 9.02 was used using the E-

INS-I mode and standard 101 parameters. Phylogenetic trees were inferred via Bayesian analyses 

(BI) in Geneious Pro using the MrBayes plugin v3.2.6 (Ronquist and Huelsenbeck, 2003) with 

the four chains run option at temperature of 0.2 for a chain length of 100,000, a sub-sampling 

frequency of 200, burn-in length of 10,000 and random number seed with gamma rate variation. 

Scale bars at the bottom of each tree represent uncorrected genetic distances (p). MEGA 7 was 

used to calculate nucleotide diversity, and to obtain inter- and intraspecific genetic p-distances 

for mtDNA, with pairwise deletion of missing sites. The MEGA 7 software was also used to 

conduct Maximum Likelihood (ML) alignment analyses, and to construct ML trees. Using the 
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program jModelTest (v2.1.7; Posada, 2008), the TPM evolutionary model worked best, however 

given the programs and software available for use, jModel testing indicated that the HKY85 

model was still a suitable nucleotide substitution model and was more readily available in current 

software. The least appropriate model was determined to be the JCI evolutionary model.  

Therefore, the HKY85 model of evolution was utilized, and the –ln L per generation was plotted 

in Geneious. Because O. lima is the most ancestral lineage (Frost, 2018), it was set as the 

outgroup taxon within the genus in the absence of available GenBank sequences from their 

closest Dicroglossidae and Hyperoliidae cousins (Ingerana, Sylvirana, and Phlyctimantis).  

Phylogeography. — Specimens’ decimal degree latitudes and longitudes [see Appendix II] 

were then mapped onto both topographical and terrain maps of Myanmar. Molecular clades were 

color-coded using Esri Online’s ArcGis mapping software. Ecoregions of specimens were 

mapped using Data Basin software and base maps from the Conservation Biology Institute. 

 

II. Results  

Morphology. —Quantitative Morphological Analysis via PCA 

Principle component analysis of the quantitative morphological comparisons showed strong 

contrast between O. lima and O. martensii specimens (Fig. 1), but there was no statistically 

significant variance from the analysis for differences in components within individuals initially 

identified as O. martensii (Fig. 2). PC1- snout-vent length- was found to be responsible for the 

largest proportion of observed variance, accounting for about 62% of the variation in the data set 

(Table 2). Snout-vent length also had the highest standard deviation (STDV) of about 2.74, with 

PC2, head length coming in second with a STDV of ~1.26 while only accounting for an 

additional 13% of the variation between the species types based on the resulting molecular clades 
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(Table 2). PC1 is the only component that was more than two standard deviations away from the 

mean, with the assumption of a normal distribution and a 95% confidence interval. Sexual 

dimorphism checks of specimens resulted in males (n=10) having an average SVL of 26.71 mm 

with a range of 23.46-35.22 mm in length, and females (n=24) with an average SVL of 29.62 

mm with a range of 24.91-39.94 mm. All morphometric variables aside from SVL had relatively 

little variance and insignificant deviation across both O. lima and O. martensii (Table 3 and 

Table 4). [See Appendix III for full list of all specimens used for morphological analysis and 

their respective morphological measurements.] 

 

Figure 1: Principal component analysis of twelve morphological measurements. N =  259 

Occidozyga specimens. PC1 on the x-axis is snout-vent length and PC2 on the y-axis is head 

length. 
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Table 2: Principal component analysis scores for Occidozyga species. Components correspond to 

the same measurements as in Fig.6. Values rounded to four decimal places. 

Component Standard Deviation Proportion of Variance 

PC1 2.7352 0.6235 

PC2 1.2567 0.1316 

PC3 0.8303 0.0574 

PC4 0.7398 0.0456 

PC5 0.6757 0.0380 

PC6 0.6083 0.0308 

PC7 0.5133 0.0211 

PC8 0.4456 0.0166 

PC9 0.4181 0.0146 

PC10 0.3232 0.0087 

PC11 0.2794 0.0065 

PC12 0.2368 0.0047 

 

 

Table 3: Summary statistics for Myanmar Occidozyga lima specimens. Measurement units are in 

millimeters (mm). All decimal values rounded to two decimal places. (N= 64).  
SVL HL HW IND IOD TD DNE EW FLL THL TIL FL 

Mean 28.08 7.77 9.72 1.82 1.42 2.67 2.03 3.41 12.01 13.46 12.89 14.87 

Standard 

deviation 

3.93 1.10 1.34 0.25 0.35 0.51 0.32 0.43 1.74 2.12 1.70 2.02 

Variance 15.46 1.20 1.79 0.06 0.12 0.26 0.11 0.18 3.03 4.49 2.88 4.06 

Min 17.60 5.83 6.88 1.35 0.71 1.84 1.36 2.36 9.00 9.59 9.13 10.98 

1st 

quantile 

25.85 6.95 8.86 1.67 1.19 2.37 1.82 3.11 10.49 12.00 11.62 13.43 

Median 27.73 7.57 9.41 1.80 1.41 2.61 2.02 3.39 11.88 13.38 12.95 14.75 

3rd 

quantile 

30.20 8.43 10.60 1.93 1.64 2.93 2.25 3.72 13.12 14.79 14.10 16.14 

Max 39.94 10.52 13.21 2.64 2.46 4.02 2.90 4.21 16.27 17.76 16.35 19.41 
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Table 4: Summary statistics for Mynamar Occidozyga martensii complex specimens. 

Measurement units are in millimeters (mm). All decimal values rounded to two decimal places. 

(N=158 ).  
SVL HL HW IND IOD TD DNE EW FLL THL TIL FL 

Mean 27.39 6.86 9.00 2.50 1.72 2.22 1.95 3.36 10.20 12.80 12.38 13.07 

Standard 

deviation 

3.93 0.74 1.18 0.29 0.33 0.46 0.25 0.45 1.53 1.87 1.66 1.56 

Variance 15.45 0.55 1.39 0.08 0.11 0.21 0.06 0.20 2.34 3.51 2.74 2.44 

Min 17.80 4.48 6.37 1.80 1.06 1.41 1.09 1.76 6.96 8.05 8.33 8.93 

1st 

quantile 

24.89 6.41 8.16 2.30 1.47 1.88 1.78 3.06 9.02 11.56 11.25 11.93 

Median 26.86 6.78 8.93 2.49 1.70 2.14 1.94 2.30 10.13 12.69 12.15 12.91 

3rd 

quantile 

29.92 7.26 9.70 2.72 1.90 2.49 2.10 3.66 11.17 13.90 13.58 14.26 

Max 36.93 9.39 12.59 3.13 2.75 4.18 2.90 4.43 13.95 17.44 16.95 16.77 

 

 

Species Descriptions based on Morphology. — 

O. lima   

 Image Credit: Frank Schafer (2007). 

 

O. lima  is characterized by the following combination of 

characteristics: narrow mouth, indistinct tympanum, lack of 

vocal sacs, fully webbed feet, pointed digits. Skin covered 

with small, noticeable pearl-colored tubercles. Dorsum color is typically dark gray-brown, with 

the ventral side of the head being a speckled dark gray, and infrequent pale whiteish yellow 

tinged venter and undersides of the thighs. Gular with distinct V-shaped lines. The distribution 

for O. lima is significantly broader than of any member of Occidozyga, being recorded from 

India through Myanmar to southern China, Vietnam to Malaysia and Indonesia (Frost, 2019). 

There is a clear presence of metacarpal tubercles; bold black horizontal stripe on rear of thighs 

beneath vent; strongly patterned pelvic venters with angled paired stripes; and pairs of dark chin 
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stripes. To a lesser degree, but only seen in the O. lima specimens analyzed, were dark short 

stripes present across both axillary regions.  

O. martensii

Image credit: Myint Kyaw Thura and Daniel G. Mulcahy (2018). 

Dubois (1982) noted that O. martensii exhibited 

variation in coloration, from solid dark gray dorsum to 

having a solitary medial stripe on the dorsum. Herein 

variation was also observed with several specimens possessing a dorso-medial line yet not all. A 

dorso-medial line was absent in all O. lima specimens; however all possess an inner metatarsal 

tubercle that is weakly projecting and partially attached.  

Despite mention of nuptial pads being present in male members of O. laevis specimens from the 

Philippines by Inger (1954), morphological examination of specimens catalogued in the CAS 

collection as male did not indicate any sexually dimorphic traits. Neither nuptial pads on the 

forelimbs nor internal paired vocal sac openings were observed. Sexing of these specimens could 

only be achieved if the specimen was visibly gravid/with eggs, or if minor dissection was done to 

look for mature gonads (as presence of seminiferous tubules and testes would confirm a sexually 

mature male specimen). Overall body size dimorphism was also excluded as a diagnosable trait, 

even given that 90% of female anurans are larger on average than male counterparts of their 

species (Shine, 1979). The average SVL length of confirmed male Occidozyga was 26.71 mm 

(n=10) ranging from 23.46 mm-35.52 mm, versus the average confirmed female Occidozyga 

SVL was 29.62 mm (n=24) ranging from 24.91 mm-39.94 mm in length. 
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Figure 2: Principal component analysis of twelve morphological measurements for specimens 

within the O. martensii complex. N = 128  Occidozyga specimens. PC1 on the x-axis is snout-

vent length and PC2 on the y-axis is head length 

 

 

Even in a PCA analysis where solely the O. martensii complex specimens are on display (Fig. 2), 

there is not strong enough correlation for any of the clades within the complex for any 

morphological measurement to be an accurate indicator of species. The present morphological 

diversity within O. martensii makes this an impractical method of species identification. 
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Molecular. —Genetic variation and phylogenetic analyses. 

Here we report consensus sequences of forward and reverse reads for 16S, and forward 

reads for COI and RHOD, as reverse sequencing was not successful for all 47 tissue specimens 

at both of those two latter loci. This is likely because the primer binding sites for those 

specimens had been mutated, and not the quality of the DNA liver sample, since some samples 

sequenced fine for COI but not RHOD and vice versa. After removing gaps, the aligned 16S 

fragments produced a 669 base pair region; the COI fragments produced a 760 bp region; the 

concatenated mtDNA fragments produced a 1,332 bp region and the nuDNA RHOD fragments 

produced a 327 base pair region. The HKY85 model of sequence evolution was selected with 

jModelTest for all regions. Within Occidozyga, the overall average genetic distance was 11.9%-

however between O. lima and other groups. The among genetic distance showed large net 

average distances (16%-17%, Table 5). The differentiation between the other clades and 

candidate clade B was much smaller, only (3.8%-6.9%, Table 5). The unresolved and 

geographically broad clade that resulted was grouped together to represent the large O. martensii 

complex consisting of clades C, D, and E (Table 5). The Bayesian analyses for both mtDNA 

regions show the genetic distinction of the Myanmar specimens from confirmed Occidozyga 

species, with moderate (0.75-0.94) to high (0.95-1.00) Bayesian Posterior Probability (bpp) 

support values at all terminal clades (Figs. 3,Fig. 5, and Fig. 7).  The central Tanintharyi clade of 

specimens are distinct enough to be considered a separate, distinct species from O. lima. 

Maximum Likelihood analyses for mtDNA regions support the Bayesian analyses with less 

strong support values at the intermediary nodes, but maintained the high support values at 

terminal nodes (Fig. 4 and Fig. 6) 
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Overall average genetic distance of COI between species groups analyzed were higher 

than those for 16S (Table 6 and Table 5 respectively), with O. lima being slightly more divergent 

than Sylvirana for the new species from central Tanintharyi. Phylogenetic analyses of the COI 

region within the Occidozyga complex revealed slightly more significant diversity, (p=0.09). 

Four distinct lineages emerged, with one clade forming three more strongly supported subgroups 

from the regions of Rakhine, Kachin, and Ayeyarwade (Fig. 5). The nodal probability values are 

higher for COI than for 16S, and is consistent with the higher genetic distances observed 

between groups versus in 16S (Table 5); the smallest observed genetic difference for COI results 

between unconfirmed species (UCS) clade A (9.3%).  The new species clade from central 

Tanintharyi was consistently supported across all three trees (16S, COI and RHO). The O. lima 

clade, indicated in red (Fig. 3,Fig. 5, and Fig. 7), remains persistent across 16S and COI trees and 

is still present in the RHO tree, although at a far lower (0.51) Bayesian probability (Fig.8). Based 

on relatedness to O. martensii GenBank outgroups, all the new putative species groups appear to 

be most closely related to O. martensii than O. lima, which is the most ancestral Occidozyga 

lineage. Within Occidozyga the overall average genetic distance for rhodopsin (RHOD) is the 

lowest of all markers, at 3.8%. Between Occidozyga groups the average genetic distances for the 

RHOD loci only range from 1.7%-7.2% (Table 7). Interestingly, the largest average genetic 

distance is observed between the new central Tanintharyi species and O. lima rather than with 

the sister Phlyctimantis outgroup, which is very similar to O. baluensis and clade B. Bayesian 

analysis of the rhodopsin nucNDA shows far less support for the genetic distinction that clade 

out consistently for both mtDNA regions, with weak (0.50-0.074 bpp) values separating the 

clades (Fig. 8).  
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Table 5: Estimates of Evolutionary 16S Divergence over Sequence Pairs between Groups. The 

number of base differences per site from averaging over all sequence pairs between groups are 

shown. The analysis involved 53 nucleotide sequences. All ambiguous positions were removed 

for each sequence pair. Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). 

 Ing. O. lima O. sp nov C D E F B O.marte. 

Ingerana          

O. lima 0.289         

O. sp nov 0.284 0.176        

Clade C 0.280 0.186 0.181       

Clade D 0.274 0.198 0.183 0.058      

Clade E 0.273 0.173 0.159 0.062 0.051     

Clade F 0.277 0.185 0.173 0.057 0.051 0.039    

Clade B 0.279 0.195 0.164 0.074 0.064 0.065 0.068   

O. martensii 0.284 0.183 0.174 0.067 0.070 0.063 0.069 0.055  
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Figure 3: Phylogram of 16S sequenced Occidozyga specimens from Myanmar. Compared to 

GenBank data from known O. martensii, O. baluensis, and Ingerana sp. individuals. Individuals 

are identified by their sample ID number or by their sourced GenBank ID.  Four unique lineages 

which largely cluster based on geographical region are highly supported, with one lineage  

comprised of three unconfirmed putative species. The clade of specimens from central 

Tanintharyi is distinct from the O. lima clade and represents a separate species. 
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Figure 4: Molecular Phylogenetic analysis of 16S locus by Maximum Likelihood method. 

The evolutionary history was inferred by using the Maximum Likelihood method based on the 

Tamura-Nei model. The tree with the highest log liklihood is shown. The percentage of trees in 

which the associated taxa clustered together is show next to the branches. Initial tree(s) for the 

heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to 

a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site. The analysis 

involved 51 nucleotide sequences. All positions containing gaps and missing data were 

eliminated. Evolutionary analyses were conducted in MEGA 7. 
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Table 6: Estimates of Evolutionary COI Divergence over Sequence Pairs between Groups. 

The number of base differences per site from averaging over all sequence pairs between groups 

are shown. The analysis involved 53 nucleotide sequences. All ambiguous positions were 

removed for each sequence pair. There were a total of 727 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). 

O. lima Sylvirana O. sp nov B E F D C/ O. 

martensii 

O. lima

Sylvirana sp. 0.275 

O. sp nov 0.265 0.257 

Clade B 0.282 0.296 0.245 

Clade E 0.285 0.275 0.220 0.207 

Clade F 0.288 0.280 0.223 0.209 0.094 

Clade D 0.269 0.290 0.233 0.181 0.166 0.151 

Clade C/ O. ma 0.302 0.297 0.274 0.206 0.191 0.185 0.150 
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Figure 5: Phylogram of Occidozyga COI sequenced specimens from Myanmar. Compared with 

GenBank data from known O. martensii, O. sp., and Sylvirana sp. individuals. Four unique 

lineages which largely cluster based on geographical region are highly supported and are 

supported by the clading of 16S (Fig. 3). The clade of specimens from central Tanintharyi is 

distinct from the O. lima clade and represents a separate species. 
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Figure 6: Molecular Phylogenetic analysis of COI locus by Maximum Likelihood method.  
The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-

Nei model. The tree with the highest log likelihood is shown. The percentage of trees in which the 

associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the 

topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in 

the number of substitutions per site. The analysis involved 53 nucleotide sequences. All positions 

containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA7  
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Figure 7: Phylogram of Occidozyga sp. resulting from Bayesian inference of the concatenated 

mitochondrial data (COI, 16SrRNA). Nodal support values are Bayesian posterior probabilities. 

