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THE UNIVERSITY OF SAN FRANCISCO 
Dissertation Abstract 

 
 
 

The Effects of Using Screencasting as a Multimedia Pre-Training Tool to Manage the 
Intrinsic Cognitive Load of Chemical Equilibrium Instruction for Advanced High School 

Chemistry Students 
 

 
 Chemistry is a complex knowledge domain. Specifically, research notes 

that Chemical Equilibrium presents greater cognitive challenges than other topics in 

chemistry. Cognitive Load Theory describes the impact a subject, and the learning 

environment, have on working memory. Intrinsic load is the facet of Cognitive Load 

Theory that explains the complexity innate to complex subjects. The purpose of this study 

was to build on the limited research into intrinsic cognitive load, by examining the effects 

of using multimedia screencasts as a pre-training technique to manage the intrinsic 

cognitive load of chemical equilibrium instruction for advanced high school chemistry 

students. 

 A convenience sample of 62 fourth-year high school students enrolled in 

an advanced chemistry course from a co-ed high school in urban San Francisco were 

given a chemical equilibrium concept pre-test. Upon conclusion of the pre-test, students 

were randomly assigned to two groups: pre-training and no pre-training. The pre-training 

group received a 10 minute and 52 second pre-training screencast that provided 

definitions, concepts and an overview of chemical equilibrium. After pre-training both 

groups received the same 50-minute instructional lecture. After instruction, all students 

were given a chemical equilibrium concept post-test. 
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 Independent sample t-tests were conducted to examine differences in 

performance and intrinsic load. No significant differences in performance or intrinsic 

load, as measured by ratings of mental effort, were observed on the pre-test. Significant 

differences in performance, t(60) = 3.70, p = .0005, and intrinsic load, t(60) = 5.34, p = 

.0001, were observed on the post-test. A significant correlation between total 

performance scores and total mental effort ratings was also observed, r(60) = -0.44, p = 

.0003. Because no significant differences in prior knowledge were observed, it can be 

concluded that pre-training was successful at reducing intrinsic load. Moreover, a 

significant correlation between performance and mental effort strengthens the argument 

that performance measures can be used to approximate intrinsic cognitive load.  
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CHAPTER I 

INTRODUCTION 

 A course in chemistry is a necessary first step for students who wish to pursue a 

career in science or health. Moreover, because chemistry is often the initial course taken 

by science majors at the college level, the subject is a filter for future study in science 

(Tai, Sadler, & Loehr, 2005). Despite the integral role that chemistry education plays in 

academics, there is a steady decline in the number of students choosing chemistry as a 

post-secondary major. Along with lack of interest, the course traditionally features low 

success rates, amplifying its role in limiting access to the sciences and related careers 

(Tai, Sadler, & Mintzes, 2006). 

 The complexity associated with learning chemistry is an active area of research 

(Colburn, 2009; Gabel & Bunce, 1994; Krajcik, 1991; Nakkleh, 1992; Stavy, 1995; 

Wandersee, Mintzes, & Novak, 1994). The research suggests that student 

misconceptions, both at the secondary and post-secondary levels, are born out of the 

complex skills required and such misconceptions could be catalysts for low performance 

(Banerjee, 1991; Hackling and Garnett, 1985; Tyson, Treagust, & Bucat, 1999). Keeping 

this in mind, movements in chemistry education are focused on the design of instruction 

that helps students negotiate the difficult concepts the subject presents (Johnstone, 2000; 

de Jong, 2000). 

From a cognitive perspective, the complex nature of chemistry can be understood 

in the context of Cognitive Load Theory (CLT) (Sweller, 1988). According to CLT, 

working memory is limited in its ability to process information (Baddeley & Hitch, 1974; 

Miller, 1956). If processing demands exceed a learner’s cognitive capacity, meaningful 
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learning will not occur (Chandler & Sweller, 1991; Mayer & Moreno, 2003). This 

observation is especially true with complex knowledge domains, such as chemistry 

(Ginns, 2005; Sweller, 1999; Sweller & Chandler, 1994). CLT suggests that the limited 

capacity of working memory is impacted by three different processing demands. The 

three demands, or loads are termed: intrinsic, extraneous, and germane load (Chandler & 

Sweller, 1991). Intrinsic load is a function of the complexity of the learning material 

(Paas et al., 2003; Sweller & Chandler, 1994). Extraneous load is created by the learning 

environment, and includes both the space where learning occurs and the mode of 

information presentation. (Carlson, Chandler & Sweller, 2003). Germane load is created 

while the learner processes information. Germane load is often considered to be useful 

load, that relates to the use of net working memory space after both intrinsic and 

extraneous load are accounted for (Paas & van Merriënboer, 1994).  

Relative to chemistry education, intrinsic cognitive load describes the source of 

complexity innate to the subject. A subject has high intrinsic cognitive load, not because 

of the number of items that must be learned, but due to the interdependence of the items 

(Sweller, 1999; Sweller & Chandler, 1994). Ginns (2005) notes that basic techniques 

such as balancing chemical equations, which require learners to simultaneously predict 

the products of a reaction, and account for the relative numbers of chemicals involved, 

possess a high level of element interactivity. Through a more subject specific lens, when 

explaining the phenomenon of chemical equilibrium, a student could choose one of three 

different theoretical approaches: 1) Le Chatelier’s Principle, a conceptual approach; 2) 

reaction rates, an approach that merges equilibrium with chemical kinetics; and 3) 

equilibrium quotient, a more algorithmic strategy. While each of the three approaches 
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explain chemical equilibrium from a different lens, a simultaneous understanding of each 

is necessary for meaningful learning to occur (Tyson et al., 1999).  

As compared to extraneous and germane load, helping students manage intrinsic 

cognitive load is a new and promising area of research (Ayres, 2006; Gerjets, Scheiter & 

Catrambone, 2004, 2006; Kirschner, Paas, & Kirschner, 2009). Much of the limited 

research on intrinsic cognitive load involves modifications of instructional sequencing as 

a means of developing prior knowledge schema and decrease information complexity 

(van Merriënboer, Kirschner, & Kester, 2003; van Merriënboer , Kester, &  Paas, 2006). 

The results thus far are particularly encouraging because they contradict the previously 

held assumption that intrinsic cognitive load cannot be manipulated by instruction 

(Sweller, van Merriënboer, & Paas, 1998).  

The impact of instructional sequencing on intrinsic cognitive load has been 

explored using both traditional and multimedia-enhanced materials. In the multimedia 

learning literature, instructional sequencing is defined as pre-training. Mayer (2001) 

defined a multimedia instructional message as one that presents both words and pictures. 

According to the pre-training principle of multimedia learning, students learn more 

deeply from a multimedia message when they are exposed to the names and basic 

characteristics of a concept before instruction (Mayer, 2005a). For example, providing 

students with a summary of the major concepts of chemical equilibrium prior to 

instruction could facilitate deeper and more meaningful learning.  

van Merriënboer et al. (2003, 2006) suggest that whole-task sequencing, where 

learner’s are exposed to a summary of the over arching concept prior to instruction is an 

effective tool at managing intrinsic cognitive load in complex learning domains such as 
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chemistry. For the purposes of the current study, Mayer’s (2005a) multimedia definition 

of pre-training and the van Merriënboer et al. (2003, 2006) description of whole-task 

instructional sequencing are coordinated to yield new definition of pre-training that 

incorporates aspects of both interventions. Thus, in the current study, the term pre-

training is used to described instructional sequencing in which the learner is introduced 

to not only the names and basic definitions of the concept at hand, but also is given a 

general, yet holistic introduction of the primary phenomena. 

Research into instructional design that explores the efficacy of pre-training is 

limited, yet the results are consistent (Mayer, Mathias, & Wetzell, 2002; Mayer, 

Mautone, & Prothero, 2002; Pollack, Chandler, & Sweller, 2002). Despite promising 

results, the majority of pre-training research involves the use of short multimedia 

interventions in controlled laboratory environments. Mayer (2005a) indicated that there is 

a need for research in which the pre-training principle is tested with students in their own 

classrooms. Furthermore, research into pre-training only involves the analysis of cause-

and-effect mechanical systems and physical systems in engineering and earth science 

fields and does not determine whether similar benefits occur in other knowledge 

domains.  

 A virtually unexplored multimedia technique that is gaining popularity as a pre-

training vehicle is screencasting. A screencast is an audio and video recording of on-

screen computer activity (Richardson, 2009). Given the ability to share a screencast 

online, the pre-training principle can manifest itself in a variety of environmental 

contexts, including homes and mobile devices (Bergman & Sams, 2008). Moreover, the 

ability to include audio narration and digital pen annotation increases learner control and 



 5 

makes it easier for an instructor to off-load text from the visual to the auditory channel in 

the working memory (Mayer, 2005).  

Keeping with the above suggestions, the complexities associated with learning 

chemistry make the subject a suitable candidate for multimedia interventions aimed at 

manipulating intrinsic cognitive load. Of the limited research into intrinsic cognitive load 

management, no studies intentionally analyze the effects of pre-training, or other types of 

instructional sequencing in the chemistry classroom. Additionally, given the useful 

design features and lack of efficacy research, there is a need for studies that examine the 

use of screencasts as a pre-training tool in education. Mayer (2005c) echoes this gap: 

“…there is an urgent need for more research in the area of multimedia learning in 

chemistry” (p. 424).  

Purpose of the Study 

 The purpose of the study was to examine the effects of screencasting as a pre-

training technique to manage the intrinsic cognitive load of chemistry instruction to 

advanced high school chemistry students. Specifically, the treatment took place prior to a 

lesson on the major concepts of chemical equilibrium. The concept of chemical 

equilibrium was chosen because it is identified in the literature as a topic that is 

particularly complex (Banerjee, 1996; Tyson et al.,1999). Intrinsic cognitive load was 

measured by ratings of mental effort and performance on an equilibrium knowledge 

assessment (Paas & van Merriënboer, 1993).  

Significance of the Problem 

 The problem identified in the study was significant for three primary reasons. 

First, it identifies a need for more studies that challenge the suggestion that intrinsic 
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cognitive load cannot be manipulated by instruction (Sweller et al., 1998). Next, it calls 

for specific research that helps chemistry students negotiate the subject’s high intrinsic 

cognitive load. Given the significant role chemistry plays in the sciences and health 

professional development, chemistry represents a logical avenue for more CLT research. 

Last, it responds to Mayer’s (2005) call for more multimedia studies in chemistry by 

proposing an initial examination of screencasting as a pre-training intervention.   

Theoretical Rationale 

Mayer’s (2001) Cognitive Theory of Multimedia Learning (CTML) outlines the 

cognitive context for the multimedia learning interventions used in this study. A thorough 

understanding of CTML requires an initial discussion of Sweller’s (1998) Cognitive Load 

Theory (CLT).  With CTML as the overarching framework, these two theories provide 

the theoretical rationale for this study.   

Cognitive Load Theory 

 Cognitive Load refers to the impact or load new information has on working 

memory. The roots of CLT can be traced to Miller’s (1956) hypothesis that working 

memory has a very limited capacity. Baddeley (1986), and Baddeley and Hitch (1974), 

corroborate the work by Miller, by proposing a theory of working memory based on the 

assumption that the capacity to hold and process information is limited. Initially proposed 

by Sweller (1988), Chandler and Sweller (1991) further developed CLT as a framework 

for instructional designers to follow when helping learners optimize performance during 

instruction.   

Since its initial conception, CLT has evolved through the work of the original 

authors and other researchers who aim to optimize the limited capacity of working 
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memory during instruction (Ayres, 2006; Chandler & Sweller, 1992; Sweller & 

Chandler, 1994). Chandler and Sweller (1991) differentiate between three types of 

cognitive load: extraneous, intrinsic and germane. Extraneous cognitive load is a function 

of how information is presented. The name of the term itself brings to light that which is 

unconnected to the subject, and is a sole function of the materials used and all that 

contributes to the design of the classroom environment. Extraneous cognitive load does 

not add to an understanding of the topic at hand, and unlike cognitive processes such as 

schema formation and automation, extraneous cognitive load is a load that is not 

necessary for learning.  Examples of instructional techniques that could impose 

extraneous cognitive load include using weak problem solving methods such as working 

backward using means-end-analysis, or creating a setting where the learner has to search 

for information that is needed to complete a task. Related to the current study, 

overloading the working memory’s ability to process information by presenting multiple 

sources in the visual form can induce extraneous cognitive load. By using interventions 

such as screencasts, the instructor can divert some of the written text towards the verbal 

channel via narration, thus enabling some of the cognitive load to be shifted to the 

auditory processor (van Merriënboer & Sweller, 2005). 

 Specific to the dependent variable of the current study, the term intrinsic 

cognitive load relates to the natural complexity that a specific knowledge domain offers. 

Intrinsic cognitive load is a function of the element interactivity a subject, or topic of 

information presents. Element interactivity refers to the ways in which the individual 

learning tasks required by a subject interact with one another (Ayres, 2006). Topics like 

chemistry are complex, and thus possess high intrinsic cognitive load, because multiple 
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learning elements must be simultaneously assimilated in the working memory (Ayres, 

2006; Ginns, 2005). 

 As expertise in a subject develops, multiple elements are incorporated into 

schema in the long-term memory. When this occurs, the learner can treat elements that 

were once interacting, as one unit, and thus the overall element interactivity (intrinsic 

cognitive load) decreases. This observation is central to the assumption that measurement 

of cognitive load requires a complete understanding of learner prior knowledge. Learners 

with more prior knowledge in a subject possess more domain specific schema helping 

them negotiate a high level of interacting elements (Kalyuga, Ayres, Chandler, & 

Sweller, 2003; Renkl & Atkinson, 2003). Past studies conducted in learning in complex 

learning domains provide an estimate of 6 or more interacting elements as being 

considered high (Ginns, 2005; Sweller, 2003).  

Originally seen as the only static cognitive load subsystem, this study builds on 

recent research into intrinsic cognitive load aimed at making complex domains, such as 

chemistry, more accessible by helping students manage intrinsic cognitive load. The 

specific mechanism used in this study encouraged long-term memory schema formation 

using a form of instructional sequencing or pre-training (Renkl & Atkinson, 2003; 

Kalyuga, 2005; Mayer, 2005; van Merriënboer et al., 2003, 2006). Once extraneous and 

intrinsic cognitive load are accounted for, germane cognitive load is devoted to using 

available working memory space to process information, build schema and facilitate 

meaningful learning (Mayer & Moreno, 2003). In contrast to both extraneous and 

intrinsic cognitive load, germane cognitive load is a load that is effective for learning. 
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Similar to extraneous load, germane load is imposed by the method of instructional 

design (Sweller, 1988; Sweller et al., 1998).  

Sweller (2005) argues that these three facets of cognitive load are additive. That 

is, the overall cognitive load placed on a learner can be calculated by summing 

extraneous, intrinsic and germane cognitive loads respectively. Although extraneous 

cognitive load does not hamper learning when tasks are low in element interactivity, it 

does interrupt when tasks are high in element interactivity and thus have high intrinsic 

cognitive load. Because intrinsic cognitive load is traditionally assumed to be the only 

load that is task based, and thus, not a function of the instructor, and was initially 

assumed to be a constant for a particular knowledge domain, research has placed an 

emphasis on reducing extraneous load, leaving more space for the learner to build 

germane load in the working memory (van Merriënboer  & Sweller, 2005).  

A review of the CLT literature revealed that much of the existing body of research 

on cognitive load management, specifically intrinsic cognitive load, places an emphasis 

on learning interventions that are that are text based (Ayres, 2006; Carlson, Chandler, & 

Sweller, 2003). Relative to the current study, less is known about the cognitive load in 

visual displays such as screencasts. Keeping this in mind, the following section represents 

a theoretical merger between CLT and the presentation of learning materials in a 

multimedia format. 

Cognitive Theory of Multimedia Learning 

 Developed by Mayer (1997), a Cognitive Theory of Multimedia Learning 

(CTML) heavily builds upon the facets of CLT that relate to the limited capacity of 

working memory (Baddeley, 1986; Baddeley and Hitch, 1974; Miller, 1956) 
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Additionally, CTML draws on the Dual Coding Theory (Paivio, 1986), by proposing that 

visual and verbal information enter and are processed along different channels in the 

working memory. Thus, given a working memory foundation, using CLT as a framework 

for multimedia instructional design limits the potential for cognitive overload of either 

channel (Mayer, 2001). 

 Multimedia is defined as the presentation of information using both words and 

pictures. Keeping in mind CLT, a CTML embodies three major assumptions. First, the 

dual-channel assumption states that visual and verbal information is processed via 

separate channels in the working memory. Next, the limited capacity assumption notes 

that each channel in the working memory is limited in its ability to process new 

information. Finally, the active processing assumption posits that the working memory is 

actively trying to create coherent mental representations from information processed 

through each channel (Mayer, 2001).  

 Essentially, CTML details the steps that the learner must go through in processing 

visual and verbal information. According to CTML, the learner must first select relevant 

verbal and visual information from a presentation display. Next, the information is 

organized and processed into coherent mental representations in the working memory. 

Last, the mental representations are then integrated into existing knowledge in the long-

term memory where they will be incorporated into prior knowledge next time the same 

information is presented (Mayer, 2001; Mayer & Moreno; 2002; Plass, Chun, Mayer, & 

Leutner, 1998, 2003). Thus, this model overlaps well with CLT, specifically intrinsic 

cognitive load management, in that overall element interactivity is decreased as 
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information is processed in the working memory, and integrated into schema for future 

use. Figure 1 below shows a model of Mayer’s (2001) proposed CTML architecture.  

 

Figure 1. Mayer’s CTML model (Mayer, 2001, p. 44).  

With the three over arching CTML assumptions, and the learning architecture 

outlined in the above model, Mayer (2005a) identifies numerous design principles meant 

to assist instructors in creating multimedia interventions that are sensitive to cognitive 

overload. Specific to the current study, the pre-training principle provides the rationale 

behind using instructional sequencing to manage the intrinsic cognitive load of chemistry 

instruction through building prior knowledge, and thus domain specific schema. Other 

major principles include the modality principle, in which students learn better from 

animation and narration, rather than animation and text, and the redundancy principle, 

stating that students learn better from animation and narration than from animation, 

narration, and text.  

Unlike CLT, or theories related to dual coding and working memory, CTML was 

a theory developed specifically for learning from multimedia instructional materials. 

However, the architecture of CTML is grounded in the work of dual coding by Paivio 

(1969), working memory by Baddeley (1986) and Baddeley and Hitch (1974), limited 

capacity by Miller (1956). Most significantly, the relationship between the facets of 
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cognitive load introduced by Sweller (1988), provide the theoretical infrastructure for this 

current study. Given the use of screencasting as a multimedia tool to create domain 

specific schema, and thus help the learner manage high element interactivity, Mayer’s 

(1997) CTML offers a theoretical reference point for the intervention, results and 

implications of this study.  

Background and Need 

Successful completion of a course in chemistry is a requirement for the majority 

of high school students in the United States. Over 60 % of all US public schools offer a 

Chemistry or Advanced Placement Chemistry program. Since 1998, the number of 

students taking the AP Chemistry Exam has risen from 1 million, to approaching 2.7 

million in 2008 (College Board, 2008). Moreover, completing a post-secondary course in 

chemistry is a necessary first step for most careers in science or health (Tai et al., 2005).  

Despite the large number of students taking chemistry nationwide and the 

inclusion of chemistry as a pre-requisite for the many careers in the health sciences, a 

significant drop in the number of students choosing chemistry as an undergraduate major 

is noted in the literature (Habraken, 1996). Keeping with this trend, understanding the 

mechanisms behind student performance and perception of chemistry has been an active 

area of research over the past ten years (Wandersee et al., 1994).  

De Vos, van Berkel, and Verdonk (1993, 1994) argue that this downward trend is 

catalyzed by a growing disconnect between traditional high school chemistry curriculum, 

and recent movements in modern chemical research, technology and teaching pedagogy. 

This hypothesis is corroborated by Birk and Foster (1993) and Mills and Sweeney (2009) 

who claim that the traditional lecture method of teaching pervasive in American schools 
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results in minimal learning and low performance.  

Moving beyond the current didactic instructional paradigm, the inclusion of 

different instructional strategies into the chemistry classroom will help instructors access 

the cognitive strengths of all students (Francisco, Nicoll, & Trautmann, 1998). Chemistry 

educators and researchers will be challenged to familiarize themselves with the cognitive 

sciences, grounding pedagogy in useful theory and relevant to the known learning 

differences in the subject (Herron & Nurrenbern, 1999). 

