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Abstract 

This thesis presents the combustion study of three furanic compounds using synchrotron 

radiation coupled with multiplexed photoionization mass spectrometry at 298 K. The 

experiments were performed at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light 

Source of the Lawrence Berkeley National Laboratory. The reactions of the three furanic 

compounds with methylidyne (CH) radicals were analyzed based on their photoionization 

spectra and kinetic profiles. 

Additionally, the unimolecular dissociation of valeric acid was also studied and presented 

in this work using the double imaging photoelectron photoion spectrometry (i2PEPICO) coupled 

with synchrotron radiation from the VUV beamline. The experiments were carried out at the 

Swiss Light Source of the Paul Scherrer Institute in Villigen, Switzerland. The unimolecular 

dissociation dynamics of valeric acid were studied by analyzing ions with a well-defined internal 

energy state and used to derive thermochemical values for unknown reaction species.  

Chapter 1 of this thesis discuss the importance of biofuel research due to the negative 

impacts of fossil fuel combustion on the environment. The experimental methods and 

apparatuses of the ALS and SLS beamlines are described in detail in Chapter 2. In Chapter 3, the 

theory behind the experimental and computational methods used to analyze the experiments 

presented in this thesis are thoroughly explained. The combustion study of furan and 2-

methlyfuran with CH (X2Π) radicals is presented in Chapter 4. Chapter 5 continues with the 

combustion study of 2,5-dimethlyfuran with CH (X2Π) and CD radicals. To conclude, Chapter 6 

presents the photoionization and photodissociation study of valeric acid. 
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Chapter 1 Introduction 

1.1 Greenhouse Gas Emissions 

To sustain life, the Earth’s surface relies on the warming from greenhouse gases (GHG) 

to maintain a temperature balance.1 However, in the recent century the average surface 

temperature of the Earth has risen 2  ̊F, resulting in overheating and global warming.2 The 

increase in anthropogenic GHG emissions, such as carbon dioxide, water vapor, and methane, is 

the main cause of the temperature rise.1 Figure 1 illustrates the differences between a natural and 

human enhanced greenhouse gas effect. Anthropogenic GHG are trapping more heat and 

warming the Earth by blocking the infrared radiation emitted by the Earth’s surface that is 

supposed to be released into space.1 Both NASA and NOAA report that the warmest five years 

in history have occurred since 2010.2 Temperature increase has and will continue to lead to 

climate and weather changes, such as floods, droughts, heat waves.1 

 

Figure 1.1 Comparison of Natural and Human Enhanced GHG Effect2  
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Even though GHG gases currently only make up 0.5% of the Earth’s atmosphere, their 

impact is very substantial.3 All greenhouse gas emissions stay in the atmosphere for thousands of 

years and diffuse well enough that the concentration of each gas is the same across the world.4 

Therefore, the negative effects of these emissions will be seen globally and affect all human life.4 

For example, the increase in carbon dioxide (CO2) absorption by the oceans has already lead to 

an increase in the acidity of the ocean.3 Even a tiny rise in acidity can negatively affect marine 

ecosystems and the impact has already been observed by the bleaching and death of the coral 

reefs.3 Continued climate and weather change will also lead to disruption of Earth’s terrestrial 

ecosystems and the extinction of many species.5 Current ecosystems and habitats will become 

unsuitable for the residing species causing forced migration and extinction.5 This will lead to 

increased stressor on surviving ecosystems, scarcity of resources, and changes in the food web.5 

If current predictions for global temperature increase are reached, the IPPC estimates that 20-

30% of plant and animal species will be at risk for extinction by the end of the century.5 Global 

warming changes will cause loss of food crops, shifts in regional weather patterns, and 

advancement of tropical diseases.5, 6 Additionally, all direct changes will have feedback effects 

that further enhance emissions levels, such as volcanic eruptions which will produce sulfur 

dioxide and thawing of the tundra, which will release high levels of methane. 6 

A more direct impact of climate change and GHG emissions is a decrease in air quality. In 

2014, 57 million Americans were reported to be living in counties that did not meet national air 

quality standards.5 Not only do airborne allergens rise with rising CO2 levels, ground ozone from 

smog is also rapidly increasing.5 Ozone is known to cause respiratory problems, damage lung 

tissue, and lead to premature death.5 Cardiovascular and chronic pulmonary diseases are also a 
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result of poor air quality and have increased in the recent years mirroring the rise in emission 

levels.5  

The large increase in GHG emissions initially began with the industrial revolution in the 

1750s.4 More recently, from 1990 to 2015 there has been a 6% rise in U.S. emission levels.4 This 

spike is found to align with patterns of the expanding economy and population.4 The latest 

reports from Environmental Protection Agency state that in 2015 82.2% of all U.S. GHG 

emissions were from human activities.4 Additionally, 65% of global GHG emissions were CO2, 

specifically from fossil fuel combustion and industrial activities.4 In fact, CO2 emissions have 

now overwhelmed the natural carbon cycle sinks to the point where they are unable to decrease 

the concentration of atmospheric CO2.
4 In the U.S., 35% of CO2 emissions was attributed to 

electricity, followed by transportation, which includes gasoline and diesel combustion, at 32%.4 

The significant rise of CO2 emissions makes it the largest contributor to the global warming.1, 7 

Fossil fuel combustion is not only the largest source of CO2 emissions, but also responsible for 

contributing to nitrous oxides (NOx) and particulate matter (PM) emissions.4 

1.2 Fossil Fuels and Energy Consumption 

Fossil fuels are generally known to be nonrenewable sources of coal, oil, and natural 

gas.3, 8 They are formed when the biomass of dead plants and microorganisms that lie under the 

Earth’s surface are subjected to high temperature and pressure for thousands of years.3 Burning 

fossil fuels is the main energy source for all electricity and transportation needs.8 In fact, 

electricity and transportation were reported to be 39% and 29% of all energy consumption in 

2016, respectively.8 Energy is a necessity to sustain human life and, therefore, fossil fuel 

combustion is inherently linked to economic and population growth.6 In 2016, 81% of the total 

energy consumption in the U.S. was sourced from fossil fuels, whereas only 10% was attributed 
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to renewable energy sources (Figure 2).8 Of the 81%, petroleum oil accounted for the largest 

portion.8 Global oil production alone was at 85 million barrels per day in 2010 and is predicted to 

increase up to 300 million barrels per day by 2100. 6 

 

Figure 1.2 2016 U.S. Energy Consumption by Source8 

Along with CO2, fossil fuel combustion also contributes to the creation of PM, soot, and 

NOx.4 Inhaling PM, which are extremely small particles suspended in the atmosphere, can lead 

to lung cancer and cardiovascular diseases.5 NOx emission levels have increased asthma patients 

and has been linked to deteriorating lung function.9, 10 Fossil fuel combustion will continue to 

decrease air quality and worsen the already harmful health effects. Aside from air pollution 

concerns, implementing viable alternatives to fossil fuels is increasing necessity because fossil 

fuels are rapidly diminishing. 

Despite the many complex and conflicting prediction models for fossil fuel depletion, it is 

agreed that available fossil fuels sources are going to disappear within the near future, simply 
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because the rate of formation cannot keep up with the rate of extraction.6, 11, 12 Currently, many 

reports are considered optimistic and overestimate fossil fuel reserves because they account for 

unconventional hydrocarbons, such as tar sands and gas hydrates.6, 11, 12 Modern technology 

cannot process these hydrocarbons that are beyond physical limitations.6 Many industry, 

national, and international governmental sources estimate that oil will end by 2050 and that the 

peak of availability has already occurred.11, 12 Reserves for coal and gas are also estimated to 

only last 200 and 70 more years, respectively.12 Therefore, the majority of current fuel sources 

are going to finish in within this century and the need for renewable energy resources is vital. 

1.3 Combustion 

Nearly all the energy used today is a result of combustion. On a rudimentary level, 

combustion is a set of reactions between an oxidant and a fuel that produces carbon dioxide, 

water, and heat.13, 14 The equation below models the simplified reaction:  

Organic molecule + O2 → CO2 + H2O + Heat 14 

However, since fuels are complex hydrocarbons, actual combustion reactions produce many 

species that further react with other combustion radicals and intermediates in the atmosphere.15 

Polycyclic aromatic hydrocarbons (PAHs), methane, and ozone are commonly formed by the 

secondary and tertiary reactions.15 Even simple hydrocarbons, such as methane, have multiple 

reaction paths and lead to many intermediates and products.16 Methylidyne radical (CH) is one of 

the most reactive radicals in the atmosphere and can greatly affect the energetics of gas-phase 

environments due to having fast, barrier-less reactions with unsaturated hydrocarbons.17, 18 In this 

thesis, the combustion reactions of three potential biofuels with CH radical are studied. 

Understanding combustion reactions is essential to produce more efficient and cleaner engine 

designs as well as fuels in the future.  
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The automobile industry has already began developing alternatives such as electric, fuel cell, 

and hybrid engines in newer model cars.19 One of the new and promising engine designs is 

homogeneous charge compression ignition (HCCI) engine. HCCI engines can utilize current 

spark ignition (SI) and compression ignition (CI) engines, while maintaining high engine 

efficiency and low emission levels of NOx, soot, and PM. 19 In Figure 3, the differences between 

SI, CI, and HCCI engines are illustrated. 19 SI engines use spark plugs with a flame front that lies 

along the combustion chamber to initiate combustion, while a CI engines uses fuel injects to 

inject diesel into a compressed hot air region where combustion takes place. 19 HCCI engines 

relies completely on chemical kinetics and allows for combustion to initiate in multiple locations 

when the necessary activation energy of the fuel mixture has been reached. 19  The combustion 

process is much faster that CI or SI engines and improves engine efficiency by up to 37%.19 

However, the biggest advantages of HCCI engines is its fuel versatility and ease of 

implementation through small modifications to any type of current engine configuration already 

in use. 19 The major disadvantages of the HCCI are engine knocking, low operating load range, 

and high levels of unburned hydrocarbons and carbon monoxide. 19  Ongoing research and 

development is working to reduce and eliminate these problems. 19  
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Figure 1.3 Differences among SI, CI, and HCCI Engine Configurations19 

1.4 Biofuels and Fuel Additives  

 Global energy consumption is not going to decrease and, therefore, the move to using 

renewable energy sources is imminent. As previously mentioned, transportation accounts for 

32% of GHG emissions; therefore, it is necessary to minimize the emission levels produced by 

fuel combustion to create a positive change and reduce global emissions for the future. An ideal 

alternative would be biomass-derived fuels that could be mass produced by a process that is able 

to recycle and reduce atmospheric CO2. Photosynthetic production to yield simple sugars and 

eventually produce carbon-based fuels, such as ethanol and 2,5-dimethylfuran, has already been 

proven possible by several studies.20-23 

Carbon-based fuels are one of the most promising immediate alternative biofuels because 

they can be utilized in current combustion engines with little to no modifications.20, 24 Many of 

these fuels, including furan derivatives studied in this thesis, are second generation biofuels 

meaning that are produced from unconsumable biomass.21-23 Therefore, mass production would 
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not compete with food production for humans. Second generation biofuels are also nontoxic and 

biodegradable.25 Combustion and emissions studies have found that many biofuels have lower 

PAH, CO2, NOx and PM emissions that current gasoline and diesel fuels.26, 27 Several engine 

studies have also confirmed these fuels to have higher energy density, octane ratings, and knock 

resistance.26, 27  

Fuel additives can also be easily implemented to help decrease emissions and reduce 

global warming. The main advantage presented by fuel additives is the reduction in engine 

knocking, which results in emission of toxic intermediates and radicals from incomplete fuel 

combustion.25 For example, the addition of aromatic hydrocarbon compounds, such as 2-

methylfuran, to gasoline increases energy density and octane rating, which aids in achieving 

complete combustion. 8, 19 In order to reduce air pollution and negative health impacts in the 

future, the study of the reactivity of biofuels and fuel additives is necessary.  

1.5 Overview of Thesis 

This thesis investigates the reactions of methylidene radical (CH) with three furan 

compounds: furan, 2-methylfuran, and 2,5-dimethlyfuran. The furan compounds are all possible 

biofuels and fuel additives and their combustion reactions are of high interest for their possible 

future implementation. As previously mentioned, reactions with CH radical are also of interest 

due to the fast and exothermic nature of their reactivity. Detailed reaction mechanisms of CH 

with furan and 2-methylfuran are presented in Chapter 4. Continued in Chapter 5, the reaction of 

2,5-dimethlyfuran with CH and CD radicals are also explained. The additional reaction with CD 

radicals allows for further confirmation of the proposed mechanism. All three reactions shared a 

CH addition entrance channel to the pi bond systems, as well as patterns of cyclic and acyclic 

products. The combustion experiments were carried out at the Advanced Light Source (ALS) of 
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the Lawrence Berkeley National Laboratory using a multiplex time- and energy-resolved 

photoionization mass spectrometer. The experimental apparatus is described in detail in Chapter 

2.  

Studying unimolecular dissociation reactions are also important to understanding 

combustion behavior of given compounds. Chapter 6 presents the investigation of the 

photodissociation of valeric acid. Along with dissociation products and experimental appearance 

energies, accurate thermochemistry for the reactions were also calculated. Experiments were 

conducted using the double imaging photoelectron photoion coincidence spectroscopy 

(i2PEPICO) of the VUV beamline at the Swiss Light Source in the Paul Scherrer Institute. 
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Chapter 2 Experimental Methods 

The photoionization reactions of furan, 2-methlyfuran, and 2,5-dimethyfuran with 

methylidyne radicals (CH) presented in this work were conducted at the Advanced Light Source 

(ALS) located in the Lawrence Berkeley National Laboratory (LNBL). Synchrotron radiation 

from the ALS is coupled with a multiplexed time- and energy-resolved mass spectrometer 

(PIMS) at the Chemical Dynamics Beamline 9.0.2 to simulate the combustion reactions of the 

potential biofuels.  The unimolecular dissociations of valeric was completed at the Swiss Light 

Source (SLS) of the Paul Scherrer Institute (PSI). The dissociation reactions were carried out 

using the VUV beamline and double imaging photoelectron photoion coincidence spectroscopy 

(i2PEPICO). Details about the experimental apparatus, components, and instrumentation of the 

ALS and SLS experiments will be discussed in this chapter.  

2.1 The Advanced Light Source Experimental Methods 

2.1.1 Sample Preparation 

All three furanic compounds used in the ALS studies presented in this work were 

prepared using a freeze-pump-thaw purification method. Each compound was obtained from 

Sigma-Aldrich commercially and stored as a liquid at room temperature. The sample preparation 

apparatus consists of a bubbler, vacuum pump, and gas cylinder connected by steal lines 

regulated by valves. A small amount of the compound is transferred to the bubbler and immerged 

in liquid nitrogen until frozen. The vacuum is then opened to pull out any dissolved gaseous 

impurities that were in the liquid sample. After the valve to the vacuum is closed, the sample is 

allowed to thaw and this process is repeated at least two more times to ensure the sample has 

been purified. The valves are opened to allow the vaporized sample compound to flow into the 

gas cylinder until the pressure has stabilized. Helium is then flowed into the gas cylinder until 
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the vaporized sample reaches a molar fraction of about 1%. The total pressure is typically within 

2000 – 2500 torr. This addition is essential as the PIMS experiments require a constant flow 

from the gas cylinder to last for several hours. Before use the gas cylinders are flushed with 

helium and pumped for several hours to clean and remove any remaining gas molecules from 

previous fillings. Two Baratron digital pressure readers each with MKS pressure transducers are 

used to convert pressure into an analog signal output. One of the readers is used to measure high 

pressures of up to 10,000 torr and the other is used to measure low pressures of 1-10 torr. 

Readings from the digital pressure readers for the vaporized sample and the total pressure within 

the gas cylinder must also be recorded. Now, the sample preparation is complete and ready to use 

in the PIMS apparatus described in detail later in this chapter.   

2.1.2 The Advanced Light Source Components 

 The purpose of the ALS is to produce a very bright and focused light through the 

acceleration of electrons. The light from the ALS is an X-ray that is highly concentrated in a very 

small region and this brightness allows for very specific targets to be studied.1-2 Also, the energy 

of the light allows the ALS X-rays to interact with electrons of smaller compounds, such as 

simple hydrocarbons.2 The ALS at the LBNL is a third-generation synchrotron that is composed 

of an electron source, linear accelerator (linac), booster ring, and storage ring that eventually 

leads to multiple experiment end stations through different beamlines. (Figure 2.1)3  
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Figure 2.1 Basic layout of the Advanced Light Source at the Lawrence National Berkeley 

Laboratory3 

 

 Electrons are first produced by an electron gun and initially accelerated to nearly the 

speed of light with 50 MeV by the buncher and linac.3 The sections are illustrated in more detail 

in Figure 2.2.2 The electron gun is made up of a cathode, copper screen or gate, and an anode.3 

The cathode is a piece of barium aluminate that is heated to release electrons from its surface.2 

The freed electrons then move towards the surface of the copper gate.2 A voltage is applied to the 

gate every 500 millionth of a second to create a pulsing anode, which causes the electrons to 

move towards the gate in bunches. 2 Beyond the gate, there is a stronger anode that pulls the 

electrons through the gate and into the buncher section of the linac.2 The buncher section is used 

to accelerate and increase the density of the electron bunches.2 Each bunch contains 

approximately 1.5 x 1011 electrons.3 Microwave radiation from the klystron of the radio 
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frequency (RF) system, which will be discussed later in this section, is used to accelerate and 

move the electron bunches in a wave pattern down to the actual linac section.2 The electrons 

leave the buncher at about 60% the speed of light and with 120 keV of kinetic energy.3 The linac 

section continues the wave pattern and receives additional microwaves from the RF system to 

speed up and increase the density of the electron bunches even more.2 Electromagnets that lie 

along the length of the linac are used to counteract the electron repulsion affects and maintain the 

density of the electron bunches.2 At the end of the entire electron gun and linac section, the 

electrons are travelling nearly at the speed of light with 50 MeV of kinetic energy.2-3 A vacuum 

is also created and maintained throughout the entire apparatus to avoid any unwanted collisions 

between the electrons and other molecules.3 

 
Figure 2.2 Detailed illustration of the electron gun and linac components of the ALS2 

 

From the linac, the high-density electron bunches enter the booster ring as an electron 

beam and circle around until they reach 99.999994% the speed of light with 1.5 GeV of kinetic 

energy.2-3 A section of the ring is an accelerating chamber that transfers energy from the UHF 

transmitter to the electrons every time they circle the ring.3 This energy counter acts and 

surpasses the energy electrons lose by giving off radiation.3 The electrons circle the booster ring 

about 1.3 million times, which is 98,000 km, in less than a second.2-3 Quadrupole and dipole 

magnets throughout the booster ring are used to focus and turn the electron beam, respectively.3 
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The electron beam leaves the booster ring and moves into the storage ring through an injection 

system.2-3 The purpose of the storage ring is to hold and maintain the electron beam’s high 

energy, which is 1.5 – 1.9 billion eV.1-2 As the electrons circle, photons are emitted in a fan-like 

beam and led to the individual beamlines.2 Like the booster ring, one of the sections has an RF 

cavity that transfers energy to the electrons each time they pass around the ring to recuperate any 

energy the electrons may lose as they turn.3 The storage ring is made of 12 arc-shaped and 12 

straight sections, which are 10 and 6 meters long, respectively.2 They are interchanging and 

connect to form a circle with a diameter of 63 meters.2-3 Each arc-shaped section has three 

precision electromagnets laid out in a “triple bend achromat” arrangement that focus and bend 

the electron beam around the ring.2-3 The straight sections are lined with insertion devices called 

undulators and wigglers.2 The devices serve to wiggle the electrons and form a beam of light 

from the emitted photons, which is directed by beam ports to individual beamlines.2 The 

undulators and wigglers contain many magnets oriented in an alternating format that move the 

electrons in a wave pattern.3 The distance between the opposing magnets determines the energy 

of the radiation and can be adjusted to best suit the experimental needs. 3 The undulators are 14 

feet long and contain over 100 magnetic poles.2-3 The wigglers function in a similar way, but 

with fewer magnets and produce synchrotron radiation with a broader spectrum than the 

radiation produced from the undulators. 3  

As previously mentioned, the RF system is used throughout the ALS sections to provide 

energy to the electrons. The RF system is made up of the klystrons, wave guides, and RF 

cavities.2 A klystron is a microwave amplifier that moves the waves down coaxial cables known 

as wave guides to the different RF cavities throughout the ALS.2 The RV cavities then transfer 

the microwave radiation, with a wavelength of 0.6 meters, directly to the electrons.2 The RF 
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energy creates a wave pattern and the acceleration increases because there is a section of the 

wave that electrons prefer to be as shown in Figure 2.3 below.2-3 This causes the electrons to 

slow down or speed up based on their location relative to this section.3  

 

Figure 2.3 Illustration of the acceleration of electron bunches (red disks) by microwave 

radiation produced from the radiofrequency system of the ALS2 

2.1.3 Chemical Dynamics Beam Line 

Once the light, or synchrotron radiation, is directed to the Chemical Dynamics beam line, 

it is narrowed and filtered to a 2.5% bandwidth with a 7.2 – 25 eV range before entering the 

ionization chamber of the PIMS at the experimental end station.4-5 The pathway from the storage 

ring to the ionization chamber is completely windowless.6 The light is refined first by an 

absorption cell filled with Ar or Kr gas then by an Eagle monochromator.6 When the light 

reaches the absorption cell, only harmonic radiation that is lower than the ionization energy of 

either Ar or Kr can pass through.5 Continuing to the Eagle monochromator, the synchrotron 

radiation bandwidth is further narrowed to 10 – 50 meV range before exiting through slits to the 
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PIMS.5 The Eagle monochromator narrows the bandwidth of the light beam’s photon energies 

according to Bragg’s Law.6 

n λ = 2 d sin θ, where n is an integer (Equation 2.1) 

Bragg’s law states that since the incident beam hits the reflecting plane of the monochromator at 

a specific angle (θ), only a specific wavelength (λ) can be reflected from the original beam. 3, 6 

Therefore, different wavelengths can be selected by adjusting the angles of reflecting plane and 

the incident beam.3, 6 In the experiments presented here, the atomic resonances of Xe, from 

12.545 to 12.575 eV, are used to calibrate the bandwidth and photon energies.5  The synchrotron 

radiation is considered “quasi-continuous” because the detection bandwidth is significantly 

smaller than the repetition rate that the light is pulsed at.5 The continuous and rapidly tunable 

radiation source allows for reactions with continuous probing to be conducted, which will be 

further discussed later in this chapter.  