Numbers at terminals correspond to Sample IDs in Table 1. The capital letters (B-F) above 

branch nodes correspond to putative Clade IDs in Fig. 3, and Fig. 4. 
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Table 7. Estimates of Evolutionary RHOD Divergence over Sequence Pairs between Groups. 

The number of base differences per site from averaging over all sequence pairs between groups 

are shown. The analysis involved 52 nucleotide sequences. All ambiguous positions were 

removed for each sequence pair. There were a total of 491 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). 

O. martensii O. lima P.boulengeri O. sp nov

O. martensii

O. lima 0.072 

P. boulengeri 0.049 0.055 

O. sp nov 0.039 0.045 0.029 0.017 



39 
 

 

 

Figure 8: Phylogram of Occidozyga sp. resulting from Bayesian inference of the nuclear gene 

data (RHOD). Outgroup is composed of Phlyctimantis boulengeri GenBank specimens.  Nodal 

support values are Bayesian posterior probabilities. Numbers at terminals correspond to Sample 

IDs in Table 1. The high mutation rate, fast coalescence time owing to a small effective size and 

matrilineal inheritance make mtDNA more likely to track lineage divergence than any single 

nuclear gene such as RHOD could and is thus a relatively leading molecular indicator of 

population differentiation. This RHOD phylogram does indicate that in terms of deep-level 

phylogeny there has not been much divergence versus the divergence seen given the 

mitochondrial populations in each region of Myanmar. The clade for new species from central 

Tanintharyi is still present and consistent with their position in both mitochondrial trees and 

confirms it as a candidate species. 

 

The individuals from central Tanintharyi represent a novel species based upon the congruency 

among all three molecular markers. When analyzed with additional taxa from the region 

provided by Mulcahy (pers. Comm.) the support values increased significantly. The new species 

is morphologically identical to O. martensii having a small body (SVL 17.77-31.11mm); lacking 

small spiculate tubercles covering the entirety of the dorsum; incomplete webbing of the 

O. sp nov 

O. lima 

C 
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hindtoes; vent stripe absent; distinct dorsal spots absent; dorsum sparsely covered with granular 

but not spiculate tubercles; dark, wide dorsal midline stripe present; v-mark on ventral jaw 

absent but patchy color on edges; pelvic v-mark absent; banding pattern on hindlimbs present but 

indistinct; short dark brown patches in axillary region absent; stripe across the ventral lateral 

edge of both hindfeet present but less distinct; pale ventral belly with weakly speckled 

ventrolateral margins (Fig. 9 and Fig. 10). 

 

 

Figure. 9: Specimen CAS 247983 ventral (left) and dorsal (right) views of cranial and axillary 

regions. Images of novel species from central Tanintharyi. 

 

 

Figure 10: Specimen CAS 247983 dorsal and ventral views. Clockwise from top left image; 

Dorsal view of caudal region, ventral view of caudal region, ventral right hindfoot, posterior vent 

region, sagittal view of right side. Images of novel species from central Tanintharyi.  
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Geographic Distribution: This novel species is known from two localities in Tanintharyi 

Division, Myanmar ~11 km apart, with elevations ranging from 82 m to 162 m. The  holotype 

collection locality was in the H3 [Eithe] stream, Tanintharyi Nature Reserve, Yebyu Township, 

Tanintharyi Division, Myanmar at an elevation of 162 m. 

 

Phylogeography. — 

The pattern of distribution observed in the phylogeographic analysis of the 16S tree is 

shows the Occidozyga evolutionary differentiation throughout Myanmar has been directly 

impacted by the geographic history of Myanmar (Fig. 11 and Fig. 12).  The Ayeyarwady Basin is 

a wide, massive, elongate floodplain of approximately 404,200 square km that extends nearly the 

entire length of non-peninsular Myanmar and separates the vast, mountainous Shan Plateau in 

the east from the rugged Chin Hills in the west (Fig. 12). A complex series of foothills associated 

with these upland areas delimit the eastern and western fringes of the Ayeyarwady Basin and the 

relatively featureless floodplain itself is punctuated by a series of isolated, north-south tending, 

mountainous ridges and low hills (Grismer et al., 2019). Populations representative of 

O.martensii clade C show lineages that are concentrated in Rakhine, showing isolation on the 

western side of the Kachin Hills in northern collection sites but have been able to extend their 

range into the Ayeyarwady Basin beneath the southernmost point of the Chin hills. While 

individuals of O. lima (blue), and clade E Ayeyarwade were observed to extend throughout the 

lower confines of the Ayeyarwady Basin floodplain, the individuals of clade D of Kachin all 

cluster tightly in the uppermost region of the basin without extension areas where the 

aforementioned populations were interspersed. While the novel species from central Tanintharyi 
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is observed to be limited to a small region in Tanintharyi, specimens of clade B appears to have 

been able to extend its evolutionary lineage to the southernmost tip of Myanmar in Tanintharyi. 

Within clade B the elevation barely ranges from CAS 247790 for the holotype at 21 m down to 

just 8 m of elevation.  From the ecoregion mapping in Fig. 12,  we see that the O. martensii  

complex clades observed in Fig . 11 are each constrained to generally one to two ecoregions 

respectively  and are different from the other clades. The novel central Tanintharyi Occidozyga 

species sits squarely in the Tenasserim semi-evergreen tropical rainforests, while O. lima- its 

most closely related ancestor- is primarily dispersed throughout the Irrawady Basin’s moist or 

dry deciduous forests with an outlier in the east and two specimens extending from the southern 

border of the Irrawady Basin. Clade B in orange resides in either the Tenasserim rainforest or the 

N. IndoChina subtropical forests. Clade C, representative of voucher O. martensii specimens, 

have a broader range of ecoregions it can occupy and tends to occupy intermediary ecoregion 

zones to the south and east of the Irrawady Basin. Clade D of the Rakhine region in green is 

restricted to Myanmar’s coastal rainforests, while Clade E in light blue (partially obscured by O. 

lima and O.martensii specimens) occupies the Irrawady freshwater swamps and coastal 

mangrove regions. The most northern, Clade F specimens are all tightly clustered in the 

Mizoram-Manipur rain forests of Kachin.  
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Figure 11: Topographical map of 

Occidozyga within Myanmar. Distribution 

of the species of the Occidozyga group 

specimens 1-47 sequenced for this study 

with respect to the mountain ranges and 

lowlands. Three major clades in the legend 

(A-C) and O. lima correspond to those 

identified in mtDNA phylogenies (Fig. 1; 

Fig. 2; Fig. 3). Locality coordinates in 

latitude and longitude form at time of 

collection can be found in Appendix II. 

 

 

 

 

Figure 12: Ecoregion map of Occidozyga 

within Myanmar. Distribution of the 

species of the Occidozyga group 

specimens 1-47 sequenced for this study. 

Note here, the novel Occidozyga species is 

in yellow, O. lima in black, Clade B in 

orange, Clade C in red, Clade D in green, 

Clade E in light blue (obscured by an O. 

lima) , Clade F in purple. 
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III. Discussion  

Most cryptic congeners in the genus Occidozyga are difficult to distinguish from each 

other due to the superficial similarities in morphology. To solve this problem, extensive 

sampling with careful and robust diagnoses are required to uncover the cryptic diversity of the 

genus. Specifically O. martensii harbors great diversity and each of the distinct lines of evidence 

provided herein (morphological, molecular, and phylogeographic) supports the recognition of a 

putative cryptic species from central Tanintharyi that is most closely related to O. lima and a 

high amount of genetic diversity within the O. martensii complex with phylogeographic 

patterning that match likely pathways of evolutionary radiation around the mountains of the 

region. The genetic distance data and constructed phylogenetic trees (with sequenced NCBI 

DNA included from known Occidozyga species) strongly suggest the existence of at least  six 

unidentified candidate species within this group that are highly divergent in both 16S and COI. 

The results from this study illustrate the ambiguity of parsing taxonomy and distributions based 

on distinctive morphological differences present in Occidozyga. 

While there is strong support for the variance in snout-vent length being a reliable 

morphological indicator of whether a specimen is of O. lima or O. martensii lineage via PCA, no 

other morphological measurements tested were features that were statistically strong enough for 

distinguishing the novel putative species and lineages, nor distinguishing between established 

species. The lack of sufficient clustering and similarity between traits is indicative of and 

reaffirms that this species complex is indeed cryptic, where quantitative morphology alone is not 

sufficient for proper identification of these specimens. This is especially true considering there 

are multiple O. martensii related lineages as well as sp. A being more closely related to O. lima.  



45 
 

There are no clear distinguishing factors between O. martensii complex candidate types using 

morphology as the defining characteristic. 

Based on the present information, it is likely that even more additional undescribed 

species within this group exist and may be uncovered with increased sampling frequency from 

additional regions of Myanmar. Mulcahy et al. (2018), observed similar patterns of tri-clustering 

within the genus- which also were distinct from O. martensii and O. lima- which they suggest are 

significantly different sub-species. These cryptic species are morphologically indistinguishable, 

yet credible molecular, and phylogeographic evidence exists which suggests that they represent 

evolutionarily distinct lineages. Due to this morphological crypsis, it will likely be necessary that 

additional species complexes, such as those already seen in Myanmar, need to be discovered and 

diagnosed using a multitude of data formats such as DNA sequences, evidence of reproductive 

isolation (e.g. whether ecological or bioacoustic), and morphological comparison (Castroviejo-

Fisher, et al., 2017) in other neighboring countries. Recent work by Cryer et al. (2019) has 

successfully advocated for the status of just one species, Lithobates warszewitschii, as a 

candidate cryptic species complex, based primarily on sequence data from mitochondrial genes 

COI and 16S. Using concatenated phylogenies, nucleotide diversity (K2P-π), net between group 

mean distance (NBGMD) (πnet) and species delimitation methods, they were able to further 

reveal cryptic diversity within this species. Cryer et al. also found that patterns of 

phylogeographic structure did not appear to be explained by geographic barriers or isolation by 

distance, suggesting that L. warszewitschii is a wide-ranging species complex. This could help to 

support the divergence that is occurring within Myanmar in the Irrawady basin or in the regions 

where the species niches overlap or where hybrid zones may be occuring. Conversely, research 

by Gao et al. (2019) on Dicroglossidae Quasipaa shini, which is distributed across southcentral 
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China, utilized mitochondrial COI gene sequences, haplotype network, AMOVA and genetic 

distance estimations to establish support for separations into six phylogroups. Q. shini is 

commonly found in the mountain streams at 510–1500 m elevation in south-central China, 

ranging all the way from the northern Guangxi, Guizhou, extreme southern Hunan, to southern 

Chongong provinces (Fei et al. 2012). Across this region, tall mountains (e.g. Nanling Mountains 

and Dayao Mountains) and deep valleys (e.g. major distributaries of Zhujiang River) were 

expected to promote genetic diversification, especially in amphibians (Che et al. 2010).  Based 

on their results, they proposed that at least the one clade out of their six phylogroups should 

represent a cryptic species. The very similar topography of Myanmar and the way in which the 

phylogroup clades/subclades conform to location for another Dicroglossidae family species is 

strikingly similar to that of Occidozyga despite the difference in species and the precise region of 

study, and could possibly explain the mitochondrial divergence observed between clades that had 

strong correlations to the ecoregion they inhabit and explain why the complex has evolved to 

occupy many ecoregions. 

The combination of low levels of nuclear genetic diversity but extensive mitochondrial 

and phylogeographic structure within O. martensii- with unsubstantial morphological variation- 

is perhaps best explained by more localized adaptations to variance in environmental settings, 

ecophenotypic plasticity, previous genetic bottlenecks and/or continuing small population sizes 

( Nussbaum and Wu, 1995). If the phylogeography and molecular clock for the genus is further 

explored, it would be possible to further determine how relatively recently they have diverged 

from each other. If the most recent divergences are within the O. martensii complex, it could be 

further evidence to support a genetic framework that is influenced by recent anthropogenic 

induced ecosystem  and ecoregion modification (see Fig. 12). Currently, Occidozyga is thought 
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to have originated on the Indian subcontinent and then dispersed to and diversified within 

Southeast Asia, subsequent to the Indian subcontinent’s collision with Eurasia about 35 mya 

(Duellman & Trueb 1994; Bossuyt & Milinkovitch 2001; Bocxlaer et al. 2006). Occidozyga 

would have then evolved further from an ancestor that arrived on the mainland, later spreading to 

Sundaland in the south (Duellman & Trueb 1994). Bossuyt et al. (2006) later estimated the 

divergence time of the Ranoidea superfamily, finding that the genus Occidozyga (O. lima and O. 

laevis being established as earliest lineages) diverged sometime in the late Oliocene period, c. 23 

mya. This period was when mainland Asia was undergoing the pressing out of the Indochina 

block while the Burmese block was forced northward and there met with the Indian plate (Hall 

2002). Myanmar was far more near to Southern Indochina at the estimated time Occidozyga  

would have begun to diverge than its current geographical orientation. These hypotheses may 

explain the results of this study which found that all O. martensii complex clades (B- F) formed 

sister lineages despite being largely separated geographically. Furthermore, the physical 

geography and geologic history strongly indicates that Southern Indochina and Myanmar 

originally belonged to the same biome, the Southeast Asian Lowlands (Inger 1999). 

 For the Occidozyga species complex, this study was limited to analysis of morphological 

and molecular traits which can be observed and tested from pre-collected museum collection 

specimens. More recently observed and collected specimens in life will still be necessary to 

further investigate the populations within these geographic ranges that appear to be endemic, 

while remaining amendable to reconciling the lineages of the present with more historical data 

sets and descriptions. These three resulting phylogenies could naturally and logically be further 

supported by extensions of field work in Myanmar to better establish true species ranges for 

sufficient habitat protection with increased sampling for each region that Occidozyga occupy 
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within the Ayeyarwady Basin. Recent discussions of conservation efforts in Myanmar have 

primarily been focused on hills, caves, and tower formations (Grismer et al, 2019). This study 

and many other pending studies, however, add to a growing foundation of data suggesting that 

the Ayeyarwady Basin should be incorporated into more ongoing discussions of conservation as 

it accounts for almost one-half of the total area of the country and is currently serving as a 

hospitable refuge for an ever-increasing number of endemic species of reptiles and amphibians 

(Wilkinson et al. 2014; Connette et al. 2017; Mulcahy et al. 2017; Lee et al. 2018).  

National Biodiversity Strategies and Action Plans (NBSAPs) are developed by the IUCN 

based on information of known and documented species and their associated standing on the 

IUCN’s red list of threatened species (IUCN, 2015). While the criterion and accuracy of IUCN’s 

listings are already problematic, the issue is further exacerbated by inaccurate or incomplete 

species surveys (Webb, 2008). Application of biodiversity hotspots occurs via discrete 

measurements of biodiversity, as opposed to evaluation of candidate regions over time (Myers et 

al., 2000; Wallington et al., 2005; Willis et al., 2007; Piacenza et al., 2015), has resulted in biases 

towards potential ‘hotspot’ areas that exhibit higher biodiversity during those most critical initial 

periods of assessment. Unfortunately, this creates designations of hotspots without a true 

reflection of preexisting conditions (i.e. cyclical or periodic perturbances that temporarily 

deflated or inflated the appearance of biodiversity), nor considers the effects of continued 

anthropogenic change in the area. Additionally, the thresholds of biodiversity used to designate 

biodiversity hotspots are quite frequently user-constructed or set arbitrarily and rarely based on 

ecological data collected long-term within the candidate region (Kareiva and Marvier, 2003).  