This strong relationship between chemistry education and human cognition is well 

documented in the literature. Not only is chemistry identified as a subject that is difficult 

to learn, the simultaneous conceptual and algorithmic thinking required further intensifies 

the complex problem solving and critical reasoning skills needed for success. Moreover, 

the intrinsic complexity of chemistry creates many student misconceptions that hinder 

performance  (Colburn, 2009; Hackling and Garnett, 1985; Wandersee et al., 1994). 

Specifically, of the 96,458 secondary students who took the Advanced Placement (AP) 

Chemistry Exam last year, less than 60% received a score that would be deemed passing 

by colleges and universities nationwide (3 to 5 out of a maximum score of 5). The AP 

Chemistry passing rate noted places chemistry passing rates among the bottom third of all 

subjects tested (College Board, 2008).   

From a cognitive perspective, it is argued that the need to coordinate and 

assimilate concepts or elements into knowledge constructs is the primary generator of 

information complexity in subjects like chemistry (Paas, Renkl, & Sweller, 2003; Sweller 

& Chandler, 1994; Tyson et al., 1999).  Simple tasks are said to have low element 

interactivity, and contain elements that can be learned in isolation, whereas complex tasks 
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contain elements that must be learned in concert with one another. A subject is complex, 

not because of the number of elements to be learned, but the need to simultaneously 

assimilate the many elements before meaningful learning can occur (Sweller, 1999; 

Sweller & Chandler, 1994).  

Element interactivity is a term that comes from Cognitive load theory (CLT) 

(Chandler & Sweller, 1991; Sweller, 1988). The central tenant of CLT is that the human 

cognitive architecture contains a working memory that is limited in its ability to process 

new information (Baddeley and Hitch, 1974; Miller, 1956). CLT theory assumes that 

learning occurs through this limited working memory and an unlimited long-term 

memory that is structured into a hierarchy of knowledge constructs or schemas 

(Baddeley, 1986; Baddeley and Hitch, 1974). Mayer (2005b) refers to the processing 

capabilities of the working memory as the cognitive capacity.  By designing instruction in 

a way that is sensitive to the cognitive capacity, overload can be avoided and meaningful 

learning can occur (Chandler & Sweller, 1992; Sweller & Chandler, 1991; Sweller & 

Chandler,1994; Sweller, 1999; Sweller et al, 1998). Sweller (2003) indicates that 

chemistry is a good example of a subject that possesses a high level of element 

interactivity.  

Chandler and Sweller (1991) identified three different types of load that place 

processing demands on the working memory: intrinsic, extraneous and germane. Intrinsic 

load is caused by the natural complexity of material to be learned, and as discussed 

above, is directly proportional to element interactivity (Paas et al., 2003; Sweller & 

Chandler, 1994). Extraneous load relates to the manner in which information is 

presented. When a learner devotes working memory space to a task not directly related to 
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the learning task, extraneous load is increased (Carlson et al., 2003). Germane load refers 

to the load created during schema formation and automation. Germane load is often 

considered to be useful load on working memory, while intrinsic and extraneous load are 

thought of as roadblocks to meaningful learning (Paas & van Merriënboer, 1994).  

CLT researchers argue that the three sources of cognitive load are additive. For 

example, if extraneous and/or intrinsic cognitive are too high, the potential for cognitive 

overload in the working memory exists. Likewise, if the sum of extraneous and intrinsic 

load is reduced, more germane load can be directed towards active processing in the 

working memory (Ayres, 2006). CLT theory suggests that when complex information is 

delivered, such as that presented during a chemistry lesson, minimizing extraneous and 

intrinsic cognitive load allows for greater working memory allocation to germane load, 

and thus more meaningful learning (Carlson et al., 2003).  

 Due to the intimate relationship between extraneous cognitive load and 

instructional design, much of the past CLT research has focused on managing extraneous 

load. Instructional interventions that have been effective at reducing extraneous load 

include worked examples, establishing goal-free activities, imaging strategies, and 

interventions designed around the completion, modality and redundancy effects (Cooper, 

Tindall-Ford, Chandler, & Sweller, 2001; Ginns, 2005; Kalyuga, Chandler, Touvinen, & 

Sweller, 2001; Mayer & Moreno, 2003; Sweller, 1999; van Merriënboer, Schuurman, de 

Croock, & Paas, 2002). Despite the volume of the research devoted towards managing 

extraneous load in complex knowledge domains such as chemistry, the element 

interactivity of the material, and thus intrinsic cognitive load, may still occupy such a 

large portion of the limited working memory, that meaningful learning will not occur 
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(van Merriënboer  & Sweller, 2005).  

Keeping the literature noted above in mind, the additive nature of extraneous and 

intrinsic load has been a deceiving equation for CLT researchers. Unlike extraneous load, 

research into instructional design has operated from the assumption that the intrinsic load 

of a subject cannot be decreased when learner prior knowledge is addressed. That is, 

element interactivity is inherent to the material and the learner’s prior knowledge and is 

not a function of the environment or instruction (Sweller et al., 1998; Sweller & 

Chandler, 1994; Paas et al., 2003; Pollock et al., 2002). Subsequently, optimizing 

germane load by reducing only the extraneous load of the instructional environment has 

been a major theme in the CLT literature over the past decade (Ayres & Sweller, 2005; 

Low & Sweller, 2005; Mayer & Moreno, 2003). 

Recently, CLT research has begun to shift its attention towards intrinsic cognitive 

load. Kalyuga, Ayres, Chandler and Sweller (2003) noticed that as a learner develops 

content expertise, the element activity of a task decreases as the interactions become 

incorporated into long-term memory schema. Thus, if a learner possesses long-term 

memory schema for a particular task, he or she is able to treat multiple interacting 

elements as single entities or chunks, resulting in a decrease in element interactivity 

(Ayres, 2006). For example, studies have shown that instructional sequencing, where 

instruction is broken up into two instructional segments, has been effective as a schema 

acquisition method (Pollock et al., 2002; van Merriënboer et al, 2003, 2006).  

As mentioned earlier, whole-task sequencing has shown promise as an intrinsic 

cognitive load management technique for learning materials that are particularly complex 

(van Merriënboer et al., 2003, 2006). In whole-task sequencing, instruction is segmented 
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into two phases. During the first phase, elements that are most fundamental to the whole 

complex task are presented. During the second phase of instruction, the entire task is 

presented in its full complexity. Whole-task sequencing provides learners with a quick 

impression of the learning material, which can be further elaborated during the second 

phase of instruction.  In contrast to part-task sequencing where interacting elements are 

isolated during the initial instructional phase, whole-task sequencing progresses from 

simplified to more complex versions of the whole learning task (Pollock et al., 2002; van 

Merriënboer, 1997; van Merriënboer et al., 2003, 2006; van Merriënboer & Sweller, 

2005).  

Whole-task sequencing is described in the multimedia learning literature as pre-

training (Pollack et al., 2002; Mayer et al., 2002). Similar to the methods outlined above, 

the pre-training principle of multimedia learning notes that deeper and more meaningful 

learning occurs when students are exposed to the main concepts and ideas before 

instruction (Mayer, 2005a). Whereas the CLT literature base refers to the management of 

elements in the working memory as intrinsic cognitive load, multimedia learning 

researchers use the term essential processing to describe the integration and organization 

needed to support meaningful learning (Mayer, 2005a; Sweller & Chandler, 1994; 

Sweller, 1999). Although semantic differences exist, the pre-training research base 

represents a promising medium for designing instruction in subjects, such as chemistry, 

that present high levels of element interactivity. In the current study, information 

complexity was described through a CLT lens, and the term intrinsic cognitive load was 

utilized.  
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As stated earlier, the current study uses an alternative definition of pre-training 

that represents a merger of Mayer’s (2005a) general definition of pre-training and the van 

Merriënboer et al (2003, 2006) definition of whole-task instructional sequencing. Pre-

Training is defined in the current study as instructional sequencing in which the learner is 

introduced to not only the names and basic definitions of a concept, but also is given a a 

holistic introduction of the primary phenomena being studied.  

Although pre-training represents a promising merger between the multimedia 

learning and cognitive load literature, more research is needed that studies the effects of 

multimedia at managing the specific complexities inherent to learning chemistry (Mayer, 

2005c). The call for research in the area of multimedia is corroborated by current trends 

in culture and society (Richardson, 2009). According to a recent survey, 62% of all adult 

Americans are part of a wireless, mobile population that participates in digital activities 

from home or work. Furthermore, 58% of all adult Americans have used a cell phone to 

do non-voice related activities, and 41% have logged onto the internet on-the-go from a 

wireless device (Pew, 2009).  

Over the past few years, screencasts have emerged as commonly used multimedia 

instructional tools (Richardson, 2009). Screencasts are recordings of all computer on-

screen activity including mouse movements, clicks and audio, that can be saved as a 

video file and distributed online to an intended audience (Peterson, 2007; Richardson, 

2009). Keeping in mind the accessibility data noted above, the distribution of screencasts 

online makes them a potentially useful medium for pre-training. For example, students 

could access a screencast of a simplified version of a chemistry lecture prior to 

instruction from a home computer, laptop, or a mobile device. Teachers could include 
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voice narration to accompany diagrams and add digital annotations using tablet pen 

technology to scaffold problem-solving techniques for students. (Bergman & Sams, 

2008).  

The use of screencasts in education is also supported by the personalization, voice 

and image principles of multimedia learning (Mayer, 2001). The personalization and 

voice principles state that deeper learning occurs when words are in conversational tone 

rather than formal and/or computer generated. The narrated feature of a screencast gives 

the instructor freedom to personalize his or her accordingly. The image principle provides 

rationale for the on-screen recording facet of a screencasts indicating the students do not 

necessarily learn more when the narrator’s image is visible on the screen.  

The personalization, voice and image principles are supported by a Social Agency 

Theory of Multimedia Learning (Mayer et al, 2003). Viewed as an enhancement to the 

CTML, social agency theory posits that multimedia learning environments can be 

designed to encourage learners to operate under the assumption that their relationship 

with the computer is a social one, in which the conventions of human-to-human 

relationships exist. Once this social partnership exists, learners can rely on basic social 

rules that guide their interaction with the multimedia learning environment (Mayer, et al., 

2003).  

Despite the promising characteristics of screencasts as multimedia interventions 

to address the complexity of learning chemistry, a review of the research literature 

revealed limited research into the efficacy of using screencasts in the classroom and only 

one study that took place in the chemistry learning environment specifically (Peterson, 

2007). Moreover, no studies that intentionally harnessed screencasts as intrinsic load 
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management tools surfaced form the literature. As CLT research continues to address the 

management of intrinsic cognitive load through pre-training, a clear need exists for 

research into the efficacy of using screencasts to improve learning in complex knowledge 

domains such as chemistry.  

Research Questions 

The research questions are as follows:  

1. What are the effects of pre-training on the intrinsic cognitive load of chemical 

equilibrium instruction for advanced high school students as measured by ratings 

of mental effort? 

2. What are the effects of pre-training on advanced high school chemistry students’ 

performance on an equilibrium concept assessment? 

3. What is the relationship between intrinsic cognitive load, as measured by ratings 

of mental effort and advanced high school chemistry students’ performance on an 

equilibrium concept assessment?  

Definition of Terms 

Chemical Kinetics: The study of rates of reaction collisions in a chemical process 

 (Zumndhal, 2007).  

Chemical Equilibrium: The branch of chemistry that describes a dynamic condition when 

 the concentration of reactants and products in a chemical reaction remain

 constant as a function of time (Zumdahl, 2007). 

Cognitive Load Theory: A learning theory that is based on the assumption that a human’s 

 working memory has only a limited capacity to store information. Cognitive load 
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 theory describes the distribution of working memory resources during the learning 

 process (Sweller, 1988).  

Cognitive Theory of Multimedia Learning: A learning theory based on the assumption 

 that people possess dual channels for processing verbal and visual information, 

 that each channel is limited in how much information it can process, and that 

 meaningful learning involves engaging and actively processing information 

 appropriately (Mayer, 2001).  

Dual Coding Theory: A learning theory that is based on the assumption that both visual 

 and verbal information is processed along different channels in the brain (Paivio, 

 1986).  

Element Interactivity: Refers to the way individual elements of a task interact with one 

 another (Ayres, 2006).  

Equilibrium Quotient: A mathematical expression used to describe the equilibrium 

 position of a chemical reaction (Zumdhal, 2007). 

Essential Processing: The cognitive processing that is required to make sense out of 

 words and pictures needed to achieve an instructional objective (Mayer, 2005).  

Extraneous Cognitive Load: The load placed on working memory created by the 

 instructional conditions and learning environment (Ayres, 2006). 

Germane Cognitive Load: The load placed on working memory during schema formation 

 and automation (Sweller, van Merriënboer, & Paas, 1998).  

Intrinsic Cognitive Load: The load placed on working memory by the element 

 interactivity of the learning material (Ayres, 2006). 
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Le Chatelier’s Principle: A theory used to predict the effect of change in conditions on a 

 chemical equilibrium (Zumdhal, 2007). 

Mental Effort: A measure of the perceived level of cognitive energy that must be spent 

 when performing an instructional task (Paas & van Merriënboer, 1993). 

Multimedia: A form of communication that uses words and pictures to foster meaningful 

 learning (Mayer, 2001).  

Pre-training: Pre-Training is defined in the current study as instructional sequencing in 

 which the learner is introduced to not only the names and characteristics of a 

 concept, but also are given a holistic introduction to the primary phenomena. 

Pre-training Principle: An instructional design principle that states that people learn 

 more deeply from a multimedia message when they know the name and 

 characters of the main concepts (Mayer, 2005a). 

Schema: A long-term memory structure that is the basis for content expertise and 

 meaningful learning (Kalyuga, Ayeres, Chandler, & Sweller, 2003).  

Screencast: A digital recording of computer screen output, often containing audio 

 narration (Richardson, 2009). 

Working Memory: A limited and multifaceted cognitive information storage and 

 processing system (Baddeley, 1986). 

Summary  

 Despite the crucial role a chemistry education plays in training science and health 

professionals, the literature notes dropping enrollment and low success rates both at the 

secondary and post-secondary level (Habraken, 1996). The innate complexity of the 

chemistry is often cited as a catalyst for low performance and lack of interest (Tai, et al., 



 23 

2006). From a cognitive perspective, the complexity of chemistry can be understood in 

the context of cognitive load theory (Sweller, 1988). Due to the need to coordinate and 

assimilate various concepts for meaningful learning, chemistry is said to have a high 

intrinsic cognitive load (Chandler & Sweller, 1991). Although limited, the CLT and 

multimedia literature note that pre-training has been successful at managing intrinsic 

cognitive load (Mayer et al, 2002; Pollack et al, 2002). This study examined efficacy of 

using screencasts, a new emerging type of multimedia, to manage the intrinsic cognitive 

load of chemistry instruction.  
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CHAPTER II 

REVIEW OF THE LITERATURE  

 The purpose of this study was to assess the effects of pre-training on the intrinsic 

cognitive load of chemistry instruction for advanced high school students. The review of 

the literature focused on four major areas relevant to the research questions. The first 

section explores misconceptions in chemistry instruction that further intensify the 

complexities the subject presents. Specifically, chemical equilibrium is used as a lens 

because the topic is identified in the research literature as being particularly complex 

(Banerjee, 1995; Tyson et al.,1999). The second section provides a review of general 

characteristics of pre-training as discussed in the literature, and the third section 

addresses studies aimed at managing intrinsic cognitive load through pre-training. Given 

the complex knowledge domain of the current study, the term pre-training is ultimately 

expanded to include both Mayer’s (2005a) definition, and the van Merriënboer et al. 

(2003, 2006) description of whole-task instructional sequencing. This section highlights 

literature that has utilized pre-training as a technique to decrease the element interactivity 

of complex knowledge domains such as chemistry.  The fourth section provides a review 

of various multimedia learning principles that present a case for the use of screencasts as 

an intrinsic cognitive load management tool for chemistry instruction.  

Chemistry Education 

 Past research has shown that chemistry is a complex knowledge domain. The 

concepts in chemistry are abstract, and students struggle to coordinate the many symbolic 

representations needed for meaningful learning (Colburn, 2009). Consequently, students 

develop misconceptions that can hinder performance (Wandersee et al., 1994). Breuer 
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(2002) noted that the widely accepted paradigm that chemistry is difficult can be 

attributed to the diversity of activities and skills, both algorithmic and conceptual, that the 

learner must coordinate. Such requirements could be a significant catalyst for the 

decrease in interest and post-secondary enrollment noted in the literature over the past 

three decades (Tai et al., 2006). 

 Related to the current study, a thorough review of the literature revealed chemical 

equilibrium to be a content area that contains a high level of complexity for both 

secondary and post-secondary students. Hackling and Garnett (1985) note that chemical 

equilibrium is an important concept that underlies much of the chemistry curriculum for 

advanced high school students and college students. Voska and Heikkinen (2000) 

corroborated this observation, and specifically pointed to a necessary interdependence 

between chemical equilibrium and essential topics, such as acid-base chemistry and 

electrochemistry. Despite the central role that chemical equilibrium plays in a thorough 

chemistry education, various student surveys have revealed chemical equilibrium as the 

most difficult concept to understand (Niaz, 1995). Kempa (1991) identified that a 

learning difficulty exists whenever students fail to grasp a concept as a result of prior 

knowledge and ideas held by the learner. The following sections provide a review of the 

major research studies that identify and address common misconceptions in chemical 

equilibrium, specifically with the concept of equilibrium shifts, defined as Le Chatelier’s 

Principle. 

Chemical Equilibrium Misconceptions  

 A study conducted by Banerjee (1995) investigated conceptual difficulties of 

students when learning about chemical equilibrium. Participants in the study were 60 
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students enrolled in an undergraduate chemistry course. Students were administered a 20-

item paper-pencil achievement test on various aspects of chemical equilibrium after a 

series of 36 chemical equilibrium lectures. Similar to the current study, the instrument 

was constructed by the author, and validated by a group of colleagues. During a 16-week 

period, the author lectured on the qualitative and quantitative aspects of chemical 

equilibrium. Analysis of written responses on the achievement test and student interviews 

revealed widespread misconceptions and difficulties. Student misconceptions centered on 

the difference between equilibrium and non-equilibrium concentrations, and an incorrect 

use of Le Chatelier’s Principle in explaining equilibrium shifts. Le Chatelier’s Principle 

describes the way in which a chemical reaction at equilibrium shifts in response to 

environmental strain. Changes in pressure, temperature and concentration are all ways of 

manipulating the environment of a reaction at equilibrium according to this principle 

(Zumndahl, 2007). Given the diversity of possible manipulations, and the intrinsic 

concepts associated with each, Le Chatelier’s Principle is a logical place for such 

misconceptions to exist (Hackling and Garnett, 1985). Consequently, this study focused 

on building prior knowledge schema in both the area of equilibrium and non-equilibrium 

concentrations and equilibrium shifts.  

 The misconceptions identified by Banerjee (1995) corroborated some of his 

pervious work (Banerjee, 1991). In a study designed to identify student misconceptions 

about chemical equilibrium, a 21- item diagnostic test was delivered to 120 chemistry 

students enrolled in a science teacher preparation course after a series of lectures on 

chemical equilibrium. Student responses indicated extensive misconceptions in applying 

and interpreting Le Chatelier’s Principle, solving quantitative equilibrium problems, and 
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relating the rate of a reaction to the concept of equilibrium. For example, 35% of students 

felt that when the temperature of an exothermic reaction at equilibrium is decreased the 

rate of the forward reaction is decreased. This conceptual difficulty was also noted by 

Hackling and Garnett (1985), and represents a classic misinterpretation that arises from 

the complexity and need to coordinate various concepts such as temperature, 

concentration, and reaction rates when studying chemical equilibrium (Banerjee, 1991).  

 Pardo and Portholes (1995) investigated the reasons, strategies and procedures 

that students use when solving problems related to Le Chatelier’s Principle. A group of 

170 university students were administered a 5-item test after a 1- hour instructional phase 

on the basic concepts of chemical equilibrium. Each item focused on various aspects of 

interpreting chemical Le Chatelier’s Principle. Students’ written responses were 

categorized according to their reasoning and arguments.  Results indicated that students 

had difficulties relating prior knowledge in chemistry to the equilibrium concept at large, 

specifically Le Chatelier’s Principle. Students also struggled in using a quantitative 

approach to solving problems relating to equilibrium shifts. Rather than apply a 

numerical approach students chose the more conceptual Le Chatelier’s Principle, but 

widespread misconception regarding its use led students to various incorrect assumptions. 

Coordinating the relationship between reaction rate, and equilibrium from the content of 

Le Chatelier’s Principle proved to be a particular challenge. This problem has surfaced 

frequently in the literature (Banerjee 1995; Hackling & Garnett, 1985; Tyson & Treagust, 

1999). 