2.1.4 Multiplexed Photoionization Mass Spectrometer Apparatus 

The experimental apparatus located at the end of the Chemical Dynamics beamline 

consists of an excimer laser, ionization chamber, time-of-flight mass spectrometer (TOF-MS), 

and a microchannel plates (MCP) detector. A vacuum system is used to maintain very low 

pressure throughout the entire apparatus.3 The basic schematic of the experimental set-up is 

shown in Figure 2.4.  
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Figure 2.4 Schematic of the multiplexed chemical kinetics orthogonal mass spectrometer  

 

 From previously prepared gas mixtures described in Sec. 2.2.1, the sample and precursor 

gases are flowed into the quartz reactor tube by calibrated mass flow controllers.5 The gases then 

leave the reactor tube through a 650 μm pinhole to enter the source chamber as an effusive 

molecular beam.5 An excimer laser is used to photolyze the gaseous precursor to produce free 

radicals that will react with the sample gas.5 The resulting reaction mixture, which could consist 

of products and intermediates, is side-sampled and skimmed by a 0.15 cm skimmer before 

entering the ionization chamber as a molecular beam.5 The synchrotron radiation intersects the 

molecular beam perpendicularly.5 Any reaction species will be ionized with higher photon 

energy than their ionization energy and continue through the experimental apparatus to the TOF-

MS.5  

The quartz reactor tube is a slow-flow reactor and is 62 cm long with a 1.27 cm outer 

diameter and 1.05 cm inner diameter.5 An 18 μm Nichrome tape is wrapped around the reactor 

tube to prevent short circuits, maintain temperature uniformity, and minimize radiating heat 

transfer into the source chamber.5 The tape itself is also covered with a square-weave, ZYW-15 
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cloth, and gold-plated copper sheath.5 A thermocouple monitors the temperature of the reactor 

tube and provides measurements to the closed-loop feedback circuit to control the temperature.5 

The side-sampling of reactor is essential to capturing time dependent concentration changes 

caused by a chemical reaction because the position of the species at sampling does not affect 

their concentrations.5 A capacitive manometer and closed-loop feedback valves, which connect 

to the Roots pump, are used to measure the pressure within the reactor tube.5 The Roots pump is 

used to remove gases from the reactor tube. Three turbomolecular pumps with speeds of 3200 

L/s, 1600 L/s, and 600 L/s are used throughout the experimental apparatus to vacuum the source 

chamber, ionization chamber, and detector, respectively.5 The vacuum pumps are described in 

further detail later in this chapter. All the ALS reactions presented in this work maintained the 

pressure and temperature of the reactor tube at 4 Torr and 298 K. 

  

2.1.4.1 The Excimer Laser 

As previously mentioned, the purpose of the excimer laser is to photolyze a selected 

precursor to produce free radicals that will react with the sample gas molecules. 

 A laser functions as a result of population inversion and stimulated emission. Population 

inversion is the redistribution of atomic or molecular energy levels within a system.7 As shown 

in Figure 2.5, when a system is at thermal equilibrium, or “normal distribution”, there are a more 

atoms at lower energy levels than at higher energy levels.7-8 Population inversion occurs when 

there is a disturbance in system’s equilibrium, such as an input of energy, that causes more atoms 

or molecules to be at higher energy levels instead of lower levels.7-8 Eventually, the excited 

atoms in the higher energy levels will return to the lower levels and emit energy as photons in the 

process.7-8  
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Figure 2.5 Energy level diagrams for equilibrium and population inversion7 

Stimulated emission of radiation is used to ensure that the emitted photons are all the same 

wavelength.7 The emission of photons from population inversion are stimulated by an incoming 

photon from outside the system, which already has the desired wavelength.7 The incoming 

photon is a source of radiation that then becomes amplified because the emitted photons from the 

system move in the same direction as the incoming photon.7 This event results in what is known 

as light amplification by stimulated emission of radiation (LASER).  

A xenon fluoride (XeF) excimer laser is used to produce the photons at 248 nm that are 

necessary for the photolysis of bromoform.  To prompt the population inversion that is needed to 

produce a laser, xenon and fluorine gas are flowed into the gas chamber of the laser apparatus. 

Energy discharge will produce a spark that will then excite the xenon atoms and the excited 

xenon will react with molecular fluorine as shown below. 

Xe* + F2 → (XeF)* + F 

The bound excited (XeF)* will then drop to the ground state to form the unbound XeF while 

emitting photons at 248 nm. The (XeF)* compound is known as a “excimer”, or excited dimer, 

that only exists in the excited state.9 The laser in this experimental apparatus is pulsed at 4 Hz 

and 160 mJ per pulse. 

In the ALS experiments presented here, bromoform, CHBr3, is photolyzed to produce 

methylidyne radicals, CH (X2∏), with the photons at 248 nm emitted from the XeF excimer 
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laser. The bromoform molecules are in a gas mixture of 1% bromoform/helium and prepared as 

described in Sec. 2.1.1. As shown below, CH (X2∏) radicals are only produced from multi-step 

dissociation pathways of bromoform, with CHBr2 and CHBr radicals as intermediates.10-11  

𝐶𝐻𝐵𝑟3
ℎ𝑣=248 𝑛𝑚
→        𝐶𝐻𝐵𝑟2 + 𝐵𝑟 

ℎ𝑣=248 𝑛𝑚
→        𝐶𝐻 + 𝐵𝑟2 

𝐶𝐻𝐵𝑟3
ℎ𝑣=248 𝑛𝑚
→        𝐶𝐻𝐵𝑟 + 𝐵𝑟2 

ℎ𝑣=248 𝑛𝑚
→        𝐶𝐻 + 𝐵𝑟 

Due to the multiple photodissociation products and pathways, quantification of the dissociation 

species is not feasible.10-11  Chapter 4 and 5 describes these pathways and quantification issues 

further. 

2.1.4.2 Time-of-Flight Mass Spectrometer 

The multiplexed photoionization mass spectrometer in this work uses a Wiley-McLaren 

TOF-MS design, which allows for continuous and simultaneous detection of ionic species at 

multiple m/z ratios.12 The Wiley-McLaren design is allows for high resolution to be maintained 

using only electric fields.12 The reaction species that ionize after intersecting with the 

synchrotron radiation beam are now cations and directed to the TOF analyzer by a series of DC 

electric fields.13 The electric fields serve to focus and align the cations to the end of the flight 

tube of the TOF-MS.13 Then, the cations are guided to the detector by opposing positive 

(“repeller”) and negative electric fields (“puller”) of 150 V and -150 V, respectively.13  The 

accelerated ions are separated as they travel down the flight tube based on their different 

velocities. The velocity of an ion is solely reflective of its specific m/z ratio because the same 

electric field (U) will be applied to all ions resulting in the same initial kinetic energy (KE) for 

all ions.13 Therefore, these two factors are constants and m/z ratio is the only variable. The 

equation below shows this relationship between the velocity (v) and mass (m):  
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𝜈 = √
2𝑒𝑧𝑈

𝑚
= √

2𝐾𝐸

𝑚
  (Equation 2.2) 

where z is the integer of the electron charge and e is the electron charge. Therefore, ions with a 

lighter mass will have a faster velocity whereas heavier ions will be slower and reach the end of 

the flight tube last. Finally, the cations reach their terminus location at the MCP detector.  

2.1.4.3 Microchannel Plates Detector 

To collect data from the TOF-MS, the MCP detector amplifies the signal of the detected 

ions based on their arrival times to the detector plate. A single MCP plate is made up of channel 

electron multiplier (CEM) tubes that are placed very close together to increase the possibility of 

ion collisions.13 Since the CEM tubes are semiconductors, ion collisions with the MCP plate can 

form secondary electrons that are then accelerated by an electric field.13  

In our experimental apparatus, 2 MCP plates are alternatingly stacked in a “v-stack” or 

chevron plate arrangement for signal amplification from plate to plate.13 The “v-stack” reaches a 

capacity and forms 107 electrons for each incoming cation that collides with the MCPs.5 Figure 

2.6 depicts the chevron plate arrangement in further detail. Raw data is outputted as a 3-D block 

and details about data processing are discussed in Chapter 3.  

 
Figure 2.6 From left to right, diagrams of the ion signal amplification of a single MCP plate, 

chevron plate arrangement of 2 stacked MCPs, and a z-stack arrangement of 3 stacked MCPs. 
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2.1.4.4 Vacuum Pumps 

As previously mentioned, several vacuum pumps are used throughout the experimental 

apparatus to eliminate contamination from unwanted molecules within the system. The three 

types of pumps utilized are turbomolecular, Roots, and scroll pumps.  

Three turbomolecular pumps are individually connected to the source chamber, 

ionization chamber, and the detector. A turbomolecular pump is made up of circular blades 

layered on top of one another in “stages”.14 Each stage has a moving blade, known as a rotor or 

turbine blade, and a stationary blade, or stator.14 A simple illustration and cross section of a roots 

pump is shown in Figure 2.7 below. As gas molecules enter the vacuum, the gas collides with the 

moving rotors and momentum is given to the gas molecules.14-15 The molecules then move 

towards the stator, which leads them to the pair of blades in the next stage.14-15 The gas 

molecules are compressed and increase in pressure as they move down the stages in the vacuum 

pump until they are removed by a backing pump.14-15 

  

Figure 2.7 Diagram and cross section of a turbomolecular pump.  

The Roots and scroll pump are coupled to the highest speed (3200 L/s) turbomolecular 

pump, which connects to the source chamber at the bottom of the quartz reactor tube. The scroll 
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pump serves specifically as the backing pump and removes the high-pressure gas from the 

turbomolecular pump. Within the scroll pump, there is one rotating and one stationary scroll that 

move gas molecules to the center of the pump in order to compress the gas and increase the 

pressure.16 A schematic of the scroll pump’s function is shown in Figure 2.8, where the black 

line represents the stationary scroll and the red line represents the rotating scroll. As the rotating 

scroll moves, the area between the two scrolls changes. Therefore, gas molecules within the 

pump become trapped and pushed into the vacant space until they reach the outlet in the center 

of the pump.15-16 The scroll pump maintains a pressure of 10-2 torr and a pumping speed of 6 – 13 

L/s.17  

 
Figure 2.8 Schematic of gas moving through the scroll pump.16 

The Roots pump consists of two rotors that spin in opposite directions without touching 

in order to move gas molecules to a higher pressure. A basic diagram of the pump is detailed in 

Figure 2.9. The two rotors are synchronized and spin at a rotation speed of 1000- 3000 rpm.17  

Gas molecules enter at the inlet of the pump with a low pressure and are pushed and carried 

towards the outlet where the pressure increases as the gas exits the pump.14 The Roots pump has 

a pressure range of 10 – 103 mbar and pumping speed range up to 8333 L/s.17  
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Figure 2.9 A general diagram of a Roots pump.18  

2.2 The Swiss Light Source Experimental Methods 

2.2.1 The Swiss Light Source 

The SLS instrumentation is very similar to that of the ALS and is also used to produce 

synchrotron electromagnetic radiation with very high brightness from the acceleration of 

electrons to nearly the speed of light. The light spectrum can range from infrared to hard x-rays 

and the specific wavelength depends on the energy of the electrons.19-20 At the PSI, the SLS is a 

third-generation synchrotron made up of a linac, booster, and storage ring that generate a photon 

beam with an energy of 2.4 GeV to use in photoionization and photodissociation experiments.19 

Figure 2.10 depicts a general layout of the SLS.  
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Figure 2.10. Basic layout of the Swiss Light Source at the Paul Scherrer Institute. Inner 

ring is the booster and the outer ring is the storage ring.19 

 

Like the ALS, an electron gun apparatus is used to generate electrons from a heated 

cathode surface and direct them to an anode using an applied voltage of 90 kV from an RF 

system.19 The linac is made up of two 5.2 m long accelerating sections that increase the electrons 

energy to 100 MeV.19 Electrons then travel from the linac through a 16 m transport beam and are 

injected into the booster ring by kicker magnets,19 where the electrons are further accelerated 

until their energy reaches 2.4 GeV.19 The energy is provided by the RF system, just like in the 

ALS apparatus.19 The booster ring has a 270 m circumference and is lined with 237 magnets that 

produce a magnetic field that is adjusted as the electrons increase in energy.19 A 20 m transport 

beam then directs the electrons to the storage ring19 in which the electrons are “top-up” injected. 
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This means that the electrons are injected intermittently, about every 1-2 minutes, in order to 

maintain their high intensity constant.19, 21 The high energy electrons circle around the storage 

ring for hours and emit electromagnetic radiation, or light.19 The light is directed to specific 

experimental end stations by beamlines that utilize the same insertion devices as the ALS.19 

Mirrors and monochromators in the beamlines serve to filter and select the desired wavelength of 

the SLS light.21 Ultrahigh vacuums throughout the entire SLS apparatus and beamlines are used 

to prevent loss of electrons from unwanted collisions with molecules in the air.19-20 

2.2.2 VUV Beamline 

The VUV beamline uses magnets, mirrors, and monochromators to focus and refine the 

electromagnetic radiation to a monochromatic light with 104 resolving power and a 5-30 eV 

range that will be used in experimentation.20, 22 The light emitted from the electrons is linearly 

polarized on the plane of the storage ring and elliptically polarized above and below that plane.21-

23 The vertical acceptance angle has to be wide in order to accept VUV radiation since it extends 

beyond the plane. However, this wider range allows for undesirable X-rays and high harmonics 

to enter the beamline as well, which will need to be filtered out before the light can be used at the 

experimental end station. The light passes through an X-ray blocker made up of a water-cooled 

copper tube that removes X-rays and a large amount of heat.21-22 Next, the light reaches the first 

mirror that removes photon energies higher than 150 eV and continues to the monochromator 

plane grating.21-22 The monochromator along with a second mirror refines the light to the desired 

resolving power and photon energy range.21-22 Similar to the monochromator of the ALS, the 

angle of the planes in the monochromators allow the VUV radiation to be tunable.21-22 The final 

third mirror directs the light to the experimental end station apparatus.21-22 Before entering the 

ionization chamber of the PEPICO instrument, the light passes through a specialized gas filter. 
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The gas filter is like the absorption cell of the Chemical Dynamics Beamline in that it uses an 

argon and neon gas mixture to remove any higher photon energies than the ionization energies of 

these two gases. 21-22  

2.2.3 i2PEPICO Experimental Apparatus and Electron Velocity Imaging 

The SLS experiments presented in this research were conducted using double imaging 

photoelectron photoion coincidence (i2PEPICO) in the symmetric set-up that allows for both 

photoelectrons and photoions to be imaged. (Figure 2.11) 

Once the light passes through the specialized gas filter, it enters the experimental chamber 

and orthogonally intersects the molecular beam of the sample molecule. To produce the 

molecular beam, a liquid sample is placed in a glass vial and exposed to a high vacuum.24 The 

gas in the headspace is drawn into the experimental chamber through a simple nozzle technique 

designed by Buckland et al.24 The nozzle is very compact, and the opening has a diameter of 10 -

100 μm.24 The molecular beam is refined and narrowed by the 1 mm slit of an in-house designed 

skimmer and enters the 2 mm by 2 mm ionization region, shown as the purple oval in Figure 

2.11, of the experimental chamber.20, 25 Like the ALS, ionization will occur if the energy of the 

VUV light is greater than the ionization energy of the sample molecule. The molecular beam is 

considered continuous throughout the experiment and can be pulsed.22 The pressure in the 

experimental chamber is maintained through nine differentially pumped sections.22 Most 

reactions are carried out at 10-6 mbar.22 A 500 L/s turbomolecular pump and a 1500 L/s 

cryogenic pump are used to clear out the experiment chamber.22 The source chamber is kept at a 

pressure of 5 x 10 -7 mbar and pumped out by a 1500 L/s turbomolecular pump and a 5000 L/s 

cryogenic pump.20, 22 
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Figure 2.11 Drawing and Schematic of the symmetric set-up of the i2PEPICO apparatus22 

After ionization, a photoelectron is produced to trigger the ion time-of-flight analysis. As 

shown in the schematic presented in Figure 2.11, photoions and photoelectrons move in opposite 

directions from the ionization chamber. The zero kinetic energy electrons (ZKE) and “cold ions” 

are the species of interest in the PEPICO studies presented in this thesis. Electric fields created 

by two plates are used to accelerate and pull the photoelectrons (ZKE and “hot electrons”) and 

photoions (“cold ions” and “hot ions”) in their respective directions.20, 25 To reach the detector, 

photoelectrons and photoions pass through a 20 mm opening, where velocity imaging occurs, 

and down a 265 mm electron flight tube that connects to the Roentdek DLD40 delay line 

detector.20, 25-26 ZKE electrons and “cold ions” move in a straight direction and hit the center of 

the detector, while “hot electrons” and “hot ions” travel at an angle and do not hit the center.25 
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The ZKE electrons and “cold ions” are considered to be in coincidence and correspond to the 

photoionization event.25 Opposingly, the “hot electrons” and “hot ions” do not have zero kinetic 

energy and are subtracted out of the velocity imaging during data analysis.25 An electron velocity 

image showing the distinction between ZKE and “hot” electrons is shown in Figure 2.12.   

 
Figure 2.12 Electron velocity map image from i2PEPICO experiment. Red circle indicates the 

“hot electrons” and the blue circle indicates the ZKE electrons. 

 

Electron velocity images are produced by a customized program designed by Dr. Andras 

Bodi and is available on the official PSI website. The purpose of the i2PEPICO program is to 

visualize the raw data outputted from the i2PEPICO apparatus based on mapping information of 

the location of the photoelectrons collisions with the detector and TOF-MS data of the 

photoions.27 The detector outputs data that represents the distribution of electrons as a function 

of their velocities before the final acceleration to the detector. The resulting image output is the 

electron velocity image. In reference to the velocity image in Figure 2.13, a yellow ring is 

graphically adjusted to lay on the “hot electrons” (red ring) and enclose the ZKE electrons (blue 

circle). Then, the program will average the area of the yellow ring and subtract the counts from 

the signal to ensure the signal is only a result of the ions in coincidence. A multichannel analyzer 
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is used to count the total number of active channels that give number points and these numbers 

are controlled by an input script to the i2PEPICO program. The script is optimized to best 

visualize the signal and further reduce noise produced from the “hot electrons”. The i2PEPICO 

program produces a list of the coincidence counts from the entire electron velocity map image as 

a series of numbers.27 The data is extrapolated, and a weight factor is applied to determine the 

count of only the ZKE electrons. From the counts, fraction abundances for each mass-to-charge 

ratio are determined and plotted as a function of photon energy to produce a breakdown diagram. 

Further details about data processing are described in Chapter 3. 

 

Figure 2.13 Electron velocity map image from i2PEPICO experiment during image processing. 

The yellow ring is graphically adjusted and inputted by the i2PEPICO program. 
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Chapter 3 Theory 

 Understanding theoretical concepts of photoionization (PI) and kinetics is essential to the 

research presented in this thesis. PI spectra and kinetic time traces are used to identify and 

characterize reaction species from a given reaction. Computational methods are used to produce 

potential energy surface (PES) scans to determine all the proposed reaction mechanisms. The 

process to analyze ALS experimental data, which utilizes these theoretical concepts, will be 

explained in detail. Additionally, photodissociation and thermodynamic concepts related to 

i2PEPICO experiments will also be described, along with details about computational modeling 

to analyze experimental data.  