The ongoing development of phylogenetic approaches has led to a proliferation of 

metrics for measuring phylogenetic diversity (Tucker et al., 2017). The use of many separate and 
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ununified metrics over time across the discipline has dampened the statistical power of potential 

meta-analyses, syntheses, and generalizations of existing results that are critical for conservation 

management efforts. Reconciling phylogenetic relationships established from the past into 

accurate and reliable trees and divergence timescales for use in the future has become the new 

challenge for conservationists, especially since anurans are often used as model organisms to 

address fundamental issues of morphological, developmental, and biogeographical evolution 

(Bryne et al., 2003; Evans et al., 2004; Liu et al., 2016; Chan and Brown, 2017). Thus, accurate 

taxonomic recognition is a prerequisite for preserving amphibian biodiversity, given the context 

of amphibian declines and extinctions occurring worldwide due to anthropogenic induced 

perturbations (Stuart et al., 2004).  

 Reliance on variations in phenotype and morphology alone for species delimitation has 

shifted from being the only evidence required, to being only a supportive piece of evidence in 

combination with genetic, geographic and bioacoustic analysis. Phylogenetic analysis conducted 

by Tarvin et al. (2017) of Dendrobatid poison frogs found low levels of genetic divergence 

(2.6% in the 16S gene) despite substantial differences in coloration, suggesting that historical 

claims of species diversity may be artificially inflated for aposematic amphibian species (Tarvin 

et al., 2017). The Occidozyga specimens sequenced have a relatively higher level of 16S genetic 

divergence at 17.8%, while conversely possessing very little substantial differences in coloration 

and morphology- indicating that the complex will likely not be well resolved or well conserved if 

traditional morphospecies concepts are relied upon. Without combination of delimination 

methods for species identification and use of a consolidated-species concept to guide the process, 

there is an enormous potential for a vast number of Occidozyga species or subspecies which may 

currently be ‘cryptic’ to remain unnoticed and unaccounted for. Not only could they be omitted 
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from the taxonomic and phylogenetic records, but cryptics would then be overlooked when 

efforts towards conservation of amphibian biodiversity in their native region occur (Angulo and 

Icochea, 2010; Vieties et al., 2009; Bell et al., 1998).  As records stand now, O. martensii and O. 

lima are thought to be quite numerous and are not under any form of protection (IUCN, 2017). 

However, severe issues in systematics and conservation efforts can occur when morphological 

characters either do not reflect genetic diversity or are grossly misleading. Misidentifications not 

only inflate range estimates, but also lead to inaccurate niche models (Aubry et al., 2017). The 

exponential radiation of rhacophorine frogs in Sri Lanka provides a prime example, as an 

integrative taxonomic study using morphological, ecological, bio acoustical, and genetic data 

increased the number of species from a mere 18 to over 100 (Meegaskumbura et al., 2002). Since 

these species counts and population estimates depend on the species concepts applied and/or 

chosen molecular markers, biodiversity surveys are likely yielding extremely divergent results 

for the biodiversity actually present in that same habitat. Surveys using the morphospecies 

concept for instance can result in lower species counts than surveys based solely on 

environmental DNA. Biological species concepts effectively cannot be assigned at all in most 

biodiversity surveys, since this would require DNA extraction, processing, and sequencing in the 

field.  

Future directions for research of this genera would require more “boots on the ground” in 

order to sample more specimens- especially to garner tissue- more intensively from the 

unsampled states and divisions within Myanmar, and even still from within some of the regions 

in this analysis to further bolster a specimen count for the novel species. Sample sizes are still 

moderately low per region and many were taken from sites within the respective division that 

were not very far away from each other. Ideally, each division/state should be given a proper 
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biodiversity analysis in order to most accurately conduct a taxonomic revision of the genus and 

would involve a multi-year field study whereupon a more detailed natural history for these 

specimens and information on population density could be assessed, including collecting 

bioacoustic call data and observation of mating of specimens or tadpole development. Capturing 

images of these different emerging clades in life could only benefit further recognize and 

conserve the diversity within this genus. 

However, this study is the first of its kind for Occidozyga with respect to conducting a 

broad country-wide genetic analysis with a relatively large sample size for morphological 

analysis of the ‘cryptic-ness’ of the genus. Field work in Myanmar would allow for bioacoustic 

analysis which could be revealing of any reproductive isolation that might be occurring between 

species, as well as monitoring during mating season for any possible hybridization between 

species or candidate species in contact zones. Additionally, more molecular work would be 

beneficial to test more mitochondrial and nuclear loci within their genome to see if they further 

support the phylogenies resulting from our analysis.  

 

V. Concluding Remarks 

In conclusion, allocations of funding and resources that are based on numbers of 

threatened species may be inaccurately distributed elsewhere if taxonomic records are not a true 

reflection of the diversity of anurans that are currently extant. Morphological systematics in 

tandem with molecular genetics has a great advantage in its suitability to the large-scale museum 

collections of preserved specimens (Hillis, 1987), especially since a sizable percentage of anuran 

species are on the verge of going extinct and can only be studied through preserved collections 

(Ponder, 2001). Today, many species are protected through rare species conservation acts that 
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prohibit DNA sample collections to take place, or the DNA samples are too difficult or costly to 

collect. The study of comparative anatomy has been the foundation for essentially all species 

identifications up until the modern era, and the addition of molecular findings may provoke 

greater conservation implications for the ‘common puddle frogs’ of Occidozyga since each 

newly discovered, genetically distinct group’s distribution is more reduced than once conceived 

and, hence, all the more perilous to maintain. This is especially true given that the populations' 

natural ranges appear to be constrained due to geographic isolation- whereas many original 

cryptic frog species complexes initially had broad geographical ranges- the actual biological 

species in those complexes have far more limited ecological distributions, making each more 

prone to extinction. Therefore, we support the recognition and protection of these distinct 

evolutionary lineages as evolutionary significant units (ESUs) in order to best preserve the 

genetic diversity within each clade and the diverging evolutionary trajectories upon which they 

are on, as well as suggesting further in the field study of this genus to determine if interbreeding 

may be taking place between them in situ. Genetic diversity serves as a critical way for 

populations to adapt to changing environments, whether it be an anthropogenic change 

(deforestation or climate change), novel diseases, or change based on a purely abiotic factor. By 

maintaining and preserving more variation, it becomes far more likely that some individuals 

within any given population will possess some variations of alleles that are better suited for the 

changing environment and landscape. Those individuals are more likely to survive to produce 

offspring bearing that beneficial allele or set of genes and the population will have a better 

chance of continuing for more generations because of the success of these individuals within 

their lineage. An important consideration in species conservation efforts is to avoid having to 

manually create and maintain high genetic diversity in a given genus or population, in order to 
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not have to rely on species rescue efforts to ensure the longevity of a species contributing to its 

ecosystem. Although much of the rainforest has already vanished from most of Southeast Asia, 

Myanmar can still take crucial action to preserve one of the most biodiverse places on Earth as a 

whole by preserving each of the members of its ecosystems as individuals.  

Increasing global disturbance and destruction of natural ecosystems are accelerating 

catastrophic-level extinctions of species (Brook et al., 2006). Given that many species remain 

undescribed, efforts being made to both catalogue and explain the necessity of biodiversity need 

to be prioritized; investigating novel speciation mechanisms, planning conservation given new 

data on novel cryptic species, and updating taxonomic, regional and global diversity indices are 

worthwhile avenues for future research. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

References 

Ali, M., Khan, R. 2001. A Report on the Puddle (Bleating) Frog Occidozyga lima (Gravenhorst) 

from the Teknaf Peninsula, Bangladesh, with Notes on the Presence of other Vertebrates. 

Zoo’s Print Journal, 16(169), 583-587. Retrieved from 

http://www.zoosprint.org/zooprintjournal/2001/september/583-587.pdf 

AmphibiaWeb. 2018. https://amphibiaweb.org 

Anderson, J. 1871. A list of the reptilian accession to the Indian Museum, Calcutta from 1865 to 

1870, with a description of some new species. Journal of the Asiatic Society of Bengal 

40:12–39. 

Angulo, A., & Icochea, J. 2010. Cryptic species complexes, widespread species and 

conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group 

(Anura: Leptodactylidae). Systematics and Biodiversity, 8(3), 357-370. 

Aubry, K. B.., Raley, C. M., McKelvey, K. S. 2017.The importance of data quality for 

generating reliable distribution models for rare, elusive, and cryptic species. PLoS 

One, 12 (2017), Article e0179152, 10.1371/journal.pone.0179152 

Aung, T. T., & Lewis, S. 2018. 'We can't go anywhere': Myanmar closes Rohingya camps but... 

Retrieved April 24, 2019, from https://www.reuters.com/article/us-myanmar-rohingya-

segregation-insight/we-cant-go-anywhere-myanmar-closes-rohingya-camps-but-

entrenches-segregation-idUSKBN1O502U 

Bhagwat T, A. Hess, N. Horning, T. Khaing, Z. M. Thein, K. M. Aung, et al. In Review. Losing 

a jewel—rapid declines in Myanmar's intact forests from 2002–2014. PLoS ONE. 

Bell, B. D., Daugherty, C. H., & Hay, J. M. 1998. Leiopelma pakeka, n. sp.(Anura: 

Leiopelmatidae), a cryptic species of frog from Maud Island, New Zealand, and a 

reassessment of the conservation status of L. hamiltoni from Stephens Island. Journal of 

the Royal Society of New Zealand, 28(1), 39-54. 

Bocxlaer, I. V., K. Roelants, S. D. Biju, J. Nagaraju, and F. Bossuyt. 2006. Late Cretaceous 

vicariance in Gondwanan amphibians. PLoS ONE 1:e74. 

Bossuyt, F., and M. C. Milinkovitch. 2001. Amphibians as indicators of early Tertiary "out-of-

India" dispersal of vertebrates. Science 292:93-95 

Bossuyt, F., R. Brown, D. Hillis, D. Cannatella, and M. Milinkovitch. 2006. Phylogeny and 

biogeography of a cosmopolitan frog radiation: late Cretaceous diversification resulted in 

continent-scale endemism in the family Ranidae. Systematic Biology 55:579-594. 

Boulenger, G. A. 1882. Catalogue of the Bratrachia Salientia s. Ecaudata in the collection of the 

British Musuem. London. 2, 1-6 

Brook, B. W., Bradshaw, C. J., Koh, L. P., & Sodhi, N. S. 2006. Momentum Drives the Crash: 

Mass Extinction in the Tropics 1. Biotropica: The Journal of Biology and Conservation, 

38(3), 302-305. 

Caminer, M. A., & Ron, S. R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and 

Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new 

species. ZooKeys, (370), 1–68. doi:10.3897/zookeys.370.6291 



55 
 

Castroviejo-Fisher, S., J. Köhler, I. De La Riva, and J. M. Padial. 2017. A new morphologically 

cryptic species of Phyllomedusa (Anura: Phyllomedusidae) from Amazonian forests of 

northern Peru revealed by DNA sequences. Zootaxa, 4269(2), 245–264. 

https://doi.org/10.11646/zootaxa.4269.2.4 

CEIC.com. Myanmar: SNA 1968: Gross Domestic Product: Current Price: CEIC. (n.d.). Retrieved 

August 9, 2019, from https://www.ceicdata.com/en/myanmar/sna-1968-gross-domestic-

product-current-price 

(Listed under-"Myanmar GDP: Goods: Mining" 1986 - 2018 | Yearly | MMK mn | 

Central Statistical Organization) 

Chan, K. O., & Brown, R. M. 2017. Did true frogs ‘dispersify’?. Biology letters, 13(8), 20170299. 

Che, J., Pang, J., Zhao, H., Wu, G. F., Zhao, E. M., and Zhang, Y. P. 2007. Phylogeny of Raninae 

(Anura: Ranidae) inferred from mitochondrial and nuclear sequences. Molecular 

Phylogenetics and Evolution, 43(1), 1-13. 

Che, J., Zhou, W.W., Hu, J.S., Yan, F., Papenfuss, T.J., Wake, D.B., Zhang, Y.P. 2010. Spiny 

frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad 

Sci USA. 107:13765–13770 

 Chen, Z., H. Li, Y. Zhu, Q. Feng, Y. He, and X. Chen. 2017. Molecular phylogeny of the family 

Dicroglossidae (Amphibia: Anura) inferred from complete mitochondrial genomes. 

Biochemical Systematics and Ecology, 71, 1-9. doi: 10.1016/j.bse.2017.01.006 

 Collins, J. P., and A. Storfer. 2003. Global amphibian declines: Sorting the hypotheses. Diversity 

and Distributions, 9(2), 89–98. https://doi.org/10.1046/j.1472-4642.2003.00012.x 

 Collins, R. A., and Cruickshank, R. H. 2013. The seven deadly sins of DNA barcoding. Molecular 

ecology resources, 13(6), 969-975. 

 Connette, G. M., P. Oswald, M. K. Thura, K. J. LaJeunesse Connette, M. E. Grindley, M. Songer, 

et al. 2017. Rapid forest clearing in a Myanmar proposed national park threatens two newly 

discovered species of geckos (Gekkonidae: Cyrtodactylus). PLoS ONE 12(4): e0174432. 

https://doi.org/10.1371/journal.pone.0174432 

 Cryer, J., Wynne, F., Price, S. J., & Puschendorf, R. (2019). Cryptic diversity in 

Lithobateswarszewitschii (Amphibia, Anura, Ranidae). ZooKeys, 838, 49–69. 

doi:10.3897/zookeys.838.29635 

 Dever, J. A., A. M. Fuiten, Ö. Konu, and J. A. Wilkinson. 2012. Cryptic Torrent Frogs of 

Myanmar: An Examination of the Amolops marmoratus Species Complex with the 

Resurrection of Amolops afghanus and the Identification of a New Species. Copeia, 

2012(1), 57–76. https://doi.org/10.1643/CH-10-180 

 Dever, J. A. 2017. Theloderma asperum. Journal of Herpetology, 51(3), 425–436. 

 Dubois, A. 1982. Le statut nomenclatural des noms generiques d'amphbiens anoures crees par Kuhl 

& van Hasselt (1822): Megophrys, Occidozyga & Rhacophorus. Bulletin du Museum 

National d'Histoire Naturelle. Paris. Section A, Zoologie, Biologie et Ecologie Animales 4: 

261–280. 

  Dubois, A. 1987. Miscellanea nomenclatorica batrachologica (V). Alytes 3: 111-116. 

Dubois, A. 1992. Notes sur la classification des Ranidae (amphibiens anoures) Bull. Mens. Soc. 

Linn. Lyon, 61, 305-352. 

Duellman, W. E., and L. Trueb 1994. Biology of Amphibians. Johns Hopkins University Press 

Elmer, K.R., Cannatella, D.C. 2008. Three new species of leaflitter frogs from the upper Amazon 

forests: cryptic diversity within Pristimantis “ockendeni” (Anura: Strabomantidae) in 

Ecuador. Zootaxa 1784: 11-38. 



56 
 

Elmer, K.R., Bonett, R.M., Wake, D.B., Lougheed, S.C. 2013. Early Miocene origin and cryptic 

diversification of South American salamanders. BMC Evolutionary Biology 13: 59. doi: 

10.1186/1471-2148-13-59., 

Evans, B.J., Brown, R.M., Mcguire, J.A., Supriatna, J., Andayani, N., Diesmos, A., Iskandar, D., 

Melnick, D.J., Cannatella, D.C., 2003. Pylogenetics of fanged frogs: testing biogeographical 

hypotheses at the interface of the Asian and Australian faunal zones. Systematic Biology 

52, 794-819. 

Evans, B. J., Kelley, D. B., Tinsley, R. C., Melnick, D. J., & Cannatella, D. C. 2004. A 

mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications 

for polyploid evolution. Molecular phylogenetics and evolution, 33(1), 197-213. 

FAO. 2015. Global Forest Resources Assessment. Rome: Food and Agriculture Organization of the 

United Nations. 

Fei, L., Ye, C.-Y. & Huang, Y.-Z. 1991. Key to Chinese amphibia. Chongqing (Sichuan) Branch, 

Science and Technology Literature Publishing house (in Chinese). Chongqing PRC. 