 The Pardo and Portoles (1995) study noted particular student difficulties in 

negotiating the conceptual and algorithmic challenges of chemical equilibrium. For 
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example, students favored the use of the very conceptual Le Chatelier’s Principle, but 

misuse of the principle led to incorrect quantitative application. Niaz (1995) focused on 

this tension between the conceptual and algorithmic by comparing the performance on 

problems requiring both strategies. Seventy-eight undergraduate freshman chemistry 

students were administered an 11-item assessment based on different aspects of chemical 

equilibrium, both conceptual and algorithmic. Results indicated that students who did 

well on items conceptual in nature, on average, performed well on algorithmic items. 

Conversely, students who did well on algorithmic items did not show significant 

conceptual problem proficiency. This study provides evidence against a prevalent idea in 

chemistry education that the ability to solve computational (algorithmic) problems leads 

to conceptual understanding. This study supports research, such as that conducted in this 

study, designed to address misconceptions that arise from the complexity of conceptual 

approaches such as Le Chatelier’s Principle. 

 This study operated from the assumption, as supported by the above studies, that 

chemical equilibrium is a complex knowledge domain for students and teachers. 

Specifically, chemical equilibrium contains a high level of element interactivity in that 

meaningful learning requires integration of quantitative concepts such as kinetics, 

stoichiometry and gas laws (Chandler & Sweller, 1991; Sweller, 1988; Tyson and 

Treagust, 1999). Erdemir, Geban, and Uzuntirayaki (2000) investigated misconceptions 

that surface from the interdependence between chemical equilibrium, and overlapping 

concepts such as reaction rates. In their study, 143 freshman science majors taking a 

general chemistry participated in the study. Upon conclusion of a 2-week unit on 

chemical equilibrium including lecture and lab, a 25-item multiple-choice concept 
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assessment developed by the authors was administered. From an element interactivity 

perspective, students performed poorly on items that required an integration of 

equilibrium and reaction rates. Moreover, students demonstrated difficulty in solving 

intermediate steps, such as performing metric conversions. 

 Keeping in mind the integration of concepts needed in solving chemical 

equilibrium problems, Voska and Heikkinen (2000) attempted to quantify the techniques 

students used when negotiating the complexity of equilibrium, specifically Le Chatelier’s 

Principle. A 10-item instrument, Test to Identify Student Conceptualizations (TISC), was 

administered to a group of second-semester general chemistry students at a university. 

Voska and Heikkinen’s (2000) results mirrored that of previous work done to identify 

procedures that students use to negotiate the complexity of chemical equilibrium 

(Hackling & Garnett, 1985; Tsparlis, Kousathana, & Niaz, 1998). The following logical 

schemata of chemical equilibrium problem-solving was discovered: 1) Establishing 

equilibrium, 2) analysis of equilibrium conditions, 3) analysis of partial pressures, 4) 

response to disturbance/Le Chatelier’s Principle.  Kousathana and Tsaparlis (2002) note 

that, depending on the equilibrium conditions, various other concepts such as ideal gas 

laws, density, and stoichiometry add to the element interactivity of the problem-solving 

schema outlined.   

 Kousathan and Tsaparlis (2002) investigated errors made in the application of the 

above problem-solving schema. In-line with the current study, the sample included 148 

secondary advanced high school chemistry students (age 17-18). Instruction on chemical 

equilibrium designed and delivered by the authors was given to the students. As part of 

the instructional sequence, students were first taught the commonly used schemata 
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described above. Afterwards, when solving example problems, students were called to try 

and identify the schemata for a particular problem, and then were asked to write on a 

diagram the data according to the relevant steps. Students were then tested with 9 

composite problems that assessed all the schemata described. Results indicated that 

students often failed to establish the correct equilibrium expression, often using the 

wrong numerical values in the expression. Consistent with past research, students also 

demonstrated misconceptions around the use of Le Chatelier’s Principle as it applied to 

the disturbance of a reaction at equilibrium. Additional student difficulty was noted with 

extraneous concepts such as stoichioimetry, ideal gas laws, and reaction rates.  

Addressing Chemical Equilibrium Misconceptions  

 Since Hackling and Garnett (1985) identified chemical equilibrium, specifically 

Le Chatelier’s Principle, to be a complex and multi-faceted topic, much research has been 

conducted that supports their findings (Kousathan & Tsaparlis, 2002; Niaz, 1995; Voska 

& Heikkinen’s, 2000). Where Kousathan and Tsaparlis (2002) aimed to identify the 

specific concepts that challenged chemistry learners, the next phase of research focused 

on equipping educators with strategies to address misconceptions about chemical 

equilibrium. As a precursor to this next chapter of literature, Kousathan & Tsaparlis 

(2002) suggest that teachers should pay special attention to related concepts such as 

stoichiometry, gas laws, and reaction rates before embarking on a unit in chemical 

equilibrium. Such concepts can add additional complexity to an equilibrium problem if a 

solid foundation does not exist. In response, work done by Niaz (1995), suggests that 

algorithmic problem solving precede conceptual questions, not only because the latter can 
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be more demanding but also because the practice of algorithms can be conducive to the 

subsequent concept to be learned.  

 Akkus et al. (2003) conducted a study to investigate the effectiveness of using a 

constructivist approach over traditional instruction on student understanding of chemical 

equilibrium. Constructivism is a theory grounded in the work of psychologist Jean Piaget. 

Constructivism argues that humans construct and organize knowledge as a function of 

their own experiences (Mayer, 2005). Similar to the current study, the sample consisted 

of 71 secondary school chemistry students (age 16) from two chemistry classes taught by 

the same instructor. Students were randomly assigned to a treatment group, where they 

received constructivist-based instruction for a 5-week period. A 45-item chemical 

equilibrium concept test developed by the authors was administered as a pre-test to assess 

prior knowledge in chemical equilibrium and as a post-test to compare levels of 

conceptual change in the two groups. Results indicated that students with prior 

knowledge in chemical equilibrium scored higher on the post-test than students without 

prior knowledge. Similarly, students in the constructivist group also significantly 

contributed to variation in post-test achievement.  

 In addition to the wide range of misconceptions with the application of Le 

Chatelier’s Principle, the literature notes a more overarching misconception with the 

definition of chemical equilibrium as a dynamic process. Students fail to understand the 

dynamic nature, and think that nothing more happens when the system reaches 

equilibrium. This misconception spans to instructors as well. When teachers are asked to 

explain that equilibrium is a dynamic process, many of them are not able to provide 

adequate explanations (Linn, 1987; Tobin and Espinet, 1989; Saricayir, Sahin, & Uce, 
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2006). The concept of dynamic equilibrium is a complex and symbolic process, and it is 

difficult to carry out an experiment that helps students and instructors visualize the 

process. Currently, equilibrium laboratory activities are limited to experiments around the 

equilibrium constant, and Le Chatlelier’s Principle, and do not include hands-on 

investigations of dynamic equilibrium (Saricayir et al., 2006) 

 In response to the lack of activities explaining the dynamic nature of equilibrium, 

Ozdemir and Ardac (2009) added to research done by Saricayir et al. (2006) that 

investigated the effectiveness of using animated displays to help students understand the 

dynamic nature of chemical equilibrium. Similar to the current study, the study consisted 

of a multimedia intervention with 40 advanced secondary school chemistry students in 

two different classes. Both classes received similar instruction that included an animated 

computer display showing the molecular representations of the equilibrium state of a 

common chemical reaction. A pre-test to assess for prior knowledge in chemical 

equilibrium, an instrument during the animation asking students to explain their 

observations, and a post-test was administered to the participants. ANCOVA results 

comparing post performance of groups (treating prior knowledge as a covariate) showed 

no significant difference in their molecular representations, but did show a statistically 

significant difference in their ability to verbally explain the dynamic nature of 

equilibrium, and a difference in transfer scores.  

Summary 

 Research has demonstrated that chemical equilibrium is a complex and multi-

faceted topic in chemistry (Hackling and Garnett, 1985; Tyson & Treagust, 1999). 

Specifically, a large volume of learner and instructor misconceptions exist regarding the 



 33 

appropriate use of Le Chatelier’s Principle in explaining the effect of strain on a reaction 

(e.g. Linn, 1987; Saricayir, Sahin, & Uce, 2006; Tobin and Espinet, 1989; Tsparlis, 

Kousathana, & Niaz, 1998). Grounding students in the conceptual side of equilibrium, 

constructivist based pedagogy, and multimedia interventions such as animated displays, 

have all been used to address misconceptions with Le Chatelier’s Principle (Akkus, 

Kadayifci, & Atasoy, 2003; Harrison & De Jong, 2005; Niaz, 1995; Ozdemir and Ardac, 

2009). From a cognitive perspective, an underlying theme that permeates the literature on 

chemical equilibrium is the high number of concepts students must integrate in order to 

achieve meaningful learning in the subject (Johnstone, 2000). Keeping this in mind, a 

review of the cognitive psychology literature involving the management of information 

complexity is needed.  

Pre-Training as an Instructional Method 

 The intervention utilized in the current study is a process referred to as pre-

training. Both the CLT literature, and the Multimedia Learning literature discuss the 

implications of pre-training in education. The term pre-training was first coined by 

researchers in the area of multimedia learning. In the CLT literature, instructional 

sequencing is the term used to describe the same process. Despite differences in 

terminology, both fields of research identify pre-training as a process of exposing 

students to an abbreviated version of a lesson prior to the full instructional phase (Mayer, 

2005a; van Merriënboer et al., 2003, 2006). Specific to the methodology of the current 

study, the intricacies of the multimedia definition of pre-training and a type of 

instructional sequencing discussed in the CLT literature called whole-task sequencing, 

were merged to form a new definition to be applied in  the current study.  
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Pre-Training in Multimedia Learning 

 Mayer (2005a) articulates pre-training in the realm of multimedia learning as a 

process that equips the learner with prior knowledge that will make it easier for the 

learner to process the material presented. Specifically, Mayer’s definition of pre-training 

is a general one that involves providing students with the names and characteristics of the 

main concepts of a lesson. Mayer’s definition is drawn from the Pre-Training Principle of 

Multimedia Learning that indicates that people learn more deeply from a multimedia 

message when they are provided the names and characteristics of the main concepts of a 

particular topic (Mayer, 2005a).  

 From a theoretical perspective, Mayer and Moreno (2003) note that when material 

is particularly complex, such as that in a multimedia lesson or chemistry lecture, or the 

material is presented at a fast pace, the learner may not have enough working memory 

space to engage in effective processing. Thus, arming students with the names and 

characteristics of the topic to be studied, will make it easier for them to process complex 

information by facilitating schema formation in the working memory. Specific examples 

of pre-training in the field of multimedia learning are outlined and discussed later in this 

chapter. 

Whole-Task Instructional Sequencing 

 van Merriënboer et al. (2003, 2006) defines whole-task instructional sequencing 

as an abbreviated instructional series, prior to a complete lesson, that attends to the 

coordination and integration of skills in a holistic and overarching fashion. Because 

complex information, such as that presented in a lesson on chemical equilibrium, requires 

integration of skills, knowledge and multiple interacting elements, a whole-task approach 
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is appropriate (van Merriënboer et al. 2003). The whole-task sequencing approach to pre-

training stresses that learners quickly develop a holistic vision of the entire task at hand 

that is gradually embellished during the complete lesson to follow. In contrast to whole-

task sequencing, an isolated-elements approach, where specific parts of a lesson are 

presented separately, and then coordinated in a complete instructional moment, will be 

discussed later in this chapter as well.   

 From a CLT perspective, complex information is difficult for learners to process 

because it contains multiple interacting elements that must be coordinated and 

assimilated simultaneously in the working memory. As previously noted, material high in 

element interactivity is considered to have high intrinsic cognitive load. Whole-task 

instructional sequencing helps learners process this information, by providing a holistic 

schema that assists them in chunking multiple elements in single units in the working 

memory, thus decreasing the number of elements interacting during the complete 

instructional episode (Ayres, 2006). In contrast to Mayer’s (2005a) approach to pre-

training, whole-task sequencing specifically tackles complex information by helping 

learners to build a temporary cognitive infrastructure regarding the topic of a lesson that 

can be used to more efficiently process and organize interacting elements (van 

Merriënboer et al. 2003, 2006).  

Pre-Training in the Current Study 

 The mode of pre-training utilized in the current study embodies qualities of both 

Mayer’s (2005a) definition, and components of the van Merriënboer et al. (2003, 2006) 

approach for two reasons. First, chemistry is a complex knowledge domain, and given the 

many interacting elements required for meaningful learning, a whole-task approach 
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where students are presented a summary of the major concepts through a holistic lens, is 

appropriate (Colburn, 2009; van Merriënboer et al. 2003, 2006). Second, screencasting, a 

multimedia intervention, is used as the medium for pre-training in the current study. 

Because Mayer’s (2005a) Pre-Training Principle states that exposure to the names and 

characteristics of the main concepts of lesson is an effective tool in multimedia learning 

environments, characteristics of this definition are incorporated as well.  

 Keeping the above logic in mind, pre-training is defined in the current study as 

instructional sequencing in which the learner is introduced to, not only the names and 

characteristics of a concept, but is also given a holistic introduction to the primary 

phenomena prior to instruction. To this end, students quickly develop the abbreviated, yet 

overarching cognitive infrastructure intrinsic to the van Merriënboer et al. (2003, 2006) 

definition, and also exploit the benefits of Mayer’s (2005a) multimedia pre-training 

approach of exposure to names and characteristics. Figure 2 below outlines the 

differences and similarities between the Mayer’s definition of pre-training, the van 

Merriënboer et al. definition of whole-task sequencing, and the definition of pre-training 

used in the current study.   
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Category Pre-Training Components  
 

 
Mayer (2005a) 
 

 
Exposure to names and characteristics of main 
concepts only 

 
van Merriënboer et al (2005, 2006) 
 

 
Exposure to overarching principles and holistic 
summary of main concepts  

 
 
Current Study 
 

 
Exposure to names and characteristics, as well as 
overarching principles and holistic summary of 
main concepts 

 
 
Figure 2. Pre-training according to Mayer (2005a), van Merriënboer et al. (2005, 2006), 
and the current study. 
 

Intrinsic Cognitive Load 

 Central to Cognitive Load Theory (CLT) is an understanding that teaching 

complex information, such as chemical equilibrium, can lead to working memory 

overload. Therefore, in order to facilitate meaningful learning, cognitive load must be 

manipulated in such a way that working memory space can be allotted for information 

processing (Ayres, 2006). CLT researchers have identified three different sources of 

cognitive load during the presentation of information (Sweller, 1988; Chandler & 

Sweller, 1991). Intrinsic cognitive load is a function of the natural complexity of the 

information presented. The level of task integration, or element interactivity, is the main 

generator of high intrinsic cognitive load (Paas, Renkl, & Sweller, 2003; Sweller & 

Chandler, 1994). Extraneous cognitive load is created by the instructional mode and the 

conditions of the learning environment. Given the additive nature of intrinsic and 

extraneous load, germane cognitive load refers to the use of remaining working memory 
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space for schema processing and schema automation (Paas, Renkl, & Sweller, 2003; 

Sweller, van Merriënboer , & Paas, 1998).  

 Ayres (2006) indicates that if the sum of intrinsic and extraneous cognitive load 

exceeds the parameters of working memory, cognitive overload can occur and 

meaningful learning will be inhibited. Over the past decade, a large number of studies 

testing the efficacy of strategies aimed at managing extraneous cognitive load have 

dominated the CLT literature base (e.g. Ginns, 2005; Sweller, 1999; van Merriënboer  & 

Ayres, 2005). Given the previously held assumption that intrinsic cognitive load is solely 

a function of the learner’s prior knowledge and cannot be manipulated by instruction, 

studies designed to lower intrinsic cognitive load are less prevalent (Ayres, 2006; 

Sweller, van Merriënboer, & Paas, 1998). Related to the current study, a review of recent 

literature focused on managing intrinsic cognitive load, specifically in complex areas 

such as chemical equilibrium, is necessary. 

Managing Intrinsic Cognitive Load Through Pre-Training  

 Kalyuga et al. (2003) observed that as learners develop prior knowledge, the 

ability to develop domain specific schema also increases. Thus, the learner is capable of 

chunking multiple elements into smaller units in working memory, decreasing the overall 

element interactivity (Ayres, 2006). Variations of instructional sequencing, in which 

students are encouraged to build prior knowledge in a domain prior to instruction forms 

the majority of the intrinsic cognitive load management literature base. The multimedia 

learning literature refers to instructional sequencing as pre-training (Mayer, 2005a). 

Additionally, for the purpose of the current study, the term pre-training initially described 
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by Mayer (2005a), is expanded to include the intricacies of whole-task instructional 

sequencing articulated by van Merriënboer et al. (2003, 2006).  

 Pollock et al. (2002) investigated the impact of managing intrinsic cognitive load 

in a highly complex learning domain. During the study, electrical engineering apprentices 

were exposed, in a laboratory setting, to two different phases of multimedia instruction 

on how to perform safety tests for electric appliances. In the first phase, the isolated 

components of each appliance were presented. This phase was followed by a second 

phase in which all the components and their necessary interactions were presented. After 

treatment, all students were scored on a problem solving transfer test concerning how the 

various elements of each appliance worked in concert with one another. Assessment 

results showed that learners who received pre-training performed better than students 

who did not receive pre-training. Keeping with the inverse relationship between prior-

knowledge and element interactivity, the results of the study were specific to low-

experienced learners. Learners with significant content expertise did not show positive 

effects (Mayer, 2005a).  

 The isolated-elements method of pre-training proposed by Pollock et al. (2002) 

represents an initial attempt at managing intrinsic cognitive load for beginning learners 

who still possess limited domain specific schema. In a similar study conducted by Mayer 

et al. (2002), some students received pre-training on the working of a car braking system 

or a bicycle tire pump prior to an animated multimedia narration explaining the topic. 

Pre-training followed the same method described by Pollock et al. (2002) in that the 

intricacies of the parts were explained in isolation first. For example, students learned 

about the workings of the piston, the characteristics of brake fluid, or the mechanism of a 
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bike pump. Students were administered tests designed to assess problem-solving transfer. 

Although conducted in a laboratory setting, all students who received pre-training 

outperformed those who did not receive pre-training. In another laboratory multimedia 

intervention, Mayer et al. (2002) investigated the effects of pre-training on geology 

students. Specifically, students participated in a geology multimedia simulation in which 

they were to identify which geological feature was present on the earth’s surface. 

Students assigned to the treatment group were shown illustrations of major geological 

features prior to participation in the simulation. Keeping with the results of previous 

studies, students in the pre-training group preformed better on a test of problem-solving 

transfer than did the non pre-training groups.  

 The three studies described above represent initial research into using pre-training 

as a tool for intrinsic cognitive load management. Given the multimedia, laboratory 

nature of each study, results indicate a need for tests within more valid learning 

environments such as with students in their native classrooms. Moreover, these initial 

studies all took place with students in similar, physical science knowledge domains. A 

need for research in other subjects such as mathematics and the social science was 

implicit in the discussion of the studies (Mayer, 2005a).  

 Ayres (2006) expanded upon the isolated-elements pre-training strategy initially 

proposed by Pollack et al. (2002). In response to recommendations from the literature, 

Ayres (2006) investigated the efficacy of pre-training in a mathematical domain. The 

participants were 78 eighth-grade female students (mean age 13.1). In this experiment, 

three different strategies were compared. The first strategy was an integrated approach in 

which a math problem was presented in its entirety. The second strategy was consistent 



 41 

with the pre-training phase implemented by Pollock et al. (2002) in which the individual 

calculations (isolated elements) were given, and sequentially completed. Of particular 

interest to the current study was the third strategy, based on the pre-training principles 

previously discussed (Mayer et al., 2002; Pollock et al. 2002). In this strategy, students 

moved from a pre-training phase in which elements were presented in isolation, and then 

an integrated mode in which they were given a problem in its full complexity. Results 

showed that this transition from isolated-elements to a more integrated form of pre-

training strategy was not effective at managing intrinsic cognitive load. Given the data in 

support of the whole-task pre-training model up to this point (Mayer et al., 2002; Pollack 

et al., 2002) this outcome was surprising, 

 van Merriënboer et al. (2003) analyzed pre-training modules, with the goal of 

providing a model for managing intrinsic cognitive load in complex learning 

environments. In learning complex material, such as chemical equilibrium, learning is 

inhibited by the limited capacity of working memory, amplifying the role of intrinsic 

cognitive load management. The isolated-elements strategy is discussed in which 

complex learning tasks are broken down into simpler tasks, and are gradually combined 

into whole-task performances. The authors argue that, while successful for more simple 

learning environments, the integrated nature of complex learning tasks, such as with 

chemical equilibrium problems, does not respond well to the fragmented nature of such a 

pre-training method.  

 van Merriënboer  et al. (2003) note that with complex learning environments, a 

whole-task pre-training approach is more suitable form of pre-training. In such a method, 

learners are exposed to simplified, but holistic pre-training sequences allowing for 



 42 

general connections to be made between interacting elements that can later be expanded 

upon during a more thorough instructional phase. In general, the authors suggest that the 

“whole-task approach…implies that recurrent aspects of performance are not trained 

separately but only practiced in the context of whole learning tasks” (van Merriënboer  et 

al., 2003, p. 11). Despite this claim, van Merriënboer et al. (2003) state that an isolated-

elements strategy should be used in concert with a whole-task approach for complex 

learning if a high level of repetition and automaticity is required for meaningful learning. 

