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Abstract 

Buildings are amongst the highest energy consumers relative to industry and transportation. 

They account for 40% of the world’s energy consumption, due to the need of lighting, 

equipment, heating, cooling and ventilation.   Academic buildings are multi-purpose 

buildings that create a challenge on energy reduction. Most are old and have fixed occupancy 

schedules, resulting in high energy consumption because these buildings experience 

significant occupancy variation throughout the day. Five academic buildings were analyzed; 

their building information, energy consumption data and methods to project energy savings 

have been analyzed. The case studies presented different strategies on predicting energy 

savings, but these have been deduced to their commonalities: the black box, white box and 

grey box models.  The black box is a data driven approach, the white box is a physics based 

approach and the grey box is a hybrid between the black box and the white box.  Control 

strategies include the usage of occupancy sensors to ensure building energy usage is directly 

proportional to building occupancy density and that the energy is not wasted on an empty 

building.  An application approach to University of San Francisco was also developed.  The 

active energy retrofits for University of San Francisco have been mentioned and explored by 

following the black box, white box and grey box model methodology.  Findings from the 

case studies discovered that occupant behavior can be a barrier to energy reduction as 

occupants are driven by maintaining personal comfort and are usually detached to energy 

usage consequences. For this matter awareness campaigns such as surveys and educational 

campaigns need to be implemented to help achieve higher building efficiency and thus lower 

energy consumption. If all academic buildings in the United States committed to a 5% energy 

reduction, then over 2 billion kWh could be saved annually.    
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Introduction 

The economy in the United States is growing (Pérez-Lombard et al., 2008) and so are 

the amount of buildings. According to the U.S. Department of Energy (2008) between the 

years 1980 and 2005, the amount of commercial buildings has doubled; these building and 

economic development has an impact on energy consumption (Pérez-Lombard et al., 2008). 

There are multiple categories within the commercial buildings with academic buildings 

accounting for 11% (Figure 1) of the total floor space and energy usage (DOE, 2008).    

 

Figure 1 Commercial building types: Floor space, number and energy consumption.  The six largest sectors are the office 

sector, the mercantile sector, the educational sector, the health care sector and the lodging and warehouse sector (DOE 

2008). 

Buildings are responsible for 30-45% of the global energy demand (Gul & Patridar, 2015) 

with 60% of this energy accounting for lights, heating and cooling use (IEA, 2013). 

Moreover, commercial and educational buildings consume more than 19% of all energy 

annually in the United States (DOE, 2011).   
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Academic buildings are one of the major targets for energy reduction.  Because most 

of these buildings are not a primary residence, occupants do not pay bills, they are not 

considerate on how to manage their energy usage. The Natural Resources Canada and U.S. 

Energy Information Administration (2003) states that in a typical academic building, 31% of 

the energy consumption comes from lighting and 28% from heating and cooling (see Figure 

2).   According to multiple studies, existing universities have the potential to reduce their 

energy consumption by 6-29% (Chung & Rhee, 2014).   

Building function depends on the different needs of building occupants and how they 

interact with the building itself (Hillier et al., 1984).  Office and residential buildings have a 

defined purpose, work and living respectively. However, academic buildings are considered 

multipurpose buildings with variable occupancy profiles due to the multi-function nature of 

the buildings.  An occupancy profile is defined by Rubinstein et al. as the probability that a 

space will be occupied for every hour of the day.   This is why academic buildings are 

classified amongst the buildings that present the highest energy consumption (Chung & 

Rhee, 2014).  Because of the high energy consumption in academic buildings, the European 

Energy Performance of Buildings Directive (EPBD) has placed a high demand on building 

professionals to produce buildings to near-zero energy levels (Gul & Patidar, 2015). 

To conserve energy in academic buildings and commercial buildings, it is important 

to have a dynamic interaction between the occupants and the building itself; this interaction 

will allow for a more sustainable building design (Yan et al., 2015).  Conservation of energy 

will not only reduce energy cost for the buildings themselves, but will also reduce fossil fuels 

consumption. The Natural Resources Canada and U.S. Energy Information Administration 

(2003) suggest that academic buildings spend an average of $1.10 per square foot on 

electricity and 18 cents per square foot on natural gas annually. The IPCC, Climate Change 

(2007) states that 1/3 of fossil fuel consumption is derived from buildings.  Fossil fuels are a 

problem because they have been the world’s primary energy source and responsible of 

fueling the United States for decades. These fossil fuels burn to produce electricity producing 