Fei, L., C.-y. Ye, and J.-p. Jiang. 2010. Phylogenetic systematics of Ranidae. Herpetologica 

Sinica/Liang qi pa xing dong wu xue yan jiu 12: 1–43. 

Fei L, Ye CY, Jiang JP. 2012. Colored atlas of Chinese Amphibians and their distributions. 

Chegndu: Sichuan Publishing House of Science and Technology. 

Fitzinger L. (1843), Systema Reptilium. Amblyglossae, Braumüller et Seidel, Vindobonae 

[Vienna]. 

Fleischer, R. C., E. A. Perry, K. Muralidharan, E. E. Stevens, and C. M. Wemmer. 2001. 

Phylogeography of the Asian Elephant (Elephas maximus) Based on Mitochondrial DNA 

Evolution, 55(9), 1882–1892. Retrieved from http://www.bioone.org/doi/pdf/10.1554/0014-

3820%282001%29055%5B1882%3APOTAEE%5D2.0.CO%3B2 

Fouquet, A., A. Gilles, M. Vences, C. Marty, M. Blanc, and N. J. Gemmell. 2007. Underestimation 

of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses. PLoS ONE 

2:e1109. doi: 10.1371/journal.pone.0001109 

Frost, D. R. 2019. Amphibian Species of the World: An Online Reference. Version 6.0. Electronic 

Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American 

Museum of Natural History, New York, USA. 

Frost, D. R., T. Grant, J. Faivovich, R. H. Bain, A. Haas, C. F. Haddad, C. J. Raxworthy et al. 2006. 

The amphibian tree of life. Bulletin of the American Museum of natural History, 1-291. 

Funk, W.C., Caminer, M., Ron, S.R. 2012. High levels of cryptic species diversity uncovered in 

Amazonian frogs. Proceedings of the Royal Society B-Biological Sciences 279: 1806-1814. 

doi: 10.1098/rspb.2011.1653 

Gao, X. Y., Dong, B. J., Li, J. T., Wang, G., Jiang, J.P., Yang, B.T. and Wang, B. 2019. 

Phylogeographic investigation on the spiny frog Quasipaa shini (Amphibia: Anura: 

Dicroglossidae) using mitochondrial DNA: cryptic species and species complex, 

Mitochondrial DNA Part B, 4:1, 1479-1483, DOI: 10.1080/23802359.2019.1580154 

Garg, S., and Biju, S. D. 2019. New microhylid frog genus from Peninsular India with Southeast 

Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. 

Scientific reports, 9(1), 1906. 

Grant, E.H.C., Miller, D.A., Schmidt, B.R., Adams, M.J., Amburgey, S.M., Chambert, T., 

Cruickshank, S.S., Fisher, R.N., Green, D.M., Hossack, B.R. and Johnson, P.T., 2016. 

Quantitative evidence for the effects of multiple drivers on continental-scale amphibian 

declines. Scientific reports, 6, p.25625. 

http://www.bioone.org/doi/pdf/10.1554/0014-3820%282001%29055%5B1882%3APOTAEE%5D2.0.CO%3B2
http://www.bioone.org/doi/pdf/10.1554/0014-3820%282001%29055%5B1882%3APOTAEE%5D2.0.CO%3B2


57 
 

Gravenhorst, J. L. C., 1829. - Deliciae Musei Zoologici Vratislaviensis. Fasciculus primus, 

continens Chelonios et Batrachiae. Lipsiae, Sumptibus Leopoldi Vossii : i-xiv + 1-106, pl. 

I-XVII. 

Gehara, M., A. J. Crawford, V. G. D Orrico, A. Rodríguez, S. Lötters, A. Fouquet, J. Köhler, et al. 

2014. High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental 

Phylogeography of the Neotropical Tree Frog Dendropsophus minutus. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0103958 

Grismer, L. L., Wood, P. L., Thura, M. K., Win, N. M., & Quah, E. S. (2019). Two more new 

species of the Cyrtodactylus peguensis group (Squamata: Gekkonidae) from the fringes of 

the Ayeyarwady Basin, Myanmar. Zootaxa, 4577(2), 274. doi:10.11646/zootaxa.4577.2.3 

Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: 

computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 

20:353-431. 

Hebert, P.D.N, Cywinska, A., Ball, S.L., deWaard, J.R. 2003a. Biological identifications through 

DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321. 

Hebert, P.D.N., Ratnasingham, S., deWaard, J.R. 2003b. Barcoding animal life: cytochrome c 

oxidase subunit 1 divergences among closely related species. Proceedings of the Royal 

Society B: Biological Sciences 270: 596–599 

Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Annual review of 

Ecology and Systematics, 18(1), 23-42. 

Inger, R. F. 1954. Systematics and Zoogeography of Philippine Amphibia. Chicago Natural History 

Museum. 

http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edsbhl&AN=edsb

hl.title.5571&site=eds-live&scope=site. 

Inger, R. F. 1996. Commentary on a proposed classification of the family Ranidae. Herpetologica, 

241-246. 

Inger, R. F. 1999. Distribution of amphibians in Southern Asia and adjacent islands. Pages 445-482 

in W. E. Duellman, editor. Patterns of Distribution of Amphibians: A Global Perspective. 

John Hopkins University Press, Baltimore, USA. 

Inger, R. F., and R. B. Stuebing. 2005. Frogs of Borneo. Sabah, Malaysia: Natural History 

Publications Borneo. ISBN, 983-812. 

Inger, R., Stuart, B., Iskandar D., 2009. Systematics of a widespread Southeast Asian frog, Rana 

chalconota (Amphibia: Anura: Ranidae). Zoological Journal of the Linnean Society 155, 

123-147. 

IUCN.org. 2015. “Mapping out the goals for biodiversity protection in Myanmar.” 

https://www.iucn.org/content/mapping-out-goals-biodiversity-protection-myanmar 

IUCN 2019. The IUCN Red List of Threatened Species. Version 2019-1. 

<https://www.iucnredlist.org 

Jungfer, K.H., Faivovich, J., Padial, J.M., Castroviejo-Fisher, S., Lyra, M.M., Berneck, B., Iglesias, 

P.P., Kok, P.J.R., MacCulloch, R.D., Rodrigues, M.T., Verdade, V.K., Torres Gastello, 

C.P., Chaparro, J.C., Valdujo, P.H., Reichle, S., Moravec, J., Gvoždík, V., Gagliardi-Urrutia 

G., Ernst, R., De la Riva, I., Means, D.B., Lima, A.P., Señaris, J.C., Wheeler, W.C., 

Haddad, C.F.B. 2013. Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an 

Amazonian puzzle. Zoologica Scripta 42: 351-380. doi: 10.1111/zsc.12015, 

Kareiva, P., Marvier, P. 2003. Conserving Biodiversity Coldspots: Recent calls to direct 

conservation funding to the world’s biodiversity hotspots may be bad investment advice. 

https://doi.org/10.1371/journal.pone.0103958
https://www.iucn.org/content/mapping-out-goals-biodiversity-protection-myanmar


58 
 

American Scientist. Sigma Xi, The Scientific Research Society. 

https://doi.org/10.2307/27858246 

Katoh, K., Misawa, K., Kuma, K., Miyata, T. 2002. MAFFT: a novel method for rapid multiple 

sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3059–66. 

Kotaki, M., Kurabayashi, A., Matsui, M., Khonsue, W., Djong, T.H., Tandon, M., Sumida, M.. 

2008. Genetic Divergences and Phylogenetic Relationships Among the Fejervarya 

limnocharis Complex in Thailand and Neighboring Countries Revealed by Mitochondrial 

and Nuclear Genes. Zoological Science, 25(4): 381–390. https://doi.org/10.2108/zsj.25.381 

Kuhl, H., and J. C. Van Hasselt. 1822. Uittreksels uit breieven van de Heeren Kuhl en van Hasselt, 

aan de Heeren C. J. Temminck, Th. van Swinderen en W. de Haan. Algemeene Konst-en 

Letter-Bode 7: 99–104. 

Kumar S., Stecher G., Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 

version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874. 

Labisko, J., Griffiths, R. A., Chong-Seng, L., Bunbury, N., Maddock, S. T., Bradfield, K. S., and  

Groombridge, J. J. 2019. Endemic, endangered and evolutionarily significant: Cryptic l 

ineages in Seychelles’ frogs (Anura: Sooglossidae). Biological Journal of the Linnean 

Society, 126(3): 417-435. doi:10.1093/biolinnean/bly183 

Lee J.L., Miller, A.H., Connette, G.M., Oo K. Swe, Zug, G.R., and Mulcahy, D. G. 2018. First 

record of the Malaysian Bridle Snake, Dryocalamus subannulatus (Duméril, Bibron & 

Duméril, 1854), in Myanmar (Reptilia, Serpentes, Colubridae). Check List 14: 341–345. 

Lieberman, V. 2010. Strange Parallels Southeast Asia in Global Context, c.800–1830 Volumes 1 

and 2. (pg.333) Cambridge: Cambridge University Press. 

Liu, L. S., Zhao, L. Y., Wang, S. H., and Jiang, J. P. 2016. Research proceedings on amphibian 

model organisms. Dong wu xue yan jiu = Zoological research, 37(4), 237–245. 

doi:10.13918/j.issn.2095-8137.2016.4.237 

Marmayou, J., Dubois, A., Ohler, A., Pasquet, E., and Tillier, A. 2000. Phylogenetic relationships 

in the Ranidae. Independent origin of direct development in the genera Philautus and 

Taylorana, Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la 

Vie,Volume 323, Issue 3,287-297, ISSN 0764-4469, https://doi.org/10.1016/S0764-

4469(00)00133-5. 

McLeod, D. S. 2010. Of Least Concern? Systematics of a cryptic species complex: Limnonectes 

kuhlii (Amphibia: Anura: Dicroglossidae). Molecular Phylogenetics and Evolution, 56(3), 

991-1000. https://doi.org/10.1016/j.ympev.2010.04.004 

Mendelson, J. R. 2006. Biodiversity: Confronting Amphibian Declines and Extinctions. Science, 

313(5783): 48–48. https://doi.org/10.1126/science.1128396 

Meegaskumbura, M., Bossuyt, F., Pethiyagoda, R., Manamendra-Arachchi, K., Bahir, M., 

Milinkovitch, M. C., & Schneider, C. J. 2002. Sri Lanka: an amphibian hot spot. Science, 

298(5592), 379-379. 

MOECAF. The Republic of the Union of Myanmar: National Biodiversity Strategy and Action 

Plan. 2011. 

Moritz, C. 1994. Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology 

and Evolution 9: 373–375 

Mulcahy, D.G., Lee, J.L., Miller, A.H., Zug, G.R. 2017. Troublesome Trimes: Potential cryptic spe 

-ciation of the Trimeresurus (Popeia) popeiorum complex (Serpentes: Crotalidae) around 

the Isthmus of Kra (Myanmar and Thailand). Zootaxa 4347: 301–315. 

Mulcahy, D. G., J. L. Lee, A. H. Miller, M. Chand, M. K. Thura, and G. R. Zug. 2018. Filling the 

https://doi.org/10.2307/27858246
https://doi.org/10.2108/zsj.25.381
https://doi.org/10.1126/science.1128396


59 
 

bins of life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) 

Region of Myanmar, with DNA barcode data. ZooKeys. doi: 10.3897/zookeys.757.24453 

Myers, C. W., W. E. Duellman. 1982. A new species of Hyla from Cerro Colorado, and other tree 

frog records and geographical notes from western Panama. American Museum Novitates 

2752:1–25. 

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. 

Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853–858. 

https://doi.org/10.1038/35002501 

Nussbaum R.A., Wu S. Distribution, variation, and systematics of the Seychelles 

treefrog, Tachycnemis seychellensis (Amphibia: Anura: Hyperoliidae) J. 

Zool. 1995;236:383–406. 

Noble, G. Kingsley. The Biology of the Amphibia. Edited by A. Franklin Shull. 1st ed. (pg. 519) 

New York, NY: McGraw-Hill, 1931. 

https://www.biodiversitylibrary.org/item/156483#page/537/mode/1up 

Oh, S. (Ed.). 2016. Myanmar’s mountain and maritime borderscapes: Local practices, boundary-

making and figured worlds. Singapore: ISEAS-Yusof Ishak Institute. 

Peters, W. C. H. 1867. Herpetologische Notizen. Monatsberichte der Königlichen Preussische 

Akademie des Wissenschaften zu Berlin 1867: 13–37. 

Pfenninger, M., Schwenk, K., 2007. Cyrptic animal species are homogeneously distributed among 

taxa and biogeographical regions. BMC Evolutionary Biology 7, 121. 

Piacenza, S. E., L. L. Thurman, A. K. Barner, C. E. Benkwitt, K. S. Boersma, E. B. Cerny-

Chipman, S. S. Heppell, et al. 2015. Evaluating Temporal Consistency in Marine 

Biodiversity Hotspots. PLoS ONE, 10(7), e0133301. 

https://doi.org/10.1371/journal.pone.0133301 

Ponder, W. F., G. A. Carter, P. Flemons, and R. R. Chapman. 2001. Evaluation of museum 

collection data for use in biodiversity assessment. Conservation biology, 15(3): 648-657. 

https://doi.org/10.1016/j.ympev.2011.06.012 

Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution19 

(25):1253–1256. 

Pyron, R. A., and J. J. Wiens. 2011. A large-scale phylogeny of Amphibia including over 2800 

species, and a revised classification of advanced frogs, salamanders, and caecilians. 

Molecular Phylogenetics and Evolution 61: 543–583. 

Rafinesque, C. S. 1814. Précis des découvertes et travaux somiologiques de Mr. C. S. Rafinesque 

Schmaltz entre 1800 et 1814 ou choix raisonné de ses principales découvertes en Zoologie 

et en Botanique, pour servir d'introduction à ses ouvrages futurs. Royale Typographie 

Militaire, Palermo, 55. 

Ratnasingham, S., & Hebert, P. D. 2013. A DNA-Based Registry for All Animal Species: The 

Barcode Index Number (BIN) System. PLoS ONE, 8(7). doi:10.1371/journal.pone.0066213 

RFA.org. “Residents Call For End to Mining Activities in Myanmar's Kachin State.” 2019, May 

21. Retrieved from https://www.rfa.org/english/news/myanmar/residents-call-for-end-to-

mining-activities-12282018154301.html 

Reyes, A., C. Gissi, F. Catzeflis, E. Nevo, G. Pesole, and C. Saccone. 2003. Congruent Mammalian 

Trees from Mitochondrial and Nuclear Genes Using Bayesian Methods. Molecular Biology 

and Evolution, 21(2): 397–403. https://doi.org/10.1093/molbev/msh033 

Roelants, K., Jiang, J. P. and Bossuyt, F. 2004. Endemic ranid (Amphibia: Anura) genera in 

southern mountain ranges of the Indian subcontinent represent ancient frog lineages: evi-

https://www.biodiversitylibrary.org/item/156483#page/537/mode/1up
https://doi.org/10.1093/molbev/msh033


60 
 

dence from molecular data. Mol. Phylogenet. Evol.31 , 730–740. 

Ronquist, F. R. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics 19:1572–1574. 

Sanders, K. L., Malhotra, A., Thorpe, R. S. 2006. Combining molecular, morphological and 

ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal 

of the Linnean Society, 87(3), 343-364. doi:10.1111/j.1095-8312.2006.00568.x 

Savage, J. M. and W. R. Heyer. 1997. Digital webbing formulae for Anurans: a refinement. 

Herpetological Review 28:131. 

Shine, R. 1979 Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979, 297–306. 

Smith, M. A. 1916. On a collection of reptiles and batrachians from Peninsular Siam. Journal of the 

Natural History Society of Siam 2: 148–171. 

Smith, M., Williamson, W. J., & Godfrey, E. J. (1916-1918). The Journal of the Natural History 

Society of Siam (Vol. 2, Pg.172-173). London: Luzac. 

Stejneger, L. 1925. Chinese amphibians and reptiles in the United States National Museum. 