In this case, a hybrid model is suggested by the authors.  

 The whole-task approach as a means of negotiating material containing high 

element interactivity is corroborated by van Merriënboer et al. (2006) as well. One 

method of emphasizing whole-task complexity during pre-training is to constrain learner 

performance by forcing them to behave as an expert. This is accomplished by requiring 

that they complete a complex task prior to entering an instructional phase. Additional 

methods such as worked examples or completion tasks are also suggested. Worked 

examples focus the learner on elements related to the solution, and completion tasks 

present the learner with partial tasks that must be completed. As low-expertise learners 

benefit from such strategies, task formats with low-element interactivity (worked 

examples, completion tasks) should be gradually replaced with conventional tasks that 

contain high levels of element interactivity. This method of moving from completion 

tasks to conventional tasks is referred to as completion strategy by the researchers (Renkl 

& Atkinson, 2003).  

 Research conducted by Gerjets et al. (2004) argues for the whole-task approach to 

complex problem solving suggested by van Merriënboer  et al. (2003). The authors state 
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that shifting from a molar to a modular approach is effective at negotiating the material 

that has high intrinsic cognitive load. In a molar view, similar to the isolated-elements 

method discussed, problems are broken down into individual categories and associated 

overall solutions strategies. In contrast, a modular approach mirrors the whole-task pre-

training approach in that complex solutions are not divided into categories, but 

represented in smaller, holistic units that can be conveyed separately. The modular 

approach suggested differs greatly from the isolated-elements strategies discussed 

because it, much like a whole-task method, focuses on the total complex task rather than 

smaller subtasks. The modular approach also differs from the whole-task approach in that 

there is no alteration of learning task difficulty, as problems are still presented in their full 

complexity during pre-training, just broken into smaller, modular units (Gerjets et al., 

2004).  

 To test the effect a molar vs. modular pre-training approach has on intrinsic 

cognitive load, Gerjets et al. (2004) conducted a study to test the efficacy of probability 

theory worked examples presented in the molar or modular format. The sample consisted 

of 68 post-secondary students from a technology institute. In addition to the 

molar/modular independent variable, the researchers also varied the degree of 

instructional explanations between the subjects. Half of the students in the study learned 

from elaborated examples of the problems and half learned from condensed worked 

examples that did not include instructional explanations. Analysis of data demonstrated 

that the example format influenced perceived intrinsic cognitive load, whereas the 

instructional explanations did not have a significant effect. Consistent with previous 

research conducted by the authors, participants who learned via the modular approach 
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outperformed those students from the molar treatment group on problem solving transfer 

assessments.  

 In another examination using modular examples to manage intrinsic cognitive 

load, Gerjets et al. (2006) exposed 96 university students to a multimedia learning and 

problem-solving environment (HYPERCOMB) that teaches students how to calculate the 

probability of complex events. After taking a concept assessment used to assess for prior 

knowledge in the multimedia environment, problem examples were either presented in 

the more categorical, molar format, or with the holistic, modular approach. From an 

intrinsic cognitive load perspective, learners studying modular examples reported lower 

mental demands than did their molar counterparts. Additionally, participants in the 

modular group rated themselves as being more successful in learning the content 

presented. These results, and further variations of the HYPERCOMB environment, agree 

with results confirmed in previous research conducted on the difference between molar 

and modular worked examples as intrinsic cognitive load management strategies (Gerjets 

et al., 2004).    

 A possible critique of the research cited thus far is the narrow range of knowledge 

domains that have participated. All studies thus far have been restricted to specific areas 

of the physical sciences (engineering, geology, etc.) and probability theory. Gerjets et al. 

(2006) refutes this subject-specific criticism in stating that they “…are convinced that this 

approach might be extended to other well-structured domains…” (p.55). In response to 

this claim, and related to this study, research addressing the effects of using the various 

forms of pre-training discussed as intrinsic cognitive load management techniques in 

chemistry education is severely limited. Furthermore, a review of the literature revealed 
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no studies that intentionally attempt to manage the high element interactivity inherent to 

the topic of chemical equilibrium. Although not within the realm of pre-training, the 

literature does cite a few studies in which intrinsic cognitive load was directly managed 

in the subject of chemistry.  

Carlson et al. (2003) conducted two separate experiments in which diagrams of 

molecular models were used to decrease the overall element interactivity of a learning 

task. In the first experiment, 24 high school students were asked to construct two sets of 

molecular models through either diagrammatic or text-based instructions. The first sets of 

models were low in complexity, while the second set contained numerous interacting 

elements. Results indicated that as the complexity of the task increased, students 

benefitted from the use of diagrams. The group who received diagrammatic instruction 

for the complex model set reported lower perceived intrinsic cognitive load, and faster 

mean completion time than the non-diagrammatic group. The findings of the second 

experiment replicated the first, with diagrammatic format resulting in more learning than 

the equivalent text based instruction.  

 Similar to the methods of this study, Lee, Plass, and Homer (2006) measured the 

effects of intrinsic cognitive load management techniques in a multimedia chemistry 

environment. The study investigated the effects of using computer simulations to 

decrease the element interactivity of a lesson on gas laws in chemistry. The sample was 

257 middle school students (ages 13-15). As in the current study, participants were 

chosen because while they possessed rudimentary skills in basic chemistry, they lacked 

prior knowledge in the specific topic used in the treatment. With respect to the treatment 

directly aimed at reducing intrinsic cognitive load, students were randomly assigned to 
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groups representing visual displays of high or low complexity. Intrinsic cognitive load 

was altered by intentionally changing the number of interacting elements in the computer 

display. Specifically, high element interactivity explanations of the ideal gas law were 

separated into two lower element interactivity concepts on two different computer 

screens (pressure vs. volume, and temperature vs. volume categories). The group 

receiving treatment of high complexity received a variation of the display that required 

them to coordinate the relationships between temperature, pressure and volume 

simultaneously on a single computer display. The study found both greater 

comprehension and transfer when the element interactivity of the computer display was 

decreased by allocating components of the ideal gas law over two screens. These results 

indicate that it is possible to manage intrinsic cognitive load by, similar to the Carlson et 

al. (2003) study, manipulating the display of chemistry information.  

 In a recent study, Kirschner et al. (2009) investigated intrinsic cognitive load 

using student groups to negotiate information complexity. Although another non pre-

training based technique, the intervention took place in a biology classroom, representing 

a knowledge domain similar to this study. The participants were 70 high school students 

enrolled in a biology course. Much like the sample in the current study, students were 

assumed to have the same prior knowledge because they all had followed the same course 

of study using the aligned instructional materials in previous years. All participants were 

given introductory instructional materials on the basic concepts of heredity to review 

individually. Students were then randomly assigned to either individual or group 

treatments where they worked on subsequent heredity learning tasks. Analysis of 
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cognitive load and transfer measures indicated that group-based learning was favorable in 

managing complex learning tasks.  

Measuring Cognitive Load 

 Regardless of the method, common to all the literature described above is an 

attempt to manage intrinsic the intrinsic cognitive load of a learning task. However, the 

measurement technique used to detect variations in intrinsic cognitive load are not 

included as part of the review above. The purpose of this section is to outline the major 

methods for measuring intrinsic cognitive load noted in the literature, with an emphasis 

on those techniques that were used in this study.  

Brunken et al. (2003) indicate that cognitive load measurement can be categorized 

into subjective and objective measures. Subjective and objective assessment techniques 

can then be further sub-divided into indirect or direct measures of cognitive load. Indirect 

subjective measures primarily involve ratings of mental effort as a way to indirectly 

assess perceived difficulty of the learning material (Paas, 1992). Direct subjective 

measures ask students to comment on the difficulty of material as a way to directly 

measure the cognitive load imposed (Kalyuga, Chandler, Touvinene, & Sweller, 2001; 

Sweller, 1999).  

The most common indirect objective method of investigating cognitive load 

effects is to use performance outcome measures (Mayer, 2001). Analysis of behavior or 

physiological patterns such as time-on-task and heart rate have also shown to be an 

objective way to indirectly assess changes in cognitive load (Astleitner & Leutner, 1996; 

Brunken & Leutner, 2001). Neuroimaging techniques that measure brain activity 

represent a promising route for direct objective measures of cognitive load (Smith & 
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Jonides, 1997). Despite the quality of data obtained, technical complexities and 

limitations of the duration and frequency of measurements make neuroimaging difficult 

in authentic learning environments (Brunken et al., 2003). Dual-task-paradigm use is 

another approach to directly and objectively measure cognitive load. Dual-task-paradigm 

is based on the assumption that the limited working memory space must be divided 

among simultaneous tasks. In this method, variations in either a primary or secondary 

task occurring simultaneously are measured as a way to assess schema formation and 

working memory limitations (Baddeley, 1986; Miyake & Shah, 1999).  

 Indirect subjective measures, such as ratings of mental effort are also commonly 

used to measure intrinsic cognitive load specifically. Introduced by Paas et al. (1994), 

based on research by Borg, Bratfisch, and Dornic (1971), ratings of mental effort are 

based on the assumption that students are capable of understanding their own levels of 

cognitive processing when reporting the amount of mental effort spent on a particular 

learning task (Paas, Tuovinene, Tabbers, & Van Gerven, 2003). Despite controversy 

around the efficacy of mental ratings, research has shown that students are able to assign 

a numerical value to their perceived level of mental effort (Paas, 1992). While most 

subjective measures contain multiple facets (i.e., mental effort, fatigue, etc.), Paas et al. 

(1994) suggest that one-dimensional scales that just ask students to rate mental effort are 

valid and sensitive to relatively small differences in cognitive load. The majority of the 

mental effort rating scales use 7 or 9 points ranging from very low to very high mental 

effort. The current study used a 5-point variation of the scale to match the format of the 

score-reporting sheet, and mirror cognitive load reporting in a study involving mental 

effort rating in the chemistry knowledge domain (Knaus et al., 2009). 
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As indicated above, Knaus et al. (2009) used a 5-point variation of the Paas 

(1992) mental effort rating scale to measure the cognitive load of a chemistry practice test 

designed and used by the authors. Similar to the current study, subjective ratings of 

mental effort were collected from a group of secondary students. Given score reporting 

parameters, the sample and knowledge domain of this research, this study used a scale 

identical to that used by Knaus et al. (2009). The scale’s five descriptors of mental effort 

expenditure are: very little, little, moderate amounts, large amounts, and very large 

amounts. This study represents on of the few intentional attempts at measuring the 

intrinsic cognitive load of a chemistry learning task.  

 Although not in a chemistry class specifically, 88 university students of 

psychology and educational sciences participated in an experiment involving a 

multimedia intervention involving chemistry related topics of oxidation and reduction 

reactions occurring in the hemoglobin molecule (Seufert & Brunken, 2006). Performance 

was assessed using a 14-item post-test including tasks of recall, recognition 

comprehension and problem solving (an indirect-objective measure of cognitive load). 

Each assessment item was evaluated by a validity panel in order to determine the relative 

intrinsic cognitive load of the items. A subjective, 7-point mental effort rating scale was 

used to detect perceived differences in intrinsic cognitive load. With respect to 

performance measures, learning outcomes did not differ significantly between the 

treatment groups in the study. Significant differences were found in perceived intrinsic 

cognitive load as measured using a mental effort rating scale.  

 The Carlson et al. (2003) study, also utilized indirect objective and subjective 

measures of intrinsic cognitive load in chemistry. Mean completion time, and a 7-point 
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mental effort rating scale were used to detect changes in the intrinsic cognitive load of 

instructions used to create molecular models in chemistry. In the Lee et al. (2006) study 

used to test the efficacy of animated simulations at managing the intrinsic cognitive load 

of information pertaining gas laws in chemistry, indirect objective measures of 

comprehension and transfer were used to measure changes in intrinsic cognitive load. 

Perceived measures of information difficulty through mental effort ratings were not 

conducted. However, given the use of performance measures in the current study, the use 

of comprehension and transfer assessments in a chemistry domain are of interest.  

Summary  

 Measures of cognitive load in the CLT research can be divided into indirect/direct 

subjective and objective measures. Of these measures, the most common are indirect 

subjective measures of mental effort and various performance measures such as time-on-

task, comprehension, error rates and transfer assessments (Brunken et al., 2003). When 

both extraneous and germane cognitive load are controlled, research indicates that ratings 

of mental effort are good indicators of intrinsic cognitive load specifically (Ayres, 2006; 

Brunken et al., 2003). Of the literature reviewed, the combination of mental effort and 

performance assessment to yield an instructional efficiency score is a common form of 

data analysis. However, out of the limited research into intrinsic cognitive load 

management in chemistry, only two studies report instructional efficiency measures. 

Keeping in mind the current study, neither investigation involved managing or measuring 

intrinsic cognitive load in chemistry chemical equilibrium, a topic recognized in the 

literature as being particularly complex. Moreover, the independent variable used to 

manage intrinsic cognitive load in each study did not involve the use of pre-training. 
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Thus, a review of the literature into measuring intrinsic cognitive load only amplifies the 

need for further research into negotiating and assessing the complexity presented in the 

chemistry knowledge domain, specifically chemical equilibrium.  

Multimedia in Chemistry Education 

 A common characteristic of recent research that addresses complexity in the topic 

of chemical equilibrium is the presence of multimedia interventions such as animated 

displays and computer simulations (Ozdemir et al., 2009).  A multimedia instructional 

message is one that, by definition, includes the presentation of both words and pictures 

(Mayer, 2001). Keeping in mind the limited capacity of working memory, and the 

presence of dual channels for visual and verbal information, the exact nature of a 

multimedia instructional message fits well into cognitive overload prevention techniques 

(Mayer, 2005c). Despite this connection, and the overwhelming amount of literature that 

identifies chemical equilibrium as highly complex topic, no studies can be found that 

intentionally try to manage the intrinsic cognitive load of chemical equilibrium through 

the use of multimedia. Moreover, none of the studies using the highly effective pre-

training method discussed above apply a multimedia learning tool as part of the schema 

formation technique. Given this gap, a review of the use of multimedia in chemistry will 

give insight into the use of a multimedia pre-training intervention in this study.  

Multimedia Interventions in Chemistry 

 Russell, Kozma, Becker, and Susskind (2000) used a mulitimedia tool called 

SMV: Chem (Synchronized Multiple Representations in Chemistry). SMV: Chem is a 

chemical software program designed to show experiments that illustrate key chemistry 

concepts using molecular-scale animations, models and equations that students can 



 52 

manipulate and interact with. SMV: Chem or 4M: Chem (a prototype of SMV: Chem) has 

been used to specifically help students understand the difficult concepts that underlie Le 

Chatelier’s Principle. Through this software, students were given the ability to 

manipulate temperature, pressure and concentration values and observe how the 

equilibrium reacted on a molecular level. Research has shown a statistically significant 

increase in college students’ understanding of the concepts central to Le Chatelier’s 

Principle after engaging in SMV: Chem or 4M: Chem simulations. A significant reduction 

in misconceptions around Le Chatelier’s Principle was also observed (Kozma, Russell, 

Jones, Marx, & Davis, 1996).  

 Recently, Russell (2004) conducted a study using SMV: Chem as a lecture tool 

over the course of a semester. Results showed significantly higher scores for students 

who attended chemistry lectures that were supplemented with SMV: Chem. In another 

study using the 4M: Chem prototype, Kozma (2000) demonstrated that the specific 

features of the simulations help students grasp the concepts of chemical equilibrium 

specifically. As part of this investigation, students were randomly assigned to different 

groups, where various aspects of the 4M: Chem model were included or not included. For 

example, one group had access only to an animation window, another group to a video 

window, a third group used only the graph window, and a fourth group had access to all 

features. The animation group outscored all groups on assessment items having to do 

with the dynamic nature of equilibrium and the graph group outscored the other 

participants on items related to relative pressures. The group that received all treatments 

did not outscore any other groups.  
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 Similar to SMV: Chem and 4M: Chem, Connected Chemistry is a multimedia 

simulation project designed to help students better comprehend difficult concepts in 

chemistry such as Le Chatelier’s Principle. Unlike SMV: Chem, Connected Chemistry is 

written in a language that allows students to generate authentic data in response to input, 

instead of using pre-determined graphical responses. Another major difference between 

Connected Chemistry and SMV: Chem is the lack of audio or video in the simulations and 

animations (Stieff & Wilensky, 2003). Molecular Workbench is another software 

interface that is analogous to Connected Chemistry. Molecular Workbench provides a 

variety of real-time, interactive simulations, and like Connected Chemistry, does not 

include audio or video feedback (Xie & Tinker, 2005). ChemSense is an example of 

another multimedia chemistry learning environment designed to support an inquiry 

approach (Mayer, 2005c).  During a ChemSense simulation, students are offered a choice 

of various tools that they can use to manipulate, and analyze chemical phenomena. The 

open-ended nature of the exploration in ChemSense is a major difference when compared 

to the other software packages described.  

 Schank and Kozma (2002) investigated the use of ChemSense during a three-

week unit on solubility with high school students. It was determined that students who 

created drawings and animations using ChemSense developed a deeper understanding of 

the geometry-related aspects of chemistry. Qualitative analysis of the treatment groups 

revealed that use of tools prompts students to think more carefully and critically about 

chemical phenomena. Agapova, Jones, Ushakov, Ratcliffe and Martin (2002), 

investigated the use of ChemDiscovery, another similar inquiry driven simulation 

software and found similar results. Unlike ChemSense, ChemDiscovery is web-based and 
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features interactive pages linked to activities, databases and studies where students can 

perform and design their own laboratory investigations.  

 Using another multimedia software program called Chemical Change, Ardac and 

Akaygun (2004) investigated the impact of using the software to view molecular 

representations of chemical phenomena on eighth-grade science students. The study took 

place over 10 class periods and included various, introductory chemistry topics. Students 

in treatment groups worked individually at computers installed with Chemical Change, 

while control group participants received lectures on the same topics accompanied by 

equations and molecular drawings on the chalkboard. Results indicated that students who 

used Chemical Change scored higher on posttest items that used molecular 

representations of chemicals, and also demonstrated more conceptual accuracy than 

students in the control group.  

 To compare efficacy of using animations similar to that described above, in 

conjunction with the traditional classroom method of teaching, Yang, Andre, and 

Greenbow (2003) conducted a study using university students. In their investigation, one 

group of students who received a lecture on electrochemistry also received animations 

accompanied by lecture narrations. Participants in a second group received a lecture only 

accompanied by static representations. As would be predicted by the literature noted 

previously, students in the animation group outperformed the students who received the 

static diagrams on a test of topic knowledge. Other experiments conducted by Sanger, 

Phelps and Fienhold (2000) and Sanger and Badger (2001) strengthen the argument that 

lecture accompanied by animations improves student learning in chemistry.  
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 Another emerging technology that is being used in chemistry is interactive 

molecular modeling. With this technology, the user can create and rotate a molecular 

model through three-dimensional space and examine the various structural properties 

intrinsic to its design. While this technology was designed with the professional chemist 

in mind, it is starting to be used widely in chemistry education at the university level 

(Montgomery, 2001). With respect to the population in the current study, Dori and Barak 

(2001) used computer models with high school students as part of a program to improve 

student understanding of the concepts surrounding bonding and molecular geometry. 

Students worked in pairs using a workbook and the modeling program. Participants 

randomly assigned to the control group used plastic models instead of the interactive 

approach. Students in the treatment group scored higher on comprehension tests of 

molecular structure and bonding.  

Multimedia Screencasts  

 As described, a significant amount of work has gone into creating animations and 

simulations that help students learn chemistry. Advanced multimedia technologies such 

as real-time animations of molecular systems, and learner directed simulations that help 

to model phenomena in chemistry have marked the majority of the developments thus far. 