CO2 which gets trapped in the atmosphere causing global warming and therefore climate 

change. The Environmental and Energy Study Institute (2016) mentions that the 

Environmental Protection Agency states that the burning of fossil fuels has been responsible 

for 79% of the greenhouse gas emissions in 2010.   
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For this paper, I will evaluate what strategies can be utilized to decrease energy 

consumption in academic buildings. Amongst these strategies I will discuss occupancy 

scheduling, which is utilizing occupancy profiles and occupancy sensors to model an energy 

efficient schedule for academic buildings.   To do so, this paper will first explore how 

academic buildings consume energy and focus on the areas of high energy usage: lights, 

heating, ventilation and air conditioning (HVAC). Next the paper will explore how lights and 

HVAC consume energy and what it is that makes them draw so much power.  Occupancy is 

important because academic building are multipurpose buildings with high occupancy 

variability where occupant behavior can contribute to poor usage of buildings increasing 

energy consumption. Building occupancy and the various occupancy controls available in the 

market will then be evaluated by analyzing their advantages and disadvantages that are 

specifically directed to the academic sector.  

A case study approach will be used and five case studies will be examined: (1) 

Daycares and schools in Finland (Sekki et al., 2015); (2) University of California Berkeley 

(Granderson et al., 2010); (3) A University in Singapore (Yang et al., 2015); (4) University 

of California Merced (Narayanan et al., 2010) and (5) University of Edinburgh in Scotland 

(Gul & Patridar, 2014) where the importance of occupancy variability, visualization tools and 

collection of empirical data has been established.  Yang et al. (2015) developed the black 

box, white box and grey box model to predict energy consumption, while Granderson et al. 

(2010) adapted this model to calculate predictive values of energy consumption at University 

of California Merced and Gul and Patridar (2015), explored the barriers to the predictive 

model theory.  These case studies have utilized various occupancy sensors application 

approaches as well as the creation of occupancy schedules for their respective academic 

buildings which have all resulted in significant energy reduction.  

Next, the focus will be an application approach to what University of San Francisco is 

doing to improve energy efficiency on their campus.  Based on the case studies analyzed, 

there is a wide variety of effective strategies that show that energy reduction is possible.  I 

wanted to allow for this application approach to show how energy efficiency works in a 

university where people are aware of their energy consumption and what other measures they 

can take to take this energy efficiency and building sustainability to the next level. The case 

study findings were then compared to the energy improvements already in place and an 
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evaluation of how the black box, white box and grey box predictive model would affect 

University of San Francisco’s campus.  Finally, I will give management recommendations on 

how academic buildings can move forward with a more sustainable building design that 

incorporates building and user functions.  

Energy consumption in buildings  

Academic buildings main source of energy consumption are lights, HVAC and plug 

load (Figure 2). In this section each source of energy consumption will be discussed and what 

specifics need to be taken into consideration when designers and managers are designing 

buildings to provide enough visual and thermal comfort for building occupants.  

 

 

Figure 2: Information from the Natural Resources Canada and U.S. Energy Information Administration. This pie chart 

shows the energy consumption in academic buildings.  It also emphasizes on the three areas that will be evaluated 

throughout this paper.  
 

Regulations 

When academic buildings are built, there are certain standards and regulatory codes 

that need to be met.  These building energy codes are minimum requirements for new or 

renovated buildings that consist of a baseline of requirements. These requirements apply to 

the building envelope and the built in equipment used.  There are two entities that determine 
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these codes:  the International Energy Conservation Code and the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 

The International Energy Conservation Code establishes a minimum design, and 

construction requirement for energy efficiency (Turner, 2004) while the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is in charge of the 

improvement of indoor environment control technology in the heating, ventilation and air 

conditioning (HVAC) industry (ASHRAE, 2016).  The ASHRAE guidelines for temperature, 

indoor air quality and ventilation in academic buildings are the following: 15 cubic feet per 

minute (CFM) per student (Starr, 1999).  This becomes a complex problem because 

academic buildings that were built prior to 1981 had a different ASHRAE regulation (5 

cfm/student) so when retrofitting an old academic building, following the new ASHRAE 

regulations is important.  ASHRAE also states that a room that has been designed to be over 

100 sq. ft. and has been designed for 8 or more people needs to have demand controlled 

ventilation.  Demand control ventilation is a method of measurement that approximates the 

number of people that occupy a space and allows the intake rates to be reset based on the 

indicated occupancy.  This will allow to optimize the rate of outside air intake to something 

less than the maximum capacity (Automated buildings, 2001).   

Buildings also have to keep the building occupants feeling comfortable and at ease.  