3.1 Theoretical Concepts  

3.1.1 Ionization 

A photochemical reaction occurs when light interacts with an atom or molecule and 

causes a chemical or physical change.1 In this research, two types of photochemical reaction are 

studied and illustrated below:1 

Ionization: A + hν → A+ + e- 

Dissociation (Dissociative Ionization): A + hν → B+ + C 

In an ionization reaction, a compound becomes charged due to the loss of electrons. More 

specifically, this research investigates photoionization where light (or photons (hν)) is used to 

eject an electron from a neutral compound (A) that becomes a cation (A+).  In spectroscopy, the 

minimum amount of energy needed to eject an electron is known as the compound’s adiabatic 

ionization energy (AIE).1-2 The ionization energies are influenced by the molecules bonding and 

electronic characteristics.1-2   
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The two types of ionization energies are adiabatic and vertical. Their main difference is 

the geometry of the resulting ion, which is based on the specific final energy level of the 

transition. 1-3 Vertical ionization energy (VIE) refers to the ionization energy where the ion has 

the same geometry as the neutral compound. On the other hand, AIE refers to ionization energy 

where the ion is at the lowest and most relaxed geometry, which may or may not be different 

from the neutral. Figure 3.1 illustrates the two transitions in a potential energy diagram for a 

diatomic molecule. The adiabatic transition would result in an ion with a slightly longer bond 

length than the neutral. Both types of transitions are further explained by Born-Oppenheimer 

approximation and Franck-Condon principles later in this chapter.  

 

Figure 3.1 Potential energy diagram for a diatomic molecule3 

 

The adiabatic ionization energy (AIE) is always smaller than vertical ionization energy 

and represents the energy difference between the two potential energy surfaces absolute 
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minima.1-2 AIE is calculated from the differences of the vibronic ground states using the equation 

below:  

AIE = E0 cation – E0 neutral   (Equation 3.1) 

The greater the overlap between the two ground states in the transition, the closer the AIE is to 

the VIE.2 Calculated AIE can be compared to experimental AIE to help identify unknown 

species.  

3.1.2 Photoionization Spectra 

  In spectroscopy, a photoelectron spectrum measures the energy change in an ion when 

an electron is lost from a neutral molecule. When a PE spectrum is integrated, it yields a 

photoionization (PI) spectrum, which is used to characterize the ionization of a molecule. Also, a 

PI spectrum can provide useful information about an unknown molecule’s structure and bonding. 

Each PI spectrum is unique to a specific molecule and can even help differentiating between 

isomers. The onset of a curve is the same as the AIE and the shape of the curve is determined by 

the specific ion geometry and, therefore, Franck-Condon (FC) factors.  

Experimentally, PI spectra are known as photoionization efficiency (PIE) curves and are 

generated when photoionization is coupled with mass spectrometry. The resulting ions are 

separated by mass and assigned to single mass-to-charge (m/z) ratios. A PIE spectrum shows a 

specific m/z ratio’s relative ion signal as a function of photon energy and is proportional to its 

photoionization cross section. Further details on experimental data processing and cross sections 

will be discussed later in this chapter. A PI spectrum can also be generated by integrating a FC 

simulated PE spectrum with a calculated AIE. In this research, these methods are utilized when 

experimental reference PI or PE spectra are unavailable. As previously mentioned, PE spectra 



 

38 
 

are reflective of molecule’s unique FC factors. To calculate these FC factors, the Born-

Oppenheimer approximation and Frank-Condon principle must be applied.  

3.1.3 Born-Oppenheimer approximation and Franck-Condon principle 

 The Born-Oppenheimer approximation allows for electron and nucleus wave functions to 

be separated based on velocity differences.4-5 Electrons move at a much faster velocity than 

nuclei, therefore, an electronic transition takes place so quickly that nuclei can be considered 

initially stationary in the ionization process.4-5 Using the equation below, the Schrödinger 

equation is now solvable to yield values for energy and wavefunction of the given molecule.5  

Ψ molecule = Ψ nucleus x Ψ electron  (Equation 3.2) 

The Franck-Condon principle builds upon the Born-Oppenheimer approximation and 

explains that since the nuclei are considered stationary, it can be also assumed that bond lengths, 

bond angles, and positions do not change during ionization.1, 4, 6 Therefore, an electronic 

transition can be considered a vertical transition. After the electronic transition or ionization, 

electron density increases enough to cause the nucleus to vibrate and displace energy.1, 4, 6-7 The 

energy displacement causes a vibrational transition, where an electron moves from one 

vibrational level to another, to occur in sequence with an electronic transition.4, 7 The 

combination of these two transitions is known as a vibronic transition.1 The FC principle is used 

to describe the intensity of a vibronic transition by stating that the probability of a transition to a 

certain vibrational energy level is higher when the overlap of the ground states between the two 

levels is greater.4, 7 As previously mentioned, the greater the overlap, the less change in 

molecular geometry occurred in the ionization process. In the energy diagram below, the FC 

principle is illustrated where each vibrational level is expressed as a wave function. (Figure 3.2) 

The blue and green arrows show the vibronic transitions where minimal configuration change 
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occurs for electron emission and absorption, respectively. These transitions have the greatest 

overlap and would, therefore, have the highest probability of occurring.  

 

Figure 3.2 Potential energy diagram illustrating Franck-Condon Principle for a diatomic 

molecule8 

 

The probability of a specific vertical transition is represented as a Franck-Condon factor 

and is calculated using the equation below.4, 6, 8 

Franck-Condon Factor (Re) = |∫ 𝛹e′ μ 𝛹e"𝑑𝑅|2,  (Equation 3.3) 

where 𝛹 are the wavefunctions of the initial and final state of the electronic transition and μ is 

the electric dipole moment operator. As shown in the equation, a FC factor is proportional to the 

square of the first overlap integral between the wavefunctions of the vibrational levels involved 

in the transition. Utilizing a recursive formula developed by Ruhoff, FC factors and overlap 

integrals are calculated to simulate PE spectra, with FC and Franck-Condon-Herzberg-Teller 

methods, for use in the research presented in this thesis.6  
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3.1.4 Photoionization Cross Sections 

Photoionization cross sections (PICS) refer to the area in which there is the highest 

probability that a molecule will ionize.1, 9 More specifically, PICS is the area in which there is 

the highest probability of an electron being emitted from a gaseous molecule, which is directly 

proportional to the number of photons that collide with the molecule.9, 10-12 

 Absolute Photoionization Efficiency (APIE) spectra can be determined by comparing 

experimental data with data of well-known species. In experimentation, a known concentration 

of the compound of interest is flowed in with a calibration gas consisting of well-known species 

and the results are compared. The individual compounds’ relationship can be shown and 

calculated by the equation below:9, 11 

𝑆(𝐸) = 𝑘𝜎(𝐸)𝛿𝐶 (Equation 3.4) 

S is the ion signal, 𝜎 is the PI cross section, 𝛿 is the mass dependent response, and C is the 

concentration of the specified compound. The ion signal and PICS of the compound of interest 

are all relative in relation to the well-established values of the compounds in the calibration gas 

and are energy dependent. Therefore, it is important to use the same energy (E) throughout all 

calculations.  Due to the relative nature of the results, unknown cross sections are typically 

expressed as a ratio of the factors in the equation above to those factors for the species’ in the 

calibration gas. The ratio is expressed by the equation below where X represents the unknown 

and S represents the standard:9, 11  

𝜎X = 𝑆X𝜎𝑆𝛿𝑆𝐶𝑆 / 𝑆𝑆𝛿X𝐶X   (Equation 3.5) 

PICs are necessary to calculate branching fractions of reaction products. A branching 

fraction is the comparison of the concentration of a product to the concentration of the reactant. 

They are also directly proportional to the efficiency of ionization, which is low at energies close 



 

41 
 

to the ionization energy of a given species. Like the equation above, the equation used to 

calculate branching fractions, shown below, is a ratio of concentrations and ion signal of the 

reactant to that of the product: 9, 11, 13 

 CP/CR = SP𝜎R𝛿R/ 𝑆R𝜎P𝛿P (Equation 3.6) 

P denotes the product’s factors and R represents the reactant’s factors. The mass dependent 

response is calculated by the mass of a given species taken to the power of 0.67.11  

 When APIE are unavailable or PI spectra result from a summation of species, PICS can 

be calculated using the additivity rule. The equation below is used to calculate PICS based on the 

additivity rule:14  

𝜎 = Ʃ∑ 𝑥𝑖𝜎𝑖
𝑛
𝑖=1          where  ∑ 𝑥𝑖 = 1

𝑛
𝑖=1  (Equation 3.7) 

The additivity rule uses the mole fraction (x) and PICS (𝜎) of the of the ith isomer for its 

estimation.14  

3.2 Computational Methods 

 Using Gaussian 09 computational program, electronic structure calculations (ESC) and 

PES scans are used to calculate energy values, simulate PI spectra, find activation barriers, and 

determine optimal mechanism pathways.15  The purpose of these calculations is to support 

identification and characterization of reaction species from experimental data. All calculations in 

this thesis are computed using the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory 

and the Complete Basis Set Quadratic B3LYP (CBS-QB3) composite method. 

3.2.1 Electronic Structure Calculations 

Electronic structure calculations (ESC) are performed using the CBS-QB3 model, which 

yields the most reliable and accurate geometries and energetics for the capabilities of our 
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research lab at a relatively low computational cost. Zero-point vibrational corrected electronic 

energies (ZPE) and molecular harmonic frequencies are the useful values produced from ESC.  

In an ESC, a structure is drawn in GaussView 5.0 and the coordinates are optimized to 

find the geometry with the lowest energy. ZPE corrected total electronic energies of the cation 

and neutral structures are used to calculate AIE for a given molecule. As previously mentioned, 

the calculated AIE is then used in FC simulations and to compare to experimental data. Any 

enthalpy change calculations also use the ZPE-corrected values as shown in the equation below:  

AIE = ZPE cation –  ZPE neutral ,  

ΔH = Ʃ ZPE products – Ʃ ZPE reactants  (Equation 3.8) 

The “B3”, or B3LYP, portion of the method is used in ESC to calculate bond distances and 

harmonic vibrational frequencies.16-17 The approximated molecular orbitals, which are based on 

the inputted molecular structure, is mathematically represented by the all electron 6-311+G* 

basis.17-18 The basis set in any level of theory  is composed of linear combinations of pre-defined 

one-electron functions.17-18 The treatment of electrons is essential and unique to the different 

methods and will be discussed later in this section. 

3.2.2 Potential Energy Scans 

PES uses the B3LYP method to calculate energy changes as a specific bond length or 

atom is modified. These modifications can be programmed to break or form new bonds as well 

as transfer atoms within the molecule. A PES shows changes in enthalpy as a graph for each 

“step” of a movement with regards to ideal gas conditions, kinetics, and the laws of 

thermodynamics. Thermochemistry values for structures at each “step” are influenced by 

electronic, vibrational, and rotational frequencies.18-19 The structures at local minimum and 
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maximum points are further optimized by CBS-QB3 to report more accurate energetics. An 

example of a PES scan with a complimentary energy graph is shown in Figure 3.3.  

 

Figure 3.3 PES energy change graph from GaussView for a hydrogen transfer run on Gaussian 

09. The starting structure, local maximum/transition state, and local minimum/final structure are 

labeled. 

 

B3LYP method is used in PES to determine any barriers in a mechanism pathway and 

identify reaction species, including products and intermediates. Transition states and their CBS-

QB3 calculated energies are considered the activation energy barriers for the proposed 

mechanism. In the PES scan shown in Figure 3.3, the transition state, also known as the saddle 

point or local maximum, is found from the top point of the scan. The transition state has 1 

imaginary frequency and the positive frequencies are used to calculate rate constants and 

thermochemistry values of a dissociation with the RRKM theory discussed later in this section. 

PES is also used to find the global minimum, which has the lowest possible vibrational electronic 
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level (Figure 3.3). This structure is then optimized by CBS-QB3 to report the most energetically 

favorable energy state and molecular configuration.  

 

3.2.3 Computational Theories 

 CBS-QB3 is composed of several methods in a specific order to compute electronic 

thermochemical values while optimizing molecular geometry and ZPE. 16-18 The B3LYP method 

is included in the CBS-QB3 composite method to better optimize the molecular geometry and 

frequencies.16-17 The method order of CBS-QB3 is listed below: 17 

(i) B3LYP/6-31G 

(ii) UMP2/6-311+G(3d2f,2df,2p) 

(iii) MP4(SDQ)/(6-31+G(d(f), p) 

(iv) QCCSD(T)/6-31+G 

Steps (ii)-(iv) are all performed at the optimized geometry yielded from step (i) and calculate 

ZPE values.17 Step (iii) also calculates CBS extrapolation to deduce the total energy to an 

infinite-basis-set limit.17 CBS-QB3 composite method works to overcome as much basis set 

truncation error as possible and was found to have a relatively small error of 1-1.5 kcal/mol.18 

The B3LYP method belongs to the density functional theory (DFT) that builds upon the 

Hartree-Fock (HF) method. Both the Hartree-Fock and CBS methods do not take into 

consideration electron-electron interactions and the purpose of B3LYP addition is to consider 

them for molecular geometry optimization and energy calculations.16-18 HF method is an ab initio 

method that calculates the lowest energy state of a system with the all electron effects viewed as 

an average.16-17, 19  Whereas, DFT method uses a function to describe the ground state energy and 

density of a molecule while accounting for the kinetic energy of electrons.16-17 The contributing 

electron energy includes any attraction or repulsion between electrons and nuclei, electron-

electron interactions, and an exchange correlation for other electron-electron interactions.16-17, 19 
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B3LYP is a DFT method that depends on both electron density and gradient in a molecule, also 

known as a gradient-correct exchange functional.16-17 B3LYP method used in this research is the 

combination of HF, BLYP, and potential energy from the exchange correlation of electron-

electron interactions.17, 19  

3.3 ALS Data Analysis 

 Experimental data from ALS synchrotron photoionization reactions is collected as a 

three-dimensional data set of intensity as a function of photon energy, reaction time, and m/z 

ratio. Using a kinetic procedure file developed by researchers at Sandia Laboratories, the 3-D 

data is visualized and processed using Igor 6.37 Wavemetrics program.20 Following background 

subtraction, the ion signal is normalized to account for any fluctuation in the photon light source. 

To reduce the 3-D image to 2-D images, either energy or time is set as a fixed variable and then 

the 2-D image is “sliced” into one-dimensional images at specific m/z ratios.21 From the 2-D 

image with a fixed photon energy, kinetic time traces are produced, which show relative ion 

signal versus time. Whereas, PI spectra are produced from a 2-D image with a fixed time range 

and show relative ion signal versus a photon energy. Figure 3.4 illustrates the “slicing” process 

of a 3-D data set.  
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Figure 3.4 Processing of three-dimensional data to one dimensional kinetic time trace and PI 

spectra.21 
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 Using the kinetic time traces of reaction species, primary products can be identified. This 

research only investigates primary products and their reaction mechanisms. The kinetic time 

trace of the parent molecule should show as a negative ion signal, or a depletion curve. 

Opposingly, a product will have a positive ion signal showing a formation curve. A primary 

product should form at the same rate (or similar rate) that the parent depletes, therefore the 

inverse of the parent’s kinetic time trace should match that of the proposed primary product. 

Figure 3.5 shows a depletion curve for a parent compound and its inverse superimposed onto a 

primary product. If the parent’s inverse and product kinetic time traces are a match, as shown in 

Figure 3.4, then the product is considered to be most likely primary (however, we cannot rule out 

very fast secondary reactions that could occur; in this sense, the computation of the PES can help 

in explaining and identifying possible primary species). Kinetic time traces can also identify 

radical species and secondary products. A radical species will have a time trace with a sharp rise 

and rapid depletion curve showing fast formation and fast consumption. (Figure 3.6) A 

secondary or tertiary product will have a slow formation onset that does not match the parent’s 

inverse. (Figure 3.6) 
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Figure 3.5 Kinetic time trace comparisons of a parent and a primary product 

 

a)  

b)  

Figure 3.6 a) Kinetic time trace of parent (red) compared to a radical species (blue). b) Kinetic 

time trace of parent (red) compared to a primary product (blue) and a secondary product (green). 

 

Experimental PI spectra are used to characterize and identify the primary products.  To 

produce clearer PI spectra, time is fixed at a set range rather than the entire length of the 
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experiment to best minimize secondary and tertiary products based on the kinetic time trace of 

the parent. As previously mentioned, reference and simulated PI spectra are used to identify 

unknown species. Figure 3.7 shows an experimental PI spectrum at m/z = 52 overlaid with a 

reference spectrum for vinylacetylene and identified as a successful match. Multiple products at 

the same m/z ratio are also possible and can be identified in the same manner through a 

summation curve of the proposed products. From experimental PI spectra, experimental AIE 

values can also be calculated using linear extrapolation of the curve’s onset.22 The ion signals 

from the experimental curves are also used to calculate PICS and fractional abundance.  

 
Figure 3.7 Experimental PIE spectra for m/z = 52 (red) compared to reference PI spectra of 

vinylacetylene (blue). 

 

3.4 Photodissociation and Photoionization Concepts 

3.4.1 Dissociation and Thermodynamics 

 The PEPICO experiments presented in this thesis involve dissociative photoionization by 

VUV synchrotron radiation. Dissociative photoionization occurs when a molecule is excited with 

an amount of energy, from the light source, that is more than the AIE needed to ionize. 1, 3, 23 The 

energy increase causes the molecule to lose an electron and become a cation.1, 3, 23 The resulting 

cation will then dissociate and break down into daughter ions and neutral fragments. 1, 3, 23  
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Most current and common experiments are unimolecular dissociations. A simplified 

dissociative photoionization is shown in the equation below1: 

AB + hv → A+ + B + e- (Equation 3.9) 

Studying these reactions can provide information about ion dissociation rates, translational 

energy values, and breakdown diagrams.24 Breakdown diagrams are graphs that show relative 

abundance as a function of ion internal energy for dissociation reaction species.24 Further 

interpretation of experimental data can lead to determining the dissociation mechanism and 

thermochemistry values for the different channels.  

When coupled with mass spectrometry, appearance energies (AE), can be measured for 

the cation fragments.24 Dissociation barriers are determined and calculated with potential energy 

surface scans described previously. When no dissociation barriers are present, or the PES 

determines that mechanism is “uphill”, the bond dissociation energy (BDE) can represent the AE 

of the cation fragment. This is also called thermochemical limit. BDE is the difference between 

the energy of the parent and the energy of the fragments.24 To calculate enthalpy values, 

experimental AE values are used in the equation below.24-25 

AE ≈ ΔrxnH = Δf H (A+) + ΔfH (B) - ΔfH (AB) (Equation 3.10) 

Enthalpy values are taken at 0 K and the heats of formation for known species can be used to 

solve for any of those that are unknown.  

3.4.2 PEPICO Technique 

To study the dissociation rates and thermochemistry of ions, production of ions with 

well-defined energy states is required. However, the photon energy  produced by the VUV 

beamline used in the ionization process contributes to the resulting ion’s internal energy (IE) and 
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the kinetic energy (KE) of the electron. 24 Therefore, the ions produced have a range of internal 

energies instead of a selected energy.24 The ionization process is shown in the equation below.24   

AB + hv → AB+ (Eint) + e- (KE) – IE (Equation 3.11) 

However, when coupled with the i2PEPICO spectroscopy technique, the VUV light can be used 

to isolate ions with well-defined energy states25.  

As previously mentioned in Chapter 2, the i2PEPICO apparatus allows for photoelectrons 

and photoions to be measured and imaged at the same time to determine which ions correspond 

to a photoionization event. Thus, by selecting a specific energy at which to collect electrons, the 

energy of ions can also be carefully chosen. 24  Thermochemistry data can be calculated based on 

the now very well-defined internal energies of the ions.24 The precision of the internal energy is 

orders of magnitudes better than that of traditional mass spectrometry. 26 Unfortunately, there is 

still a very low collection efficiency, which is the reason why a continuous photoionization 

source is needed. 24 

3.4.3 miniPEPICO Computational Modeling 

MiniPEPICO, developed by Sztaray et al.26, is a computational program that analyzes the 

dissociation of molecules to produce a theoretical breakdown diagram to compare to 

experimental data. Using the RRKM theory, thermal energy distribution of the ions is calculated 

as a function of photon energy with account to dissociation rates.26 The program can also model 

parallel and consecutive dissociation mechanisms.  