However, the research base testing the authentic use of multimedia interventions in the 

chemistry classroom is still severely limited (Mayer, 2005c). Specifically, given the 

potential for cognitive overload in difficult topics such as chemical equilibrium, a review 

of the literature revealed a lack of studies that intentionally use multimedia to manage the 

complexity of the chemistry knowledge domains. This observation is particularly 
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surprising given the overlap between multimedia instructional design principles and the 

human cognitive architecture.  

 Given the need for more research literature that addresses the complexity of 

chemical equilibrium from an intrinsic cognitive load perspective, one cannot ignore the 

rapidly changing technology landscape where learning and instruction now occurs. 

Prensky (2001), in an article titled Digital Natives, Digital Immigrants states that “Our 

students have changed radically. Today’s students are no longer the people our 

educational system was designed to teach”(p. 1). Prensky goes on to state that “…today’s 

students process information fundamentally differently from their predecessors”(p.1).  As 

availability of information over the Internet continues to grow students who are 

developing in such an infrastructure are developing new cognitive structures (Prensky, 

2001).  

 In the context of Prensky’s comments, the National Technology Plan released in 

2005 indicated that given current movements in technology and innovation, today’s 

students are far ahead of their teachers with respect to computer literacy (National 

Educational Technology Plan, 2005). Moreover, Richardson (2009) notes that today’s 

learners prefer to access subject specific information over the Internet, where it is more 

abundant, more accessible and more up-to-date. According to Richardson, over 60 

percent of all adolescents engage in communication over the Internet as the primary 

source of information transfer. Unlike the technology landscape that embraced the 

development of such multimedia projects as ChemSense and ChemDiscovery described 

above, the development of web-based teaching tools, rather than intricate software 
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packages, is changing the platform and accessibility of multimedia instruction 

(Richardson, 2009).  

 Richardson (2009) indicates that screencasts are an emerging technology that 

show promise as an instructional device. Screencasting involves capturing on video, all 

computer screen activity, including audio, and mouse activity. From an educational 

standpoint, teachers could create screencasts to support materials when teaching complex 

skills on the computer. Tablet computer technologies could allow teacher to capture ink 

annotations or written solutions and share them with students via the Internet 

(Richardson, 2009). Specifically, Bergman and Sams (2008) investigated the use of using 

screencasting as a tool to move the lecture component of their chemistry classes to the 

home or computer lab, thus freeing up time for in-class inquiry and problem solving. 

Because the screencasts were used as a lecture tool to be viewed before class, Bergman 

and Sams refer to the process as pre-casting. In comparing their scores on semester 

exams from the previous school year, students who learned via at-home screencast 

lectures, outperformed students who learned in the traditional lecture setting. Although 

such research was not done from an intrinsic cognitive load lens, nor was it equilibrium 

specific, this study does represent an initial look into using screencasts in the chemistry 

classroom. A comment by one of Bergman and Sams’ students operationalizes many 

multimedia design principles embedded in a screncast: “I think it’s the best idea for 

teaching I’ve ever had in school. I like being able to work at home in my own way, at my 

own speed. I have always had trouble keeping up in chemistry class, but being able to 

pause the teacher and play a part over and over until I get it has helped so much” 

Bergman and Sams, 2008, p. 23). 
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 The quote above indirectly alludes to four specific multimedia design principles 

that lend support to the use of screencasts in education. The voice and personalization 

principles state that students learn more deeply when words are spoken in a human voice 

that is familiar to the students and in a conversational style (Mayer, 2005). Given the 

combination of teacher audio and on-screen activity, the ability to “…pause the teacher 

and play over…” as noted above, assumes the teacher’s authentic voice is present in the 

multimedia intervention. Research into the efficacy of the personalization principle is 

small, yet very consistent (Moreno & Mayer, 2001; Moreno & Mayer, 2004; Mayer, 

Sobko, & Mautone, 2003). Similar to the pre-training literature base, research is limited 

to various science and math environments, not including the chemistry knowledge 

domain. Additionally, the interactivity and segmenting principles state that learning is 

improved when students have command over the multimedia device, and information is 

presented in learner-controlled segments (Mayer, 2005). Like the voice and 

personalization principles, efficacy research into the interactivity and segmenting 

principles is small but stable (Mayer & Chandler, 2001; Mayer, Dow, & Mayer, 2003).  

 Although not aimed at measuring cognitive load in the area of chemical 

equilibrium specifically, Franciszkowicz (2008) conducted a study to test the efficacy of 

using screencasts in a first-year university general chemistry classroom. Franciszkowicz 

(2008) referred to screencasts as “Video-based Additional Instruction (VAI)” (p. 5). 

Specifically, the study used researcher-generated screencasts that detailed basic problem 

solving techniques related to the topic to intentionally foster critical skills, and the 

conceptual understanding of the course material. The author used surveys and website hit 

counters to determine when and why students accessed the screencasts. Supporting the 
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pre-training method used in the current study, survey results showed overwhelming use 

of the resource for pre-class preparation and pre-test review. 

 Keeping in mind the instructional design principles that speak to the voice and 

user control aspects of a screencast, the pre-casting lecture method embraced by 

Bergman and Sams (2008), and corroborated by Franciszkowicz (2008), represents only 

one, of the many possible applications of screencasts in education (Schaffhauser, 2009). 

Despite such potential, a review of the literature revealed a lack of studies that critically 

investigate the use of screencasts in chemistry education, or science in general. A few 

studies conducted in the field of library information and e-learning represent the only 

other critical research done using a screencast treatment prior to instruction (Flyn, & 

Penwill, 2008; Roberts, 2005).  

Summary 

 The technology landscape that today’s students learn and grow in is an ever 

changing multimedia infrastructure (Prensky, 2001). Screencasts, a relatively new 

phenomena used to record instructor computer screen activity and audio, are receiving 

attention as an effective and dynamic media (Bergman and Sams, 2008; Peterson, 2007; 

Richardson, 2009). Despite such attention, there is a lack of studies that investigate the 

efficacy of screncasting as an intrinsic cognitive load management technique in 

chemistry. The complexity of chemical equilibrium specifically, and the demonstrated 

use of screencasts as a pre-casting tool (Bergman and Sams, 2008) make screencasts a 

potentially effective pre-training strategy to fill the gap between chemical equilibrium 

complexity and existing CLT research.  
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Conclusion 

 An agreement fundamental to the literature reviewed in the field of chemistry 

education is that chemical equilibrium is a highly complex knowledge domain (Banerjee, 

1995; Hackling and Garnett, 1985). Specifically, Le Chatelier’s Principle, a conceptual 

approach to assessing how chemical reactions at equilibrium respond to environmental 

strain, poses unique challenges for learners (Voska and Heikkinen, 2000). The multiple 

concepts that must be coordinated, both algorithmic and conceptual, increase the 

difficulty of the learning materials and frequency of student misconceptions. Although its 

complexity is widely agreed upon, a review of the literature revealed a lack of studies that 

intentionally address the complexity of chemical equilibrium from a cognitive load 

perspective. 

 The CLT literature notes that complex learning material, such as chemical 

equilibrium has, high intrinsic cognitive load because multiple elements must be 

simultaneously negotiated in the limited working memory (Paas, Renkl, & Sweller, 2003; 

Sweller & Chandler, 1994). Pre-training is a technique that has shown promise in 

promoting long-term memory schema that helps learners chunk multiple interacting 

elements into single units, opening up available working memory space for processing 

(Pollack et al., 2002). Specifically, a type of pre-training referred to as whole-task 

sequencing has shown promise in complex knowledge domains (van Merriënboer et al., 

2003). Analysis of CLT literature in the context of the chemical equilibrium research 

noted clearly points to a need for intrinsic cognitive load management techniques such as 

pre-training in the teaching of chemical equilibrium.   
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 A common thread to all current research in chemistry education, specifically the 

investigation of chemical equilibrium, is the use of multimedia (Yang, et al. 2003). 

Although the current literature base explores ways to improve algorithmic and conceptual 

comprehension in the field, no studies are aimed at decreasing the high element 

interactivity that the subject presents. An emerging form of multimedia called 

screencasts, embraces many instructional design techniques developed with the human 

cognitive architecture in mind (Mayer, 2005a). The intricacies of screencasts align well 

with the technique of pre-training in the field of chemistry, an instructional sequencing 

technique that has shown promise as a means to improving schema formation and thus 

decreasing intrinsic cognitive load in complex knowledge domains (Bergman & Sams, 

2008; Franciszkowicz, 2008).  
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CHAPTER III 

METHODOLOGY 

 This study investigated the effects of using screencasts as a multimedia pre-

training tool to manage the intrinsic cognitive load of chemistry instruction at the high 

school level. In this section the experimental research design is outlined and described. 

Following a restatement of the research questions, a description of the design, sampling 

procedures, human subject considerations and data analysis methods are discussed. This 

section concludes with a description of the treatment, and study limitations, followed by a 

summary of the overall methodology.  

Research Questions 

The research questions are as follows:  

1. What are the effects of pre-training on the intrinsic cognitive load of chemical 

equilibrium instruction for advanced high school students as measured by ratings 

of mental effort? 

2. What are the effects of pre-training on advanced high school chemistry students’ 

performance on an equilibrium concept assessment? 

3. What is the relationship between intrinsic cognitive load, as measured by ratings 

of mental effort and advanced high school chemistry students’ performance on an 

equilibrium concept assessment?  

Research Design 

 This study was designed as an experimental investigation and used a sample of 

students in an advanced placement chemistry program at a co-ed high school. Participants 

were randomly assigned to one of two groups representing each level of the independent 
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variable: screencast pre-training, and no pre-training. Because changes in intrinsic 

cognitive load must be measured in the context of prior knowledge, participants were first 

assessed on the basic concepts of chemical equilibrium to determine if any significant 

between-group differences existed (Sweller et al., 1998).  Along with performance, 

intrinsic cognitive load, as measured by ratings of mental effort, was assessed on the pre-

test. Chemical equilibrium was chosen as the knowledge domain given the topic’s 

complexity and the volume of student misconceptions noted in the literature (Banerjee, 

1996; Treagust & Tyson, 1999). 

 Under the supervision of the researcher, participants in the treatment group were 

given time to review the screencast pre-training materials in preparation for direct 

instruction on the basic concepts of chemical equilibrium. After treatment, each group 

received the same direct instruction on the basic concepts of chemical equilibrium from 

the lead researcher. Upon conclusion of the instructional phase, all participants were 

again assessed for differences in intrinsic cognitive load, as measured by ratings of 

mental effort and performance as measured by score on an equilibrium concept 

assessment.    

 According to CLT, extraneous cognitive load is a function of the learning 

materials and environment (Sweller & Chandler, 1994). Because both groups were 

exposed to the same learning environment during the instructional phase of the study 

after pre-training, the impact of extraneous load was limited (Ayres, 2006). Additionally, 

because participants were instructed to only ask clarifying questions and were not given 

any additional assistance during pre-training and instruction, it can be assumed that the 

study did not promote schema formation, and thus facilitate germane cognitive load. 
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Under the above conditions, it can be argued that extraneous and germane load will be 

held constant and changes in the dependent variable can be attributed to the intrinsic load 

(Sweller, 2006).  To verify the stability of extraneous and germane cognitive load, 

participants responded to two survey items designed to monitor each construct 

periodically throughout the duration of the study (DeLeeuw & Mayer, 2008; Swaak & De 

Jong, 2001).  

 The first dependent variable, intrinsic cognitive load, was measured via subjective 

ratings of mental effort on the items of a chemical equilibrium concept assessment post-

test. (Knaus, Murphy, & Holme, 2009; Paas & Van Merriënboer, 1993). The second 

dependent variable, performance, was measured via the score on the items of the same 

equilibrium concept assessment post-test. The identical instrument was used as a pre-test 

to evaluate prior knowledge in chemical equilibrium before treatment.  

Sampling Procedure 

 The participants in this study were a convenience sample of 62 fourth-year high 

school students enrolled in an advanced placement chemistry program at a co-ed Catholic 

school in San Francisco. All eligible students participated in the study. Student 

enrollment for the school is approximately 1,297 (Sacred Heart Cathedral Preparatory, 

2010). Advanced Placement Chemistry is a second year chemistry course at the 

participating institution, and involves a more in-depth exploration of chemistry than the 

college preparatory course offered to all students during their third year. Students, who 

receive a grade of A in chemistry during their third year, qualify for Advanced Placement 

Chemistry (Sacred Heart Cathedral Preparatory, 2010). 
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 Of the 62 participants, 41 were male, and 21 were female. The pre-training 

treatment group consisted of 19 male students and 12 female students. The no pre-

training group consisted 22 male students and 9 female students. Thus, each group 

consisted of roughly an equal number of male and female students. Ages of participants 

ranged from 17 to 18 years. None of the participants had exposure to the content or the 

materials used in the study. All eligible Advanced Placement Chemistry students 

participated in the study. Given the similar academic background of the participants, and 

the use of an equilibrium prior knowledge pre-test, no other demographic data was 

collected from the participants.  

 The study was designed to assess any changes in intrinsic cognitive load and thus, 

the element interactivity associated with learning chemical equilibrium (Paas et al., 2003; 

Sweller & Chandler, 1994). Given the complexity of chemical equilibrium noted in the 

research literature (Banerjee, 1996; Treagust & Tyson, 1999), and the filter used to select 

students into Advanced Placement Chemistry at the participating institution, the sample 

represented a group of advanced students, who were exposed to a complex knowledge 

domain.  

Protection of Human Subjects 

 Approval for this study was given by the University of San Francisco’s Internal 

Review Board for Protection of Human Subjects (IRBPHS). A permission letter 

(Appendix A) was obtained from the participating academic institution, and informed 

consent was requested from each participant (Appendix B). Given the age of the 

participants, parental consent for research participation was also obtained. Along with the 

informed consent letter, a cover letter describing the study, the instruments, and 
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explaining the confidentiality terms of the study was distributed to each participant 

(Appendix C). 

Instrumentation 

 The first dependent variable studied was intrinsic cognitive load, as measured by 

ratings of mental effort. Specifically, this study analyzed levels of intrinsic cognitive load 

associated with a lesson on the basic concepts of chemical equilibrium after a group of 

students received either pre-training or no pre-training. According to Sweller et al. 

(1998), levels of intrinsic cognitive load are highly affected by prior-knowledge, 

therefore the researcher designed a Chemical Equilibrium Concept Assessment to be used 

as both a pre-test and post-test (Appendix D). To measure intrinsic cognitive load, each 

equilibrium content item was followed by a subjective Mental Effort Rating Scale 

originally designed by Paas and Van Merriënboer (1993) and modified for a chemistry 

learning environment by Knause, et al. (2009). The second dependent variable was 

performance on the items of the Chemical Equilibrium Concept Assessment. 

Chemical Equilibrium Concept Assessment 

 The Chemical Equilibrium Concept Assessment (used as both a pre and post-test) 

was developed by the researcher, and represents a merger of two previously used 

equilibrium concept assessments noted in the literature (Banerjee, 1991; Hackling & 

Garnett, 1985).  The instrument consisted of 4 multiple-choice items, and 3 multi-part 

questions. The instrument included 14 total items. All 14 items on the pre and post-test 

included an associated mental effort rating scale. Only one correct answer existed for 

each item. Figure 3 below shows a screenshot of a multiple-choice item from the 

Hackling and Garnett (1985) assessment. Figure 4 shows a screen shot of a multi-part 
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question from the Banerjee (1991) assessment. Both items were included on the 

assessment.  

 

Figure 3. Multiple-choice item used in Chemical Equilibrium Pre and Post-Test 
(Hackling & Garnett, 1985). 

 

Figure 4. Multiple-part item used in Chemical Equilibrium Pre and Post-Test (Banerjee, 
1991). 
 
 Given that intrinsic cognitive load is estimated by the element interactivity of a 

particular learning task, only items containing a significant number of interacting 

elements were included in the instrument (Paas et al., 2003; Sweller & Chandler, 1994). 

Chandler and Sweller (1994) developed a method for estimating the level of element 

interactivity that accompanies a learning task. Assuming prior knowledge is controlled, 

and each element is relevant to the participants in the study, one can arrive at the element 

interactivity by counting the number of elements that must be simultaneously considered 
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(Sweller, 2003). Using the method outlined by Chandler and Sweller (1994), a validity 

panel, made up of three chemistry instructors from the participating institution, 

individually and collectively counted interacting elements on all 14 items of the Chemical 

Equilibrium Concept Assessment. It was determined by the validity panel that each item 

had an element interactivity of 6.  

 To provide a specific example of how an element interactivity level of 6 was 

determined by the validity panel, the item in figure 3 will be referenced. First, the student 

must identify NO as being a gas, and because of its state, understand that it does affect 

the equilibrium position of the reaction. Second, the reaction must be identified as being 

correctly balanced. Third, the equilibrium and non-equilibrium constant expressions (K 

and Q) must be defined. Fourth, the student must know that when the concentration of 

NO is increased, Q is less than K. Fifth, when Q is less than K, it must be understood that 

the reaction will shift to the product side. Finally, in order for the reaction to shift to the 

product side, the rate of the forward reaction will be instantaneously greater than the 

reverse reaction. By these criteria, the items on the Chemical Equilibrium Concept 

Assessment are similar in complexity to those coded as having high element interactivity 

in the CLT literature (Ginns, 2005).  

Mental Effort Rating Scale 

 Subjective measures of mental effort were initially collected on scales developed 

by Paas and Van Merriënboer (1993) as a way for learners to assign a number to the level 

of mental load. The efficacy of using subjective measures to predict mental load is widely 

supported in the CLT research literature (Ayres, 2006; Paas & Van Merriënboer, 1993, 

1994). As noted earlier, because the research design assessed for differences in prior 
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knowledge, extraneous cognitive load and germane cognitive load across each group, it 

can be assumed that subjective measures of mental load approximate intrinsic cognitive 

load (Sweller, 2006). 

 The study used a variation of Pass and Van Merriënboer’s scale developed by 

Knaus, Murphy, and Holme (2009).  The scales five descriptors (very little, little, 

moderate amounts, large amounts, very large amounts) are designed to assess how much 

mental effort was expended on each item of the Chemical Equilibrium Concept 

Assessment Pre and Post-test described above. After each item in the instrument, a 

mental effort scale was inserted (Appendix D).  

 As previously mentioned, to assess the validity of Chemical Equilibrium Concept 

Assessment, three chemistry instructors at the participating institution comprised a group 

of equilibrium experts. Each instructor analyzed all items for content and element 

interactivity. Each instructor assessed the items of the instrument individually, and then 

shared their observations with one another as a group. In collaboration, the validity panel 

agreed that all items tested the knowledge domain of Chemical Equilibrium, specifically 

Le Chatelier’s Principle, and all items contained 6 interacting elements. No items were 

altered or deleted as a result of the validity panel analysis.  

Additional Instrumentation  

 De Leeuw and Mayer (2008) note a strong connection between difficulty ratings 

and germane cognitive load. Keeping this in mind, students were asked the following 

question to monitor germane cognitive load at the end of the pre and post-test: How easy 

or difficult is it for you to understand chemical equilibrium at this moment? Students 

reported their difficulty rating on a 9-point scale from ranging from very easy to very 
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difficult. To monitor extraneous cognitive load, the following question, derived from the 

SOS scale, a cognitive load measure suggested by Swaak and De Jong (2001), was used 

at the end of the pre and post-test: How easy or difficult is it for you to work in this 

learning environment at the moment? Like the germane measure, students reported their 

difficulty rating on a 9-point scale from ranging from very easy to very difficult. 

Procedures and Treatment 

 The researcher was also the lead teacher in the participating advanced placement 

chemistry classrooms. The purpose of the study was outlined by the researcher one week 

prior to pre-test distribution. After a short verbal summary, the researcher asked for 

student participation in the study. A cover letter, informed consent form, and a parental 

consent form were distributed to each student.  All students were asked to return the 

informed consent forms in an envelope provided by the researcher at least one day before 

the treatment date. Students who choose to participate in the study were randomly 

assigned a number beginning with 1 to 62 to ensure confidentiality. Participating students 

received a copy of the informed consent form and a copy of the Research Subject’s Bill 

of Rights.  

 The treatment for the study was divided into four phases. First, prior knowledge 

of chemical equilibrium concepts was assessed via a pre-test. Second, students were 

randomly assigned to one of two different groups where pre-training was or was not 

implemented. Third, all students gathered for in-depth instruction on the basic concepts 

of chemical equilibrium. Last, students completed a concept assessment with an 

associated mental effort measure to identify any differences in intrinsic cognitive load 

across each group. Throughout the first (pre-test administration) and fourth (post-test 
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administration) phase, students were surveyed to assess changes in extraneous and 

germane cognitive load during the duration of the study.  