Proceedings of the United States National Museum 66: 1–115. 

Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. 

W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. 

Science (New York, N.Y.), 306(5702): 1783–6. https://doi.org/10.1126/science.1103538 

Stuart, B., Inger, R., Voris, H., 2006. High level of cryptic species diversity revealed by sympatric 

lineages of Southeast Asian forest frogs. Biology Letters 2, 470. 

Tarvin, R. D., E. A. Powell, J. C. Santos, S. R. Ron, and D. C. Cannatella. 2017. The birth of 

aposematism: High phenotypic divergence and low genetic diversity in a young clade of 

poison frogs. Molecular Phylogenetics and Evolution, 109: 283–295. 

https://doi.org/10.1016/j.ympev.2016.12.035 

Tucker, C. M., M. W. Cadotte, S. B. Carvalho, T. J. Davies, S. Ferrier, S. A. Fritz, F. Mazel, et al. 

2017. A guide to phylogenetic metrics for conservation, community ecology and 

macroecology. Biological Reviews, 92(2): 698–715. https://doi.org/10.1111/brv.12252 

Van der Meijden et al., 2005. van der Meijden, A., Vences, M., Hoegg, S., Meyer, A. 2005. 

A previously unrecognized radiation of ranid frogs in Southern Africa revealed by nuclear 

and mitochondrial DNA sequences. Mol. Phylogenet. Evol., 37, 674-685, 

10.1016/j.ympev.2005.05.001 

Vences, M., Kosuch, J., Boistel, R., Haddad, C. F. B., La Marca, E., Lötters, S., Veith, M. 2003. 

Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular 

perspective. Organisms, Diversity and Evolution, 3, 215–226  

Vences, M., M. Thomas, R. M. Bonett, and D. R. Vieites. 2005. Deciphering amphibian diversity 

        through DNA barcoding: Chances and challenges. Philos Trans R Soc London Ser B 

        360:1859–1868 

Vences, M., Mariana, L., Perl, R. G. B., Bletz, M. C., Stankovic, D., Lopes, C. M., Jarek, M., 

Bhuju, S., Geffers, R., Haddad, C. F. B., Steinfartz, S. 2016. In: Conservation Genetics 

Resources. 8:3, 323-328; Springer Language: English, Database: Academic OneFile 

Vieites, D. R., K. C. Wollenberg, F. Andreone, J. Köhler, F. Glaw, and M. Vences. 2009. Vast 

underestimation of Madagascar's biodiversity evidenced by an integrative amphibian 

inventory. Proceedings of the National Academy of Sciences, 106(20): 8267-8272. 

Vitt, L., and J. P. Caldwell. 2008. Herpetology: An Introductory Biology of Amphibians and 

Reptiles. 4th ed., Academic Press. Retrieved October 10, 2017. 

Wallington, T. J., R. J. Hobbs, and S. A. Moore. 2005. Implications of current ecological thinking 

https://doi.org/10.1016/j.ympev.2016.12.035
https://doi.org/10.1111/brv.12252


61 
 

for biodiversity conservation: A review of the salient issues. Ecology and Society, 10(1), 

16. Retrieved from http://researchrepository.murdoch.edu.au/id/eprint/1743/ 

Webb, G. J. W. 2008. The dilemma of accuracy in IUCN Red List categories, as exemplified by 

hawksbill turtles, Eretmochelys imbricata. Endangered Species Research, 6, 161–172. 

https://doi.org/10.3354/esr00124 

Wiens, J. J., and M. C. Morrill. 2011. Missing Data in Phylogenetic Analysis: Reconciling Results 

from Simulations and Empirical Data. Systematic Biology, 60(5), 719–731. 

https://doi.org/10.1093/sysbio/syr025 

Wilkinson, M., Presswell, B., Sherratt, E., Papadopoulou, A., Gower, D. J. 2014. A new species of 

striped Ichthyophis Fitzinger, 1826 (Amphibia: Gymnophiona: Ichthyophiidae) from My -

anmar. Zootaxa 3785: 45–58. 

Willis, K. J., L. Gillson, and S. Knapp. 2007. Biodiversity hotspots through time: an introduction. 

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 

362(1478), 169–74. https://doi.org/10.1098/rstb.2006.1976 

Ye, C., Fei, L, & Hu, S., 1993. Rare and economic amphibians of China. Chengdu, Sichuan 

Publishing House of Science and Technology: [i-iii] + 1-2 + 1-2 + 1-7 + 412. [In Chinese]. 

https://doi.org/10.1016/j.ympev.2009.06.018 

Zhang, P., T. J. Papenfuss, M. H. Wake, L. Qu, and D. B. Wake. 2008. Phylogeny and 

biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete 

mitochondrial genomes. Molecular Phylogenetics and Evolution, 49, 586–597. 

https://doi.org/10.1016/j.ympev.2008.08.020 

Zhang, Q., Z. G. Zeng, Y. J. Ji, D. X. Zhang, and Y. L. Song. 2008. Microsatellite variation in 

China’s Hainan Eld’s deer (Cervus eldi hainanus) and implications for their conservation. 

Conservation Genetics. https://doi.org/10.1007/s10592-007-935-2 

Zhang, P., and M. H. Wake. 2009. A mitogenomic perspective on the phylogeny and biogeography 

of living caecilians (Amphibia: Gymnophiona). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1093/sysbio/syr025


62 
 

Appendices: 

 

Appendix I: Samples of Occidozyga sp. and outgroups used in molecular analysis. 

Sequences generated for the present study are samples indicated by the ID 1-47, with the other sequences 

downloaded from GenBank; N/A indicates that data is lacking for that gene of the taxon. The museum 

abbreviations for the sequenced samples are CAS, California Academy of Sciences; USNM, Smithsonian 

Natural History Museum; FMNH is Field Museum of Natural History; AMNH, American Museum of 

Natural History; SCUM, Zoological Museum of Sichuan University; YNU, Yunnan University. 

Sample 

ID 

Clade Original Voucher Tissue 

ID 

Locality GenBank 

No. 

  

16S rRNA COI RHOD 

1 O. cf. laevis CAS 208248 Bago, Myanmar N/A N/A N/A 

2 O. cf. laevis CAS 208249 Bago, 

Myanmar 

N/A N/A N/A 

3 O. cf. laevis CAS 208250 Bago, Myanmar N/A N/A N/A 

4 O. lima CAS 210794 Yangon, Myanmar N/A N/A N/A 

5 O. sp. CAS 211581 Ayeyarwade, 

Myanmar 

N/A N/A N/A 

6 O. sp. CAS 211639 Rakhine, 

Myanmar 

N/A N/A N/A 

7 O. lima CAS 215917 Mandalay, 

Myanmar 

N/A N/A N/A 

8 O. lima CAS 216192 Mandalay, 

Myanmar 

N/A N/A N/A 

9 O. sp. CAS 221939 Rakhine, 

Myanmar 

N/A N/A N/A 

10 O. lima CAS 222521 Mon, Myanmar N/A N/A N/A 
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11 O. sp. CAS 223294 Rakhine, 

Myanmar 

N/A N/A N/A 

12 O. martensii CAS 230396 Yangon, Myanmar N/A N/A N/A 

13 O. magnapustulosa CAS 230566 Shan, Myanmar N/A N/A N/A 

14 O. lima CAS 231123 Magway, 

Myanmar 

N/A N/A N/A 

15 O. lima CAS 231175 Magway, 

Myanmar 

N/A N/A N/A 

16 O. sp. CAS 232449 Kachin, Myanmar N/A N/A N/A 

Sample 

ID 

Species Voucher Tissue 

ID 

Locality GenBank 

No. 

  

16S rRNA COI RHOD 

17 O. sp. CAS 232733 Kachin, Myanmar N/A N/A N/A 

18 O. martensii CAS 233344 Yangon, Myanmar N/A N/A N/A 

19 O. martensii CAS 235424 Shan, Myanmar N/A N/A N/A 

20 O. lima CAS 235506 Shan, Myanmar N/A N/A N/A 

21 O. sp. CAS 235981 Kachin, Myanmar N/A N/A N/A 

22 O. lima CAS 236046 Yangon, Myanmar N/A N/A N/A 

23 O. sp. CAS 239481 Ayeyarwade, 

Myanmar 

N/A N/A N/A 

24 O. sp. CAS 239535 Ayeyarwade, 

Myanmar 

N/A N/A N/A 

25 O. martensii CAS 240345 Mon, Myanmar N/A N/A N/A 

26 O. martensii CAS 240346 Mon, Myanmar N/A N/A N/A 

27 O. sp. CAS 241138 Kachin, Myanmar N/A N/A N/A 
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28 O. sp. CAS 241263 Kachin, Myanmar N/A N/A N/A 

29 O. lima CAS 242979 Magway, 

Myanmar 

N/A N/A N/A 

30 O. sp. CAS 243903 Tanintharyi, 

Myanmar 

N/A N/A N/A 

31 O. sp. CAS 247207 Tanintharyi, 

Myanmar 

N/A N/A N/A 

32 O. sp. CAS 247487 Tanintharyi, 

Myanmar 

N/A N/A N/A 

33 O. sp. CAS 247790 Tanintharyi, 

Myanmar 

N/A N/A N/A 

34 O. sp. CAS 247983 Tanintharyi, 

Myanmar 

N/A N/A N/A 

Sample 

ID 

Species Voucher Tissue 

ID 

Locality GenBank 

No. 

  

16S rRNA COI RHOD 

35 O. lima CAS 210572 Mandalay, 

Myanmar 

N/A N/A N/A 

36 O. lima CAS 210549 Magway, 

Myanmar 

N/A N/A N/A 

37 O. lima CAS 210588 Mandalay, 

Myanmar 

N/A N/A N/A 

38 O. sp. CAS 211586 Ayeyarwade, 

Myanmar 

N/A N/A N/A 
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39 O. lima CAS 215941 Mandalay, 

Myanmar 

N/A N/A N/A 

40 O. lima CAS 215942 Mandalay, 

Myanmar 

N/A N/A N/A 

41 O. sp. CAS 221151 Rakhine, 

Myanmar 

N/A N/A N/A 

42 O. sp. CAS 221852 Ayeyarwade, 

Myanmar 

N/A N/A N/A 

43 O. lima CAS 222377 Bago, Myanmar N/A N/A N/A 

44 O. sp. CAS 223088 Rakhine, 

Myanmar 

N/A N/A N/A 

45 O. martensii CAS 230413 Yangon, Myanmar N/A N/A N/A 

46 O. magnapustulosa CAS 230956 Shan, Myanmar N/A N/A N/A 

47 O. martensii CAS 230999 Shan, Myanmar N/A N/A N/A 

48 O. baluensis DQ283143 Sabah, Malaysia DQ283143 N/A N/A 

49 O. martensii DQ458256 China  DQ458256 N/A N/A 

50 O. martensii GU177877 China GU177877 GU177877 N/A 

51 O. martensii DQ283357 Ha Tinh, Vietnam DQ283357 N/A N/A 

52 O. martensii AF206467 Yok Don, 

Vietnam  

AF206467 N/A N/A 

53 Ingerana sp.  CAS-246787 Tanintharyi, 

Myanmar  

KF991266 N/A N/A 
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Sample 

ID 

Species Voucher Tissue 

ID 

Locality GenBank 

No. 

  

16S rRNA COI RHOD 

54 Ingerana sp. TAD_P918 

 

Phangnga, 

Thailand 

KR827831 N/A N/A 

55 I. tenasserimensis IASST AR83 Assam, India KU589219 N/A N/A 

56 O. sp. USNM 587105 

 

Bago, Myanmar N/A MG935622 N/A 

57 O. sp. USNM 587402 

 

 

Yangon, Myanmar N/A MG935623 N/A 

58 O. sp. USNM 587395 

 

Yangon, Myanmar N/A MG935624 N/A 

59 S. cubitalis 2005.0224 Phongsali, Laos N/A KR087687 N/A 

60 S. faber 0289Y2 Chanthaburi, 

Thailand 

N/A KR087707 N/A 

61 S. maosonensis K742 Vinh Phuc, 

Vietnam 

N/A KR087714 N/A 

62 O. lima AB489042 Kuala Lumpur, 

Malaysia 

N/A N/A AB489042 

63 O. baluensis FMNH242747 Sabah, Malaysia N/A N/A DQ283844 

64 O. martensii CAS 213254 Yangon, Myanmar N/A N/A DQ283901 

65 O. martensii AMNH A161171 Ha Tinh, Vietnam N/A N/A DQ283978 
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66 O. martensii SCUMH020 Hainan, China N/A N/A DQ458266 

67 O. martensii SCUM0437980 Yunnan, China N/A N/A DQ458267 

68 P. boulengeri YNU-

HU20024060 

Yunnan, China N/A N/A EU979919 

69 P. boulengeri KIZ-HUB293 Yichang, China N/A N/A EU979942 

70 O. martensii FMNH268805 Xizang, China N/A N/A KU243109 
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Appendix II: CAS Occidozyga Tissue Geo-Index for GIS Mapping 

 

CAS ID Clade Lat DD,N,19,11 Long DD,N,19,11 Year Collected Country Region State 

208248 C 18.85601 96.17259 1998 Myanmar Bago 

208249 C 18.85601 96.17259 1998 Myanmar Bago 

208250 C 18.85601 96.17259 1998 Myanmar Bago 

210572 lima 20.442333 96.121333 1999 Myanmar Mandalay 

210549 lima 21.50672222 95.19472222 1999 Myanmar Magway 

210588 lima 20.43658333 96.13722222 1999 Myanmar Mandalay 

210794 lima 17.046694 96.115417 1999 Myanmar Yangon 

211581 E 16.280056 94.770611 1998 Myanmar Ayeyarwady 

211586 E 16.28005556 94.77055556 1998 Myanmar Ayeyarwady 

211639 F 17.51925 94.688556 1998 Myanmar Rakhine 

215917 lima 21.399278 95.796917 2000 Myanmar Mandalay 

215941 lima 21.3945 95.80416667 2000 Myanmar Mandalay 

215942 lima 21.3945 95.80416667 2000 Myanmar Mandalay 

216192 lima 22.982222 96.108444 2000 Myanmar Mandalay 

221151 F 20.97822222 92.93861111 2001 Myanmar Rakhine 

221852 C 16.28005556 94.77055556 1998 Myanmar Ayeyarwady 

221939 F 17.584222 94.677778 2001 Myanmar Rakhine 

222377 C 17.06302778 96.25194444 1997 Myanmar Bago 

222521 lima 16.402917 97.649222 2002 Myanmar Mon 

223088 F 19.33744444 94.13555556 2002 Myanmar Rakhine 

223294 F 19.313833 94.150194 2002 Myanmar Rakhine 

230396 C 17.045639 96.092667 2002 Myanmar Yangon 

230413 C 17.04880556 96.09472222 2002 Myanmar Yangon 

230566 C 21.036083 96.395528 2002 Myanmar Shan 

230956 C 20.70586111 96.51277778 2002 Myanmar Shan 

230999 C 20.70586111 96.51277778 2002 Myanmar Shan 

231123 lima 20.068278 94.597306 2002 Myanmar Magway 

231175 lima 20.047444 94.493333 2002 Myanmar Magway 

232449 D 24.749417 96.348528 2003 Myanmar Kachin 

232733 D 25.016472 96.236556 2003 Myanmar Kachin 

233344 C 17.048417 96.094028 2003 Myanmar Yangon 

235424 B 21.320417 99.295028 2003 Myanmar Shan 

235506 lima 21.273389 99.548722 2003 Myanmar Shan 

235981 C 25.017333 96.235694 2003 Myanmar Kachin 

236046 lima 17.0465 96.108972 2003 Myanmar Yangon 

239481 D 16.626972 94.517889 2007 Myanmar Ayeyarwady  

239535 C 16.626389 94.534694 2007 Myanmar Ayeyarwady 

240345 C 17.406 97.078056 2008 Myanmar Mon 
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240346 C 17.406 97.078056 2008 Myanmar Mon 

241138 D 25.135833 96.422444 2008 Myanmar Kachin 

241263 D 25.271472 96.340917 2008 Myanmar Kachin 

242979 lima 22.321639 94.10475 2008 Myanmar Magway 

243903 Sp. Nov. 14.736944 98.240361 2009 Myanmar Tanintharyi 

247207 B 10.375639 98.604111 2010 Myanmar Tanintharyi  

247487 B 10.361361 98.629194 2010 Myanmar Tanintharyi 

247790 B 10.366306 98.603972 2010 Myanmar Tanintharyi 

247983 Sp. Nov. 14.6825 98.322917 2010 Myanmar Tanintharyi 
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Appendix III: Specimens of Occidozyga sp. from Myanmar used for morphological analysis. 