Breakdown diagrams help visualize the dissociation pathways through relative abundance 

of the reaction species. A fast, parallel dissociation is shown in Figure 3.8 with miniPEPICO 

modeled dissociation curves overlaid onto experimental data. Like the i2PEPICO experimental 

technique, which relies on having well-defined internal energies of ions, the miniPEPICO 
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program also analyzes dissociation of a molecule in terms of internal energy distribution.26 The 

ratio of the parent ion to the fragment ion for a fast, single dissociation can be calculated by the 

equation below: 

𝐵𝐷(ℎ𝜈) = ∫ 𝑃𝑖(ℎ𝑣)𝑑𝐸
𝐸0−𝐼𝐸

0
,  (Equation 3.12) 

where P is the normalized internal energy distribution of the parent ion as a function of the 

internal energy at a specific photon energy. 26  This equation shows how an increase in photon 

energy shifts energy distribution to favor more dissociation. The reaction begins at the parent 

molecule’s IE, where the parent is a cation at 100% abundance and no fragments are forming. As 

the photon energy increases, the energy distribution will shift to higher energies and more 

internal energy distribution (Pi) will rise above the dissociation limit until hν = E0 and the ratio is 

at zero. Fragment daughter ions will begin to form at their relative AE as the parent cation 

depletes. The theoretical dissociation curves in the modeled breakdown diagram can be fitted to 

the experimental curves to identify accurate AE of ion fragments. From the AE values, 

thermochemistry values of the reaction species can be calculated.  
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Figure 3.8 Breakdown diagram of Si2Cl6. Solid lines are the theoretical dissociation curves and 

the points are the experimental data.26 

 

The RRKM theory assumes that a molecule is made up of linked harmonic oscillators 

where energy can be distributed within the molecule much quicker than any reaction27-28. 

Therefore, the energy from excitation that a molecule absorbs can be used to trigger a 

dissociation reaction.27-28 Using these assumptions, RRKM theory calculates unimolecular 

dissociation rates based on vibrational and rotational frequencies of reaction species calculated 

from PES scans and ESC.26-28  Specifically, those of the parent’s neutral and cation form and the 

transition states to form each fragment.  Dissociation rates are obtained using the common 

transition state theory expression shown in the equation below: 

𝑘(𝐸) =  
𝜎𝑁‡(E−𝐸0)

ℎ𝜌(𝐸)
 ,  (Equation 3.13) 

where N‡(E − E0) is the sum of states of the transition state, h is Planck’s constant, ρ(E) is the 

parent ion density of states, and σ is the reaction degeneracy.26 
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Dissociation reactions are characterized into fast and slow dissociations. In a fast 

dissociation, all of the studied ions have more energy than the dissociation limit and will lead to 

fragments.24, 29 Analysis is only dependent on the breakdown diagram and no time-of-flight 

(TOF) analysis is necessary for further confirmation of the pathways.24-25, 29 The experiments 

presented in this research are considered fast dissociations. The 0 K appearance energy for 

reaction species can be attained solely from fitting the model of the theoretical breakdown 

curves. In a slow dissociation, not all ions have enough energy within the experiment’s time 

frame and a kinetic shift will be present in the experimental breakdown diagram.24, 29 Therefore, 

it is necessary to also fit TOF distributions with the breakdown diagram and the modeling will 

provide absolute rate constants.24, 29  
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Chapter 4 Synchrotron Photoionization Study of Furan and 2-Methylfuran Reactions with 

Methylidyne Radical (CH) at 298 K ‡ 

‡As published in the Journal of Physical Chemistry A, 122 (1), pg. 280-291 (2018) 

Erica Carrasco, Kenneth J. Smith, and Giovanni Meloni*  

*Department of Chemistry, University of San Francisco, San Francisco, California 94117, USA 

4.1 Abstract 

The reactions of furan and 2-methylfuran with methylidyne CH (X2Π) radical were 

investigated at 298 K using synchrotron radiation produced at the Advanced Light Source (ALS) 

of the Lawrence Berkeley National Laboratory. Reaction products were observed by multiplexed 

photoionization mass spectrometry and characterized based on their photoionization spectra and 

kinetic time traces. Primary products observed in furan + CH are 2,4-cyclopentadien-1-one (m/z 

= 80), 2-penten-4-ynal (m/z = 80), and vinylacetylene (m/z = 52). From 2-methylfuran + CH, 2-

4-cyclopentadien-1-carbaldehyde (m/z = 94), 2,3,4-hexatrienal (m/z = 94), 1,3 cyclopentadiene 

(m/z = 66), 3-penten-1-yne (Z) (m/z = 66), and vinylacetylene (m/z = 52) are the primary 

products observed. Using potential energy surface scans, thermodynamically favorable reaction 

pathways are proposed. CH addition to the л-bonds in furan and 2-methylfuran rings was found 

to be the entrance channel that led to formation of all identified primary products. Both reactions 

follow patterns of H-loss and CHO-loss, as well as formation of cyclic and acyclic isomers. 
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4.2 Introduction 

The increasing greenhouse gas effect has been linked to ambient temperature increases, 

natural ozone layer destruction, and ecosystem disruptions, which could ultimately lead to a 

negative effect on human health and quality of life.1,2 Carbon dioxide is the greatest contributor 

to greenhouse gases and is mainly released into the atmosphere through fossil fuel burning.1,2 An 

important portion of fossil fuel consumption is their use as fuels.1,2 Fossil fuel resources are 

diminishing, and incentives for bioenergy research are becoming more persuasive.1−3 The desire 

for viable alternative fuels is vast, and reasons range from economic independence to 

remediation of the environment.3 Recently, there has been more focus on immediate alternatives, 

such as carbon-based fuels, since they would allow for automotive infrastructure to remain in 

place.3 An ideal fuel replacement would not only reduce greenhouse gas emissions but also be 

producible on a large scale through a photosynthetic process, which would serve as a sink for 

atmospheric CO2.3 This model process has already been proven possible for ethanol and 

strengthens the interest in researching more and potentially better biofuels.3,4 

 Furan derivatives have become popular contenders to become an ideal gasoline 

replacement for spark-ignition engines.5 Several studies have shown that furan derivatives have 

higher energy density, lower aromatic content, lower carbon dioxide and hydrocarbon emissions, 

and better knock resistance compared to current additives, without negatively effecting gasoline 

products.5,6 Additionally, 2-methylfuran is less water-soluble than ethanol and has such a low 

potential for extraction into the water layer that the risk of water contamination is considered 

negligible.5,7 Compared to current RON 95 gasoline, 2-methyl furan also has lower NOx and 

particulate matter emissions and better resistance to autoignition.5,7 The Clean Air Act states that 

new fuels and fuel additives need to be fully compatible with commonly used vehicle fuel 
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systems and distribution equipment.7 Engine studies of furan, dimethylfuran, and 2-methlyfuran 

have shown the compounds to have sufficiently similar combustion and emissions patterns as 

gasoline, meaning no major modifications to current automotive systems would be required.5 

Beyond requirements, furan derivatives have been successfully obtained through photosynthetic 

production from sugars and lignocellusoic biomass.7 The process is better than that for ethanol 

because the fermentation step, which forms ethanol from glucose and emits carbon dioxide, 

would be avoided.3 The omission would allow for all available carbon from cellulose to be 

utilized.3 Due to its production, the combustion of biomass-derived fuels would be a carbon 

neutral process and could greatly improve current emissions trends.3,4 Methylidene radical (CH) 

is one of the most important radicals involved in hydrocarbon combustion processes in the 

atmosphere.8 Not only has the radical been found in combustion flames, it also greatly affects the 

energetics of gas-phase environments.4,9 The CH radical is the most reactive carbon-containing 

neutral radical because it has one singly filled and one empty nonbonding molecular orbital 

localized on the carbon atom.10,11 Therefore, reactions of CH radicals with unsaturated 

hydrocarbons are generally fast and barrierless.10 

Reactions of carbon radicals with organic molecules and any resulting intermediates are 

important to know for biofuel combustion modeling.10 By studying CH reactivity, reactions 

between more complex hydrocarbon radicals and potential biofuel compounds that would occur 

in combustion environments can be better predicted.4 Previous studies with CH radical have been 

conducted to investigate general mechanisms with small organic compounds. These studies 

provide great insight into CH radical entrance channels and reaction products. In 2009, Goulay et 

al.11 investigated the reactions of CH with several small unsaturated hydrocarbons at room 

temperature using tunable vacuum ultraviolet (VUV) photoionization. They found that the 
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primary entrance channel for all the compounds was cycloaddition to the π-bond systems 

followed by H- or H2-loss.11 Products were linear, and cyclic isomers and any intermediates 

rapidly dissociated.11 Trevitt et al.9 continued the study in 2013 with similar compounds, most 

notably propene, and confirmed the dominant entrance channel, as well as establishing the 

following pattern: CH + CxHy → Cx+1Hy + H. Several similar studies of CH radical reactions, 

including simple aldehydes and ketones, have come to the same conclusion of an initial cyclic 

intermediate by addition to the π-bond system followed by H-loss.4,10 The presented research is 

focused on the reactions of furan and 2-methylfuran with ground state methylidyne radical at 298 

K and 4 Torr to provide further valuable information about fundamental biofuel combustion 

mechanisms. Reaction products are observed by multiplexed photoionization mass spectrometry 

using synchrotron radiation and identified using their photoionization spectra. Additionally, 

electronic structure calculations of the potential energy surface (PES) scans are used to 

investigate primary product species formation.  

4.3 Experimental Section 

Experiments were conducted at the Advanced Light Source (ALS) of Lawrence Berkeley 

National Laboratory at the Chemical Dynamics beamline. Multiplexed time- and energy-

resolved mass spectrometry coupled with tunable synchrotron radiation was used to identify 

reaction species and products. The instrument has been previously described in detail 

elsewhere12-15 and, therefore, only a succinct description will be provided here. 

Furan (purity ≥99%, Sigma-Aldrich) and 2-methylfuran (purity > 98%, Sigma-Aldrich) 

vapors were individually purified via freeze-pump-thaw technique and diluted to 1% with helium 

gas.13 Each compound reacted with CH (X2Π) radicals in a 62 cm long heated slow-flow quartz 

reactor tube with an inner diameter of 1.05 cm. CH (X2Π) radicals were generated by photolysis 
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of 1% bromoform and helium gas mixture with an unfocused 4 Hz-pulsed 248 nm excimer laser. 

Reactant gases flow into the reactor tube via calibrated mass flow controllers. Pressure was 

maintained by a Roots pump connected to the reaction cell by feedback controlled throttle valve. 

Along with the main reactants, an excess of helium gas and a small amount of nitrogen gas were 

added. Adding nitrogen (9.1 x 1015 molecules cm-3) quenched any vibrationally excited CH 

(X2Π) radicals formed when bromoform is photolyzed that may have been faster than the 

reaction.10 In this work, a concentration of 3.9 x 1015 molecules cm-3 of furan and 2-methylfuran 

were each flowed to react with a concentration of 1.3 x 1016 molecules cm-3 of bromoform for 

two separate reactions at 298 K and 4 Torr. Previous studies by Goulay et al.10 have used a 

formula developed by Romanzin et al.16 to estimate the CH number density produced from 

bromoform. Romanzin et al16 quantifies CH radicals produced by cavity ring-down 

spectroscopy, which has significantly lower laser fluences that impact the multiphoton 

dissociation necessary for CH radical production. Additionally, the formula only considers CH 

radicals formed from the main secondary photodissociation pathway of bromoform.16 

Reaction species travelled through a 650 μm wide pinhole into a differentially vacuumed 

ionization region to be photoionized by tunable synchrotron radiation. The cations formed were 

accelerated, collimated, focused, and detected by a 50 kHz-pulsed orthogonal acceleration time-

of-flight mass spectrometer. The current experimental conditions resulted in a mass resolution of 

approximately 1,600. Reaction time, mass-to-charge ratio, and ion intensity were collected 

simultaneously for a specific photon energy over a range of 8 to 11 eV at 0.025 eV increments. 

Also, the ALS photocurrent measured by a calibrated photodiode was used to background 

subtract and normalize the ion signal at each photon energy increment. 
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Experimental data was collected as a three-dimensional data block that was “sliced” into 

two-dimensional data (m/z vs. photon energy and m/z vs. reaction time) that are ultimately 

reduced to yield photoionization (PI) spectra and kinetic time plots.17 PI spectra express ion 

intensity as a function of photon energy and are created by integrating the ion signal of a selected 

m/z over a specific time range. A range of 0-30 ms for furan and 0-20 ms for 2-methylfuran was 

chosen for the reactions studied here because it best reduced the presence of any possible signal 

due to secondary reactions. Reaction species were identified by a comparison of the experimental 

PI spectra to literature, calculated, or measured PI spectra. Adiabatic ionization energy (AIE) is 

obtained by linear extrapolation of the initial onset of PI spectra.18 Due to photon energy step 

size, energy resolution, and possible hot bands, experimental AIE have an estimated uncertainty 

of 0.05 eV for species identified with an onset. By integrating ion intensity over the entire photon 

energy range, kinetic plots of the reactions were visualized. These plots show the relative amount 

of the reactant depleting and products forming over a certain time range. Primary products were 

identified by comparing the depletion of the reactant to the formation of the product.  As shown 

in Figure 1, the time trace of the reactant is inversed and overlaid onto a time trace of a reaction 

species. Species with matching initial slopes are identified as primary products and those with 

differing slower slopes are categorized as secondary chemistry products. 
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Figure 1. Kinetic time traces of a primary product at m/z 52 (blue line) and a secondary 

chemistry product at m/z 144 (green line) overlaid onto the kinetic time trace of the reactant 

furan (red line) at 298 K. The reactant time trace has been multiplied by −1 for comparison 

purposes.  

 

Producing CH radicals has been problematic in previous combustion studies and similar 

issues were found here.9-11 A bromoform (CHBr3) photodissociation study at 248 nm using VUV 

ionization and photofragment translation spectroscopy found that C-Br bond fission is the 

primary dominant dissociation channel in the UV region.19 The bond fission leads to CHBr2 and 

Br radical formation.19 CH radicals can only be produced through multiphoton dissociation using 

CHBr2 and CHBr radicals as intermediates.19 CHBr2 can dissociate to form the desired CH 

radicals and Br2.
19 However, there is a competing and prominent secondary photodissociation of 

CHBr2 into CHBr and Br radicals.19 In a possible tertiary dissociation, CHBr radicals formed 

from CHBr2 radicals or directly from bromoform can break down into CH and Br radicals.19  

All three photodissociation products are found in significant quantities in previous 

combustion studies and react with competitive kinetics, which could be problematic when 

calculating branching ratios.9-11 
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4.4 Computational Methods 

Electronic structure calculations were carried out to help further identify and confirm 

products. All calculations in this study were performed with Gaussian 09 software program using 

the CBS-QB3 composite model, which has a mean absolute deviation of 4-5 kJ/mol or 0.05 

eV.12, 20-22 This composite model has high accurate energetics and can provide useful optimized 

molecular structural parameters.21-22 AIE were calculated for all reactions species based on the 

difference between the corrected zero-point vibrational electronic energies of the ground state of 

the neutral and cation compounds. From the calculated total electronic energies of the neutral 

species, reaction enthalpy changes for the proposed mechanisms were derived to determine if the 

pathways were thermodynamically feasible.  

Photoelectron (PE) spectra were simulated if reference spectra were unavailable using 

Franck-Condon (FC) and Franck-Condon-Herzberg-Teller (FCHT) methods in Gaussian 09.23-25 

The methods approximate FC factors of a molecule for the vibronic transition from the neutral to 

cationic state. Using a recursive formula developed by Ruhoff 26, the FC overlap integrals were 

also calculated. The resulting PE spectra were then integrated and expressed as calculated PI 

spectra to compare against experimental spectra for product identification.  

Following product identification, proposed reaction pathway mechanisms were confirmed 

using relaxed potential energy surface (PES) scans. PES scans were carried out using B3LYP/6-

31G(d) level of theory to determine transition states and minima.27 The energies of these points 

were then calculated using the CBS-QB3 composite method followed by intrinsic reaction 

coordinate (IRC) calculations. IRC calculations are used to verify the forward and reverse 

reaction mechanisms based on the proposed transition states.   
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4.5 Results 

As seen in previous studies, the dominant entrance channel found here in the two 

reactions is CH addition to the pi bond system of the furan and 2-methylfuran compounds.4, 9-11 

The initial formation of a bicyclic intermediate radical then yielded cyclic and acyclic products 

along with a loss of hydrogen or aldehyde (CHO) group. Heats of reactions were calculated and 

reported at 0 K.  

In the studied photon energy range no dissociative ionization fragments from the absolute 

photoionization spectra of furan or 2-methylfuran were found, therefore, their dissociation did 

not interfere with the analysis. However, due to previously discussed issues regarding 

bromoform dissociation, a relatively large number of brominated species were observed. 

Brominated species are identifiable by comparison of the kinetic time traces of suspected species 

and 79Br/81Br isotopic ratio. The relative ion signal of the two suspected species should be 

matching when superimposed on each other at a ratio of ~ 1 to 1. Species observed in both 

reactions at m/z = 146/144, 142/140, 132/130, 106/104, 88/86, and 81/79 were determined to be 

brominated and are not further investigated in this work. Additionally, only in furan + CH (X2Π) 

reaction species at m/z = 129/127 and 116/114 were also identified as brominated species. 

4.5.1 Furan + CH (X2Π) Product Identification 

The kinetic time plot of a primary product must match the negative plot of the reactant, 

meaning the formation of product aligns with the depletion of the reactant over time. Primary 

products for furan + CH were found at m/z = 80 and 52. The time trace comparisons of the 

identified primary products with furan are shown in Figure 2.  
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Figure 2. Kinetic time traces of primary products m/z 80 (blue line) and m/z 52 (green lines) 

overlaid onto the kinetic time trace of the reactant furan (red line) at 298 K. The reactant time 

trace has been multiplied by −1 for comparison purposes. 

 

The primary products detected at m/z = 80 are shown in Figure 3 and supports the CH + 

CxHy → Cx+1Hy + H pattern observed by Trevitt et al.9 The experimental PI spectrum is in very 

good agreement with the summation of two C5H4O isomers. The literature PI spectra of 2,4-

cyclopentadien-1-one, which is a cyclic compound, matches the onset and first part of the 

experimental curve with an AIE of 9.37 ± 0.05 eV.28 To provide further confirmation, the CBS-

QB3 AIE of 2,4-cyclopentadien-1-one was calculated to be 9.41 eV. The literature vertical IE for 

this species is 9.49 eV, which is higher than the calculated and experimental AIE, provides 

additional support for the characterization.29 The second part of the experimental curve fits with 

the FC simulated PI spectrum of 2-penten-4-ynal, which has a calculated AIE of 9.95 eV and is a 

acyclic compound. At m/z = 80, the presence of these two compounds supports the trend of CH 

addition followed by H-loss as well as yielding both cyclic and acyclic isomers established by 

previous studies.4, 9-11 
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Figure 3. Summation (black line) of simulated PI spectrum of 2-penten-4-ynal (green line) and 

literature spectrum (blue line) of 2,4-cyclopentadien-1-one superimposed onto experimental data 

at m/z 80 (red line) for the reaction of furan + CH radical at 298 K. 

 

Another primary product was observed at m/z = 52. The experimental PI curve shown in 

Figure 4 has an experimental onset of 9.53 ± 0.05 eV. A literature PI curve for vinylacetylene 

taken by T.A. Cool and coworkers30 is found to be in very good agreement with the onset and 

first part of the experimental spectrum. The CBS-QB3 calculated AIE for vinylacetylene was 

calculated to be 9.58 eV and is within the experimental uncertainty. Vinylacetylene is an acyclic 

product and results from CH addition to furan followed by CHO-loss. The latter section of the 

experimental curve is believed to result from a fragment of a primary product at m/z = 80 

resulting from decarboxylation. The thermochemical limits (no barrier for dissociation) for the 

appearance energies were calculated for neutral CO plus the possible cyclic and acyclic m/z = 52 

fragment cations. From 2,4-cyclopentadien-1-one, cyclobutadiene cation + CO limit was 

calculated to be 10.75 eV. This value is a little too high to explain the signal of the m/z = 52 

spectrum and, therefore, this fragment is not the one presumably causing the high energy signal. 
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The possible acyclic fragment from 2-penten-4-ynal used was 1-buten-3-yne cation and the 

thermochemical limit was calculated to be 9.62 eV, which could explain the increase in the ion 

signal for the latter section of the experimental m/z = 52 spectrum.  

 
Figure 4. Literature PI spectrum of vinylacetylene (blue line) superimposed onto the 

experimental data at m/z 52 (red line) for the reaction of furan + CH radical at 298 K.  

 

All intermediates, including the initial bicyclic radical, would be observed at m/z = 81 for 

the reaction of furan + CH. They will be described with the mechanism pathways later in this 

work. To account for signal resulting from bromine, the experimental curve at m/z = 79 was 

subtracted from the curve at m/z = 81 with respect to the 79Br/81Br isotopic ratio. The signal at 

m/z = 80 with respect to 12C/13C ratio was also subtracted from the experimental curve at m/z = 

81. The remaining signal has a very low signal-to-noise ratio and is attributed to a combination 

of intermediates B, B3, and D2 (Scheme 1). These are the only intermediates with bound cations 

and ionization energies within the photon energy range.  
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4.5.2 2-Methylfuran + CH (X2Π) Product Identification 

At 298 K, the reaction between 2-methylfuran and CH yielded three primary m/z peaks. The 

time traces for the products and the 2-methylfuran reactant are compared in Figure 5. 