Prior Knowledge Phase 

 Assessment of learner prior knowledge is crucial when attempting to determine 

differences in intrinsic cognitive load across a group of students (Sweller et al., 1998). In 

order to assess learners’ prior knowledge of equilibrium concepts, the researcher 

administered the 14-item multiple Chemical Equilibrium Concept Assessment pre-test 

(see Appendix D). All participants gathered together in the same room for the pre-test, 

two weeks prior to treatment. When participants were present, the researcher distributed 

hard copies of each instrument face down on the desk of each participant. The researcher 

reminded students of the confidentiality terms of the study, and fielded any remaining 

questions from participants.  

 Students were asked to place all calculators under their desk for the duration of 

the assessment. The researcher read a script that outlined the purpose of the pre-test and 

information specific to interpreting the chemistry content of the instrument (Appendix E). 

Upon conclusion of the script, the researcher set a timer for 30 minutes, and instructed 

students to begin. When finished, students remained seated, and the researcher collected 

each completed instrument. 

Pre-Training Phase 

 The pre-training phase consisted of two separate groups that represented the two 

levels of the independent variable: screencast pre-training and no-pre-training. Students 

who were randomly assigned to the screencast pre-training group reported to the 

researcher’s classroom 15 minutes prior to the beginning of the instructional phase. 
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Twenty laptop computers, including audio headsets, were present in the room for students 

to view the pre-training screencasts. Although there were no more than 11 students 

assigned to any one of the three pre-training sessions, additional computers were 

provided in case technical difficulties occurred during pre-training. Because the two 

research groups represented students randomly assigned from three different advanced 

placement chemistry classes, the pre-training phase was repeated by the researcher three 

times.  

 The lead researcher instructed students to open the movie file on the desktop of 

the computer titled Pre-training Screencast. The researcher read the screencast pre-

training script to students (Appendix E). The script contained specific instructions about 

navigating the screencast, and rules regarding accessing the Internet and other computer 

files during the treatment phase. Students were allowed 10 minutes and 52 seconds to 

interact with the screencast (total length of screencast). During the course of the 

screencast pre-training, students were exposed to the basic definitions and key 

characteristics of chemical equilibrium, along with a general introduction to the 

overarching concepts and problem solving strategies that relate Le Chatelier’s Principle 

of chemical equilibrium. Instruction included on the screencast consisted of digital pen 

annotations and narrations all created by the lead researcher. Students randomly assigned 

to the no pre-training group were instructed to report to class at the normally scheduled 

time. Figure 5 shows a screen shot of the screencast pre-training video taken at the 33-

second mark in the video.  
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Figure 5. Screencast pre-training video. 33-second mark.  
 
 With respect to screencast design, the researcher created a pre-training template 

document, and using a mobile tablet, screen recording software and a microphone, 

recorded digital annotations and audio narration of the basic definitions and key concepts 

associated with chemical equilibrium. The pre-training screencast was designed 

according to the pre-training principles described by Mayer (2005a) and the whole-task 

sequencing procedures outlined by van Merriënboer et al. (2003, 2006). The screencast 

included the basic definitions and key terms essential to Mayer’s definition of pre-

training, and also exposed to students to the holistic, and over arching concepts necessary 

for complete schema formation described by van Merriënboer’s whole-task sequencing 

approach.  

 The screencast began with an introduction to the basic definitions, key terms and 

concepts in chemistry that provide an infrastructure for chemical equilibrium. Following 

basic definitions, terms and concepts, the pre-training screencast outlined and briefly 
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explained the factors that, according to Le Chatelier’s Principle, are capable of shifting a 

reaction at chemical equilibrium. See Appendix F for all screencast pre-training materials 

including the document template, screenshots of the pre-training video, and a link to view 

the pre-training video online.  

Instructional Phase 

 Upon conclusion of the pre-training phase, the researcher and students reported to 

their respective classrooms for the school day. At the beginning of each of the 

researcher’s three Advanced Placement Chemistry classes, a script was read that 

described the purpose of the instructional phase and any questions students had were 

answered (Appendix E). Handouts of slides used by the instructor during the instructional 

phase were distributed to students for optional note taking (Appendix G). The researcher 

then set a timer for 50 minutes, and began the instruction on the basic concepts of 

chemical equilibrium.  

Assessment Phase 

 Assessment of learner intrinsic cognitive load was accomplished by use of the 

Chemical Equilibrium Concept Assessment along with associated ratings of mental effort 

for each item (see Knaus et al., 2009; Paas & Van Merriënboer, 1993). The assessment 

was identical in structure and content to the pre-test all students completed two weeks 

prior to treatment. The assessment phase took place directly after the instructional phase, 

in the same classroom. The researcher distributed the assessment face down on the desk 

of each participant. The researcher reminded students of the confidentiality terms of the 

study, and fielded any remaining questions from participants.  
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 Students were asked to place all calculators and notes under their desk for the 

entire duration of the assessment. The researcher read a script to students that outlined the 

purpose of the assessment and any information specific to interpreting the chemistry 

content of the instrument (see Appendix E). Upon conclusion of the script, the researcher 

set a timer for 30 minutes, and instructed students to begin. When finished, students 

remained seated, and the researcher collected each instrument, and the corresponding 

score sheet from each student.   

Data Analysis  

Prior Knowledge Assessment  

 Because intrinsic cognitive load is a function of learner prior knowledge, all 

students took the Equilibrium Concept Assessment as a pre-test to see if significant 

differences in both mental effort, and content knowledge, existed between each group 

(Sweller et al., 1998). The mental effort descriptors (very little, little, moderate amounts, 

large amounts, very large amounts) were coded from 1 to 5 respectively. In order to 

maintain the 1-5 scale for mental effort, student responses were first averaged, then group 

averages were obtained for comparison. Scores on the content items were coded with a 1 

for a correct response and 0 for an incorrect response. Raw scores for each student were 

summed, and then a group average was obtained for comparison.  

Research Question 1 

 To answer research question 1, an independent samples t test was conducted to 

evaluate the effect of pre-training on intrinsic cognitive load. The independent variable, 

pre-training, includes two levels: screencast and no pre-training. The dependent variable 

is the intrinsic cognitive load of chemical instruction, as measured by ratings of mental 
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effort. Between group comparisons were conducted for mental effort rating averages on 

the instrument as a whole. As an added analysis, a paired t test was conducted to see if 

significant differences in mental effort existed in pre and post-test scores within groups. 

Research Question 2 

 To answer research question 2, an independent samples t test was conducted to 

evaluate the effect of pre-training on performance. The independent variable, pre-

training, includes two levels: screencast and no pre-training. The dependent variable is 

performance, as measured by score on equilibrium concept items. Between group 

comparisons were conducted for total raw score averages. As an added analysis, a paired 

t test was conducted to see if significant differences in performance existed in pre and 

post-test scores within groups. 

Additional Data Analysis  

 In order to more accurately relate mental effort and performance to changes 

intrinsic cognitive load, two survey questions were asked at the conclusion of the pre and 

post-test to monitor differences in germane and extraneous cognitive load between 

groups. An independent samples t test was conducted to see if significant differences 

between the pre-training and no-pre-training groups exist.  

Research Question 3 

 To answer research question 3, a correlation analysis was conducted to examine 

the relationship between performance on the chemical equilibrium assessment and 

intrinsic cognitive load, as measured by ratings of mental effort. Correlations coefficients 

were calculated between mental effort and performance in the no pre-training and pre-
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training groups individually and across both groups together on the Chemical 

Equilibrium Concept Assessment post-test.  

Summary 

 This study investigated the effects of pre-training to manage the intrinsic 

cognitive load of chemistry instruction for high school chemistry students. Students from 

an intact sample of three advanced placement chemistry classes were randomly assigned 

to one of two treatment groups: screencast pre-training or no pre-training. Prior to 

treatment, students in each group were administered the Chemical Equilibrium Concept 

Assessment as a pre-test to assess for any between group differences in prior knowledge 

regarding chemical equilibrium. An independent samples t test was conducted to see if 

any significant differences exist in both the mental effort invested, and performance on 

the assessment. Survey questions designed to evaluate germane and extraneous cognitive 

load were administered upon conclusion of the pre-test and t tests were also conducted to 

evaluate between group differences.  

 After prior knowledge assessment, students in the pre-training treatment group 

were exposed to a 10 minute and 52 second screencast where the basic definitions, terms 

and key concepts of chemical equilibrium were outlined. Upon conclusion of pre-

training, all students received an in-depth lecture on chemical equilibrium. The Chemical 

Equilibrium Concept Assessment, along with the associated germane and extraneous 

cognitive load survey items, was administered directly after the lecture. An independent 

samples t tests was conducted to evaluate differences in intrinsic cognitive load, 

performance, and to assess any differences in germane or extraneous cognitive load 

between groups. Scores on all variables of the pre and post-test were then correlated. 



 78 

Specifically, relationships between the two dependent variables, intrinsic cognitive load, 

and performance, were assessed.  
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CHAPTER IV 

RESULTS 

 The purpose of the study was to investigate the use of screencasts as a pre-training 

tool to manage the intrinsic cognitive load of chemistry instruction at the high school 

level. This study examined differences in performance and mental effort on an 

equilibrium concept assessment between two groups of chemistry students. One group of 

students received pre-training and one group did not. The independent variable for each 

of the two research questions was pre-training (screencast or no pre-training). The 

dependent variables were intrinsic cognitive load as measured by mental effort and 

performance, as measured by score on an equilibrium concept assessment. A rationale for 

the cognitive load measures used and the results of the inferential statistics reported for 

each research question are included in the following sections.  If significant differences 

do not exist, p values are not reported, and data is displayed in an associated table. If 

significant differences do exist, p values are reported and the data is also displayed in a 

table. For all comparisons, the alpha level was set at .05. For the first two research 

questions, effect sizes as measured by Cohen’s d are reported for all statistically 

significant differences for between group comparisons. Estimated effect sizes are 

reported for within group comparisons. 

Cognitive Load Measures 

 According to Brunken et al. (2003) mental effort ratings, as indirect subjective 

assessments, are reliable indicators of intrinsic cognitive load. The efficacy of using 

ratings of mental effort to predict intrinsic cognitive load is widely noted in the CLT 

literature (Ayres, 2006; Paas & Van Merriënboer, 1993, 1994). Each content item on the 
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Chemical Equilibrium Concept Assessment was followed by a mental effort rating scale. 

The scales five descriptors (very little, little, moderate amounts, large amounts, very large 

amounts), were coded 1-5, with 1 being very little mental effort, and 5 being very large 

amounts of mental effort. The mental effort scale used on the instrument was originally 

designed by Paas and Van Merriënboer (1993) and modified by Knause et al. (2009).  

 In addition to ratings of mental effort, performance on each item of the Chemical 

Equilibrium Concept Assessment was measured. In this study, a correct answer was 

coded with a 1 and an incorrect answer with a 0, giving a maximum raw performance 

score of 14 on the instrument. Research into the efficacy of using performance measures, 

and other indirect, objective measures such as reaction time, accuracy and error rate, to 

measure cognitive load, are noted in the CLT literature (Brunken, et al., 2003; Chandler 

& Sweller, 1996; Paas, et al., 2003). Because the CLT literature does not indicate a direct 

relationship between performance and intrinsic cognitive load specifically, ratings of 

mental effort and performance measures were correlated to evaluate any significant 

relationship between the variables.  

Because the design and organization of the learning environment, and the 

instructional methodologies used across each group were identical, it was assumed that 

extraneous and germane cognitive load were limited. Under such conditions significant 

differences in performance between groups is assumed to be due to changes in intrinsic 

cognitive load. The lower the intrinsic load for a group, the more partial schema 

formation occurred as a result of pre-training (Ayres, 2006).  

 Given the additive nature of the three sources of cognitive load (intrinsic, 

extraneous and germane), an attempt to verify the assumption that extraneous and 
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germane load were neutralized across both groups was conducted. To monitor germane 

load, students were asked the following question at the conclusion of the pre and post-

test: How easy or difficult is it for you to understand chemical equilibrium at this 

moment? Students reported their difficulty rating on a 9-point scale ranging from very 

easy to very difficult, with 1 being very easy and 9 being very difficult. To monitor 

extraneous cognitive load, students were asked the following question at the conclusion 

of the pre and post-test: How easy or difficult is it for you to work in this learning 

environment at the moment? The question was derived from the SOS scale, a cognitive 

load measure suggested by Swaak and De Jong (2001). The question was reported using 

the same 9-point scale used with the germane load measure.   

Research Question 1 

What are the effects of pre-training on the intrinsic cognitive load of chemical 

equilibrium instruction for advanced high school students as measured by ratings of 

mental effort? 

 The first research question investigated whether or not there is a statistically 

significant difference in average mental effort ratings between the pre-training group and 

no pre-training group. As described above, directly following each of the 14 items on the 

Chemical Equilibrium Concept Assessment, students responded to an associated mental 

effort rating scale with five descriptors (very little, little, moderate amounts, large 

amounts, very large amounts), coded 1-5 respectively. An independent sample t test was 

used to assess differences between each group on their average ratings of mental effort. 

Given that students were randomly assigned to each group, and groups were independent 
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of one another, it can be assumed that all assumptions associated with conducting the t 

test were met.  

To get a baseline measure of the intrinsic cognitive load of the chemical 

equilibrium concepts, students were given the Chemical Equilibrium Concept 

Assessment as a pre-test wherein they were asked to rank their mental effort directly 

following completion of each item.  As expected, on all chemical equilibrium content 

items, there was no significant difference between both groups in mental effort prior to 

treatment, t(60) = 1.83, ns.  Thus, it can be assumed from these results, both groups 

entered the treatment with the same intrinsic cognitive load baseline. See Table 1 for the 

mean mental effort for students in the pre-training and no pre-training groups on the pre-

test. 

Table 1 

Means, Standard Deviations, and Independent t-test Results for Mental Effort Ratings on 
the Chemical Equilibrium Concept Assessment Pre-Test 

 
Intrinsic Load Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

 
Mental Effort 

 

 
Mean 
SD 

 
3.80 
.76 

 

 
4.14 
.70 

 
1.83 

 

Following the treatment (pre-training or no pre-training) and instructional phases 

of the study, students were once again given the Chemical Equilibrium Concept 

Assessment and asked to rate their mental effort.  There was a significant difference in 

the mental effort ratings of the pre-training group and the no pre-training group, t(60) = 

5.34,  p = .0001. The results were as expected in that students in the pre-training group 

(M = 2.52, SD = .64) on average invested less mental effort, and thus experienced less 
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intrinsic cognitive load, than students in the no pre-training group (M = 3.43, SD = .70). 

All statistics used to assess between group differences in average mental effort for the 

post-test are displayed in Table 2.  

Table 2 

Means, Standard Deviations, and Independent t-test Results for Mental Effort Ratings on 
the Chemical Equilibrium Concept Assessment Post-Test 

 
Intrinsic Load Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

 
d 

 
Mental Effort 

 
Mean 
SD 

 
2.52 
.64 

 
3.43 
.70 

 

 
5.34* 

 
1.36 

*Statistically significant at the .05 level 
 
 Additionally, because both the pre-training and no pre-training groups showed a 

decrease in mean mental effort from pre to post-test, a paired t test was conducted to 

assess significant differences in mental effort within groups. There was a significant 

difference in mental effort ratings within the pre-training group, t(60) = 7.17, p = .0001. 

A significant difference in mental effort rating within the no pre-training group also 

existed, t(60), = 3.04, p = .0002. All statistics used to assess within group differences in 

mental effort for the pre and post-test are displayed in Table 3.  
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Table 3 
 

Means, Standard Deviations, and Paired t-test Results for Mental Effort Ratings on the 
Chemical Equilibrium Concept Assessment Pre and Post-Test 

 
Group Statistic Pre-Test 

 
Post-Test 

 
t d 

 
 

Pre-Training  
(n= 31) 

 
No Pre-Training 

(n=31) 
 

 
Mean 
SD 

 
Mean 
SD 

 
3.80 
0.76 

 
4.14 
.70 

 
2.52 
.64 

 
3.43 
.70 

 
7.17* 

 
 

3.04* 

 
 1.56 

 
 

1.12 

*Statistically significant at the .05 level 
 

Research Question 2 
 

What are the effects of pre-training on advanced high school chemistry students’ 

performance on an equilibrium concept assessment? 

 The second research question investigated whether or not there is a statistically 

significant difference in performance on equilibrium content items between the pre-

training group and no pre-training group. As described above, each of the 14 items were 

coded 1 for correct and 0 for incorrect with a maximum raw performance score of 14 on 

the instrument. An independent samples t test was used to assess difference in total raw 

score averages between each group. Given that students were randomly assigned to each 

group, and groups were independent of one another, it can be assumed that all 

assumptions associated with conducting the t test were met.  

To get a baseline measure for performance on chemical equilibrium content items, 

students were given the Chemical Equilibrium Concept Assessment as a pre-test.  As 

expected, on all chemical equilibrium content items, there was no significant difference 

between both groups in performance, t(60) = .28, ns.  Thus, it can be assumed from these 
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results, both groups entered the treatment with the same level of understanding of how to 

solve basic problems of chemical equilibrium. See Table 4 for the mean performance for 

students in the pre-training and no pre-training groups on the pre-test. 

Table 4 

Means, Standard Deviations, and Independent t-test Results for Performance Raw Scores 
on the Chemical Equilibrium Concept Assessment Pre-Test 

 
Intrinsic Load Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

     
Performance Mean 

SD 
3.16 
2.20 

3.10 
2.29 

 

.28 

  

 Following the treatment (pre-training or no pre-training) and instructional phases 

of the study, students were once again given the Chemical Equilibrium Concept 

Assessment. There was a significant difference in performance for the pre-training group 

and the no pre-training group, t(60) = 3.70, p = .0005. The results were as expected in 

that students in the pre-training group (M = 8.14, SD = 3.16) on average scored higher, 

than students in the no pre-training group (M = 5.25, SD = 2.98). All statistics used to 

assess differences in performance are displayed in Table 5.  

Table 5 

Means, Standard Deviations, and Independent t-test Results for Performance Raw Scores 
on the Chemical Equilibrium Concept Assessment Post-Test 

 
Intrinsic Load Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

 
d 

 
Performance 

 
Mean 
SD 

 
8.14 
3.16 

 
5.25 
2.98 

 

 
3.70* 

 
.94 

* Statistically significant at the .05 level 
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Additionally, because both the pre-training and no pre-training groups showed an 

increase in performance from pre to post-test, a paired t test was conducted to assess 

significant differences within groups. There was a significant difference in performance 

within the pre-training group, t(60) = 7.20, p = .0001. A significant difference in 

performance within the no pre-training group also existed, t(60), = 3.14, p = .002. All 

statistics used to assess within group differences in performance for the pre and post-test 

are displayed in Table 6.  

Table 6 
 
Means, Standard Deviations, and Paired t-test Results for Performance Raw Scores on the 

Chemical Equilibrium Concept Assessment Pre and Post-Test 
 

Group Statistic Pre-Test 
 

Post-Test 
 

t d 
 

 
Pre-Training  

(n= 31) 
 

No Pre-Training 
(n=31) 

 

 
Mean 
SD 

 
Mean 
SD 

 
3.16 
2.20 

 
3.10 
2.24 

 
8.14 
3.16 

 
5.25 
2.98 

 
7.20* 

 
 

3.14* 

 
1.67 

 
 

.71 

*Statistically significant at the .05 level 
 

Additional Data Analysis 
 

 Additional data analysis was conducted to see if a statistically significant 

difference in either germane or extraneous cognitive load existed between the pre-

training and no pre-training group during pre-test or post-test administration. While the 

dependent variable, intrinsic cognitive load, assesses complexity in the form of the 

element interactivity, extraneous cognitive load relates to the manner in which 

information is presented, and germane cognitive load is the load induced via the learners 

processing efforts (Pollock, et al., 2002; Renkl & Atkinson, 2003). An independent 
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samples t test was used to assess difference in total raw score averages on each of the two 

cognitive load survey items outlined previously in this chapter designed to assess for 

changes in extraneous and germane cognitive load. Given that students were randomly 

assigned to each group, and groups were independent of one another, it can be assumed 

that all assumptions associated with conducting the t test were met.   

 With respect to pre-test administration, there was no significant difference 

between both groups on either cognitive load measure. All statistics used to assess 

differences in germane and extraneous cognitive load during the pre-test are displayed in 

Table 7.  