To achieve this, it is necessary to feel comfortable with your surroundings.  This includes 

thermal comfort, visual comfort and safety.  The more comfortable a person feels, the more 

productive they will be.   
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Lights  

According to the EIA the commercial sector, which includes academic buildings, 

consumed approximately 262 billion kWh or approximately 19% of energy in the year 2014 

(EIA, 2016). There are different types of lights and they all have different effects on energy 

consumption.  These light bulbs have a rated operating life which is affected by how many 

times they are turned on and off (DOE, 2016).  There are various types of light bulbs 

available in the market:  (1) incandescent bulbs; (2) halogen lights; (3) compact fluorescent 

lamps (CFL) and (4) light emitting diode (LED) lights.   

 Incandescent lights are the most energy wasteful of all; 90% of the energy they use is 

given off as heat and therefore only 10% is emitted as light (DOE, 2015).  This means that 

the incandescent bulb is working as a source of heat production in the room, consequently 

increasing the need for cooling in that room.  These types of light bulbs are more common in 

residential buildings. Halogen bulbs have a similar technology to incandescent lights but are 

considered to be more efficient. These bulbs have an internal coating that reflects some of the 

heat produced back into the light bulb itself to recycle the wasted heat (DOE, 2016).  These 

bulbs are more expensive than incandescent bulbs but have a longer life.  Compact 

fluorescent lights are the next most efficient alternative, these bulbs have 2-3 times longer 

life span than incandescent lightbulbs.  These lights are the long tubes that we often see in 

commercial buildings.  The Department of Energy (2016) states that compact fluorescent 

lights consume 75% less energy than incandescent bulbs. Finally, the light emitting diode 

lights are the most efficient of the 4 classes of light bulbs presented.  They are also the most 

expensive of all four kinds but provide not only a much longer life span but also a more 

energy efficient approach.  Turning on and off these lights has no significant impact to the 

life of the bulb itself.  This type of bulb will have a full brightness as soon as it is turned on, 

unlike the other bulbs that need to warm up before they can fully shine. Please refer to table 1 

for a summary of each type of lightbulb.  
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Table 1:  Summary table of different light fixtures with data drawn from the Department of Energy. 

Type of light Benefits Disadvantages 

Incandescent - Light seems natural to the 

eye 

- Inexpensive 

- Intensity, direction and 

brightness is easy to control 

- Life span: 750 – 1,500 hrs 

- Intensity decreases with life 

span 

- Illegal in California new 

constructions; unless they 

have a dimmer  

Halogen - More efficient than 

incandescent light bulbs 

- Life span: approx. 3,000 hrs 

- Stable light output 

throughout bulb life span 

- Somewhat inefficient (20-

24 Lm/W) 

- Special sockets needed 

Compact 

fluorescent light 

- More efficient than halogen 

lamps 

- Life span: 6,000 – 20,000 hrs 

- Available in different color 

and color temperatures.  

- Artificial colored light 

- More expensive than 

incandescent 

- Life span affected by 

switching lights on and off 

Light emitting 

diode light  

- More efficient than compact 

fluorescent lights 

- Life span: 35,000 – 50,000 

hrs 

-  Intensity, direction and 

brightness is easy to control 

- Different colors available 

- New technology 

- Relatively expensive 

 

At University of Massachusetts Amherst, a re-lamping campaigned installed 1,100 

LED light bulbs across campus.  The re-lighting campaign is estimated to have 154,191 

annual kWh in savings (UMass website, 2016).  Moreover, University of Massachusetts 

Amherst established a partnership with NSTAR and Phillips Lighting, where LED light bulbs 

were purchased at a discounted rate so any lamps that students bring to the resident halls can 

be exchanged for an LED light bulb.  The total estimated savings for this resident hall re-

lamping campaign is 509,600 annual kWh (UMass website, 2016).  

Due to the nature of academic buildings, it is important that the occupants of these 

buildings meet their visual comfort needs. Visual comfort is related to the quality of light 

available (i.e., when an occupant can see clearly without feeling tired or having to squint and 

there is minimal glare present).  Visual comfort is dependent on: illumination, luminance and 

brightness and risk of glare.  In academic buildings, most of the tasks are performed during 
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the day so a proper use of daylight is essential to reduce energy consumption in electric 

lighting as well as maximizing the visual comfort for occupants (Acosta et al., 2015). 

 

HVAC 

HVAC systems in the summer time transfer heat from the inside of the building to the 

outside.  An air conditioning unit will have a compressor, a condenser, an evaporator, 

refrigerant lines, blower fan and duct work to distribute the conditioned air to the different 

rooms.  The refrigerant is in charge of transporting the heat from the evaporator inside the 

building to the condenser outside the building (Figure 3) (Home energy magazine, 2013).   