Comparison of the experimental PI spectrum at m/z = 94 and the summation curve of 2,4-

cyclopentadien-1-carbaldehyde and 2,3,4-hexatrienal is shown in Figure 6. The two curves were 

found to be in very good agreement. No literature values were found for either compound, 

therefore, FC simulation spectra were computed along with CBS-QB3 calculated AIE. The 

simulated curve of 2,4-cyclopentadien-1-carbaldehyde with a calculated onset of 8.92 eV 

matches the first part of the experimental curve and onset of 8.93 ± 0.05 eV. The latter part of the 

curve is assigned to the 2,3,4-hexatrienal with a calculated onset of 9.07 eV. Following the 

established pattern CH + CxHy → Cx+1Hy + H, the two compounds found at m/z = 94 are formed 

from CH addition followed by H-loss to yield cyclic and acyclic isomer products.9 

 
Figure 5. Kinetic time traces of primary products m/z 94 (blue line), m/z 66 (purple line), and 

m/z 52 (green line) overlaid onto the kinetic time trace of the reactant 2-methylfuran (red line) at 

298 K. The reactant time trace has been multiplied by −1 for comparison purposes. 
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Figure 6. Summation (black line) of FC simulated PI spectra of 2,4-cyclopentadien-1-

carbaldehyde (blue line) and 2,3,4-hextrienal (green line) superimposed onto the experimental 

data at m/z 94 (red line) for the reaction of 2-methlyfuran + CH radical at 298 K. 

 

Signal observed at m/z = 66 was identified as a summation of 1,3-cyclopentadiene and 3-

penten-1-yne (Z). In Figure 7, the onset of the experimental curve was observed at 8.52 ± 0.05 

eV that matches the calculated value of 8.56 eV. A literature spectra of 1,3-cyclopentadiene 

(Hansen et al.31) is in very good agreement with both values. Since no literature PI or PE 

spectrum were found for 3-pent-1-yne (Z). a FC simulation spectrum was computed. The 

simulated curve is in very good agreement with the middle section of the experimental spectra. 

Similar to what is explained to occur at m/z = 52 for the furan + CH reaction, the latter part of 

this experimental curve is believed to result from a fragment of a primary product at m/z = 94 

after a loss of CO. The thermochemical limit was calculated to be 8.61 eV for 1,3-

cyclopentadiene cation + CO, which would dissociate from 2,4-cyclopentadiene-1-carbaldehyde. 

From 2,3,4-hexatrienal, 1,2,3-pentatriene cation + CO limit was calculated to be 8.78 eV. Both 

the calculated limits are below the observed increase of ion signal in the experimental m/z = 66 
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spectrum and are, therefore, consistent with the possibility that fragments are formed through 

decarboxylation of m/z = 94 products.

 

Figure 7. Summation (black line) of FC simulated PI spectrum of 3-penten-1-yne (Z) (green 

line) and literature PI spectrum of 1,3-cyclopentadiene (blue line) superimposed onto the 

experimental curve at m/z 66 (red line) for the reaction of 2-methlyfuran + CH radical at 298 K. 

 

Similar to the furan + CH (X2Π) reaction, a primary product is observed at m/z = 52. The 

literature PI curve of vinylacetylene was superimposed onto the experimental spectrum and they 

match very well (Figure 8).30 The experimental PI spectrum has an onset of 9.53 ± 0.05 eV, in 

good agreement with the calculated AIE of 9.58 eV. The addition of CH followed by a loss of 

C2H3O resulted in vinylacetylene formation. The experimental PI spectrum at m/z = 43, which 

would represent the C2H3O fragment, has a low signal-to-noise ratio (Figure 9). The CBS-QB3 

calculated AIE of 10.26 eV and FC simulation for CH2CHO radical agreed with the experimental 

spectra. However, due to the low signal-to-noise ratio confident identification cannot be reached.  
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Figure 8. Comparison of experimental PIE at m/z 52 (red line) and literature PI spectra of 

vinylacetylene (blue line) for the reaction of 2-methylfuran + CH radical at 298 K. 

 

 
 

Figure 9. Comparison of experimental PIE at m/z 43 (red line) and FC simulated spectra of 

CH2CHO radical (blue line) for the reaction of 2-methylfuran + CH radical at 298 K. 
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From mechanisms described later in this work, intermediates leading to all primary products 

for the 2-methylfuran + CH reaction would result in signal at m/z = 95, which is observed 

experimentally (Figure 10). Its corresponding kinetic time trace (Figure 11) identify these 

species deriving from primary chemistry with a decay proper of a radical species. After 

subtraction of the signal at m/z = 94 with respect to 12C/13C ratio, the remaining signal is 

attributed to a summation of the intermediates E and G from Scheme 1 and A1, C2, and C3 from 

Figures 14 and 15. Due to the large number of possible intermediates, the experimental curve 

cannot be confidently identified further to distinguish between intermediates. 

 

 
 

Figure 10. Experimental m/z 95 PI spectrum of the C6H7O intermediate isomers for the reaction 

of 2-methylfuran + CH radical at 298 K. 
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Figure 11. Kinetic time traces of intermediate species at m/z 95 (blue line) overlaid onto the 

kinetic time trace of the reactant 2-methylfuran (red line) at 298 K. The reactant time trace has 

been multiplied by −1 for comparison purposes. 

 

4.5.3 Mechanism Pathways 

There are two possible entrance channels for the CH (X2Π) radical when reacting with 

furan or 2-methylfuran: CH insertion and addition. In this work, all primary products resulted 

from CH addition to the л-bond system in the furan and 2-methlyfuran rings. This pathway has a 

very low energy barrier and is exothermic. As previously mentioned, similar studies have 

observed the same dominant entrance channel. The energy calculated from the initial reactants 

optimized structures, furan + CH, is used as the zero reference point for the energetic 

calculations of the identified primary products and is shown in the energy diagrams at 0 kJ mol-1 

by a red line. If reaction species or activation barriers are above the set reference point, they are 

considered thermodynamically and kinetically unfavorable. The same process is used to analyze 

2-methylfuran + CH primary species.  
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The initial bicyclic intermediate radical (A and D) and resulting intermediates (B, C, E, F, 

and G) are presented in Scheme 1.  

 

Scheme 1. Initial bicyclic intermediate (A and D) for CH addition to the л-bond systems in furan 

and 2-methylfuran reactions along with the following shared intermediates (B, C, E, F, and G) 

leading to final products.  

 

The formation of the bicyclic intermediate radical (A) from furan + CH has a relatively 

small calculated activation barrier of 3 kJ/mol and a calculated enthalpy change of -266 kJ/mol. 

From the cleavage of C-C bond of the original л-bond, a six-membered ring (B) forms 

overcoming a transition state barrier of 13 kJ/mol with an exothermicity of 476 kJ/mol. With an 

activation barrier of 205 kJ/mol, ring opening with the breaking of the C and O bond results in an 

acyclic radical (C) with a reaction enthalpy of -285 kJ/mol. Similarly, for 2-methlyfuran + CH, 

the bicyclic intermediate radical (D) forms with an enthalpy change of -270 kJ/mol and 

overcomes a small calculated activation barrier of 3 kJ/mol. With a transition state barrier of 14 

kJ/mol, the original C-C л-bond is cleaved forming a 6 membered-ring intermediate (E) that lies 

478 kJ/mol below the reactants. The bond between the oxygen and α-carbon is cleaved causing 

the ring to open and form an acyclic intermediate radical (F). This formation overcomes an 

activation barrier of 200 kJ/mol and has a calculated heat of reaction of -291 kJ/mol. A hydrogen 

transfer from the ε-carbon to the δ-carbon in the acyclic intermediate F occurs to form the 
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intermediate G with a reaction enthalpy of -412 kJ/mol and activation barrier of 69 kJ/mol. 

Molecules C and G are the common intermediates from which the mechanism pathways diverge 

to form the primary products for the respective reactions observed in this investigation. 

4.5.4 Furan + CH (X2Π) Mechanisms 

From intermediate radical (C), the three identified primary products for furan + CH 

reaction were formed from two pathways: H-loss and CHO-loss. Following two dihedral 

rotations and a hydrogen loss, 2-penten-4-ynal is exothermically formed. The dihedral rotations 

of intermediate radical (C) have activation barriers of 8 and 229 kJ/mol with reaction enthalpies 

of -304 kJ/mol and -307 kJ/mol, respectively. The rotated radical intermediates are shown in the 

energy diagram for furan + CH as A1 and A2 (Figure 12). A hydrogen was lost from 

intermediate A2 and 2-penten-4-ynal was formed by overcoming a transition state barrier of 165 

kJ/mol. The H-loss and product formation is overall exothermic and the final calculated energy 

lies 164 kJ/mol below the zero reference point. A second isomer at m/z = 80 was also formed 

through a dihedral rotation, ring reformation, and H-loss shown in Figure 12. Intermediate 

radical (C) overcame a 10 kJ/mol activation barrier to rotate and formed intermediate B1 with a 

calculated energy 296 kJ/mol below the reactants. The aldehydic hydrogen was then transferred 

to the δ-carbon in the acyclic chain to form intermediate B2. The reaction enthalpy of the 

hydrogen transfer is -428 kJ/mol and has an activation barrier of 13 kJ/mol. The ring was 

reformed into a 5-membered ring intermediate (B3) by the bonding of the carbons involved in 

the hydrogen transfer, which lies 517 kJ/mol below the zero reference point. The activation 

barrier to create the bond is 28 kJ/mol. The ε-carbon loses one of its two bonded hydrogens to 

form the cyclic compound 2,4-cyclopentadien-1-one. Formation of the primary product is 

exothermic, lying below the zero reference point by 284 kJ/mol of energy, and has an activation 
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barrier of 233 kJ/mol. Overall, the formation of the two isomers from the H-loss channel are 

thermodynamically favorable and exothermic.  

 
Figure 12. Potential energy surface diagram showing the formation of the primary products 

observed in the Furan + CH (X2Π) reaction at m/z = 80. Reference zero point is shown by the red 

line. 

Vinylacetylene is also formed from a radical intermediate (C) through two hydrogen 

transfers and a loss of an aldehyde group (CHO). The energy diagram (Figure 13) shows the 

energetics of the mechanism pathway. The γ-hydrogen in the acyclic chain of intermediate 

radical (C) is transferred to the δ-carbon to form Intermediate D1. The hydrogen transfer has a 

reaction enthalpy of -370 kJ/mol and a transition state barrier of 150 kJ/mol. A second hydrogen 

transfer of β-hydrogen to the γ-carbon formed intermediate D2 after overcoming an activation 

barrier of 226 kJ/mol. The transfer is overall exothermic with intermediate D2 at 349 kJ/mol of 

energy below the reactants. After a loss of the aldehyde group, vinylacetylene was formed with a 

heat of reaction of -227 kJ/mol and an activation barrier of 137 kJ/mol. The aldehyde group was 

not experimentally observed and may have immediately reacted with other radicals formed from 
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bromoform dissociation to form high mass species. All barriers and intermediates are below the 

reference point energy and therefore, kinetically and thermodynamically feasible.  

 
 

Figure 13. Potential energy surface diagram showing the formation of the primary products 

observed in the Furan + CH (X2Π) reaction at m/z = 52. Reference zero point is shown by the red 

line. 

 

4.5.5 2-Methylfuran + CH (X2Π) Mechanisms 

Four of the primary products identified from the 2-methylfuran + CH (X2Π) reaction are 

formed from the same two mechanism pathways described above: H-loss and CHO-loss. All 

products, intermediates, and activation barriers are shown in the energy diagrams for the reaction 

(Figure 14 and 15). Energy calculations were all found to be below the reference point and 

thermodynamically and kinetically plausible. Products 2,4-cyclopentadiene-1-carbaldehyde and 

1,3-cyclopentadiene are formed along the same pathway and diverge in the final step by having 

lost a hydrogen and an aldehyde group, respectively. Starting from intermediate G, ring 

reformation occurs by overcoming a barrier of 108 kJ/mol to bond the α-carbon and the ε-carbon 

in the chain. The formation of the five-membered ring intermediate (A1) was overall exothermic 
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and has a calculated energy that lies 444 kJ/mol below the reactants. With the loss of hydrogen 

from the δ-carbon in the ring, 2,4-cyclopentadien-1-carbaldehyde is formed. The calculated heat 

of reaction is -275 kJ/mol with a transition state barrier of 187 kJ/mol. Alternatively, 

intermediate A1 was also observed to lose the aldehyde functional group (CHO) to form 1,3-

cyclopentadiene. The CBS-QB3 calculated reaction enthalpy for this formation is -333 kJ/mol 

and the activation barrier is 118 kJ/mol. These two cyclic products are each one of two isomers 

for their respective m/z ratios. 

 

Figure 14. Potential energy surface diagram showing the formation of the primary products 

observed in the 2-methylfuran + CH (X2Π) reaction for 1,3-cyclopentadiene, 2,4-

cyclopentadiene-1-carbaldhyde, and vinylacetylene. Reference zero point is shown by the red 

line. 
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Figure 15. Potential energy surface diagram showing the formation of the primary products 

observed in the 2-methylfuran + CH (X2Π) reaction for 2,3,4-hexatrienal and 3-penten-1-yne (Z). 

Reference zero point is shown by the red line. 

 

Similarly, two acyclic products were also formed from a shared pathway that diverged by 

a loss of hydrogen or aldehyde group. The products are isomers with the cyclic products 

described above. Three sequential hydrogen transfers occurred before product formation with 

activation barriers of 284, 13, and 137 kJ/mol, respectively. The first hydrogen transfer occurred 

when the β-hydrogen on intermediate G moved to the γ-carbon to form intermediate C1, which 

lies 277 kJ/mol of energy below the zero reference point. Next, the γ-hydrogen was transferred to 

the δ-carbon in the acyclic chain forming intermediate C2. Intermediate C3 is formed from the 

final hydrogen transfer of the δ-hydrogen moving to the ε-carbon. The calculated enthalpy 

changes for the second and third hydrogen transfers are -340 and -121 kJ/mol, respectively. From 

intermediate C3, 2,3,4-hexatrienal and 3-penten-1-yne (Z) are formed. With a barrier of 234 

kJ/mol, hydrogen was lost from the γ-carbon to form 2,3,4-hexatrienal, which has a heat of 

reaction of -121 kJ/mol. Instead of losing hydrogen, intermediate C3 is observed to also lose an 
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aldehyde group to form 3-penten-1-yne (Z). The calculated reaction enthalpy is -218 kJ/mol and 

the activation barrier is 136 kJ/mol.   

The final primary product observed was vinylacetylene, which was also identified in the 

furan + CH reaction. However, the mechanism differs from the one that was previously 

described. From intermediate G, the β-hydrogen is transferred to the γ-carbon after overcoming 

an activation barrier of 268 kJ/mol. The hydrogen transfers to form intermediate B1 with a 

calculated energy at 284 kJ/mol below the reactants. Cleavage of the bond between the α-carbon 

and β-carbon in intermediate B1 occurred to form an intermediate radical (B2), along with the 

loss of C2H3O. The calculated enthalpy change for the bond cleavage is −12 kJ/mol, and the 

activation barrier is 270 kJ/mol. Vinylacetylene is formed from intermediate B2 in a barrierless, 

exothermic hydrogen transfer. The final calculated energy is below the zero reference point by 

209 kJ/mol of energy. Radicals F and G2 formed from ring opening contain radicals within the 

acyclic chain due to the placement of the methyl group on 2-methylfuran. All radicals seen in 

furan + CH reaction intermediates contain radicals on the terminal carbon, which could explain 

why this mechanism pathway is not also observed in both reactions. 

4.6 Conclusion 

In this study, synchrotron radiation coupled with a multiplexed photoionization mass 

spectrometer at the Lawrence Berkeley National Laboratory was employed to study two 

reactions at 298 K: furan + CH (X2Π) and 2-methylfuran + CH (X2Π). Primary products were 

identified based on their kinetic time traces and photoionization spectra. The entrance channel 

observed was CH addition to the π-bonds in furan and 2- methylfuran rings, which yielded initial 

bicyclic intermediates. Both reactions have H-loss and CHO-loss pathways, along with 

formation of cyclic and acyclic isomers. The patterns and pathways seen in this study are in good 
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agreement with previous studies of CH (X2Π) with unsaturated hydrocarbons. From furan + CH, 

2,4-cyclopentadien-1-one, 2-penten-4-ynal, and vinylacetylene are observed through H-loss or 

CHO-loss pathways. Following H-loss and CHO-loss pathways, 2,4- cyclopentadiene-1-

carbaldehyde, 2,3,4-hexatrienal, 1,3-cyclopentadiene, and 3-penten-1-yne (Z) were observed 

from 2- methylfuran + CH reaction. Vinylacetylene is also observed in the 2-methylfuran 

reaction as a primary product. Theoretical energetic calculations were performed at the CBS-

QB3 level of theory to find the reaction mechanism pathways. All primary product pathways 

discussed were found to be thermodynamically and kinetically plausible.  
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5.1 Abstract 

At 298 K the reactions of 2,5-dimethlyfuran + CH (X2Π) and + CD radicals were 

investigated using synchrotron radiation coupled with multiplexed photoionization mass 

spectrometer at the Lawrence Berkeley National Laboratory. Reaction products were 

characterized based on their photoionization spectra and kinetic time traces. CBS-QB3 level of 

theory was used for all energy calculations and potential energy surface scans were used to 

determine thermodynamically favorable reaction mechanisms. The two entrance pathways 

observed in the reactions are CH insertion within the C-O bond and CH addition to the л-bond 

system. Both yield initial 6-membered ring radical intermediates. Primary products from the CH 

addition pathway were observed at m/z = 108, 66, and 42. The two C7H8O isomers at m/z = 108 

formed are 1,2,4-heptatrien-6-one and 3-hepten-5-yne-2-one. At m/z = 66, the three C5H6 

isomers observed are 1,3-cyclopentadiene, 3-penten-1-yne (E), and 1-pent-4-yne. Ketene (m/z = 

42) is also observed. From CH insertion entrance channel, the three C6H8 isomers produced are 

1,2,4-hexatriene (Z), 2-hexen-4-yne (E), and 1,3,4-hexatriene. Patterns of H-loss, CHO-loss, and 

CO-loss observed were also in agreement with trends observed in other similar studies. H-

assisted isomerization pathways have been considered as well for the formation of m/z = 66, 80, 

and 108 isomers. 
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5.2 Introduction 

As fossil fuel sources continue to diminish, the need for a sustainable source of energy 

and fuel is rapidly increasing.1 Carbon based fuels are promising as immediate alternatives, since 

they would allow for combustion engines in place to still be utilized.2-3 More specifically, second 

generation biofuels are currently the most attractive option.4 Unlike first generation biofuels, 

production of second generation biofuels would use sugars that cannot be consumed by humans 

as feed stock.4-5 Therefore, fuels would not compete with food production.4-5 In several studies, 

2,5-dimethylfuran (DMF), along with other furanic compounds, has been proven to have a high 

yield, low cost synthesis process using several unconsumable sugars.6-8 Roman-Leshkoy et al.7 

were able to selectively remove five oxygens from fructose to produce DMF with 5-

hydroxymethylfuran (HMF) as an intermediate. Shortly after, Zhao et al.8 produced a high yield 

of the HMF intermediate without the use of acid catalysts, which reduced production costs and 

allowed for glucose to serve as a feedstock as well. In 2008, cellulose was also successfully 

converted in to several furanic compounds, including DMF.3 

Due to several chemical properties, many consider DMF a better contender for a future 

biofuel than ethanol.1 When comparing mass production potential, DMF is advantageous over 

ethanol because it can avoid the fermentation step seen in ethanol synthesis, which emits carbon 

dioxide.3 DMF is nearly 40% higher in energy density, meaning it has better fuel mileage for the 

same size fuel tank.1, 6 Additionally, DMF is insoluble in water, which not only makes water 

contamination risk negligible, but it also allows for easier storage.1, 9 The heat of vaporization for 

DMF is very similar to gasoline and is therefore able to overcome the cold start engine issues 

that arise when using ethanol.6, 10 With a high boiling point and low volatility, DMF would be 

mailto:giovanni.meloni@univaq.it
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easily transported and stored as a liquid.1, 9 Currently, DMF and other furan derivatives are used 

as antiknock and octane improvers for gasoline.1, 11 Ignition studies show that DMF has similar 

spray patterns and flame propagation as gasoline, which make it compatible with modern spark-

ignition engines without any major modifications.1, 6, 9-10 The U.S. Environmental Protection 

Agency and Clean Air Act require new fuels to submit data on the possible health impacts, as 

well as demonstrate compatibility with current vehicle and distribution systems.2 DMF 

combustion studies have already proven fulfilment of the compatibility requirements, but further 

investigation of its combustion reactivity will be essential for its viability as a biofuel.1 The 

known disadvantages associated with DMF combustion are toxic emissions of NOx, CO, 

harmful intermediates, and particulate matter.1, 6 However, these values are very comparable, if 

not less, than those measured from gasoline and ethanol combustion.1, 6 Therefore, DMF is still 

perceived as a very promising fuel alternative and the advantages are enough to drive further 

research into its reactivity by many scientists.1 

Studying methylidene radical (CH) initiated combustion reactions is an essential starting 

point to understanding and predicting the reactivity of more complex hydrocarbons for biofuel 

combustion modeling in the future.12-14 CH radical reactions are generally very fast and barrier-

less due to the carbon atom having one singly filled and one empty nonbonding molecular 

orbital.13, 15 Present in combustion flames, CH radical significantly affects the energetics of gas-

phase environments.12, 16 Several studies have come to agreeing conclusions about the primary 

entrance channel of the CH radical and pathway patterns.12-13, 15-16 Reactions with simple alkenes 

have all determined CH radical addition to the π-bond as the dominant entrance channel with the 

formation of an initial cyclic intermediate.12-13, 15-16 In 2009, Goulay et al.13 studied the reaction 

of CH with several small alkenes and found a pattern of linear and cyclic isomers formed via H-
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loss pathways. Trevitt et al.16 investigated reactions of CH and CD radicals and several small 

hydrocarbons with similar experimental methods and was able to establish the pattern: CH+ 

CxHy → Cx+1Hy + H. Furthermore, studies focused on CH radical reactions with acetones and 

acetaldehyde have also followed these patterns.12-13, 15 

Our previous investigation studied the reactions of furan and 2-methylfuran with CH 

radicals and also found CH addition entrance channel to be dominant along with patterns of H-

loss and linear and cyclic isomer products.17 The research presented in this work seeks to 

continue to provide valuable information about the reactivity of furanic biofuels and hydrocarbon 

radicals. Specifically, the reactions of 2,5-dimethylfuran with ground state CH and CD radicals 

at 298 K and 4 Torr are presented and discussed. Multiplexed photoionization mass spectrometry 

using synchrotron radiation is utilized to detect reaction species, which are identified and 

characterized by photoionization (PI) spectra and kinetic time plots. By studying the same 

reaction with CD radicals, further details about the formation mechanism for primary products 

can be confirmed based on the observed isotopologues. Primary product mechanisms are 

proposed using electronic structure calculations and potential energy surface (PES) scans.   