Table 7 

Means, Standard Deviations, and Independent t-test Results for Germane and Extraneous 
Cognitive Load Ratings During Pre-Test Administration 

 
Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

 
Germane Load 

 
 

Extraneous Load 

 
Mean 
SD 

 
Mean 
SD 

 
8.03 
1.05 

 
2.39 
1.74 

 
8.29 
1.22 

 
2.13 
1.67 

 

 
.90 

 
 

.46 

 
 With respect to post-test administration, the results were as expected in that there 

was no significant difference between both groups in extraneous cognitive load. An 

unexpected significant difference in germane cognitive load was detected, t(60) = 2.79, p 

= .007. Students in the pre-training (M = 5.10, SD = 1.77) on the average reported to have 

less difficulty in understanding chemical equilibrium during post-test administration than 

the no pre-training group (M = 6.31, SD = 1.64). All statistics used to assess differences 



 88 

in germane and extraneous cognitive load during the post-test administration are 

displayed in Table 8 

Table 8 

Means, Standard Deviations, and Independent t-test Results for Germane and Extraneous 
Cognitive Load Ratings During Post-Test Administration 

 
Measure Statistic Pre-Training 

(n=31) 
No Pre-Training 

(n=31) 
 
t 

 
d 

 
Germane Load* 

 
 

Extraneous Load 

 
Mean 
SD 

 
Mean 
SD 

 
5.10 
1.77 

 
3.61 
2.31 

 
6.31 
1.64 

 
3.34 
2.24 

 

 
2.79 

 
 

.47 

 
.71 

 
 
 

* Statistically significant at the .05 level 

Research Question 3 
 

What is the relationship between intrinsic cognitive load, as measured by ratings of 

mental effort and advanced high school chemistry students’ performance on an 

equilibrium concept assessment?  

 The third research question investigated whether or not there is a statistically 

significant relationship between intrinsic cognitive load, as measured by ratings of mental 

effort, and performance as measured by score on an equilibrium concept assessment. 

Correlations between intrinsic cognitive load and performance were conducted using 

scores from the post-test for the pre-training and no pre-training groups independently, 

and together as a whole.  

 On the post-test, there was small, but not significant correlation between intrinsic 

load and performance for the no pre-training group. Likewise, there was a small, but not 

significant correlation between intrinsic load and performance for the pre-training group. 



 89 

However, across the entire data set (pre-training and no pre-training) there was a 

significant and moderate negative, correlation between performance and intrinsic load, r 

(60) = -0.44, p = .0003.  Correlations between intrinsic load and performance are 

displayed in Table 9. 

Table 9 

Correlations Between Intrinsic Cognitive Load and Performance on the Chemical 
Equilibrium Concept Assessment Post-Test 

 
No Pre-Training Group Pre-Training Group Both Groups 

-.24 -.21 -.44* 

* Statistically significant at the .05 level 

Summary of Results 

 The purpose of this study was to investigate the effects of using screencasts as a 

pre-training tool to manage the intrinsic cognitive load of a lesson on chemical 

equilibrium delivered to advanced high school chemistry students. To accurately relate 

changes in the dependent variable, intrinsic cognitive load, to the independent variable, 

pre-training, a pre-test on chemical equilibrium was given to both groups. No statistically 

significant difference in performance, or mental effort existed between each group prior 

to treatment.  

 Upon conclusion of pre-training and instruction, a statistically significant 

difference in mental effort on the post-test did exist between groups. Students in the pre-

training group on average invested less mental effort than students in the no pre-training 

group. Additionally, a statistically significant difference in performance on equilibrium 

content items on the post-test did exist between groups. Students in the pre-training group 

on average scored higher than students in the no pre-training group. Paired t tests were 
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also conducted, and both groups showed significant increases in performance, and 

decreases in mental effort from pre-test to post-test.  

 Ayres (2006) argues that the three sources of cognitive load are additive. That is, 

if the sum of extraneous and intrinsic load is reduced, more germane load can be directed 

towards active processing in the working memory. Keeping this in mind, in order to 

accurately attribute changes in intrinsic cognitive load to the dependent variable, pre-

training, germane and extraneous load were monitored during pre-test and post-test 

administration. No significant difference in germane or extraneous load was observed 

during pre-test administration. Likewise, no significant difference in extraneous cognitive 

load was noted during post-test administration. However, a statistically significant 

difference in germane cognitive load was observed. Students in the pre-training on the 

average reported to have less difficulty in understanding chemical equilibrium during 

post-test administration than the no pre-training group.  

 Unlike ratings of mental effort, a direct connection between performance 

measures and intrinsic cognitive load is not noted in the CLT literature. (Brunken, et al., 

2003). In order to relate changes in performance to changes in intrinsic cognitive load, 

ratings of mental effort and performance measures were correlated on the post-test. A 

statistically significant relationship between performance and intrinsic cognitive load was 

observed on the post-test when ratings of mental effort and performance were combined 

across both groups.  
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CHAPTER V 

DISCUSSION OF RESULTS 

 The purpose of the study was to investigate the efficacy of using screencasting as 

a multimedia pre-training tool to manage the intrinsic cognitive load of chemistry 

instruction. First, the study is summarized, including a restatement of the research 

problem. Limitations of the study are then outlined, findings are discussed and research 

conclusions are made. Finally, implications for research and instructional design are 

identified.  

Summary of the Study  

 The complexity associated with learning chemistry, and the negative side effects 

of student and instructor misconceptions that result, are consistent themes throughout the 

research literature (Banerjee, 1991; Hackling and Garnett, 1985; Tai, et al., 2005; Tyson 

& Treagust, 1999). Defined as intrinsic cognitive load, research aimed at managing the 

complexity of difficult to learn subjects such as chemistry is limited (Ayres, 2006; 

Gerjets, et al., 2004, 2006; Kirschner, et al., 2009). Moreover, studies that intentionally 

investigate the use of technology such as screencasts, which could empower instructors 

to facilitate online intrinsic cognitive load management via pre-training, are non-existent 

(Mayer, 2005a). Given the high intrinsic cognitive load of learning chemistry, and the 

lack of efficacy research noted above, this study was conducted.   

 A sample of 62 advanced placement chemistry students at a co-ed Catholic high 

school in downtown San Francisco participated in the study. Students were randomly 

assigned to one of two groups representing the two levels of the independent variable: 

pre-training or no pre-training. Prior to treatment, students took the Chemical 
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Equilibrium Content Assessment as a pre-test to detect any between group differences in 

prior knowledge. Data analysis using an independent samples t test indicated that there 

was no statistically significant difference in performance, or mental effort across both 

groups. 

 Students assigned to the pre-training group viewed a 10-minute screencast that 

included the basic definitions, diagrams and a simple summary of chemical equilibrium. 

Upon conclusion of pre-training, students in both groups received a 50-minute, in depth 

lecture, on the basic concepts of chemical equilibrium. Specifically, the lecture proceeded 

through a series of explanations and examples of Le Chatelier’s Principle. Le Chatelier’s 

Principle was chosen due to the high level of student misconception and instructional 

complexity noted in the literature (Banerjee, 1996; Tyson et al.,1999). 

 After treatment, all students took the Chemical Equilibrium Concept Assessment 

again, as a post-test. An independent samples t test indicated that there was a statistically 

significant difference in both performance and mental effort between groups on the post-

test. On average, the pre-training group invested less mental effort and generated more 

correct answers to items on the assessment than did the no pre-training group. A paired t 

test was also conducted to see if significant within group differences existed from pre to 

post-test. On average, both groups invested less mental effort and reported more correct 

answers on the post-test than they did on the pre-test.  

 Given the additive nature of cognitive load, extraneous and germane cognitive 

load were monitored during pre and post-test administration (Ayres, 2006). Because an 

independent samples t test did not identify a significant difference in germane or 

extraneous cognitive load on the pre-test, and only an increase in germane load for the 
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treatment group on the post test, differences in performance and mental effort can, to a 

degree, be extrapolated to changes intrinsic cognitive load. According to Pollock et al. 

(2002) and van Merriënboer et al. (2003, 2006), this result is due to partial schema 

formation and a decrease in overall element interactivity for the learner.  

 Because a direct link between performance and intrinsic cognitive load is not 

noted in the research literature, a correlation analysis between intrinsic load, as measured 

by ratings of mental effort, and performance was conducted (Brunken, et al., 2003). A 

significant relationship between performance and intrinsic cognitive load was observed 

across all students on the post-test.  

Limitations 

 This study was limited by factors related to the sample and the methodology. The 

use of a convenience sample brings into question the ability to generalize results to the 

larger advanced high school chemistry student population. Additionally, there is no 

literature that clearly outlines the difference between an advanced and non-advanced high 

school chemistry student at large. At best, the use of advanced placement chemistry 

students only approximates the desired sample of students.  

 With respect to the methodology, the lack of a pilot study used to assess the 

reliability of the Chemical Equilibrium Concept Assessment prior to treatment is a 

limitation of this study. Although a validity panel of experts was conducted, and the 

instrument represents a hybrid of two previously used assessments, reliability and 

validity information regarding its past use was not available (Banerjee, 1991; Hackling & 

Garnett, 1985). 



 94 

 With respect to the dependent variables, although indirect subjective mental effort 

ratings are frequently used in current CLT research, questions still exist as to the exact 

connection between mental effort ratings and intrinsic cognitive load (Brunken & 

Leutner, 2003). In addition to mental effort ratings, performance on the Chemical 

Equilibrium Concept Assessment was also included as a dependent variable. Given the 

additive nature of intrinsic, extraneous and germane cognitive load, using mental effort 

ratings and performance to assess intrinsic cognitive load relies heavily on the control of 

the extraneous and germane load (Ayres, 2006).  Additionally, because the CLT research 

does not indicate a direct link between performance measures and intrinsic cognitive 

load, a correlation analysis between ratings of mental effort and performance was 

conducted in order to extrapolate a link between performance and intrinsic cognitive load 

(Brunken & Leutner, 2003).  

 Although survey items were used to monitor changes in extraneous and germane 

cognitive load between groups on the pre and post-test, reliability and validity of the 

survey item was not assessed. Moreover, because extraneous and germane load were only 

monitored at the pre and post-test level, subsequent alterations in extraneous and germane 

load during the treatment and instruction could have impacted subjective mental effort 

and performance.  

Discussion of Research Questions 

 The first research question regarding the effect of pre-training on intrinsic 

cognitive load was measured using ratings of mental effort on the items of the Chemical 

Equilibrium Concept Assessment. As expected, students randomly assigned to the pre-

training group reported a statistically significant decrease in mental effort on the 
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Chemical Equilibrium Concept Assessment after instruction than did the students that did 

not receive pre-training. The effect size for this comparison was 1.36. An additional 

analysis of within group differences between the pre and post-test was conducted. 

Although the between group comparison showed that the pre-training group reported less 

perceived mental effort, both groups invested a statistically significant decrease in mental 

effort from the pre to post-test. The estimated effect sizes for the pre-training and no pre-

training groups were 1.51 and 1.12 respectively.  

 The second research question regarding the effect of pre-training on performance 

was measured using student score on the items of the Chemical Equilibrium Concept 

Assessment. As expected, students randomly assigned to the pre-training group 

demonstrated a statistically significant increase in performance on the Chemical 

Equilibrium Concept Assessment after instruction than did the students that did not 

receive pre-training. The effect size for this comparison was .94. An additional analysis 

of within group differences between the pre and post-test was conducted. Although the 

between group comparison showed that the pre-training group demonstrated increased 

performance, both groups improved significantly in performance from pre to post-test. 

The estimated effect sizes for the pre-training and no pre-training groups were 1.67 and 

.71 respectively.  

 The third research question regarding the relationship between performance and 

intrinsic cognitive load was measured by calculating correlations between performance 

and mental effort variables on the post-test. A significant relationship between 

performance and mental effort was observed across all student scores on the post-test. 
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The significant correlation coefficient between performance and intrinsic cognitive load 

on the post-test was measured to be -.44.  

Conclusions 

 A key finding in this study was the effect that a short pre-training intervention 

delivered via a screencast had on both performance and subjective ratings of mental 

effort on chemical equilibrium content items. Students who received pre-training prior to 

instruction reported a statistically significant decrease in perceived mental effort, and 

increase in performance as compared to students who did not receive pre-training. 

 Because recent CLT research strongly supports the use of ratings of mental effort 

as subjective measures of intrinsic cognitive load, and performance as objective measures 

of overall cognitive load, pre-training appeared to successfully manage the intrinsic 

cognitive load of students in the pre-training group (Ayres, 2006; Paas & Van 

Merriënboer, 1993, 1994). However, because Sweller (2005) notes that the three facets of 

cognitive load (extraneous, germane and intrinsic) are additive, extrapolating changes in 

mental effort and performance to changes in intrinsic cognitive load requires successful 

control of extraneous and germane load.   

 Although survey item response on the pre and post-test showed no significant 

difference in extraneous cognitive load between groups, using difficulty ratings 

developed by DeLeeuw and Mayer (2008) to assess germane cognitive load, showed a 

statistically significant decrease in difficulty for the pre-training group. Despite control of 

the learning environment and materials by the researcher, this result, in the context of the 

additive nature of cognitive load, brings the direct connection between pre-training and 

intrinsic cognitive load into question.  
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 As expected, it was found that despite between group differences, both groups had 

statistically significant within group changes in mental effort and performance from pre 

to post-test. None of the students in either the pre-training or the no pre-training group 

had received any instruction in chemical equilibrium prior to the study. Additionally, no 

significant differences in between group chemical equilibrium prior knowledge at the 

onset of the study were observed. Thus, it can be concluded that through a CLT lens, 

even without pre-training, after instruction, both groups formed enough partial schema to 

successfully negotiate the complexity of chemical equilibrium and demonstrate improved 

performance and decreased mental effort.  

 Another key finding of this study was a statistically significant negative 

correlation between intrinsic cognitive load and performance, as measured by ratings of 

mental effort, across all students on the Chemical Equilibrium Concept Assessment post-

test. Because only mental effort is directly linked to intrinsic cognitive load in the CLT 

literature, objective performance measures only approximate, at best, intrinsic cognitive 

load when extraneous and germane cognitive load are controlled. A significant negative 

correlation between ratings of mental effort and performance strengthens the argument 

that changes in performance are a result of the pre-training intervention.   

Implications 

 The implications of the current study are discussed in two parts. First, research 

implications, specifically in the field of intrinsic cognitive load management, are 

discussed. Second, educational implications regarding pre-training as an intrinsic 

cognitive load management technique, and screencasting as a multimedia learning 

intervention, are outlined.  
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Research Implications  

 The current study suggests that there is a relationship between pre-training and 

intrinsic cognitive load. This observation supports conclusions in the CLT research that 

pre-training helps learners chunk multiple interacting elements into smaller units, thus 

decreasing the overall intrinsic cognitive load of the material (Ayres, 2006). Moreover, 

results from this study support literature collected by Pollock et al. (2002), van 

Merriënboer et al. (2003), Gerjets et al. (2004), and Ayres (2006), that pre-training is an 

effective intrinsic cognitive load management technique. With respect to method of pre-

training used in the current study, results corroborate additional conclusions made by van 

Merriënboer et al. (2003) and Gerjets et al. (2004) that whole-task sequencing, a form of 

pre-training where learners are exposed to a simplified, but holistic pre-training 

experience, is beneficial in complex learning environments such as the chemistry 

classroom (Ginns, 2005).  

 Given the complexity of learning chemistry noted in the literature, specifically 

chemical equilibrium, further efficacy research is needed that assesses the potential 

benefits of pre-training as a tool to help students negotiate the high intrinsic cognitive 

load the topic presents (Banerjee, 1995; Hackling and Garnett, 1985). Specifically, given 

the significant change in germane cognitive load observed in the pre-raining group, there 

is a need for research that intentionally, and systematically, monitors intrinsic cognitive 

load in the context of extraneous and germane load. Given the additive nature of 

extraneous, intrinsic and germane cognitive load, the measurement of intrinsic load relies 

heavily on controlling the other two cognitive load variables (Sweller, 2005). Further 

research must emphasize the need to intentionally see cognitive load management as a 
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sum of its parts in order for results, such as those observed in the current study, to 

accurately challenge the assumption that intrinsic cognitive load can not be altered by the 

instructor.   

 The methodology of the current study involved one group receiving a short multi-

media pre-training intervention prior to a lecture of the basic concepts of chemical 

equilibrium. The pre-training protocol adopted in the current study represents a merger 

between Mayer’s (2005a) approach and the van Merriënboer et al. (2003) method of pre-

raining. Mayer’s pre-training involves short instructional sequences where learners are 

exposed to the names and basic characteristics of a specific instructional topic. Although 

similar in function, the van Merriënboer et al. approach relies heavily on schema 

formation via exposing students to the overarching principles and concepts of a lesson, 

rather than simply the names and basic characteristics intrinsic to Mayer’s format. Given 

their similarities and differences, research is needed that intentionally compares the 

efficacy of both approaches to pre-training in complex learning environments such as 

chemistry. 

 Although the CLT literature notes a strong connection between pre-training and 

intrinsic cognitive load management via schema formation, an alternative explanation for 

decreased mental effort and increased performance is increased instructional time. From 

strictly a time perspective, the pre-training group received a 10 minute and 52 second 

pre-training phase along with a 50 minute instructional phase, yielding 60 minutes and 42 

seconds of overall instruction. The no pre-training group received only 50 minutes of 

instruction. Further research is needed to more critically analyze pre-training in the 

context of instructional time. For example, instructional time could be controlled by 
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offering the no pre-training group a chance to review the material for 10 minutes and 52 

seconds after the lecture and prior to the post-test. This intervention could lend insight 

into whether or not building prior-knowledge, and schema before a lesson is more 

effective at managing overall element interactivity than simply increasing overall 

instructional time.  

 Although not directly connected to pre-training, a further research implication 

involves the general use of screencasting as multimedia learning tool. Given the lack of 

multimedia learning literature, more research is needed that examines potential benefits 

and various applications of screencasts in education, specifically chemistry. Moreover, 

the ability to record instructor audio narrations and any on-screen visual activity aligns 

well with past research into other intrinsic cognitive load management techniques such as 

managing modality, user control, personalization and voice (Mayer, 2005a). Specific to 

the current study, the above implication is directly tied to Mayer’s (2005c) call for more 

research on the effects of using multimedia in a chemistry learning environment.  

Educational Implications  

 Instructional methods to help students learn complex subjects are suggested as a 

result of this study. Because chemistry, specifically chemical equilibrium, is identified as 

being highly complex, the results of this study are very applicable to chemistry 

instructors whose curriculum includes coverage of chemical equilibrium (Banerjee, 1995; 

Ginns, 2005; Tai, et al., 2006; Wandersee et al., 1994). Given the population of the 

current study, implications are appropriate for teachers of advanced secondary school 

chemistry instructors. Two instructional strategies that show particular promise are 

discussed in this section.  
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 The first strategy is the form of pre-training discussed in the current study that 

incorporates Mayer’s (2005a) definition of pre-training where students receive exposure 

to the basic definitions and key terms prior to instruction, and the van Merriënboer et al. 

(2003, 2006) holistic whole-task sequencing instructional sequencing approach. In 

simpler learning environments, an isolated-elements approach suggested by Pollock et al. 

(2002), where elements are independently assimilated prior to discussing their 

interactions, is effective. However, van Merriënboer et al. (2003, 2006), argues that, 

while an isolated-elements approach might be successful in some knowledge domains, 

the integrated nature of complex learning tasks, such as with chemical equilibrium 

problems, requires an incorporated rather than fragmented approach. Results from the 

current study suggest that using a brief, whole-task pre-training method, where students 

are exposed to the basic definitions and key concepts, significantly impacts student 

performance and mental effort.  

 The second strategy is the use of screencasting. Screencasts, video recordings of 

all on-screen computer activity, were used as the medium for pre-training in the current 

study (Richardson, 2009). Screncasts can be distributed and cataloged online, and 

reviewed any number of times by students. Given the efficient means of sharing 

screencasts, pre-training can take place in variety of settings, in-line with current 

movements in technology, society and education (Richardson, 2009). Moreover, the 

ability to continuously revisit topics that require a high level of algorithmic problem 

solving is a major educational benefit (Franciszkowicz, 2009; Richardson, 2009). 

Cognitive benefits of screencasting that transcend pre-training include the inclusion of 

native instructor voice and hand writing (if digital annotation is incorporated), both 



 102 

proven to be sensitive to the working memory architecture described by Mayer’s  (2001) 

CTML.  

Summary 

 The purpose of this study was to examine the effects of pre-training on the 

intrinsic cognitive load of chemical equilibrium instruction on advanced high school 

chemistry students. To measure the dependent variable, intrinsic cognitive load, mental 

effort and performance were measured in the context of extraneous and germane 

cognitive load, to assess a causal relationship with pre-training, the independent variable.  