In academic buildings, force heat- air systems are fairly common.  In the winter time, 

heating is more demanding than cooling in the summer time. Supply registers will be found 

on the floor of the rooms, because warm air rises.  Forced-air heating system have a heat 

source, a fan, a duct system, and openings in every room.  A return duct is also needed to 

return the cold air back to the heat source to re-heat it (Figure 4) (Home energy magazine, 

2013).   

 

 

Figure 3: Cooling system. Data drawn from Home Energy Magazine 
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Figure 4: Heating system. Data drawn from Home Energy Magazine 

 

Occupants of academic buildings not only have the need for visual comfort but also 

thermal comfort.  Thermal comfort is defined as that condition of mind which expresses 

satisfaction with the thermal environment (International Standard Organization, 1990).  In a 

study, Nicol (1993) stated the three main reasons why understanding thermal comfort was 

important:  (1) to provide a satisfactory condition for people; (2) to control energy 

consumption; (3) to suggest and set standards.  Standards are set by the American ASHRAE 

55-2010 standard or European EN15251 standard (Taleghani et al., 2013).  ASHRAE 55’s 

purpose is to specify the combinations of the indoor space environment and personal factors 

that will produce thermal environmental conditions acceptable to 80% or more of the 

occupants within a space.    

There is a model that is used to determine comfort zone prescriptions:  the adaptive 

model (Kwok, 1998).  This model utilizes field surveys and can be adapted to naturally 

ventilated buildings or mechanically ventilated buildings.  Naturally ventilated buildings 

have no air conditioning unit and depend on cross ventilation through windows and doors 

that are controlled by the occupants while mechanically ventilated building depend on an 

HVAC unit for ventilation. Thermal comfort will provide boundary limitations which will 

allow physicists to estimate how much should a building be heated or cooled (Taleghani et 

al., 2013).   
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Brager and De Dear (1998) state that thermal adaptations depend on behavioral, 

physiological and psychological adaptations. Additionally, Raw and Oseland (1994) suggest 

six aims for developing knowledge in thermal comfort:  

1.  Control over indoor environment by people  

2. Improving indoor air quality  

3. Achieving energy savings  

4. Reducing the harm to the environment by reducing CO2 production 

5. Affecting the work efficiency of the building occupants 

6. Reasonable recommendation for improving and changing standards 

In this model, field surveys are an important way to evaluate thermal comfort. ASHRAE will 

specify certain indoor temperature parameters and personal parameters:    

1. Building occupants have an activity level of 1.2 met.  A met is the energy 

expenditure at rest and this includes activities like typing, desk work, reading, 

writing and walking 

2. Clothing:  Winter 1.0 clo and summer 0.5 clo.  A 1.0 clo is the clothing needed 

for a person to be comfortable in a 70 degree room (e.g., a person wearing a 

business suit). 

There are other parameters where assumptions will not be allowed to be made. These 

parameters include age differences, gender differences, air movement and humidity.  Each 

parameter is important in its own way.   

The age difference is important from a physiological point of view.  Elderly people 

(>60 years of age) like to keep their environment warmer (Ji et al., 2006).  Gender difference 

is important because females and males perceive comfort differently.  Females generally 

choose a warmer environment due to the morphological differences; surface area to volume 

ratio, smaller average body, less muscle mass and higher surface area to mass ratio (Young 

and Lee, 2007).   Humidity affects building occupants comfort level but this it’s effect is so 

small and difficult to consider.  In areas where the climate is hot, there is an allowance for the 

comfort temperature depending on how fast the air movement is and how fast can it be 

provided to the occupants (Nicol, 1993).  Wan et al. (2009) discovered that a significant 

portion of the use of air conditioners is for dehumidification purposes.  
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Plug load  

Plug load refers to the electrical energy used by various electronic equipment in a 

building such as computers, projectors, phone chargers, etc. The International Energy 

Association (2016) states that 15% of the energy consumption is from consumer electronics 

and computer equipment.  In this section I will perform some plug load calculations for the 

use of projectors and a computer lab.  

Projectors have become a very important aid for teachers and students when they give 

presentations.  Academic buildings have operational hours from 08:00AM to 08:00PM.  

Imagine this hypothetical scenario (Table 2), a building has 20 classrooms, each classroom is 

equipped with one projector.  For the purpose of these examples I will be using the Sanyo 

projector which uses 185 Watts.  From the 12 hours the building is operating, 11 hours of 

class require a projector to be used.  