 

Species Museum 

ID 

Voucher 

ID 

SVL  HL  HW  IND  IOD  TD  DNE  EW  FLL THL  TIL FL  SEX Location 

State 

District 

Providence 

Township 

O. lima CAS 15249 23.56 6.42 8.7 1.58 1.11 2.61 1.85 3.2 10.9 9.85 10.79 13.47 NA Rangoon 8 mi N of 

Rangoon 

O. lima CAS 15250 25.11 6.88 8.88 1.79 1.06 2.38 1.88 2.99 10.48 9.96 11.04 13.98 NA Rangoon 8 mi N of 

Rangoon 

O. martensii USNM 58059 24.39 6.59 8.3 1.96 1.66 2.01 2.32 3.13 7.67 11.27 11.36 14.42 NA Bago Palon 

O. cf. laevis CAS 208248 17.8 5.45 6.37 1.89 1.16 1.58 1.54 2.81 7.99 8.05 8.33 8.98 NA Bago Bago Yoma 

O. cf. laevis CAS 208249 22.15 6.35 8.11 2.07 1.28 1.9 1.76 2.95 6.97 9.57 9.89 10.05 NA Bago Bago Yoma 

O. lima CAS 208489 27.66 7.46 9.23 1.69 1.37 2.79 1.88 3.68 11.99 12.66 13.56 14.25 NA Mandalay Mandalay 

O. lima CAS 208490 22.65 6.29 6.88 1.47 1.19 2.57 1.53 3.2 9.35 10.95 11.21 12.15 NA Mandalay Mandalay 

O. lima CAS 210572 26.58 7.11 9.39 1.83 1.69 2.71 2.24 3.09 12.92 12.81 13.21 14.9 NA Mandalay W of 

Yamethin 

O. martensii CAS 210780 30.45 7.6 9.53 2.76 1.37 2.07 2.16 3.81 9.85 14.05 13.03 13.65 NA Yangon Hlawga 

O. martensii CAS 210780 30.17 7.54 9.26 2.57 1.69 2.7 2.23 3.61 10.11 13.42 12.98 13.23 NA Yangon Hlawga 

Wildlife 

Park 

O. sp CAS 211581 27.32 5.67 10.18 2.55 1.71 1.96 2.07 3.35 10.93 14.77 13.79 14.75 NA Ayeyarwady vicinity 

Mwe Hauk 

Village 

O. sp CAS 211639 18.65 4.48 6.61 2.13 1.22 1.68 1.46 2.54 7.81 9.36 8.77 8.93 NA Rakhine Yoma 

Mountain 

Range 

O. lima CAS 213325 23.54 7.17 8.26 1.35 1.48 1.9 1.7 3.78 9.78 10.63 11.13 13.12 NA Yangon Mingalardon 

O. lima CAS 213437 28.69 7.42 9.6 1.76 1.02 2.37 2.13 3.33 11.58 12.71 13.04 14.85 NA Yangon Mingalardon 

O. lima CAS 213548 25.69 7.56 8.77 1.81 0.84 2.12 1.8 3.17 11.43 13.06 11.58 13.83 NA Yangon Mingalardon 

O. lima CAS 213548 26.25 7.79 9.16 1.71 0.95 2.46 1.75 3.44 11.34 13.38 11.86 12.72 NA Yangon Mingalardon 

O. lima CAS 215294 26.64 7.05 8.38 1.89 1.84 2.15 1.58 2.92 9.58 11.11 10.85 12.27 NA Mandalay Thazi 

O. lima CAS 215942 23.86 6.51 9.33 1.93 1.34 2.42 2.27 2.36 11.29 13.38 12.03 14.15 NA Mandalay Na Htoe Gyi 

Township 

O. lima CAS 216301 29.76 6.84 9.1 2.02 1.37 1.87 1.85 3.3 10.31 13.89 12.89 14.25 NA Shan Moe-Maik 

O. lima CAS 219876 24.51 7.74 9.26 1.59 1.3 2.38 1.49 2.89 11.32 11.84 11.21 14.44 NA Ayeyarwady Pya-bon 
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O. martensii CAS 220460 26.41 6.64 8.26 2.47 1.42 2.18 1.57 3.65 9.81 11.34 12.31 12.96 NA Rakhine Gwa 

O. martensii CAS 220517 31.92 6.9 10.2 2.49 2.01 2.39 2.21 3.84 12.22 14.5 14.11 14.05 NA Yangon Mingalardon 

O. martensii CAS 220518 35.17 7.99 10.82 2.78 1.74 3.83 2.14 3.9 12.32 14.92 14.02 14.7 NA Yangon Mingalardon 

O. martensii CAS 220519 29.35 7.66 9.05 2.51 2.23 2.18 1.83 3.91 11.37 13.76 12.91 14 NA Yangon Mingalardon 

O. martensii CAS 220520 27.09 6.77 8.72 2.33 1.35 2 2.16 3.33 9.62 12.25 11.67 10.96 NA Yangon Mingalardon 

O. martensii CAS 220521 26.14 6.46 7.36 2.31 1.52 1.88 1.74 3.17 10.43 11.1 10.88 12.23 NA Yangon Mingalardon 

O. martensii CAS 220523 28.15 7.02 8.58 2.35 1.82 2.22 1.89 3.18 10.82 12.43 12.03 12.8 NA Yangon Mingalardon 

O. martensii CAS 220524 24.08 6.05 7.65 2.01 1.82 2.14 1.87 3.25 8.9 10.23 10.42 11.44 NA Yangon Mingalardon 

O. lima CAS 220531 24.01 7.19 8.42 1.58 1.64 2.02 1.48 3.07 11.7 12.73 10.76 12.67 M-

catalog 

Yangon Mingalardon 

O. martensii CAS 220534 28.25 7.03 9.19 2.45 1.57 2.26 1.9 3.4 10.51 13.09 12.22 13.14 NA Yangon Mingalardon 

O. martensii CAS 220535 28.77 7.38 8.61 2.45 1.83 2.53 2.07 3.72 10.39 13.26 11.26 11.39 NA Yangon Mingalardon 

O. martensii CAS 220536 24.75 5.55 7.97 2.13 1.09 1.94 1.75 3.16 9.01 11.01 10.18 10.99 NA Yangon Mingalardon 

O. martensii CAS 220537 29.64 6.69 9.2 2.22 1.34 2.13 2.11 3.89 10.31 13.24 12.14 12.07 NA Yangon Mingalardon 

O. martensii CAS 220538 30.92 7.65 9.9 2.66 1.97 2.76 2.04 3.73 11.74 14.19 13.94 14.55 NA Yangon Mingalardon 

O. martensii CAS 220539 24.66 7.18 7.99 2.21 1.3 1.98 1.96 3.47 9.85 12.09 11.05 12.03 NA Yangon Mingalardon 

O. martensii CAS 220545 28.82 7.04 9.07 2.3 1.41 2.49 2.03 3.56 10.88 14.07 12.48 13.58 NA Yangon Mingalardon 

O. martensii CAS 221126 26.53 6.93 8.76 2.76 1.74 1.91 1.94 3.8 10.63 13.33 12.97 12.95 NA Rakhine Sittawe 

O. lima CAS 221607 25.69 6.76 8.49 1.68 1.6 2.49 1.86 3.02 11.67 12.26 11.87 13.12 NA Sagaing Pale 

O. lima CAS 221607 26.44 6.45 8.02 1.7 1.32 2.86 2.05 3.18 11.67 12.11 11.77 13.05 NA Sagaing Pale 

O. lima CAS 221664 26.34 6.97 9.33 1.65 1.38 2.75 1.6 3.36 11.87 12.04 11.7 14.65 NA Sagaing Mon Ywa 

O. lima CAS 221665 33.34 8.11 10.72 1.89 1.64 3.6 2.34 3.72 13.35 15.89 14.39 17.06 NA Sagaing Mon Ywa 

O. lima CAS 221666 32.12 7.98 11.01 2.04 1.9 3.27 2.36 3.49 13.56 14.61 14.68 16.15 NA Sagaing Mon Ywa 

O. sp CAS 221938 22.15 5.98 8.05 2.25 1.78 1.86 1.77 3.03 8.88 11.02 10.98 11.87 NA Rakhine Gwa 

Township 

O. sp CAS 221939 24.04 6.29 8.44 2.51 1.69 1.96 1.58 3.38 8.76 11.97 11.6 12.3 NA Rakhine Gwa 

Township 

O. sp CAS 221940 24.25 5.75 7.96 2.22 2.02 1.64 1.85 2.8 9.05 10.53 11.31 11.57 NA Rakhine Gwa 

Township 

O. martensii CAS 222062 28.58 7.43 8.63 2.75 2.62 3.22 2.04 4.43 11.35 12.85 12.95 12.38 NA Rakhine Sittawe 

O. martensii CAS 222063 28.13 7.74 8.78 2.94 1.8 2.27 2.08 3.62 10.34 12.29 12.6 12.21 NA Rakhine Sittawe 

O. lima CAS 222096 29.01 7.59 9.1 1.53 1.15 3.06 1.71 4.04 10.49 11.86 12.06 14.16 NA Bago Kyauk Taga 
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O. lima CAS 222521 26 7.22 9.92 1.53 1.52 2.73 2.22 2.98 10.17 11.66 11.63 13.15 NA Mon  Mawlamyine 

O. lima CAS 222867 23.88 8.67 8.38 1.5 0.71 2.15 2.34 3.31 10.32 10.56 10.35 11.44 NA Ayeyarwady Myaungmya 

O. lima CAS 222900 31.17 8.36 11.42 1.97 2.19 2.47 2.26 2.83 11.72 15.63 13.96 17.16 NA Ayeyarwady Myaungmya 

O. cf. martensii CAS 223207 27.69 7.5 9.35 2.69 1.88 2.42 2.12 4.03 11.63 13.75 13.82 13.57 NA Rakhine Taung-Gok 

O. sp CAS 223293 24.14 6.12 8.14 2.42 1.37 1.98 1.68 2.97 8.8 11.38 11.19 11.4 NA Rakhine Taung Gok 

Township 

O. sp CAS 223294 30.16 7.14 9.74 2.69 1.59 2.29 2.12 3.31 10.93 15.9 14.41 15.02 NA Rakhine Taung Gok 

Township 

O. martensii CAS 229596 25.15 7.35 8.82 2.4 1.45 2.58 2.02 3.13 10.9 12.99 12.1 12.72 NA Tanintharyi Kawthaung 

O. martensii CAS 230312 30.07 7.62 9.73 2.99 2.16 2.32 2.29 4.22 12.16 14.9 13.89 15.4 NA Kachin Myitkyina 

O. martensii CAS 230335 26.62 7.32 9 2.16 1.75 2.14 2.09 3.72 9.3 12.34 11.68 12.66 NA Kachin Myitkyina 

O. martensii CAS 230396 32.2 8.37 10.53 2.91 2.15 2.94 2.27 4.43 13.15 15.35 13.71 15.29 NA Yangon Insein 

O. martensii CAS 230405 30.93 6.46 9.57 2.46 2.04 2.48 2.01 3.98 11.58 15.39 13.64 14.48 NA Yangon Insein 

O. martensii CAS 230405 30.45 6.53 8.98 2.38 1.74 2.58 1.96 1.76 11.27 14.74 13.79 13.16 NA Yangon Insein 

O. martensii CAS 230406 26.29 6.9 8.57 2.34 1.48 2.56 1.74 4.17 10.22 12.72 11.19 12.26 NA Yangon Insein 

O. martensii CAS 230406 26.18 6.67 8.46 2.17 1.19 1.49 1.86 3.38 10.05 12.69 11.19 11.89 NA Yangon Insein 

O. martensii CAS 230407 25.34 6.62 9.06 2.38 1.75 2.61 1.88 3.26 10.34 13.44 11.61 11.88 NA Yangon Insein 

O. martensii CAS 230407 25.15 6.37 7.96 2.41 1.39 1.86 1.86 3.22 10.19 13.07 11.37 11.48 NA Yangon Insein 

O. martensii CAS 230413 32.12 7.98 11.11 2.71 1.59 2.72 2.18 4.12 12.96 15.73 14.4 14.79 NA Yangon Insein 

O. martensii CAS 230424 30.01 6.73 9.87 2.48 2.04 2.79 1.96 3.43 11.12 14.34 12.8 14.34 NA Yangon Insein 

O. martensii CAS 230434 31.38 6.99 10.19 2.48 2.05 2.78 2.41 3.53 11.82 15.16 13.69 13.44 NA Yangon Insein 

O. martensii CAS 230434 31.63 7.93 11.13 2.6 2.34 2.33 2.21 3.43 11.52 14.81 13.88 13.33 NA Yangon Insein 

O. 

magnapustulosa 

CAS 230566 27.1 6.59 7.96 2.3 1.61 2.93 1.94 3.3 10.68 12.68 12.09 13.17 NA Shan Taunggyi 

O. 

magnapustulosa 

CAS 230585 33.49 7.78 9 2.54 2.27 3.04 2.27 3.8 11.97 15.65 14.14 15.42 NA Shan Taunggyi 

O. 

magnapustulosa 

CAS 230585 33.35 9.06 9.41 2.5 2.1 2.89 2.71 3.86 12.62 15.07 14.28 15.45 NA Shan Taunggyi 

O. 

magnapustulosa 

CAS 230608 34.98 10.61 10.99 2.94 2.38 2.9 2.48 4.15 13.34 16.78 15.2 16.35 NA Shan Taunggyi 

O. 

magnapustulosa 

CAS 230608 35.69 9.62 10.38 2.76 2.06 2.94 2.12 4.1 13.51 16.84 14.75 16.3 NA Shan Taunggyi 

O. 

magnapustulosa 

CAS 230955 32.52 7.84 9.29 2.58 1.35 2.6 2.03 4.02 12.68 16.52 14.43 15.14 M-

catalog 

Shan Taunggyi 
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O. 