5.3 Experimental Methods 

Experiments were carried out using the Chemical Dynamics beamline at the Advanced 

Light Source (ALS) of Lawrence Berkeley National Laboratory. Reaction species were 

characterized using multiplexed time- and energy-resolved mass spectrometry coupled with 

tunable synchrotron radiation. Details of the instrumentation has been described in depth 

elsewhere.18-21  

After purification through freeze-pump-thaw technique, resulting 2,5-dimethylfuran 

(purity ≥99%, Sigma-Aldrich) vapor was diluted to 1% with helium gas.19 To produce 
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bromoform vapors, helium gas was flowed into a glass vessel containing liquid bromoform at 

8 ̊C and 725 torr and bubbled through the liquid. From the bromoform vapors, CH (X2∏) 

radicals were generated by photolysis using an unfocused 4 Hz-pulsed 248 nm XeF excimer laser 

of a 1% bromoform/helium gas mixture. The same technique was used to generate CD radicals 

with a bromoform-d1. Due to bromoform’s multiple photodissociation products and pathways, 

quantifying CH radical production and calculating branching ratios is not feasible.12, 17, 22-23 Our 

previous investigation has explained the problematic nature of bromoform dissociation in more 

detail.17  

DMF and CH/CD (X2∏) radicals were flowed into a 62 cm long heated slow-flow quartz 

reactor with an inner diameter of 1.05 cm by calibrated mass flow controllers. A Roots pump 

maintains a desired pressure and is connected by a feedback controlled throttle valve to the 

reaction cell. Excess helium gas was also added to the reaction cell.  A concentration of 3.9 x 

1013 molecules cm-3 of DMF was reacted with a concentration of 2.3 × 1013 molecules cm-3 of 

bromoform. The same experimental methods were used to react DMF (3.9 x 1013 molecules    

cm-3) with CD radicals using bromoform-d1 at a concentration of 6.8 × 1013 molecules cm-3. 

Nitrogen with a concentration of 9.1 x 1015 molecules cm-3 was also added to the reaction with 

CD radicals. Nitrogen is present to quench any vibrationally excited CH/CD (X2∏) radicals that 

were formed when bromoform was photolyzed and may have been faster than the reaction.13 

However, a study done by Trevitt et al.16 found no experimental difference between PI spectra 

for reactions with and without N2 addition. The purpose of the additional reaction with CD 

radicals is to provide further clarity on the reaction mechanisms. The deuterium from the CD 

radicals can be used to trace the movement of the original hydrogen from the CH radical reactant 

in the reaction with CH radicals. If the reactions have matching experimental PI spectra at the 
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same m/z ratios, then it can be concluded that the initial hydrogen added with the CH radical 

reactant is lost. However, if the spectra are not in agreement, then the original hydrogen is still 

present in the final product and a hydrogen from the 2,5-dimethylfuran reactant was lost instead. 

After each reaction occurred, the reaction species flowed from the reaction cell to a differentially 

vacuumed ionization region through a 650 μm wide pinhole. Reaction species were then 

photoionized by tunable synchrotron radiation and the resulting cations were accelerated through 

a 50 kHz-pulsed orthogonal acceleration time-of-flight mass spectrometer for detection. A mass 

resolution of approximately 1,600 was used in this study. A calibrated photodiode was also 

employed to measure the photocurrent of the ALS to be used for background subtraction and 

normalization of the ion signal. 

Reaction time, ion intensity, and mass-to-charge ratio were recorded simultaneously over 

the photon range of 8 to 11 eV at 0.025 eV increments. The resulting three-dimensional data 

block was “sliced” and reduced to two two-dimensional data images to represent m/z ratio vs. 

photon energy and m/z ratio vs. reaction time.24 At specific m/z ratios, the ion intensity from the 

m/z ratio vs. reaction time image is integrated over the entire photon range and results in kinetic 

time plots. Varyingly, integration of ion intensity over a specific time range for the m/z ratio vs. 

photon energy image yields a PI spectrum. To reduce any possible signal from secondary 

reactions, a time range of 0-30 ms was used in this study. Using time plots and PI spectra, 

reaction species at specific mass-to-charge ratios can be characterized and identified. Kinetic 

time plots show the progress of the reaction species depleting or forming over the selected 

reaction time. To characterize a reaction species as a primary product the kinetic time plot of the 

reactant is inversed and overlaid onto the kinetic time plot of the proposed species. If curves 

have initial onsets that are in good agreement, the reaction species is considered a primary 
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product, since it will be forming at the rate that the reactant initially depletes. PI spectra curves 

are unique to individual compounds due to differing Frank-Condon (FC) factors, which allows 

spectra to be distinguishable between multiple isomers. Reactions species can therefore be 

confidently identified by comparing experimental PI spectra to literature or calculated 

photoionization plots. Adiabatic ionization energy (AIE) derived from PI spectra through linear 

extrapolation can also aid in product identification.25 For experimental AIE, an estimated 

uncertainty of 0.05 eV is present for reaction species identified with an onset due to photon 

energy step size, energy resolution, and possible hot bands.  

5.4 Computational Methods 

The goal of this study is to identify all primary products and propose thermodynamically 

feasible mechanisms for their formation. Electronic structure calculations are used to compute 

AIE, simulate PI spectra, and perform potential energy scans to investigate the reaction 

mechanisms. Using Gaussian 09 software program with CBS-QB3 composite model, all 

electronic structure calculations were performed.18, 26-28 The composite model has highly 

accurate energetics with an absolute deviation of 4-5 kJ/mol.26-27 It also provides reliable 

optimized molecular structural parameters such as bond angles, bond lengths, and vibrational 

frequencies.20 If the AIE of a species is not available in the literature, it can be calculated using 

the formula below: 

AIE = E0, cation – E0, neutral 

where E0 represents the zero-point energy corrected total electronic energy. Heat of reactions are 

also determined using the corrected total electronic energies of the neutral states of the proposed 

products and starting reactants to confirm that product formation is thermodynamically feasible. 
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Reference spectra were always used if available for product identification. However, if no 

reference spectra were found, photoelectron (PE) spectra were simulated using Gaussian 09 for 

the proposed reaction species. Franck-Condon (FC) and Franck-Condon-Herzberg-Teller 

methods are used to approximate FC factors based on the vibronic transition from the neutral to 

the cationic state.29-31 FC overlap integrals are also calculated using a recursive formula 

developed by Ruhoff.32 Following integration, PE spectra are expressed as calculated PI spectra 

for comparison to experimental spectra.  

After all products were identified based on agreeing PI spectra and AIE, reaction 

mechanisms for each primary product were determined. Proposed mechanism pathways were 

confirmed with relaxed PES scans using B3LYP/6-31G(d) level of theory.33 The energies of all 

transition states and minima determined in the PES scans were recalculated using the CBS-QB3 

composite method and verified for thermodynamic feasibility. Intrinsic reaction coordinate (IRC) 

calculations were also completed to further confirm the forward and reverse pathways, local 

minima, and saddle points based on the proposed transition state. 

5.5 Results 

The two entrance channels for the CH (X2Π) radical found here were CH addition to the π 

bond system and CH insertion into the C-O bond within the ring in the 2,5-dimethylfuran 

compound. As seen in previous studies, the dominant entrance channel is the prior and yields a 

majority of the identified primary products.12-13, 16-17 All reaction enthalpies calculated and 

reported in this work are at 0 K.  

 The dissociation of bromoform produced a significant number of brominated species, 

which were identified and found to not interfere with product analysis. Based on the 79Br/81Br 

isotopic ratio, suspected brominated species were characterized by overlaying their 
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photoionization spectra and kinetic time traces. If the relative ion signals of the plots are in good 

agreement at a ~1 to 1 ratio, then the species were considered brominated. In both reactions, 

species observed at m/z = 144/146, 130/132, 116/118, 104/106, and 79/81 were identified as 

brominated and, therefore, no longer investigated in this study.  

 

5.5.1 Product Identification 

The primary products for the reaction of 2,5-dimethylfuran + CH and + CD at 298 K 

were observed at m/z = 108, 80, 66, and 42. The formation of a product must match the depletion 

of the reactant over time to be considered as primary, meaning the product’s kinetic time trace is 

in good agreement with the negative plot of the reactant. Figure 1 and 2 show the kinetic plot 

comparisons for DMF + CH and + CD, respectively, for the four primary products. A species at 

m/z = 52 is also observed and forming as fast as DMF is depleting but based on our computation 

of the potential energy surface this species cannot be a primary product because the energetics 

are not favorable (see Mechanism Pathways section). Products found at m/z = 108, 66, and 42 

are believed to result from a CH addition entrance channel, while the products identified at m/z = 

80 are proposed to result from a CH insertion pathway. 
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Figure 1. Kinetic time traces of primary products of 2,5-DMF + CH radical at 298 K. Time 

traces of m/z = 108 (green line), m/z = 80 (blue line), m/z = 66 (teal line), m/z = 52 (red line) and 

m/z = 42 (orange line) overlaid onto the kinetic time trace of the reactant 2,5-dimethylfuran 

(black line). The reactant time trace has been multiplied by −1 for comparison purposes. 

 

Figure 2. Kinetic time traces of primary products of 2,5-DMF + CD radical at 298 K. Time 

traces of m/z = 108 (green line), m/z = 80 (blue line), m/z = 66 (teal line), m/z = 52 (red line) and 

m/z = 42 (orange line) overlaid onto the kinetic time trace of the reactant 2,5-dimethylfuran 

(black line). The reactant time trace has been multiplied by −1 for comparison purposes. 

 

Experimental PI spectrum observed at m/z = 108 was found in very good agreement with 

a summation of two acyclic C7H8O isomers (Figure 3).  Due to the absence of literature values, 
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FC simulated curves for the products were calculated. The onset of the experimental curve was 

observed at 8.78 ± 0.05 eV and matches with the FC simulated spectra of 3,5,6-heptatrien-2-one. 

The CBS-QB3 calculated AIE for this isomer is 8.81 eV, which provides further product 

confirmation. The latter section of the experimental curve was found in a very good agreement 

with the simulated curve for 3-hepten-5-yne-2-one, which has a calculated AIE of 9.34 eV. The 

formation of C7H8O isomers indicates a H-loss mechanism and follows the CH + CxHy → Cx+1Hy 

+ H pattern first discussed by Trevitt et al.16  

 

Figure 3. Summation (black line) of FC simulated spectra of 3,5,6-heptatrien-2-one (green line) 

and 3-hepten-5-yne-2-one (pink line) overlaid onto the experimental data for DMF + CH radical 

(red line) and DMF + CD radical (blue line) at m/z = 108 taken at 298 K.  

 

At m/z = 66, the signal observed was determined to be a summation of three C5H6 

isomers. The products yielded were cyclic and acyclic isomers, which was a trend also seen in 

similar studies with CH radicals and unsaturated hydrocarbons.15-16 The experimental PI curve 

shown in Figure 4 has an onset of 8.55 ± 0.05 eV and is in good agreement with the literature PI 

curve for 1,3-cyclopentadiene measured by Taatjes et al.34 Additionally, the literature AIE of 

8.57 ± 0.05 eV  is within the experimental uncertainty and supported by the CBS-QB3 calculated 
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AIE of 8.56 eV.34 The middle section of the experimental spectra matches a literature PI 

spectrum of 3-penten-1-yne (E), which has an AIE of 9.05 eV.35 The calculated AIE for 3-

penten-1-yne is 9.10 eV. The third C5H6 isomer, which matches the final section of the 

experimental curve, was identified as 1-pent-4-yne using a literature curve taken by Hansen et al. 

and the reported AIE was 9.92 eV ± 0.05 eV.35 To provide further confirmation, the AIE was 

calculated and found to be 9.93 eV. The proposed mechanism to form these products will be 

discussed later in this work and is believed to form congruently with the primary product 

observed m/z = 42.   

 

Figure 4. Summation (black line) of literature PI spectra for 1,3-cyclopentadiene (pink line), 3-

penten-1-yne (green line), and 1-pent-4-yne (orange line) overlaid onto the experimental data for 

DMF + CH radical (red line) and DMF + CD radical (blue line) at m/z = 66. Experimental 

spectra were measured at 298 K.  

 

A literature spectrum of ketene taken by Yang and coworkers36 was overlaid onto the 

experimental curves at m/z = 42 and determined to be in very good agreement (Figure 5). The 

literature AIE of 9.62 eV, with an overall uncertainty of 20%, is within the uncertainty of the 

experimental AIE measured at 9.59 ± 0.05 eV.36 Furthermore, the CBS-QB3 calculated AIE is 
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9.62 eV and matches very well both values. Ketene is an acyclic alkene product that is believed 

to form along the same mechanism pathway as the three C5H6 isomers describe above. 

 

 

Figure 5. Literature PI spectrum of ketene (black line) overlaid onto the experimental data at m/z 

= 42 for DMF + CH radical (red line) and DMF + CD radical (blue line) measured at 298 K. 

 

Signal observed at m/z = 52 is in very good agreement with the literature PI curve for 

vinylacetylene.37 The AIE of the experimental spectrum shown in Figure 6 is 9.53 ± 0.05 eV 

matching the literature AIE of 9.58 eV ± 0.05 eV. Providing further validation, the calculated 

AIE is 9.58 eV as well. Vinylacetylene is formed from CH addition to the π bond system and 

would yield a C3H4O fragment that optimizes to cyclopropanone as well. However, the cation of 

cyclopropanone is unbound and, therefore, no signal is observed at m/z = 56. Due to the high 

transition barrier (see Mechanism Pathways section) necessary for explaining its formation, this 

species is regarded as a secondary product.  
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Figure 6. Literature PI spectrum of vinylacetylene (black line) superimposed onto the 

experimental curves at m/z = 52 for DMF + CH radical (red line) and DMF + CD radical (blue 

line) measured at 298 K.  

 

The primary products identified at m/z = 80 are proposed to result from the insertion of 

CH radical into the C-O bond within the 2,5-dimethlyfuran ring followed by loss of a CHO 

fragment. Unlike the previously described experimental spectra, the spectra at the same m/z ratio 

shown in Figure 7 and 8 for the two reactions do not match. For the reaction of DMF + CH, the 

experimental spectrum shown in Figure 7 is in good agreement with a summation of three C6H8 

isomers and has an onset of 8.35 ± 0.05 eV. Due to the absence of literature PI or PE spectra, FC 

simulation calculations were completed for the three proposed products. The onset of the 

experimental curve is in good agreement with the simulated spectra for 1,2,4-hexatriene (Z). The 

calculated AIE is 8.37 eV and within the experimental uncertainties. The middle of the curve is 

in good agreement with the simulated spectra for 1,3,4-hexatriene, which has a calculated AIE of 

8.54 eV. The latter part of the curve match with the simulated spectra of 2-hexen-4-yne (E), 

which has a calculated AIE of 8.55 eV. Opposingly, the experimental PIE at m/z = 80 for the 
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reaction of DMF + CD agrees with the summation of only 2-hexen-4-yne (E) and 1,2,4-

hexatriene (Z) (Figure 8). The onset of the experimental curve is 8.40 ± 0.05 eV and matches the 

FC simulation for 1,2,4-hexatriene (Z). The latter part of the curves is in good agreement with 

the FC simulation of 2-hexen-4-yne (E). In Figure 9, the experimental curve at m/z = 81 for the 

reaction of DMF + CD has been modified by subtracting out the signal at m/z = 79 with respect 

to the 79Br/81Br isotopic ratio and the signal at m/z 80 with respect to the 12C/13C ratio. The 

remaining signal is found in good agreement with the FC simulation of 1,3,4-hexatriene meaning 

the product is d5-1,3,4-hexatriene, which contains deuterium and, therefore, appears at m/z = 81 

instead of m/z = 80. Despite all three products resulting from a loss of CHO, there are two 

separate pathways described in the next section, which are distinguished by the specific 

hydrogen that is lost. 

 

 
Figure 7.  Summation (black line) of FC simulated PI spectra for 1,3,4-hexatriene (green line), 

2-hexen-4-yne (E) (orange line) and 1,2,4-hexatriene (Z) (purple line) is overlaid and in good 

agreement with experimental curve for DMF + CH radical (red line) at m/z = 80 measured at 298 

K.  
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Figure 8.  Summation (black line) of FC simulated PI spectra for 2-hexen-4-yne (E) (orange 

line) and 1,2,4-hexatriene (Z) (purple line) is overlaid and in good agreement with experimental 

curve for DMF + CD radical (red line) at m/z = 80 measured at 298 K.  

 

 
Figure 9.  FC Simulation of 1,3,4-hexatriene (black line) overlaid and in good agreement with 

the modified experimental curve for DMF + CD radical (red line) at m/z = 81 measured at 298 

K.  The signal at m/z = 81 was modified by subtracting the signal at m/z = 79 with respect to the 
79Br/81Br isotopic ratio and the signal at m/z 80 with respect to the 12C/13C ratio. The red H in the 

compound represents the deuterium. 
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Intermediates, if detected, would be observed at m/z = 109, 67, and 53. All intermediates 

to yield products at m/z = 108 would have signals shown at m/z = 109. Similarly, the 

intermediates leading to products detected at m/z = 66 and 52 would be observed at m/z = 67 and 

53. The mechanisms will be described in detail in the next section. To verify the identity of the 

signals observed at m/z = 109 and 67, the isotopic portion for 13C from the detected m/z = 108 

and 66 signals were subtracted, respectively. The remaining signal at m/z = 109 is attributed to 

the summation of intermediates C1 and C2 from Figure 12 and B2 and B3 from Figure 11. 

Similarly, the summation of intermediates F4 from Figure 14 and C3, C4, and E1 from Figure 13 

is determined to match the resulting signal at m/z = 67. These intermediates are the only 

compounds with bound cation and ionization energies within the relative experimental photon 

energy ranges. However, the experimental PI curves of both remaining signals cannot be 

confidently identified due to the large number of possible intermediates and low signal-to-noise 

ratios. Intermediate D1 in Figure 12, which leads to vinylacetylene, would be observed at m/z = 

53. However, no signal is observed at m/z = 53 and the cation of the intermediate was found to 

be unbound. 