 The current study showed that there was a significant relationship between pre-

training and intrinsic cognitive load. With respect to the two measures of the dependent 

variable, the most statistically significant relationship was between pre-training and 

mental effort. The effect size for the relationship between pre-training and mental effort, 

as measured by Cohen’s d, was 1.36.  

 The current study confirmed recent movements in CLT research that identify pre-

training as an effective intrinsic cognitive load management method (Ayres, 2006).  This 

study adds to the current research by extending the analysis to the field of chemistry, a 

subject noted in both the CLT, and chemistry education literature, as having particularly 

high intrinsic cognitive load (Ginns, 2005; Tai, et al., 2006). Moreover, the current study 

adds to the multimedia learning research by assessing the efficacy of using screencasts as 

multimedia tools in the classroom (Mayer, 2005c).  

 The implications of this study are related to research and classroom instruction. 

Additional research that continues to challenge the assumption that intrinsic cognitive 

load is a static component of overall cognitive load, should be conducted. Specifically, 
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research must take into account the additive nature of cognitive load, assuring that 

measurement techniques used to monitor intrinsic cognitive load management are 

accurate and causal (Sweller, 2005).  

 With respect to the method of pre-training, added research is needed that more 

intentionally examines the difference between Mayer’s (2005a) more general approach of 

providing learners with only names and characteristics, and the van Merriënboer et al. 

(2003, 2006) over-arching, more holistic, approach to pre-training. Moreover, efficacy 

research that critically assess the effects of pre-training in the context of instructional 

time is needed to strengthen the argument that pre-training is indeed responsible for the 

significant decrease in mental effort and increase in performance observed. Finally, 

chemistry educators are encouraged to use screencasting as an instructional technique to 

help students interact with, and negotiate through, the complexities innate to the subject. 
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February 1, 2010 
 
Institutional Review Board for the Protection of Human Subjects 
University of San Francisco 
2130 Fulton Street 
San Francisco, CA 94117 
 
Dear Members of the Committee: 
 
On behalf of the Sacred Heart Cathedral Preparatory, I am writing to formally indicate 
our awareness of the research proposed by Mr. Ramsey Musallam, a student at USF. We 
are aware that Mr. Musallam intends to conduct his research by administering two total 
assessments to our students. The assessments will be administered to a group of 60 
Advanced Placement Chemistry students. 
 
I am responsible for all students at Sacred Heart Cathedral Preparatory and am the 
Principal of the institution. I give Mr. Musallam permission to conduct his research at our 
academic institution. 
 
If you have any questions or concerns, please feel free to contact my office at (415) 775-
6626.   
 
Sincerely,     
 
 
 
Ken Hogarty 
Principal, Sacred Heart Cathedral Preparatory 
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INFORMED CONSENT FORM 
UNIVERSITY OF SAN FRANCISCO 

 
CONSENT TO BE A RESEARCH SUBJECT 

 

Purpose and Background 

Ramsey Musallam, a doctoral student, in the School of Education at the University of San 
Francisco is doing a study on Cognitive Load Theory in high school chemistry. The 
chemistry education literature indicates that the subject is complex for students and that 
performance and interest in chemistry are low. I am being asked to participate because I 
am an Advanced Placement high school chemistry student. 

Procedures 

If I agree to be a participant in this study, the following will happen: 

1. I will complete a 10-question multiple-choice pre-test 

2. I will participate in one of two 10-minute research groups 

3.  I will participate in a 45-minute chemistry lecture  

4. I will complete a 10-question multiple-choice post test. 

5. After procedural steps 1, 2, 3 and 4, I will answer a 3 survey Cognitive Load survey 
questions. 

Risks and/or Discomforts 

1. It is possible that some of the questions on the pre and post-test will appear beyond 
my abilities in the subject of chemistry and could impact my perceived sense of 
confidence and self-worth in the class. I am free to decline to answer any 
questions I do not wish to answer or to stop participation at any time.  

2. Participation in research may mean a loss of confidentiality. Student records will be 
kept confidential. No individual identities will be used in any reports or 
publications resulting from the study. Study information will be coded and kept in 
locked files at all times. Only study personnel will have access to the files. 
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Benefits 

There will be no direct benefit to me for participating in this study. The anticipated 
benefit of this study is a better understanding of how to manage Cognitive Load in 
chemistry education.  

Costs/Financial Considerations 

There will be no financial costs to me as a result of taking part in this study. 

Payment/Reimbursement 

There will be no payment or reimbursement for me as a result of taking part in this study. 

Questions 

I have talked to Mr. Musallam about this study and have had  my questions answered. If I 
have further questions about the study, I may call him  at (415) 775-6626 x 808.  If I have 
any more questions or comments about participation in this study, I should first talk with 
the researcher, Mr. Musallam. If for some reason I do not wish to do this, I may contact 
 the IRBPHS, which is concerned with protection of volunteers in research projects. I 
may reach the IRBPHS office by calling (415) 422-6091 and leaving a voicemail 
message, by e-mailing IRBPHS@usfca.edu, or by writing to the  IRBPHS, Department of 
Psychology, University of San Francisco, 2130 Fulton  Street, San Francisco, CA 94117-
1080. 

Consent 

I have been given a copy of the "Research Subject's Bill of Rights" and I have  been 
given a copy of this consent form to keep. PARTICIPATION IN RESEARCH IS 
VOLUNTARY. I am free to decline to be  in this study, or to withdraw from it at any 
point. My decision as to whether or not  to participate in this study will have no influence 
on my present or future status as a student at Sacred Heart Cathedral Preparatory 

My signature below indicates that I agree to participate in this study. 

________________________________________________________________________ 

Subject's Signature                                                                                     Date of Signature 
 
________________________________________________________________________
Signature of Person Obtaining Consent                                                     Date of Signature 
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PARENTAL CONSENT FOR RESEARCH PARTICIPATION 
 
 
Purpose and Background 

Ramsey Musallam, a doctoral student, in the School of Education at the University of San 
Francisco is doing a study on Cognitive Load Theory in high school chemistry. The 
chemistry education literature indicates that the subject is complex for students and that 
performance and interest in chemistry are low. My child is being asked to participate 
because he/she is an Advanced Placement high school chemistry student. 

Procedures 

If my child agrees to be a participant in this study, the following will happen: 

1. My child will complete a 10-question multiple-choice pre-test 

2. My child will participate in one of two 10-minute research groups 

3. My child will participate in a 45-minute chemistry lecture  

4. My child will complete a 10-question multiple-choice post test. 

5. After procedural steps 1, 2, 3 and 4, my child will answer a 3 survey Cognitive Load 
survey questions. 

Risks and/or Discomforts 

1. It is possible that some of the questions on the pre and post-test will appear beyond 
my child’s abilities in the subject of chemistry and could impact my child’s 
perceived sense of confidence and self-worth in the class. My child is free to 
decline to answer any questions he/she does not wish to answer or to stop 
participation at any time.  

2. Participation in research may mean a loss of confidentiality. Student records will be 
kept confidential. No individual identities will be used in any reports or 
publications resulting from the study. Study information will be coded and kept in 
locked files at all times. Only study personnel will have access to the files. 

Benefits 

There will be no direct benefit to my child for participating in this study. The anticipated 
benefit of this study is a better understanding of how to manage Cognitive Load in 
chemistry education.  



 121 

Costs/Financial Considerations 

There will be no financial costs to my child as a result of taking part in this study. 

Payment/Reimbursement 

There will be no payment or reimbursement for my child as a result of taking part in this 
study. 

Questions 

If I have further questions about the study, I may call him  at (415) 775-6626 x 808.  If I 
have any more questions or comments about participation in this study, I should first talk 
with the researcher, Mr. Musallam. If for some reason I do not wish to do this, I may 
contact  the IRBPHS, which is concerned with protection of volunteers in research 
projects. I may reach the IRBPHS office by calling (415) 422-6091 and leaving a 
voicemail message, by e-mailing IRBPHS@usfca.edu, or by writing to the  IRBPHS, 
Department of Psychology, University of San Francisco, 2130 Fulton  Street, San 
Francisco, CA 94117-1080. 

Consent 

My child has been given a copy of the "Research Subject's Bill of Rights" and has also 
been given a copy of this consent form to keep. PARTICIPATION IN RESEARCH IS 
VOLUNTARY. My child is free to decline to be in this study, or to withdraw from it at 
any point. My child’s decision as to whether or not  to participate in this study will have 
no influence on his/her present or future status as a student at Sacred Heart Cathedral 
Preparatory 

My signature below indicates that I agree to allow my child to participate in this study. 

________________________________________________________________________ 

Parent/Guardian’s  Signature                                                                     Date of Signature 
 
 
________________________________________________________________________ 

Signature of Person Obtaining Consent                                                     Date of Signature 
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Dear Advanced Placement Chemistry Student:  
 
My name is Ramsey Musallam and I am a doctoral student in the School of Education at 
the University of San Francisco. I am doing a study on Cognitive Load Theory in 
Advanced Placement chemistry. I am interested in learning how to decrease the 
complexity of chemistry education using multimedia. The principal of Sacred Heart 
Cathedral Preparatory has given me permission to conduct this study.  
 
You are being asked to participate in this research study because your presence in 
Advanced Placement means that you are an advanced chemistry student. If you agree to 
participate in this study, you will complete a 14 question pre-test. You will then be 
randomly assigned to one of two research groups and then you will report to a classroom, 
where I will deliver a 50-minute in-depth chemistry. After the lecture, you will complete 
a 14 question post-test. After the pre/post tests, research treatment and lecture, you will 
answer the 3 survey questions about Cognitive Load.  
 
It is possible that some of the questions on the pre/post tests will appear beyond your 
abilities in the subject of chemistry and could impact your perceived sense of confidence 
and self-worth in the class. You are free to decline to answer any questions you do not 
wish to answer or to stop participation at any time. Participation in research may mean a 
loss of confidentiality. Student records will be kept as confidential as possible. No 
individual identities will be used in any reports or publications resulting from the study. 
Study information will be coded and kept in locked files at all times. Only the lead 
researcher (myself) will have access to the files. Individual results will not be shared with 
any other students, faculty or staff at Sacred Heart Cathedral Preparatory. 

While there are no direct benefits to you for participating in this study, the anticipated 
benefit of this study is a better understanding of how to manage the Cognitive Load of 
chemistry education. There will be no costs to you as a result of taking part in this study.  

If you have questions about the research, you may contact me at (415) 775-6626 x808. If 
you have further questions about the study, you may contact the IRBPHS at the 
University of San Francisco, which is concerned with protection of volunteers in research 
projects. You may reach the IRBPHS office by calling (415) 422-6091 and leaving a 
voicemail message, by e-mailing IRBPHS@usfca.edu, or by writing to the IRBPHS, 
Department of Psychology, University of San Francisco, 2130 Fulton Street, San 
Francisco, CA 94117-1080.   
 
PARTICIPATION IN RESEARCH IS VOLUNTARY. You are free to decline to be in 
this study, or to withdraw from it at any point. Sacred Heart Cathedral Preparatory is 
aware of this study but does not require that you participate in this research and your 
decision as to whether or not to participate will have no influence on your present or 
future status as an Honors Chemistry student at Sacred Heart Cathedral Preparatory 
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Thank you for your attention. If you agree to participate, please complete the attached 
consent form, ask a parent or guardian to complete the attached consent form, and return 
both to me in the envelope provided.  
 
Sincerely, 
    
 
Ramsey Musallam 
Learning and Instruction Doctoral Student  
University of San Francisco 
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 126 

Number______ 
 

Chemical Equilibrium Concept Assessment          
(Banerjee, 1991; Hackling & Garnett, 1985) 

 
 
Questions 1-4 relate to the same reaction shown below. Circle your mental effort rating 
after each question: 

2NO (g) + Cl2 (g) !" 2NOCl (g) 
 

1. After equilibrium has been established, the concentration of NO is 
instantaneously increased, but the volume and temperature remain constant. When 
the concentration of NO is increased, the rate of the forward reaction will 
instantaneously be:  

 
(A) equal to the rate of the reverse reaction  
(B) greater than the rate of the reverse reaction 
(C) less than the rate of the reverse reaction 

 
  
  
 

2NO (g) + Cl2 (g) !" 2NOCl (g) 
 

2. After equilibrium has been established, the concentration of NO is 
instantaneously increased, but the volume and temperature remain constant. When 
the concentration of NO is increased, the rates of the forward and reverse reaction 
will be instantaneously be:  

 
(A) equal to those at the initial equilibrium 
(B) greater than those at the initial equilibrium 
(C) less than at the initial equilibrium 

  
 
 

 
2NO (g) + Cl2 (g) !" 2NOCl (g) 

 
3. After equilibrium has been achieved a catalyst is added to the system but other 

variables remain unchanged. The rate of the forward reaction will be:  
 
(A) equal to the rate of the reverse reaction 
(B) greater than the rate of the reverse reaction  
(C) less than the rate of the reverse reaction 
(D) either greater or less than the rate of the reverse reaction depending on 

whether the catalyst favors the forward or reverse reaction.  
 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 
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2NO (g) + Cl2 (g) !" 2NOCl (g) 
 

4. After equilibrium has been achieved a catalyst is added to the system but other 
variables remain unchanged. The concentration of Cl2 will be:  
  
(A) less than at the initial equilibrium 
(B) equal to that at the initial equilibrium 
(C) greater than that at the initial equilibrium 
(D) greater or less than at the initial equilibrium depending of the effect of the 

catalyst.  
 

 
 
 
 
 

________________________________________________________________________ 
 
 
 
 

Questions 5-7 relate to the same reaction shown below. Each answer is to be given as A: 
greater than; B: less than; C: same as the first equilibrium; D: data insufficient for 
conclusion. Circle your mental effort rating after each question: 
 
 

2CO (g) + Cl2 (g) !" COCl2 (g)   +   heat 
 

5. The mixture is cooled to 150oC, keeping the volume constant. When the system 
returns to another equilibrium, 

 
(A) the mass of COCl2 present will be _____ 

 
 
 

(B) the rate at which COCl2 is being formed will be____ 
 
 
 

(C) the equilibrium constant will be ____ 
 

 
 
 
 
 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 
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2CO (g) + Cl2 (g) !" COCl2 (g)   +   heat 
 

6. The volume of the system is halved by increasing pressure at constant 
temperature. When the system returns to another equilibrium,  

 
(A) the mass of COCl2 present will be _____ 

 
 
 

(B) the concentration of COCl2 present will be____ 
 
 
 

(C) the mass of CO present will be ____ 
 
 
 

(D) the concentration of CO present will be____ 
 

 
 
 
 

2CO (g) + Cl2 (g) !" COCl2 (g)   +   heat 
 

7. Some Cl2 is removed form the system, the volume and temperature being kept 
constant. When the system returns to another equilibrium,  

 
(A) the mass of CO will be _____ 

 
 
 

(B) the equilibrium constant will be____ 
 
 
 

(C) the rate at which CO is being formed will be ____ 
 
 
 

 
 
 

 
 
 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 

Mental Effort: Very Little Little Moderate Large Very Large 
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Please answer the two survey questions below:  
 
 
 1.  How easy or difficult is it for you to understand chemical equilibrium at this  
      moment? 
 
  1 2 3 4 5 6 7 8 9 
 
             Very Easy              Very Difficult  
 
 
 
 
 2.   How easy or difficult is it for you to work in this learning environment at this  
       moment?  
 
  1 2 3 4 5 6 7 8 9 
 
             Very Easy              Very Difficult  
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Pre and Post-Test Phase 
 

 “This test consists of 7 multiple choice questions. Questions 1-4 have one correct 
answer. Questions 5-7 contain three separate questions, each with one correct answer. 
Please take this time to read the instructions for questions 1-4 and 5-7. Are there any 
questions? After each question, you will be asked to rank the mental effort spent on that 
question. Think of mental effort as how “hard” you have to think to solve each question. 
A question with high mental effort requires a lot of thought, and a question with low 
mental effort is one you can answer fairly quickly and does not require as much thought. 
Do you have any questions on what “mental effort” is? Mental effort will be ranked 
according to the following scale:  
 

Very little 
Little 
Moderate amounts 
Large amounts 
Very large amounts 
 

When you finish all 7 questions, you will be asked to answer two survey questions on a 
9-point scale. Please take a few moments to read the instructions for the survey questions. 
For question 2, “learning environment” refers to the classroom atmosphere, how easy it is 
for you to understand the format of the survey, and other factors that relate not to 
chemistry, but to the materials and environment you are using. Does anybody have any 
questions? You may use pen or pencil to record your answers. You are allowed to write 
anywhere on the test. Your score on this test is purely confidential, and will not alter your 
grade in Advanced Placement Chemistry. When you are done, please leave your test face 
down on your desk, and I will come collect it from each of your individually.” 
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Treatment Phase 
 

Screencast Pre-Training Group 
 
 “A screencast is a video recording of all computer screen activity, including 
voice, mouse clicks, and in this case, digital pen annotation. I have created a short 
screencast tutorial for you to watch. You will have 10 minutes and 52 seconds to watch 
the screencast to learn as much as you can about the subject presented. Please do not take 
notes during the screencast. During the allotted time, you are not allowed to visit any 
other programs, or applications on the computer. Please click on the desktop icon titled 
screencast pre-training. When I tell you to begin, you will plug in your earphones to the 
sound jack, and begin to watch the screencast. During the screencast you may increase or 
decrease the size of the video to suit your liking. You may also pause, or rewind the 
video, or parts of the video as many times as you like. Any questions? When you finish 
watching the screencast, you will be prompted to answer two survey questions on a 9-
point scale. Please take this time to read the instructions for the survey questions. Are 
there any questions? Please begin.” 
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Instructional Phase 
 

 “For the next 50 minutes, I will be giving an in-depth lecture on the basic 
concepts of chemical equilibrium. During the lecture, you may take notes on the scratch 
paper provided. You may ask clarifying questions, and may let me know if you need 
extra time to write down content before I move on. When you are done, you will be given 
a 14-question test on chemical equilibrium. This test consists of 7 multiple choice 
questions. Questions 1-4 have one correct answer. Questions 5-7 contain three separate 
questions, each with one correct answer. Please take this time to read the instructions for 
questions 1-4 and 5-7. Are there any questions? After each question, you will be asked to 
rank the mental effort spent on that question. Think of mental effort as how “hard” you 
have to think to solve each question. A question with high mental effort requires a lot of 
thought, and a question with low mental effort is one you can answer fairly quickly and 
does not require as much thought. Do you have any questions on what “mental effort” is? 
Mental effort will be ranked according to the following scale:  
 

Very little 
Little 
Moderate amounts 
Large amounts 
Very large amounts 
 

When you finish all 7 questions, you will be asked to answer two survey questions on a 
9-point scale. Please take a few moments to read the instructions for the survey questions. 
For question 2, “learning environment” refers to the classroom atmosphere, how easy it is 
for you to understand the format of the survey, and other factors that relate not to 
chemistry, but to the materials and environment you are using. Does anybody have any 
questions? You may use pen or pencil to record your answers. You are allowed to write 
anywhere on the test. Your score on this test is purely confidential, and will not alter your 
grade in Advanced Placement Chemistry. When you are done, please leave your test face 
down on your desk, and I will come collect it from each of your individually. Let’s begin 
the lecture.”  
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Screencast Pre-Training Materials 
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Screencast Pre-Training Document Template 
 
Key Definitions  
 
Chemical Reaction  
 
  
 
 
 
Reaction Rate 
 
  
 
 
 
Chemical Equilibrium 
 
 
 
 
 
Equilibrium Shift/Le Chatelier’s Principle 
 
  
 
 
 
 
Equilibrium Constant (K) 
 
  
 
  
 
  
Factors That Affect Chemical Equilibrium (Zumdahl, 2007) 
 
Concentration Effects 
 
Temperature Effects 
 
Pressure/Volume Effects 
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Screenshots of Pre-Training Screencast 
 

 
 
1 minute and 23 second mark 
 

 
 
 
 
 
 
2 minute and 27 second mark 
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3 minute and 48 second mark 
 

 
 
 
 
 
 
 

4 minute and 52 second mark 
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6 minute and 46 second mark 
 

 
 
 
 
 
 
 

7 minute and 51 second mark 
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9 minute and 23 second mark 
 

 
 
 
 
 
 

10 minute and 52 second mark 
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Screencast Web Address 
 

To view the pre-training screencast enter the below URL into your Internet browser: 
 

http://www.vimeo.com/10362131 
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Appendix G 
 

Instructional Slides 
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Empty spaces on each slide was used for digital pen annotation during the lecture.  
 

 
 
 
 

 
 
 
 
  
 



 143 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2010

	The effects of using screencasting as a multimedia pre-training tool to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students
	Ramsey Musallam
	Recommended Citation


	tmp.1518130446.pdf.VpAtx