magnapustulosa 

CAS 230956 23.47 6.99 7.57 1.95 1.26 1.83 1.75 3.48 9.29 11.86 10.63 10.57 M-

catalog 

Shan Taunggyi 

O. martensii CAS 230999 24.09 6.65 8.27 2 1.64 1.78 2.07 3.04 8.74 10.97 10.64 11.86 NA Shan Taunggyi 

O. martensii CAS 231000 25.85 6.48 8.41 2.25 1.7 1.86 2.06 3.04 8.88 11.54 10.73 10.53 NA Shan Taunggyi 

O. martensii CAS 231001 25.38 5.84 7.81 2.11 1.32 1.95 2.05 2.94 9.16 11.38 10.43 11.09 NA Shan Taunggyi 

O. martensii CAS 231002 26.19 6.7 8.59 2.28 1.83 1.66 1.97 2.96 9.91 12.62 11.9 12.09 NA Shan Taunggyi 

O. martensii CAS 231003 26.5 5.39 7.32 2.24 1.65 1.68 1.93 2.95 9.23 11.47 11.42 10.79 NA Shan Taunggyi 

O. martensii CAS 231004 24.92 6.41 8.58 2.28 1.52 1.63 2.14 2.94 9.01 12.34 11.41 11.74 NA Shan Taunggyi 

O. lima CAS 231121 39.94 9.27 12.49 2.11 1.78 3.46 2.52 4.04 14.61 17.76 16.18 19.18 F-

catalog-

eggs 

Magway Minbu 

O. lima CAS 231122 28.68 8.44 9.83 1.9 1.29 2.88 2.05 4.03 12.15 15.23 14.1 16.48 NA Magway Minbu  

O. lima CAS 231123 29.18 7.58 11.39 1.95 0.99 3.5 2.03 3.98 11.89 15.4 14.11 17.51 NA Magway Minbu 

O. lima CAS 231124 31.75 7.82 10.59 1.75 1.5 2.46 2.39 3.9 13.12 13.64 13.39 16.11 NA Magway Minbu 

O. lima CAS 231125 25.9 7.44 9.36 1.73 1.5 2.37 1.87 3.26 10.77 12.74 12.14 14.35 NA Magway Minbu 

O. lima CAS 231153 27.91 8.06 9.56 1.96 1.07 2.47 1.77 3.68 13.12 14.13 13.15 14.62 NA Magway Minbu 

O. lima CAS 231154 32.66 9.87 11.75 2.18 1.53 3.45 2.25 4.21 15.41 17.2 15.5 17.47 NA Magway Minbu 

O. lima CAS 231155 30 9.99 9.86 1.77 0.97 3.42 2.49 3.63 15.04 15.42 14.91 18.28 NA Magway Minbu 

O. lima CAS 231156 27.81 9.55 10.75 1.75 1.36 3.25 2.19 3.72 13.26 14.69 14.29 15.73 NA Magway Minbu 

O. lima CAS 231166 29.77 7.94 10.25 1.59 1.78 2.37 1.98 3.36 12.52 13.86 13.4 16.14 NA Magway Minbu 

O. lima CAS 231167 32.55 9.03 11.57 1.93 1.54 2.87 2.15 3.94 14.24 16.47 14.78 15.4 NA Magway Minbu 

O. lima CAS 231168 32.44 8.4 11.14 1.77 1.66 2.5 2.26 3.42 12.61 16 15.11 15.9 NA Magway Minbu 

O. lima CAS 231171 27.53 6.9 10.51 1.59 2.22 2.72 2.17 3.26 9.58 13.39 13 14.5 M-

testes 

Magway Minbu 

O. lima CAS 231172 36.64 9.03 12.15 2.24 2.46 4.02 2.84 3.37 14.83 17.28 16.33 18.01 NA Magway Minbu 

O. lima CAS 231173 31.09 7.83 10.61 1.89 1.4 3.56 2.26 3.59 13.79 14.7 14.2 15.82 NA Magway Minbu 

O. lima CAS 231174 30.19 8.89 10.42 1.87 1.57 3.5 2.48 3.41 12.95 12.93 13.73 16.02 NA Magway Minbu 

O. lima CAS 231175 36 10.52 13.21 2.14 1.51 2.07 2.9 4.16 16.27 17.38 15.9 19.41 F-eggs-

present 

Magway Minbu 

O. lima CAS 231192 30.13 8.79 10.45 1.84 1.29 2.67 1.91 3.72 12.61 13.8 13.71 16.01 NA Magway Minbu 

O. lima CAS 231193 33.97 9.8 11.96 1.91 1.79 3.75 2.69 3.27 14.85 16.73 16.35 17.45 NA Magway Minbu 

O. lima CAS 231429 31.3 8.87 11.6 1.76 1.53 2.82 2.37 3.66 14.05 17.31 15.76 17.12 NA Mandalay Myingyan 
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O. lima CAS 232436 26.47 8.38 9.36 1.8 1.45 2.92 1.83 4.18 12.7 13.75 12.58 15.09 F-

catalog 

Kachin Myitkyina 

O. lima CAS 232436 27.26 7.55 9.42 1.85 1.66 3.12 1.67 3.56 12.61 14.2 12.58 15.09 NA Kachin Myitkyina 

O. lima CAS 232448 27.3 8.23 10.02 1.89 0.94 2.45 2.02 3.88 11.81 14.25 12.19 14.14 NA Kachin Myitkyina 

O. sp CAS 232449 21.12 6.47 8.16 2.09 1.21 1.99 1.93 3.18 9.13 10.51 9.69 10.86 NA Kachin Myitkyina 

O. sp CAS 232450 23.48 6.67 8.67 1.92 1.55 1.56 2.09 3.33 9.59 11.26 10.61 11.81 NA Kachin Myitkyina 

O. lima CAS 232498 30.21 8.38 10.54 2.23 1.78 2.66 2.26 3.12 12.93 14.7 13.65 15.73 NA Kachin Myitkyina 

O. lima CAS 232507 28.21 9.36 9.55 1.91 1.17 2.94 2.07 3.57 13.58 14.41 13.94 15.77 NA Kachin Myitkyina 

O. lima CAS 232507 28.31 7.48 8.8 1.84 0.86 3.32 2.07 3.73 13.12 15.05 13.7 15.9 NA Kachin Myitkyina 

O. sp CAS 232560 26.31 7.44 9.33 2.07 1.16 1.94 2.2 3.48 10.3 11.99 11.65 12.27 NA Kachin Myitkyina 

O. sp CAS 232561 21.25 7.68 8.8 2.27 1.91 2.08 2.45 3.25 9.21 10.64 9.88 11.09 NA Kachin Myitkyina 

O. sp CAS 232732 26.03 7.44 8.83 2.11 1.65 2.14 2.42 3.08 9.51 11.78 11.36 12.53 NA Kachin Myitkyina 

O. sp CAS 232733 28.26 9.24 9.96 2.24 1.61 2.33 2.31 3.06 11.12 12.79 12.15 13.12 NA Kachin Myitkyina 

O. martensii CAS 233344 26.62 7.09 8.86 2.49 1.06 2.92 1.9 2.96 8.67 12.25 12 12.76 M-

catalog 

Yangon Yangon 

Northern 

O. martensii CAS 233345 30.4 7.25 9.28 2.46 1.35 1.63 1.84 3.51 11.75 14.34 13.79 14.14 NA Yangon Yangon-

Northern 

O. lima CAS 235444 33.56 8.84 11.16 2.13 1.5 3.04 2.25 3.62 14.43 16.51 14.34 17.8 NA Shan Maisatt 

O. martensii CAS 235446 25.7 6.5 8.29 2.46 1.46 1.95 1.71 2.99 9.99 11.6 10.64 12.6 NA Shan Maisatt 

O. lima CAS 235506 17.6 5.83 7.54 1.41 0.94 1.95 1.74 2.61 9.33 9.59 9.13 11.4 NA Shan Kyaitone 

O. sp CAS 235981 25.78 6.61 9.46 2.43 1.28 1.77 2.19 3.28 10.27 13.18 11.44 12.65 NA Kachin Myitkyina 

O. lima CAS 236047 32.9 8.43 11.71 1.93 1.88 2.49 2.06 3.95 12.9 13.86 14.1 16.58 F-

catalog-

eggs 

Yangon Yangon-

Northern 

O. martensii CAS 236054 24.51 6.57 8.9 2.6 1.3 1.96 1.6 3.1 8.46 11.49 11.75 11.34 M-

catalog 

Yangon Mingalardon 

O. martensii CAS 236055 25.99 6.71 8.39 2.29 1.32 1.95 1.78 3.29 9.55 12.84 12.4 11.11 M-

catalog 

Yangon Mingalardon 

O. martensii CAS 236056 24.49 6.29 7.88 1.88 2.11 1.71 1.8 2.9 8.7 13.62 11.11 11.51 M-

catalog 

Yangon Mingalardon 

O. martensii CAS 236059 27.11 7.1 8.05 2.44 1.66 1.53 2.04 3.18 9.64 12.63 11.46 12.2 NA Yangon Mingalardon 

O. martensii CAS 236065 27.01 6.8 8.9 2.26 1.53 3.05 1.86 3.68 8.85 12.02 11.08 12.38 NA Yangon Mingalardon 

O. sp CAS 239216 32.69 8.69 10.66 2.79 2.37 3.07 2.44 3.46 13.04 15.84 15.5 17.03 NA Sagaing Khandi 

O. sp CAS 239217 25.86 8.19 9 2.47 1.66 2.35 2.28 2.93 9.3 11.12 11.52 12.99 NA Sagaing Khandi 
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O. sp CAS 239218 26.77 7.52 9.34 2.4 1.69 2.57 2.44 3.32 9.88 12.41 12.25 13.31 NA Sagaing Khandi 

O. lima CAS 239267 26.23 7.17 8.97 2.55 1.64 2.74 1.82 3.47 9.92 12.7 12.51 13.8 NA Ayeyarwady Pathein 

O. lima CAS 239267 25.99 6.98 8.52 2.64 1.51 2.62 1.98 3.49 9.87 12.84 12.77 13.29 NA Ayeyarwady Pathein 

O. lima CAS 239304 23.76 6.09 7.79 2.27 1.28 2.07 1.51 3.01 9 9.96 10.32 11.15 NA Ayeyarwady Pathein 

O. martensii CAS 239363 30.09 6.79 9.29 2.84 1.69 2.26 2.29 4.02 12.19 14.32 14.69 14.67 NA Ayeyarwady Pathein 

O. martensii CAS 239363 29.76 6.91 8.95 2.74 1.78 2 2.16 3.52 11.84 14.46 15.34 14.85 NA Ayeyarwady Pathein 

O. martensii CAS 239376 31.52 7.13 8.05 2.78 1.69 3.07 2.35 3.55 12.32 13.95 14.48 14.77 NA Ayeyarwady Pathein 

O. martensii CAS 239378 35.41 8.07 10.66 3.12 2.75 2.79 2.14 4.02 12.71 16.2 16.42 15.87 NA Ayeyarwady Pathein 

O. martensii CAS 239379 33.55 7.93 10.64 3.06 1.62 2.75 2.17 4.14 11.14 16.1 15.65 16.34 NA Ayeyarwady Pathein 

O. martensii CAS 239382 35.86 7.46 10.27 2.93 1.38 2.53 2.52 4.15 12.95 17.44 16.95 16.41 NA Ayeyarwady Pathein 

O. martensii CAS 239384 35.92 8.02 12.08 3.02 2.04 3.05 1.83 3.97 12.84 17.26 16.69 15.04 NA Ayeyarwady Pathein 

O. martensii CAS 239436 23.28 7.23 8.08 2.52 1.5 2.39 1.79 3.75 9.98 11.95 11.57 11.73 NA Ayeyarwady Pathein 

O. martensii CAS 239438 26.6 6.33 7.07 2.4 1.88 2.39 1.84 3.05 12.53 13.02 12.41 12.64 NA Ayeyarwady Pathein 

O. lima CAS 239446 29.13 9.45 10.14 1.9 0.85 2.05 2.02 4.03 13.94 15.16 13.86 16.88 NA Ayeyarwady Pathein 

O. sp CAS 239468 34.17 9.05 11.27 2.01 1.44 2.42 2.21 3.29 13.1 16.65 14.76 22.09 NA Ayeyarwady Pathein 

O. sp CAS 239477 36.72 8.11 13.26 2.98 1.54 2.48 2.35 3.84 13.2 15.7 15.07 16.47 NA Ayeyarwady Pathein 

O. sp CAS 239481 36.59 7.16 11.5 2.99 2.05 2.59 2.04 3.52 11.18 16.56 16.08 16.47 NA Ayeyarwady Pathein 

O. martensii CAS 239488 28.03 6.13 9.1 2.57 1.78 2.59 2 3.63 12.22 14.05 14.88 14.23 NA Ayeyarwady Pathein 

O. martensii CAS 239491 24.64 7.57 8.14 2.32 1.53 2.17 1.71 3.42 8.75 11.95 12.26 12.42 M-

catalog 

Ayeyarwady Pathein 

O. martensii CAS 239501 29.09 5.51 7.9 2.51 1.94 1.94 1.85 3.32 10.78 13.38 13.68 14.53 NA Ayeyarwady Pathein 

O. martensii CAS 239503 24.92 6.27 7.87 2.42 1.37 2.5 1.75 3.29 10.24 12.68 12.69 13.42 NA Ayeyarwady Pathein 

O. martensii CAS 239505 35.41 8.49 10.67 2.98 2.15 2.36 2.2 3.46 12.34 16.34 16.15 16.01 NA Ayeyarwady Pathein 

O. martensii CAS 239506 25.13 5.32 7.27 2.25 1.32 1.71 1.83 2.93 9.89 12.43 11.53 12.42 NA Ayeyarwady Pathein 

O. martensii CAS 239507 36.46 7.21 10.25 3.12 1.87 4.18 2.12 3.73 12.23 15.86 15.37 13.82 NA Ayeyarwady Pathein 

O. sp CAS 239528 32.68 8.85 11.55 1.91 1.1 3.87 2.05 4.85 13.49 16.19 14.71 22.85 NA Ayeyarwady Pathein 

O. sp CAS 239535 35.17 8.04 12.59 2.72 1.94 2.65 2.9 3.72 12.04 16.33 14.73 15.42 NA Ayeyarwady Pathein 

O. sp CAS 239536 35.15 8.09 11.95 2.73 1.83 2.72 2.78 3.8 12.08 15.1 14.36 15.16 NA Ayeyarwady Pathein 

O. martensii CAS 239556 34.13 8.48 10.27 3.06 2.21 3.33 2.13 4.19 13.95 16.49 15.78 16.77 NA Ayeyarwady Pathein 

O. martensii CAS 239560 33.39 7.04 9.95 3.13 1.7 2.53 1.97 4 13.16 15.41 15.16 14.93 NA Ayeyarwady Pathein 

O. martensii CAS 239564 28.34 6.75 8.47 2.7 2.18 2.73 2.05 4.3 9.69 12.92 12.87 11.39 NA Ayeyarwady Pathein 
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O. martensii CAS 239565 33.6 7.23 9.96 2.78 2.3 2.97 1.9 4.24 11.87 15.17 14.67 15.21 NA Ayeyarwady Pathein 