5.5.2 Mechanism Pathways 

 By comparing the reaction of DMF with CH (X2Π) with the reaction using CD radicals, a 

mechanism can be confidently proposed by tracing the movement of the deuterium. There are 

two entrance channels observed in this study, CH addition and CH insertion. As previously 

mentioned, 4 of the 5 primary signals result from CH addition to the л-bond system in the DMF 

ring, while only 1 primary signal results from CH insertion within the C-O bond. Both pathways 

have relatively low initial energy barriers and are overall exothermic. In the energy diagrams, a 

red line at 0 kJ/mol represents the zero reference point used for all energetic calculations of the 
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products. The zero reference point is based on the energy calculated from the sum of the 2,5-

dimethylfuran and CH (X2Π) radical optimized structures. Any reaction species or activation 

barriers found to be above the zero reference point are considered thermodynamically and 

kinetically unfavorable.  

 The two initial entrance channels are shown below in Scheme 1.  Both pathways were 

verified by three-dimensional PES scans and in line with pathways seen in previous studies of 

CH radicals with small unsaturated alkenes.12-13, 15-17 Intermediate radical A results from CH 

(X2Π) addition to the л-bond to form a bicyclic ring intermediate, which optimized to the 6-

membered ring compound. The calculated activation barrier is 18 kJ/mol and the addition 

releases 480 kJ/mol of energy. Overcoming a barrier of 185 kJ/mol, intermediates B and C result 

from the cleavage of one of the specific C-O bonds and have an enthalpy change of -298 kJ/mol. 

From acyclic intermediates B and C, mechanism pathways diverge to produce primary products 

at m/z = 108, 66, 52, and 42. The second entrance channel observed in this investigation is CH 

(X2Π) insertion within the C-O bond. Possible interactions of CH radical with only the oxygen 

atom were also explored. However, no intermediates that could lead to the identified primary 

products were produced. Intermediate radical D is formed with a reaction enthalpy of -469 

kJ/mol and an activation barrier of 24 kJ/mol. The bond between the oxygen and the carbon with 

the methyl group in the 6-membered ring (D) is then cleaved yielding the acyclic radical 

intermediate E. The calculated energy of intermediate E falls 278 kJ/mol below the reference 

point and forms after overcoming a barrier of 209 kJ/mol. Primary products at m/z = 80 form 

from diverging mechanism pathways starting with the shared intermediate E.  
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Scheme 1. Initial 6-membered radical ring intermediate (A and D) for CH addition and CH 

insertion in 2,5-dimethylfuran reactions. Shared intermediates (B, C, and E) are also shown and 

lead to all final products through diverging pathways. 

 

5.5.3 CH Addition 

The two C7H8O isomers, 3-hepten-5-yn-2-one and 3,5,6-heptatrien-2-one, are formed 

from intermediate B through H-loss pathways. After two dihedral rotations of intermediate B, a 

hydrogen is lost yielding 3-hepten-5-yn-2-one. In the energy diagram shown in Figure 10, the 

two rotated intermediates are represented by A1 and A2 with calculated energies falling below 

the zero-point reference by 317 and 321 kJ/mol, respectively. The corresponding activation 

barriers to form A1 and A2 are relatively very small at 10 and 4 kJ/mol. Overcoming a barrier of 

164 kJ/mol, a hydrogen is lost from intermediate A2 forming the final product 3-hepten-5-yn-2-

one. The calculated reaction enthalpy for the H-loss is -174 kJ/mol and overall exothermic for 

product formation. A second isomer is observed at m/z = 108, 3,5,6-heptatrien-2-one, and 

produced after two hydrogen transfers and a dihedral rotation detailed in Figure 11. A hydrogen 
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from the terminal carbon is transferred to the 6th carbon in the chain, where the radical is located, 

and releases 415 kJ/mol of energy to form intermediate B1. The transition state barrier for the 

transfer is 72 kJ/mol. Intermediate B1 then undergoes a dihedral rotation with a barrier of 295 

kJ/mol and an enthalpy change of -267 kJ/mol forming a rotated intermediate represented by B2. 

Overcoming a barrier of 120 kJ/mol, a second hydrogen transfer occurs moving the hydrogen 

bonded to the 6th carbon to the 5th carbon in the chain producing intermediate B3. The heat of 

reaction for the transfer is calculated to be -295 kJ/mol. Intermediate B3 then loses a hydrogen 

and undergoes a final dihedral rotation producing 1,2,4-heptatrien-6-one as the final primary 

product with a calculated energy falling 168 kJ/mol below the reference point. The activation 

barriers for the H-loss and rotation are 148 kJ/mol and 18 kJ/mol, respectively. The formation of 

the final intermediate B4 has a calculated reaction enthalpy of -159 kJ/mol. The pathways 

forming both C7H8O isomers are overall exothermic and thermodynamically favorable. Figure 3 

shows matching experimental curves at m/z = 108 for both reactions, which indicates that 

deuterium is not present in the final products and H in the entering CH radical is the specific 

hydrogen that is lost in the H-loss pathways described here.  
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Figure 10. Potential energy surface diagram detailing the formation of 3-hepten-5-yn-2-one 

observed at m/z = 108 for the reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The 

red line represents the reference zero point and the red H represents deuterium for the reaction 

with CD radicals.  

 

 
Figure 11. Potential energy surface diagram detailing the formation of 3,5,6-heptatrien-2-one 

observed at m/z = 108 for the reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The 

red line represents the reference zero point and the red H represents deuterium for the reaction 

with CD radicals.   
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From intermediate C, four primary products are produced from two main diverging 

pathways. The energy diagrams represented in Figure 12 and 13 detail the pathways yielding two 

C5H6 isomers, and ketene. Vinylacetylene formation pathway shows that this species cannot be 

regarded as primary product. The formation of 1-penten-4-yne and 1,3-cyclopentadiene begin 

with two hydrogen transfers followed by the loss of ketene and a resulting radical fragment at 

m/z = 67. A hydrogen from the terminal carbon is transferred to the 6th carbon and overcomes an 

activation barrier of 72 kJ/mol to form intermediate C1 (Figure 12).  The corresponding enthalpy 

change is -347 kJ/mol. Then, the α-hydrogen is transferred to the γ-carbon with a barrier of 240 

kJ/mol and causes a slight rotation. The resulting intermediate is represented by C2 and has a 

calculated energy that falls 347 kJ/mol below the reference point. From intermediate C2, the 

bond between the β-carbon and γ-carbon is cleaved yielding ketene and a radical C5H7 fragment 

(C3). The cleavage has an energy barrier of 98 kJ/mol and an overall enthalpy change of -309 

kJ/mol. The resulting C5H7 fragment then loses a hydrogen forming two C5H6 isomer products 

via distinct pathways detailed in the energy diagram shown in Figure 13. The β-hydrogen is 

transferred to the γ-carbon after overcoming a barrier of 143 kJ/mol forming intermediate E1. 

The calculated enthalpy change for the transfer is -178 kJ/mol. The final product 1-pent-4-yne is 

formed from the loss of hydrogen from intermediate E1 and has a calculated energy that falls 27 

kJ/mol below the reference point. The corresponding energy barrier for the H-loss is 151 kJ/mol. 

Alternatively, intermediate C3 is also observed to undergo a dihedral rotation causing a ring 

formation, which ultimately yields 1,3-cyclopentadiene after a hydrogen loss. The dihedral 

rotation has a relatively small barrier of 38 kJ/mol of energy and a calculated reaction enthalpy 

of -296 kJ/mol. The rotated intermediate represented by C4 then forms a ring intermediate (C5) 

with a small energy barrier of 24 kJ/mol and an enthalpy change of -346 kJ/mol. Intermediate C5 
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then overcomes an activation barrier of 181 kJ/mol and loses a hydrogen forming the final 

product 1,3-cyclopentadiene. The calculated reaction enthalpy is -165 kJ/mol for the H-loss and 

overall exothermic for product formation. 

 
Figure 12. Potential energy surface diagram detailing the formation of vinylacetylene, ketene, 

and a C5H7 fragment for the reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The 

red line represents the reference zero point and the red H represents deuterium for the reaction 

with CD radicals.  
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Figure 13. Continued potential energy surface diagram detailing the formation of 1,3-

cyclopentadiene and 1-penten-4-yne from the C5H7 fragment for the reactions of 2,5-

dimethylfuran + CH (X2Π) and CD radicals. The red line represents the reference zero point and 

the red H represents deuterium for the reaction with CD radicals. 

 

Another pathway yielding the third C5H6 isomer observed and ketene begins with 

intermediate C followed by a dihedral rotation, two hydrogen transfers, and a final H-loss. The 

mechanism is detailed in the energy diagram shown in Figure 14. The dihedral rotation of 

intermediate C has an activation barrier of 6 kJ/mol and releases 293 kJ/mol of energy to yield an 

intermediate represented by F1. Then, the α-hydrogen moves to the 6th carbon in the chain 

producing intermediate F2. The transfer has an energy barrier of 26 kJ/mol and a reaction 

enthalpy of -352 kJ/mol. The bond between the β-carbon and γ-carbon in F2 is cleaved after 

overcoming a barrier of 192 kJ/mol of energy forming ketene and a C5H7 radical fragment (F3). 

The calculated enthalpy change for the cleavage falls 180 kJ/mol below the reference point. In 

the C5H7 fragment, the β-hydrogen is transferred to the alpha carbon resulting in intermediate F4. 

The activation barrier for the transfer is 189 kJ/mol and the calculated heat of reaction is -237 

kJ/mol. A hydrogen is lost from intermediate F4 forming the final product 2-pent-4-yne after 

overcoming an activation barrier of 187 kJ/mol. The enthalpy change is calculated to be -49 
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kJ/mol and overall production formation is exothermic. In Figure 4 and 5, experimental curves of 

m/z = 66 and 42 for the two investigated reactions are shown to be matching and, therefore, the 

specific hydrogen lost from the C5H7 fragment must be the deuterium. This provides additional 

support for the proposed mechanisms.  

 

 

Figure 14. Potential energy surface diagram detailing the formation of ketene and 3-penten-1-

yne for the reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The red line represents 

the reference zero point and the red H represents deuterium for the reaction with CD radicals.  

 

Vinylacetylene is produced from an alternate pathway of intermediate C2 shown in the 

energy diagram detailed in Figure 12. Instead of the cleavage of the β-carbon and γ-carbon bond, 

the bond between the δ-carbon and ε-carbon is cleaved forming two fragments: C3H4O and C4H5. 

The corresponding activation barrier and heat of reaction were calculated to be 259 kJ/mol and -

88 kJ/mol, respectively. The C4H5 fragment would be detected at m/z = 56, however, no signal is 

observed in this investigation. The C3H4O fragment loses a hydrogen from the β-carbon to form 

vinylacetylene after overcoming a barrier of 73 kJ/mol. The calculated energy change for 
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vinylacetylene formation lies above the reference point by 52 kJ/mol and for this reason it is 

regarded as a secondary product, because the computed pathway cannot explain its formation 

both kinetically and thermodynamically. The experimental PI curves for m/z = 52 shown in 

Figure 6 are in very good agreement.  

 For all products formed via CH addition, both reactions share the same primary products 

and have matching experimental PI spectra. By comparing the two reactions, it is deduced that 

deuterium must have been lost in the reaction with CD radicals. Therefore, the it is also the 

hydrogen that is introduced with the initial CH radical reactant that is lost in the reaction with 

CH radicals.  

5.5.4 CH Insertion 

The three primary products observed at m/z = 80 are formed from CH insertion pathways 

with a shared intermediate E (Scheme 1) and detailed in the energy diagram shown in Figure 15, 

16, and 17. All products are C6H8 isomers, exothermic, and thermodynamically favorable. As 

previously mentioned, the two experimental PI curves for m/z = 80 do not match, meaning the 

initial H added with the CH radical is present in one of the three final products. The two shared 

isomers are 2-hexen-4-yne and 1,2,4-hexatriene. From intermediate E, 2-hexen-4-yne is 

produced from a dihedral rotation, hydrogen transfer, and a loss of the aldehyde group. The 

rotated intermediate is represented by intermediate A1 and forms after overcoming a relatively 

small barrier of 8 kJ/mol (Figure 15). The calculated enthalpy change of the rotation is -297 

kJ/mol. A hydrogen transfer occurs in intermediate A1 moving the γ-hydrogen to the ε-carbon 

releasing 301 kJ/mol of energy forming intermediate A2. The corresponding activation barrier 

for the transfer is 179 kJ/mol. Finally, 2-hexen-4-yne is formed with the loss of the aldehyde 

group after overcoming a barrier of 99 kJ/mol. The heat of reaction is -214 kJ/mol and product 
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formation is overall exothermic. Opposingly, intermediate E also undergoes a series of four 

hydrogen transfers and the loss of the aldehyde group to form 1,2,4-hexatriene as shown in 

Figure 16. The first hydrogen transfer has an activation barrier of 17 kJ/mol and transfers the 

hydrogen on the terminal carbon in the chain to the ε-carbon. The resulting intermediate is 

represented by B1 and has a calculated energy that falls 399 kJ/mol below the reference point. 

The second and third hydrogen transfer moves the δ-hydrogen to the carbon with the aldehyde 

group and the γ-hydrogen to the δ-carbon forming intermediate B2 then B3. The calculated 

reaction enthalpies for the transfers are -398 and -309 kJ/mol with activation barriers of 1 and 92 

kJ/mol, respectively. The final hydrogen results in intermediate B4 after the β-hydrogen moves 

to the γ-carbon. The calculated activation barrier is 7 kJ/mol and the heat of reaction is -314 

kJ/mol for the transfer. With a calculated energy that falls 196 kJ/mol below the reference point, 

1,2,4-hexatriene is formed by the loss of the aldehyde group from intermediate B4. The 

corresponding activation barrier is 122 kJ/mol.  
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Figure 15. Potential energy surface diagram detailing the formation of 2-hexen-4-yne (E) for the 

reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The red line represents the 

reference zero point and the red H represents deuterium for the reaction with CD radicals.  

 

 
 

Figure 16. Potential energy surface diagram detailing the formation of 1,2,4-hexatriene (Z) for 

the reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The red line represents the 

reference zero point and the red H represents deuterium for the reaction with CD radicals.  
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The third C6H8 isomer observed is 1,3,4-hexatriene. In the reaction with CD radicals, the 

product is observed as d5-1,3,4-hexatriene at m/z = 81. From intermediate E, 1,3,4-hexatriene is 

formed after a dihedral rotation, two hydrogen transfers, and the loss of a carbonyl group and 

hydrogen detailed in energy diagram shown in Figure 17. C1 represents the rotated intermediate 

and has a calculated energy that falls 295 kJ/mol below the reference point. The corresponding 

activation energy is relatively small at 5 kJ/mol. Overcoming a barrier of 16 kJ/mol, a hydrogen 

from the aldehyde group is transferred to the ε-carbon with a calculated enthalpy change of -371 

kJ/mol. The resulting intermediate (C2) loses a carbonyl group to form intermediate C3. The 

activation barrier and heat of reaction for the loss is 94 and -288 kJ/mol, respectively. Next, the 

α-hydrogen is transferred to the β-carbon with an energy barrier of 174 kJ/mol yielding 

intermediate C4. The calculated reaction enthalpy for the transfer is -405 kJ/mol. Finally, the δ-

hydrogen from intermediate C4 is lost forming the primary product 1,3,4-hexatriene that has an 

energy that falls 42 kJ/mol below the reference point. The final activation barrier is 284 kJ/mol 

and product formation is overall exothermic. Mechanism pathways based on the presence or 

absence of deuterium further support product identification. 
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Figure 17. Potential energy surface diagram detailing the formation of 1,3,4-hexatriene for the 

reactions of 2,5-dimethylfuran + CH (X2Π) and CD radicals. The red line represents the 

reference zero point and the red H represents deuterium for the reaction with CD radicals.  

 

Unlike all the other primary products, 1,3,4-hexatriene is observed at different m/z ratios 

for the two reactions. This indicates that the hydrogen from the CH radical reactant is present in 

the final compound and the mechanism is an H-loss pathway rather than a D-loss pathway. The 

CO-loss followed by H-loss pathway is the only mechanism that loses the initial carbon and does 

not lose the initial hydrogen from the CH radical reactant.  

5.5.5 H-Assisted Isomerization 

From the number densities of the reactants and assuming an average molecular diameter 

of 0.25 nm for the reacting species, a few thousand collisions are expected at room temperature. 

Under these conditions the H-assisted isomerization should also be considered as possible 

reaction pathways to yield the observed products at m/z = 66, 80, and 108.  

Two C7H8O isomers are formed at m/z = 108 and Figure 18 details the proposed 

Hassisted isomerization of 3,5,6-heptatriene-2-one into 3-hepten-5-yn-2-one. An H atom adds to 
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the terminal carbon, with an exothermicity of 151 kJ/mol of energy. The addition results in the 

loss of the ε-hydrogen to form 3-heptene-5-yn-2-one. The respective barriers for each step are 

relatively very small at 9 and 10 kJ/mol. 

 

Figure 18. Potential energy surface diagram detailing the formation of 3-hepten-5-yn-2-one from 

3,5,6-heptatriene-2-one via H-assisted isomerization. The blue H represents the H atom utilized 

by the isomerization. 

 

Of the three C5H6 isomers observed at m/z = 66, the only possible H-assisted 

isomerization is from 3-penten-1-yne to 1-penten-4-yne (Figure 19). An H atom can be added to 

the γ-carbon of 3-penten-1-yne after overcoming a barrier of 13 kJ/mol and releasing -123 

kJ/mol. Then, 1-penten-4-yne forms from the loss of the δ-hydrogen with an activation energy of 

26 kJ/mol.  
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Figure 19. Potential energy surface diagram detailing the formation of 1-penten-4-yne from 3-

penten-1-yne via H-assisted isomerization. The blue H represents the H atom utilized by the 

isomerization. 

 

At m/z = 80, three C6H8 isomers are also observed and two H-assisted isomerizations are 

possible. Figure 20 shows the proposed mechanism for 1,3,4-hexatriene isomerization to form 2-

hexen-4-yne. The addition of an H atom to the α-carbon on the 1,3,4-hexatriene is barrier-less 

with an exothermicity of 186 kJ/mol of energy. The resulting intermediate then loses the 

hydrogen on the 5th carbon in the chain, which is also the deuterium in the reaction with CD 

radicals, to form 2-hexen-4-yne. The corresponding activation barrier for the H/D-loss is 180 

kJ/mol. Alternatively, 2-hexen-4-yne can also be formed from 1,2,4-hexatriene as shown in 

Figure 21. On 1,2,4-hexatriene, a hydrogen atom can add to the α-carbon, which will then cause 

the loss of hydrogen from γ-carbon to yield 2-hexen-4-yne. The respective energy barrier for the 

hydrogen loss is 149 kJ/mol, while the hydrogen addition is barrier-less with an exothermicity of 

152 kJ/mol of energy. 
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Figure 20. Potential energy surface diagram detailing the formation of 2-hexen-4-yne from 

1,3,4-hexatriene via H-assisted isomerization. The blue H represents the H atom utilized by the 

isomerization whereas the red H represents the deuterium for the reaction with CD radicals. 

 

 
Figure 21. Potential energy surface diagram detailing the formation of 2-hexen-4-yne from 

1,2,4-hexatriene via H-assisted isomerization. The blue H represents the H atom utilized by the 

isomerization. 
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5.6 Conclusion 

The reactions of 2,5-dimethlyfuran + CH (X2Π) and + CD radicals at 298 K were studied 

using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the 

Lawrence Berkeley National Laboratory. Based on kinetic time traces and photoionization 

spectra, primary products were identified. The comparison of the experimental curves at the 

same m/z ratios for the two reactions allowed for further support of product identification and 

mechanism pathways based on the presence or absence of deuterium. CBS-QB3 level of theory 

was used for all energy calculations and to determine reaction mechanisms. The two entrance 

channels are observed in this work are CH addition to the л-bond system and CH insertion within 

the C-O bond, yielding initial 6-membered ring radical intermediates. As seen in previous 

studies, CH addition pathway was more favored and lead to the formation of nearly all primary 

products observed. Patterns of H-loss, CHO-loss, and CO-loss observed were also in agreement 

with trends observed in other similar studies. From CH addition pathway, products at m/z = 108, 

66, and 42 were observed. At m/z = 108, the two C7H8O isomers formed were 1,2,4-heptatrien-6-

one and 3-hepten-5-yne-2-one through H-loss mechanisms. Diverging from the shared 6-

membered ring intermediate, ketene and three C5H6 isomers were formed congruently. The 

isomers were identified as 1,3-cyclopentadiene, 3-penten-1-yne (E), and 1-pent-4-yne. 

Vinylacetylene is also observed but based on the computation of the potential energy scan it is 

not regarded as a primary product. In the CH insertion entrance pathways, CH radical is inserted 

within the C-O bond to also yield an initial 6-membered ring radical intermediate. Three C6H8 

isomers are produced via CH insertion. The two isomers shared by both reactions at m/z = 80 are 

1,2,4-hexatriene (Z) and 2-hexen-4-yne (E) and result from the loss of the aldehyde group. 

Through the loss of a carbonyl group then hydrogen, 1,3,4-hexatriene is formed and observed in 
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the reaction with CH radicals at m/z = 80. In the reaction with CD radicals, the product is 

observed as d5-1,3,4-hexatriene at m/z = 81, meaning that deuterium in present. This CO-loss 

pathway is the only mechanism that keeps the initial hydrogen added with the radical reactant. 

Finally, H-assisted isomerization has also been considered and the results presented for the m/z = 

66, 80, and 108 isomers. 
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 Chapter 6 VUV Synchrotron Photoionization and Photodissociation Study of Valeric Acid 

6.1 Abstract 

The unimolecular dissociation of valeric acid was investigated using the i2PEPICO 

spectrometer at the VUV beamline of the Swiss Light Source at 298 K. Photoelectrons and 

photoions were imaged and measured simultaneously to determine highly accurate dissociation 

dynamics in correspondence to a photoionization event. Breakdown diagrams were used to 

identify accurate appearance energies at 0 K for each daughter ion. The appearance energies, 

along with known literature values, were then used to determine unknown thermochemical 

values for the dissociation reaction species. In the 10.2 – 13 eV photon energy range, three 

daughter ions at m/z = 43, 60, and 73 were found to form from valeric acid. The dissociation is 

fast and in parallel for all three daughter ions. Using the previously reported ΔfH° for valeric 

acid, the ΔfH° (C5H10O2
+) was calculated to be 499.5± 9.0 kJ/mol. The BDE of the intermediate 

cation to form C2H4O2
+ (m/z = 60) is 111 kJ/mol. The ΔfH° (C2H4O2

+) was then calculated to be 

511.3 ± 9.0 kJ/mol and the heat of formation of the respective intermediate cation is 420.6 ± 9.0 

kJ/mol. The calculated BDE of the intermediate cation that forms C3H5O2
+ (m/z = 73) is 132 

kJ/mol and the heat of formation for the intermediate is 401.6 ± 9.0 kJ/mol. The calculated ΔfH° 

(C3H5O2
+) is 414.4 ± 9.0 kJ/mol. Finally, using the previously reported AIE and heat of 

formation for the propyl radical (C3H7*), the calculated heats of formation for the propyl ion 

(C3H7
+) and the associated carboxyl radical (C2H3O2*) are 880.6 ± 7.0 kJ/mol and -297.6 ± 8.0 

kJ/mol, respectively.  
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6.2 Introduction 

Many studies have shown that carbon dioxide emission, specifically from fossil fuel 

combustion, is one of the largest contributors to the increasing amounts of greenhouse gases 

(GHG) in the atmosphere.1-3 Fossil fuel combustion, such as burning gasoline or diesel, also 

emits particulate matter, complex hydrocarbons, and nitrogen oxides, which are all decreasing air 

quality.4-5 Air pollutants have begun and will continue to negatively impact human health and 

have been linked to lung cancer, cardiovascular disease, and many respiratory illnesses.6 Apart 

from air quality concerns, fossil fuel resources are depleting at a rapid rate and the need for an 

alternative fuel source is imminent.4  

Currently, the popular potential alternatives include second generation biofuels and 

biodiesels that are produced in carbon neutral processes from biomass waste and, therefore, do 

not compete with food production.7-9 An ideal biofuel and biodiesel would also emit less 

greenhouse gases in its entire production and combustion cycle. Therefore, studying the 

compounds and reactivity that occur in producing and utilizing the biofuels and biodiesels is 

essential to selecting a future fuel for mass consumption.   

Biodiesels are EPA approved alternatives to petroleum based fuels that are available on a 

mass, commercial scale due to two large factors: lower GHG emissions and compatibility with 

current diesel engines.10 Numerous studies have shown that combustion of biodiesels produces 

less hydrocarbons, nitrous oxides, sulfur, and particulate matter, which are all dangerous air 

pollutants.7, 10-11 Not only are emissions lower, biodiesels are also non-toxic, biodegradable, and 

safer.10 Biodiesels are composed of esters of long chain fatty acids, usually 12 to 24 carbon 

atoms long.11 The common method to produce biodiesels is base catalyzed transesterification 

process of “waste” oils and fats into the biodiesel compounds.11 Carboxylic acid and alcohol 
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groups are contained in all of the long chain fatty acids present in the oils and fat compounds of 

the starting materials.11-12 Therefore, studying the combustion of simple carboxylic acids, such as 

valeric acid, can provide insight and a basis for studying these more complex molecules found in 

biodiesels.  

The investigation of the photoionization and photodissociation of valeric acid presented 

in this study was conducted at the VUV beamline of the Swiss Light Source (SLS) using double 

imaging photoelectron photoion coincidence spectroscopy (i2PEPICO). The breakdown diagram 

of valeric acid was analyzed to determine highly accurate dissociative photoionization onsets as 

well as the dissociation dynamics of internal energy selected gas phase ions.  

6.3 Experimental Methods 

The experiment presented here was conducted using the X04DB VUV beamline coupled 

with the double imaging photoelectron-photoion coincidence (i2PEPICO) spectrometer at the 

SLS at the Paul Scherrer Institute. The i2PEPICO apparatus was in the symmetric set-up, which 

allowed for both photoelectrons and photoions to be imaged concurrently. Details describing the 

experimental apparatus has been previously explained elsewhere and only a brief description will 

be provided here.13-17
 

The purpose of the experiment is to study the unimolecular dissociation dynamics of the 

chemical of interest by analyzing ions with a selected and specific internal energy. The 

i2PEPICO spectroscopy technique, when coupled with the VUV light, allows for the internal 

energy of a selected ion with a well-defined energy state to be measured.18 The experimental 

apparatus measures and images photoelectrons and photoions simultaneously to determine which 

ions correspond to a photoionization event. The ionization process is shown in the equation 

below: 19 
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AB + hν → AB+ (Eint) + e- (KE) – IE,  (Equation 6.1) 

where AB+ (Eint) is the internal energy of the selected ion and e- (KE) is the kinetic energy of the 

electron in coincidence.19 

  Valeric acid (purity ≥99%, Sigma-Aldrich) was placed into a glass vial and exposed to a 

high vacuum to allow the gas in the headspace to be drawn into the experimental apparatus. The 

gas was sampled through a simple nozzle technique designed by Buckland et al.,20 which 

allowed for the formation of a molecular beam. The molecular beam was then narrowed by the 1 

mm slit of an in-house designed skimmer before entering the experimental chamber to intersect 

with the light beam for the ionization process.15, 17 The reaction was carried out at room 

temperature and pressure was maintained at 10-6 mbar by a needle valve. 21 A gas filter made up 

of nine differentially pumped sections filled with neon as a backing gas was used to suppress 

higher harmonic radiation resulting from the synchrotron light.21 The source chamber maintained 

a pressure of 5 x 10-7 mbar was regulated by a 1500 L/s turbomolecular pump and a 5000 L/s 

cryogenic pump.21 

After ionization, a photoelectron triggers the ion time-of-flight analysis and photoions 

and photoelectrons are pushed in opposite directions by a 120 V/cm electric field to individual 

Roentdek DLD40 delay line detectors.15, 22 The electrons and ions of interest in this study, known 

as zero kinetic energy electrons (ZKE) and “cold ions”, are those that move in a straight line and 

hit the center of their respective detectors. ZKE and “cold ions” correspond to a photoionization 

event and, therefore, considered to be in coincidence.15 Electrons and ions that move at an angle 

and do not hit the center of the detector are later subtracted out of velocity map imaging during 

data analysis. 



 

128 
 

Electron velocity map images (VMI) are produced from an in-house program designed by 

Dr. Andras Bodi.23 The i2PEPICO program is used to visualize the raw data produced from the 

experimental apparatus based on mapping information of the photoelectron collision site with the 

detector and the TOF-MS of the photoions.23 A customizable input script is optimized to best 

visualize the signal produced from the multichannel analyzer that counts the total number of 

active channels that give number points.23 From the electron VMI, a list of coincidence counts is 

given as a series of numbers that is then extrapolated to determine the count of ZKE electrons.23 

From the ZKE electron counts, fractional abundances for each mass-to-charge ratio are plotted as 

a function of photon energy following subtraction of background noise signal to produce a 

breakdown diagram.23 The photodissociation reaction presented here is regarded as fast 

dissociation since 100% of the parent cation dissociates within the experimental time frame. 

Therefore, a fitted model of the theoretical breakdown curve alone is needed to determine the 0 

K appearance energy for the reaction species.18-19, 24 

6.4 Computational Methods 

All theoretical calculations presented in this work are performed using Gaussian 09 

software suite.25  Electron structure calculations, including vibrational and rotational constants, 

were calculated using the CBS-QB3 composite method.26-27 Potential energy surface (PES) scans 

are computed using the B3LYP/6-31G(d) level of theory and used to determine dissociation 

pathways to identify barriers and transition states.28 All transition and intermediate state cation 

compounds identified through PES scans are optimized using the CBS-QB3 composite method 

and all resulting energy values are reported at 0 K.26-27   
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 Following the ionization process, an initial parent cation (AB+) forms from a neutral 

valeric acid (AB), that then dissociates into cationic (A+) and neutral (B) fragments. An example 

of the complete ionization and dissociation reaction is shown by the equation below: 

AB + hv → AB+ → A+ + B   (Equation 6.2) 

As the initial cation of valeric acid (AB+) depletes, daughter cations start forming at their relative 

appearance energy (AE) values.17 The AE of the daughter ion is determined using the 

miniPEPICO program.29 When no dissociation barriers are present or the PES scan determines 

the mechanism is “uphill”, the bond dissociation energy (BDE) can represent the AE of the 

cation fragment.18, 29 This is also called thermochemical limit. “Uphill” scans are present in all 

three dissociation pathways of the daughter ions presented here. AE and BDE are calculated by 

the equations below: 

BDE (AB+) = E(fragments) – E(cation parent)   (Equation 6.3) 

AE = AIE + BDE = E(fragments) – E(neutral parent)  (Equation 6.4) 

where AIE is the adiabatic ionization energy of the parent molecule.  

MiniPEPICO computational program is used to produce a theoretical model to best fit to 

the experimental breakdown diagram.29 The program uses the RRKM theory to calculate the 

thermal energy distribution of ions as a function of photon energy while accounting for 

dissociation rates.29-30 The rotational and vibrational frequencies of the optimized transition 

states and parent’s neutral and cationic form are entered into the program to calculate 

dissociation rates.17, 29 The photodissociation of valeric acid forms three daughter cation 

fragments in a parallel mechanism, which is also specified in the program.  Theoretical 

dissociation curves for each cation fragment (A+) are then fitted to the experimental curves to 
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identify accurate AE of each daughter cationic fragment (A+). The AE values of all the daughter 

ions are then used to determine overall thermochemistry values. 

The determined AE and literature enthalpy values for the known compounds can be used 

to determine thermochemical values for any unknown compounds. Here, the thermochemical 

values for the neutral (B) fragments and valeric acid are known and will be used to solve for the 

unknown values for the cationic (A+) daughter fragments and the cationic (AB+) parent 

molecule. An outline of the calculation work flow is shown by the following equations: 19, 24 

AE – AIE + ∆ [E (AB+) – E (I+)] = BDEo
0K (A+– B)   (Equation 6.5) 

BDEo
0K (A+– B ) = ΔfH° (B) + ΔfH° (A+) – ΔfH° (AB+)  (Equation 6.6) 

ΔfH° (AB+) = ΔfH° (B) + ΔfH° (A+) – BDEo
0K (A+– B)   (Equation 6.7) 

ΔfH° (Valeric Acid) = ΔfH° (AB+) – AIE    (Equation 6.8) 

The BDE and AIE values along with the calculated energy (E) values of the intermediate cation 

(I+) that forms the final products are used to determine AE and enthalpy of formation values as 

described by the equations above.19, 24 The enthalpy of formation of the neutral parent, valeric 

acid, is used with the experimental AIE to calculate the enthalpy of formation of the cationic 

parent (AB+) for a given dissociation pathway.  

6.5 Results 

The photoionization and photodissociation of valeric acid were conducted at room 

temperature and a pressure of 10-6 mbar over a 10.2 to 13 eV range with a 120 V/cm electric 

field. Three daughter cationic fragments were found to form in a parallel dissociation mechanism 

following the initial ionization of valeric acid. The general schematic of the photodissociation is 

shown below. 
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Scheme 6.1 General schematic for the photoionization and photodissociation of valeric acid at 

298 K. 

 

The breakdown diagram in Figure 6.1 shows that over the 10.2 -13 eV energy range, 

valeric acid (VA+, m/z = 102) cations decay in a parallel mechanism into the three daughter ions: 

C2H4O2
+ (m/z = 60), C3H5O2

+ (m/z = 73), and C3H7
 + (m/z = 43). The theoretical breakdown 

curve (shown by the solid line) was modeled in the miniPEPICO program and optimized at 300 

K for the best fit. Rotational and vibrational frequencies of the optimized structure of valeric acid 

were entered into the miniPEPICO input file as well as the vibrational frequencies of the parent 

cation. Using PES scans, the vibrational frequencies from the highest energy intermediate or 

transition state cations in the relative dissociation pathway for the formation of each daughter ion 

were also inputted into the program. Further details will be given below. 
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Figure 6.1 Breakdown diagram for the dissociation of valeric acid over the 10.2 – 13 eV photon 

energy range. The experimental data points are shown by the open shapes and the solid lines are 

the theoretical dissociations calculated from the miniPEPICO program.  

 

 Following the fast dissociation of the C2H10O2
+ parent ion, the C2H4O2

+ (m/z = 60) and 

C3H5O2
+ (m/z = 73) daughter ions begin to form in parallel through differentiating mechanisms 

described below. The AE at 0K for C2H4O2
+ (m/z = 60) and C3H5O2

+ (m/z = 73) are 10.66 ± 

0.025 eV and 10.67 ± 0.025 eV, respectively. The third daughter ion, C3H7
 + (m/z = 43), begins 

to form with a low intensity after 11 eV and has AE of 11.05 ± 0.025 eV at 0 K. The possible 

sequential dissociation pathways to form C3H7
 + (m/z = 43) as a granddaughter ion from either 

C2H4O2
+ (m/z = 60) or C3H5O2

+ (m/z = 73) was also investigated. However, the dissociation 

pathways were found to be thermodynamically unfeasible. Therefore, the fragment must also be 

forming in parallel with the other two daughter ions. 

 The PES diagrams in Figure 6.2 show the dissociation pathways for valeric acid resulting 

in the three identified daughter ions. When the pathways were found to be barrierless or “uphill”, 

the AIE of products will serve as the BDE for the associated dissociation pathway.  
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Figure 6.2 Potential energy surface diagrams for the parallel dissociation pathways of valeric 

acid cation.  

 To form the daughter ion at m/z = 60, the parent ion, C2H10O2
+, undergoes a hydrogen 

transfer from the γ-carbon to the oxygen with a transition state barrier (TS 1) of 23.6 kJ/mol that 

results in intermediate cation A at 78.9 kJ/mol below the parent ion (C2H10O2
+) . From the 

intermediate cation, the bond between the γ-carbon and β-carbon breaks to form the ethylene diol 

(C2H4O2
+) daughter ion and propene as the neutral fragment. This pathway is “uphill” and results 

in the highest energy point, therefore, the BDE of the two products will serve as the dissociation 

barrier. The daughter ion at m/z = 73 also forms from intermediate A cation after a hydrogen 

transfer from the β-carbon to γ-carbon with a transition state barrier (TS 2) of 96.1 kJ/mol 

forming intermediate B cation with an overall exothermicity of 97.9 kJ/mol. The bond between 

the γ-carbon and ∆-carbon is then cleaved to form the daughter ion, C3H5O2
+, and an ethyl 

radical (C2H5*) as the neutral fragment. The third daughter ion, C3H7
 +, optimizes and forms 

directly from the parent cation, C2H10O2
+, in an “uphill” mechanism by the cleavage of the β-
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carbon to γ-carbon. The associated neutral fragment is a carboxyl radical (C2H3O2*). In the three 

presented pathways, the products are the highest overall energy points, therefore, the BDE will 

be relative to the energetics of the intermediate that directly proceeds to product formation. The 

formation of the intermediates from the parent cation VA+ occurs through an energy barrier 

below the fragments. Therefore, the BDE is relative to intermediate A cation for m/z = 60 and 

intermediate B cation for m/z = 73. For m/z = 43, the difference between the AIE(parent) and the 

AE(fragment) will serve as the dissociation barrier.  

The decomposition of the valeric acid to form the daughter ion at m/z = 43 could have 

formed compounds with the general formula C2H3O with theoretical AE values close to the 

observed experimental values as a daughter or granddaughter ion. However, the PES scans to 

form C2H3O conformations from the parent ion as well as the two daughter ions at m/z = 60 and 

m/z = 73 were not thermodynamically feasible or did not result in the desired conformation. The 

attempted pathways included removal of the alcohol group (-OH) and hydrogen transfers to the 

beta carbon in all three ions.  

6.6 Thermochemistry 

Equations 6.5-6.8 will be used to calculate unknown thermochemical values for the 

applicable reaction species using thermochemical values from literature and the experimentally 

determined BDE values at 0 K. Adriaanse et al.31 previous reported the heat of formation of 

valeric acid is -496.5  ± 4.1 kJ/mol. Using Equation 6.8, the heat of formation of the valeric acid 

cation is calculated to be 499.55 ± 5.0 kJ/mol. The heat of formation values for propene (m/z = 

42), ethyl radical (m/z = 29), and propyl ion (C3H7
 +) (m/z = 43) were also reported in previous 

studies and will be used to determine the unknown thermochemical values for the identified 

dissociation reaction species.  
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Using the calculated energy value of [Intermediate A]+, the BDE of [Intermediate A]+ is 

computed to be 111 kJ/mol. The reported heat of formation for propene is 20.41± 0.33 kJ/mol  

and was used to determine that the ΔfH° (C2H4O2
+) = 511.3 kJ/mol ± 9.0 kJ/mol.32 For this 

dissociation pathway, the ΔfH° (Intermediate A+) can also be calculated and is 420.6 ± 9.0 

kJ/mol. 

Similarly, the ΔfH° (C2H5*) was previously reported by Tsang et al.33 to be 119 ± 6.0 

kJ/mol. With this value and the calculated BDE of 132 kJ/mol for [Intermediate B]+, the ΔfH° 

(C3H5O2
+) is found to be 414.4 ± 9.0 kJ/mol. The heat of formation for [Intermediate B]+ could 

then be resolved and is determined to be 401.6 ± 9.0 kJ/mol. 

For the final dissociation pathway which forms the propyl ion (C3H7
 +) at m/z = 43, the 

heat of formation for the propyl ion and the associated neutral carboxyl radical (C2H3O2*) can be 

calculated. The heat of formation and AIE of the propyl radical have been previously reported to 

be 100 kJ/mol ± 2.0 kJ/mol and 8.09 ± 0.01 eV, respectively.33-34 With these values, the heat of 

formation of the propyl ion is calculated to be 880.6 ± 8.0 kJ/mol and the heat of formation of 

the carboxyl radical is computed to be -297.6 ± 8.0 kJ/mol. 

6.7 Conclusions 

 In the investigation presented here, the unimolecular dissociation of valeric acid was 

studied using the i2PEPICO spectrometer at the VUV beamline of the Swiss Light Source at 298 

K for the 10.2 – 13 eV range. The i2PEPICO apparatus was in the symmetric set-up and 

photoelectrons and photoions were imaged and measured simultaneously. Therefore, when 

coupled with VUV light, the internal energy of a selected ion with a well-defined energy state 

was able to be measured and used to determine which ions corresponded to a photoionization 

event. Theoretical and experimental breakdown diagrams were used to determine accurate the 
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AE at 0 K for the three daughter ions and unknown thermochemical values for the dissociation 

reaction species. The heat of formation of the valeric acid cation was calculated to be 499.5 ± 5.0 

kJ/mol. Using the AE of 10.66 eV for the daughter ion at m/z = 60 and computed energy values, 

the and the BDE of [Intermediate A]+ was found to be 111 kJ/mol. The ΔfH° (C2H4O2
+) was then 

calculated to be 511.3 kJ/mol ± 9.0 kJ/mol and the ΔfH° (Intermediate A+)  to be 420.6 ± 9.0 

kJ/mol. Similarly, using the AE of 10.67 eV for the daughter ion at m/z = 73 and the calculated 

BDE of 132 kJ/mol for [Intermediate B]+, the ΔfH° (C3H5O2
+) = 414.4 ± 9.0 kJ/mol  and the 

ΔfH° (Intermediate B+) = 401.6 ± 9.0 kJ/mol. The third daughter ion at m/z = 43 has an 

appearance energy of 11.05 eV and a calculated heat of formation of 880.6 ± 7.0 kJ/mol. The 

heat of formation for the carboxyl radical (C2H3O2*) was also calculated to -297.6 ± 7.0 kJ/mol. 
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