O. martensii CAS 239568 32.77 6.81 9.21 3.08 1.86 1.68 2.01 3.84 12.69 14.6 14.45 15.31 NA Ayeyarwady Pathein 

O. martensii CAS 239569 29.18 6.56 9.1 2.53 1.57 2.14 2 3.55 10.56 13.55 13.19 12.48 NA Ayeyarwady Pathein 

O. martensii CAS 239756 23.92 6.85 7.67 2.47 1.85 2.91 1.67 3.54 10.14 11.34 11.69 12.18 NA Rakhine Kyaukpyu 

O. martensii CAS 239757 24.88 6.17 7.36 2.4 1.38 2.72 1.55 3.47 10.48 11.77 11.52 11.6 NA Rakhine Kyaukpyu 

O. martensii CAS 239786 27.01 6.64 9.33 2.47 1.93 2.38 1.74 3.47 10.81 13.05 12.07 12.3 NA Rakhine Kyaukpyu 

O. martensii CAS 239810 29.97 6.47 9.95 2.64 1.6 2.93 2.15 3.31 11.35 13.82 13.5 14.27 NA Rakhine Kyaukpyu 

O. martensii CAS 239810 29.77 6.39 8.66 2.83 1.94 2.43 1.93 3.13 11.08 13.58 13.61 12.82 NA Rakhine Kyaukpyu 

O. martensii CAS 239811 30.53 6.79 10.42 2.93 1.81 2.37 2.22 3.79 12.65 14.55 14 15.01 NA Rakhine Kyaukpyu 

O. martensii CAS 239811 30.39 7.26 10.25 3.01 1.65 2.42 1.94 3.66 12.49 14.75 14.53 14.37 NA Rakhine Kyaukpyu 

O. martensii CAS 239817 26.59 6.52 7.42 2.58 1.2 2.47 1.86 3.24 10.04 12.29 12.03 12.93 NA Rakhine Kyaukpyu 

O. martensii CAS 239834 29.07 6.39 8.81 2.76 2.14 2.11 1.59 3.62 11.87 12.42 12.64 13.48 NA Rakhine Kyaukpyu 

O. martensii CAS 240070 23.83 5.54 7.09 2.31 1.55 1.85 1.68 3.31 9.32 10.32 10.79 10.88 NA Rakhine Kyaukpyu 

O. martensii CAS 240070 23.75 6.32 7.16 2.34 1.21 1.98 1.78 3.05 9.1 10.92 10.78 11.24 NA Rakhine Kyaukpyu 

O. martensii CAS 240085 23.92 5.96 7.6 2.44 1.43 2.35 1.66 3.71 9.88 11.28 11.85 12.42 NA Rakhine Kyaukpyu 

O. martensii CAS 240345 35.96 9.39 11.45 2.89 1.93 2.82 2.49 4.39 13.7 17.39 15.22 16.32 NA Mon  Thaton 

O. martensii CAS 240346 21.94 6.83 7.7 1.8 1.57 2.04 1.8 3.22 8.03 10.26 10.35 11.53 NA Mon  Thaton 

O. sp CAS 241037 29.44 8.42 10.82 2.57 1.31 2.28 2.24 3.37 11.48 14.13 12.96 11.63 NA Kachin Myitkyina 

O. sp CAS 241052 33.42 8.61 11.03 2.75 2.04 2.69 2.72 3.67 12.43 15.51 14.46 15.04 F-eggs Kachin Myitkyina 

O. sp CAS 241053 29.59 7.86 9.81 2.43 1.85 2.17 2.69 3.5 11.32 13.27 12.92 14.4 F-eggs Kachin Myitkyina 

O. sp CAS 241059 29.8 7.55 10.63 2.43 1.99 2.12 2.4 3.21 10.44 13.88 12.66 14.5 F-eggs Kachin Myitkyina 

O. sp CAS 241138 29.5 7.55 10.02 2.6 1.87 2.32 2.29 3.66 11.38 13.13 13.15 14.45 NA Kachin Myitkyina 

O. sp CAS 241140 30.35 7.24 10.3 2.44 1.59 1.78 2.29 3.23 11.77 13.45 13.19 14.31 M-sem-

tubules-

testes 

Kachin Myitkyina 

O. sp CAS 241263 32.38 8.05 10.92 2.54 2.09 2.21 2.69 3.96 11.75 13.78 13.66 14.33 F-eggs Kachin Myitkyina 

O. lima CAS 242979 19.92 6.77 7.81 1.76 1.23 2.27 1.7 2.77 9.35 10.89 10.07 10.98 NA Magway Pakhokku 

O. sp CAS 243903 31.11 9.3 11.72 2.89 2.42 2.34 2.6 3.66 13.64 16.27 15.15 16.64 NA Tanintharyi Dewei 

O. sp CAS 247207 24.26 7.22 9.05 2.23 1.64 1.85 2.19 3.24 9.18 11.81 11.8 12.98 NA Tanintharyi Kawthaung 

O. sp CAS 247487 22.65 6.11 7.93 2.07 1.65 2.13 1.82 2.89 8.42 10.43 10.75 11.81 NA Tanintharyi Kawthaung 

O. sp CAS 247790 20.89 7.42 7.44 2.05 1.54 1.66 1.45 2.71 7.97 10.34 9.51 10.59 NA Tanintharyi Kawthaung 
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O. sp CAS 247983 17.77 5.69 6.76 1.96 1.26 1.34 1.61 2.61 7.58 8.93 8.7 10.4 NA Tanintharyi Dewei 

O. sp CAS 248169 38.46 8.72 11.78 2.79 1.99 3.09 2.46 3.44 12.77 16.27 14.35 15.5 F-

catalog 

Yangon Yangon 

Northern 

O. lima USNM 520378 27.25 6.79 8.04 1.52 1.17 2 1.96 2.83 10.19 11.32 11.19 14.78 NA Sagaing Chatthin 

O. lima USNM 537457 25.94 6.29 9.34 1.58 1.42 2.64 1.88 2.74 11.79 12.11 11.49 13.29 NA Sagaing Kanbalur 

O. lima USNM 537458 28.69 6.74 9.49 1.79 1.68 2.35 1.99 3.48 12.24 13.22 13.03 16.22 NA Sagaing Kanbalur 

O. lima USNM 537459 23.47 6.19 7.5 1.6 1.41 2.36 1.94 2.78 9.53 9.8 10.23 11.32 NA Sagaing Kanbalur 

O. lima USNM 537460 24.67 6.12 9.04 1.57 1.36 2.35 1.78 2.72 11.33 11.85 11.65 13.67 NA Sagaing Kanbalur 

O. lima USNM 537461 27.8 7.31 9.33 1.7 1.29 2.61 2.11 3.22 12 12.21 12.57 14.71 NA Sagaing Kanbalur 

O. sp USNM 586928 22.36 6.22 7.56 2 1.37 1.58 1.89 2.71 8.8 9.07 10.84 11.13 NA Tanintharyi TaninNP 

O. sp USNM 586929 20.76 6.03 7.64 2.12 1.36 1.73 2.09 3.02 8.23 9.81 10.14 10.58 NA Tanintharyi TaninNP 

O. martensii USNM 586930 28.81 6.29 9.58 2.63 2.23 2.46 2.18 3.02 11.04 12.93 13.2 14.33 NA Tanintharyi Yeybu 

O. martensii USNM 586931 26.42 6.53 9.25 2.58 1.78 1.91 1.92 3.44 10.77 12.56 12.66 14.79 NA Tanintharyi Yeybu 

O. martensii USNM 586932 27.32 6.99 9.36 2.45 1.69 2.09 1.91 2.87 9.83 10.6 12.86 13.89 NA Tanintharyi Yeybu 

O. martensii USNM 586933 22.48 6.38 8.36 2.44 1.96 1.72 1.84 2.85 8.83 9.07 10.15 11.5 NA Tanintharyi Yeybu 

O. martensii USNM 586934 23.81 6.61 8.31 2.43 2.16 1.96 1.74 3.08 9.58 10.54 11.17 12.77 NA Tanintharyi Yeybu 

O. martensii USNM 586935 23.32 5.85 7.79 2.26 1.67 1.59 1.82 3.11 7.85 10.35 10.07 12.22 NA Tanintharyi Yeybu 

O. martensii USNM 586936 30.18 6.72 10.88 2.57 1.53 1.63 2.01 3.17 10.58 12.99 12.72 11.53 F-eggs Tanintharyi Yeybu 

O. martensii USNM 586937 22.3 5.87 7.78 2.27 1.57 1.41 1.57 2.64 9.04 10.76 10.46 12.78 NA Tanintharyi Yeybu 

O. martensii USNM 586938 29.08 6.47 9.48 2.57 1.99 1.86 1.92 3.25 10.94 12.6 12.57 13.9 F-eggs Tanintharyi Yeybu 

O. martensii USNM 586939 28.3 6.97 9.88 2.6 2.08 2.32 1.85 3.22 11.14 13.03 12.68 14.89 F-eggs Tanintharyi Yeybu 

O. martensii USNM 586940 20.91 5.87 7.65 2.19 1.99 1.56 1.68 2.71 8.85 10.14 9.9 11.69 NA Tanintharyi Yeybu 

O. martensii USNM 586941 25.78 6.16 8.38 2.07 1.62 1.63 1.65 3.08 9.38 10.89 10.56 11.9 NA Tanintharyi Yeybu 

O. martensii USNM 586942 27.48 6.6 10 2.66 1.88 1.88 1.86 3.16 10.25 12.93 12.86 14.43 F-eggs Tanintharyi Yeybu 

O. martensii USNM 586943 23.56 6.69 8.36 2.32 1.87 1.69 1.64 2.77 8.9 11.13 11.49 13.05 NA Tanintharyi Yeybu 

O. sp USNM 587104 33.77 8.32 11.52 2.72 2.14 2.5 2.47 3.54 11.68 15.18 14.09 15.12 NA Bago Dawe 

O. sp USNM 587105 29.98 6.56 9.31 2.46 1.3 2.12 2.01 3.51 9.6 13.93 12.39 12.74 NA Bago Dawe 

O. sp USNM 587106 28.55 6.7 10.15 2.48 1.48 1.66 2.01 3.31 11.6 14 13.26 14.57 NA Bago Dawe 

O. sp USNM 587107 32.93 8.08 11.69 2.73 1.88 2.36 2.21 4.06 12.96 15.45 14.6 15.52 NA Bago Dawe 
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O. martensii USNM 587295 23.39 6.23 8.33 2.2 1.37 1.86 1.64 2.87 7.77 10.68 10.86 11.2 NA Tanintharyi Ywahilu 

O. sp USNM 587383 22.06 5.35 6.68 2.33 1.39 1.62 1.52 2.78 8.74 11.33 10.59 11.19 NA Yangon Mingalardon 

O. sp USNM 587384 30.6 6.96 9.68 2.64 1.83 2.74 1.92 3.79 11.49 14.4 13.48 14.44 F-eggs Yangon Mingalardon 

O. sp USNM 587385 23.46 6.08 7.49 2.22 1.56 2.34 1.44 2.69 9.52 11.69 11.13 12.19 M-

testes 

Yangon Mingalardon 

O. sp USNM 587386 29.8 6.37 8.82 2.7 1.93 2.61 2.2 3.45 10.24 14 12.85 13.64 NA Yangon Mingalardon 

O. sp USNM 587387 30.57 7.28 9.72 2.74 2.09 3.56 2.23 3.57 10.84 14.83 13.66 14.63 NA Yangon Mingalardon 

O. sp USNM 587388 24.54 5.5 7.93 2.35 1.91 2.86 1.8 3.08 7.6 12.56 11.39 12 NA Yangon Mingalardon 

O. sp USNM 587389 22.27 5.57 7.73 2.35 1.82 2.53 1.89 2.98 8.87 11.68 10.85 10.53 NA Yangon Mingalardon 

O. lima USNM 587392 24.56 7.3 9.07 1.78 1.19 1.84 1.36 3.26 9.73 11.22 11.32 11.59 NA Yangon NA 

O. sp USNM 587394 36.93 7.57 11.73 2.77 2.66 3.1 2.59 3.83 13.2 16.4 14.74 13.99 NA Yangon NA 

O. sp USNM 587395 36.55 8.1 12.15 2.78 2.18 2.73 2.7 3.91 12.77 15.73 15.08 15.07 NA Yangon NA 

O. sp USNM 587402 25.98 7.4 9.46 2.27 1.88 2.4 2.08 3.26 10.57 13.08 11.47 12.43 NA Yangon NA 

O. martensii USNM 587677 21.8 6.38 7.47 2.3 1.54 1.62 1.65 2.78 9.85 11.62 11.13 12.39 NA Tanintharyi LenyaNP6 

O. martensii USNM 587685 25.32 6.99 9.02 2.51 1.69 2.24 1.86 3.44 8.82 11.48 11.75 14.02 NA Tanintharyi LenyaNP2 

O. martensii USNM 587686 26.23 7.22 8.91 2.68 1.68 2.22 2 3.21 10.7 13.72 12.92 13.38 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587687 24.91 6.72 8.56 2.54 1.8 2.27 1.75 3.4 8.16 10.23 10.97 12.75 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587688 27.12 6.85 9.51 2.65 2.14 1.96 1.76 3.01 8.56 11.65 11.25 13.28 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587689 27.47 6.92 9.18 2.73 2.42 1.86 1.82 3.1 7.45 12.49 11.32 13.01 NA Tanintharyi LenyaNP2 

O. martensii USNM 587690 25.22 6.77 8.37 2.79 1.73 1.84 2 2.83 9.09 11.76 11.45 12.73 NA Tanintharyi LenyaNP2 

O. martensii USNM 587691 26.31 7.46 9.24 2.73 1.99 1.73 2 3.26 9.24 12.36 12.13 14.24 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587692 27.63 6.69 9.84 2.77 1.88 2.02 1.78 3.28 8.58 12.44 11.84 14.18 NA Tanintharyi LenyaNP2 

O. martensii USNM 587693 21.61 5.94 7.42 2.37 1.37 1.44 1.6 2.86 7.79 10.54 10.06 11.24 NA Tanintharyi LenyaNP2 

O. martensii USNM 587694 27.05 6.47 8.82 2.45 1.77 1.84 2.11 3.01 9.28 12.39 12.09 14.16 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587695 26.14 6.84 8.93 2.61 1.81 1.82 2.11 3.07 9.11 12.36 11.56 13.05 F-eggs Tanintharyi LenyaNP2 

O. martensii USNM 587696 28.11 7.36 9.48 2.79 1.88 2.1 1.95 3.11 8.38 13.19 12.06 13.88 NA Tanintharyi LenyaNP2 

O. martensii USNM 587697 26.79 7.45 9.58 2.7 1.69 2.12 2.01 3.14 9.93 13.28 13.21 15.23 F-eggs Tanintharyi LenyaNP3 

O. martensii USNM 587698 26.78 7.23 9.19 2.79 1.49 2.02 1.71 2.83 8.74 12.91 11.95 13.49 NA Tanintharyi LenyaNP4 

O. martensii USNM 587699 26.3 6.87 8.84 2.39 1.32 1.88 1.74 3.14 9.91 12.37 11.87 13.6 F-eggs Tanintharyi LenyaNP5 

O. martensii USNM 587922 29.36 7.05 9.98 2.89 2.45 2.8 2.16 3.16 9.28 12.02 12.76 12.16 F-eggs Tanintharyi Ywahilu 
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O. martensii USNM 587923 27.01 6.9 9.29 2.57 1.94 2.46 1.74 3.06 10.27 12.55 11.85 12.67 NA Tanintharyi Ywahilu 

O. martensii USNM 587924 26.92 6.99 9.36 2.7 1.78 2.19 1.77 3.54 9.84 12.21 12.47 12.06 NA Tanintharyi Ywahilu 

O. martensii USNM 587926 22.02 6.32 8.24 2.3 1.78 1.87 1.53 2.55 8.07 10.05 9.93 10.61 NA Tanintharyi Ywahilu 

O. martensii USNM 587927 26.33 6.68 8.93 2.69 1.68 2.54 2.05 3.14 9.9 11.85 12.36 12.53 F-eggs Tanintharyi Ywahilu 

O. martensii USNM 587928 29.33 7.36 10.36 2.72 2.09 2.67 1.99 3.6 9.96 13.59 12.68 14.13 NA Tanintharyi Ywahilu 

O. martensii USNM 587929 21.62 6.07 8.16 2.24 1.39 1.75 1.64 3.17 7.04 10.13 10.37 11.5 NA Tanintharyi Ywahilu 

O. martensii USNM 587930 19.91 5.44 7.15 2.09 1.19 1.78 1.58 2.5 6.96 8.71 9.51 10.91 NA Tanintharyi Nint Tenku 

O. martensii USNM 587931 26.72 6.26 9.09 2.76 1.82 2.36 1.09 3.22 10.17 13.36 12.62 13.27 NA Tanintharyi Nint Tenku 

O. martensii USNM 587932 25.56 6.38 8.94 2.53 1.28 2.26 1.9 2.85 9.57 13.26 12.34 12.33 NA Tanintharyi Nint Tenku 

O. martensii USNM 587933 23.61 6.41 8.53 2.32 1.4 1.99 1.98 3 8.88 12.37 11.57 12.89 NA Tanintharyi Nint Tenku 

O. martensii USNM 587934 20.87 6.56 7.05 2.21 1.36 2.12 1.81 2.58 7.81 9.57 10.58 11.31 NA Tanintharyi Nint Tenku 

O. martensii USNM 587936 26.5 7.22 9.29 2.43 1.81 2.03 2.1 3.14 10.15 12.03 12.3 13.67 NA Tanintharyi Nint Tenku 

O. martensii USNM 587938 30.4 7.72 10.87 2.83 1.68 2.25 2.09 3.48 9.01 14.23 13.98 15.54 NA Tanintharyi Nint Tenku 

O. martensii USNM 587939 28.04 8.41 9.84 2.57 1.86 2.06 1.93 3.74 10.72 13.43 12.93 14.81 NA Tanintharyi Nint Tenku 

O. martensii USNM 587947 26.59 7.32 9.41 2.64 1.9 2.27 1.83 3.46 10.6 12.18 12.53 14.03 NA Tanintharyi Nint Tenku 

O. martensii USNM 587948 24.15 6.44 8.33 2.44 1.8 2.02 1.96 3.08 8.26 11.14 10.98 12.51 NA Tanintharyi Nint Tenku 
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