The technique I will use to calculate the energy usage was learned in the Energy 

auditing class taught by Professor Laura Seidman in the Spring of 2015, (1) the kWh of the 

projector will be found by multiplying the Watts by the hours per day, portion of the year and 

cycle time.  For calculation purposes, the cycle time and portion of the year will be kept at a 

consistent 100%. (2) After the kWh have been found, I will multiply this number by the 

number of days in the year to find the annual kWh.  (3) Then the annual kWh will be 

multiplied by $0.19 to find the annual energy cost for each projector. (4) To calculate the 

annual energy cost we would multiply the total annual kWh by $0.19.  (5) To calculate the 

carbon dioxide emission in pounds the total kWh will be multiplied by 1.6lbs CO2/kWh (this 

number is an assumption).  

 

(1) 𝑘𝑊 = 𝑄𝑡𝑦 ∗ 𝑢𝑛𝑖𝑡 𝑤𝑎𝑡𝑡𝑠 ∗ ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 ∗ 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝑖𝑛 𝑢𝑠𝑒 ∗ 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 

(2) 𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑘𝑊ℎ = 𝑘𝑊 ∗ 365 𝑑𝑎𝑦𝑠 

(3) 𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 ($) =
𝑘𝑊

𝑞𝑡𝑦
∗ 365 𝑑𝑎𝑦𝑠 ∗  $0.19 

(4) 𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑘𝑊ℎ ∗ $0.19 

(5) 𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑂2 𝑒𝑚𝑚𝑖𝑠𝑖𝑜𝑛𝑠 (𝑙𝑏𝑠) = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑘𝑊ℎ ∗ 1.6
𝑙𝑏𝑠 𝐶𝑂2

𝑘𝑊ℎ
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Table 2:  Calculations for 20 projectors functioning for 11 hours a day.  Utilizing Professor Laura Seidman lecture notes.  

Equipment Location Qty Unit 

Watts 

Hours 

per 

day 

Total      

Annual      

kWh 

Annual 

Energy Cost 

each 

Total Annual 

Energy Cost 

Annual CO2 

Emissions 

(lbs) 

Projector classroom 20 185 11 14,856 $141.13  $2,822.55  23,768.80 

 

Some buildings in academic buildings also have computer labs (Table 3).  The following 

information has been found on the internet and the same previous calculations will be applied 

for this example, a computer lab.  

 

Table 3:  Power usage of various computer lab equipment (VanHorn, 2005) Data drawn from: 

https://computing.fs.cornell.edu/sustainable/computingenergyconservation.pdf 

Device Off On-idle On-Loaded 

Desktop - Dell GX 280  1 Watt 85 Watt 144 Watt  

Monitor – Dell 17” LCD 1 Watt 31 Watt  31 Watt  

Laser Printer – HP 4050N 0 Watt 19 Watt 460 Watt  

 

The academic building has one computer lab, equipped for 30 students.  Calculations will be 

shown for the following scenarios: 

-  Computer lab with computers on for 24 hours (Table 4) 

- Computer lab with computers on only for class and idle the rest of the time (Table 5) 

- Computer lab with computers on for class and off the rest of the time (Table 6) 

 

Table 4:  Calculations for computer lab functioning for 24 hours a day.  Utilizing Professor Laura Seidman lecture notes. 

Equipment Location Qty 
Unit 

Watts 

Hours 

per day 

Total      

Annual      

kWh 

Annual 

Energy Cost 

each 

Total Annual 

Energy Cost 

Annual CO2 

Emissions 

(lbs) 

Desktop computer lab  30 144 24 37,843 $239.67  $7,190.21  60,549.12 

Monitors computer lab  30 31 24 8,147 $51.60  $1,547.89  13,034.88 

Printer computer lab  2 460 24 8,059 $765.62  $1,531.25  12,894.72 

          54,049 $1,056.89 $10,269.35  86,478.72 
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In reality, this computer lab has 4 classes a day with each class lasting for 1 hour.  If in 

between each class all equipment was set to idle, we can observe 35% energy savings 

between putting the equipment on idle and leaving the equipment on for 24 hours.  

 

Table 5:  Calculations for computer lab functioning for class hours only and then turning equipment to idle.  Utilizing 

Professor Laura Seidman lecture notes. 

Equipment Location Qty 
Unit 

Watts 

Hours 

per day 

Total      

Annual      

kWh 

Annual 

Energy Cost 

each 

Total 

Annual 

Energy Cost 

Annual CO2 

Emissions 

(lbs) 

Desktop computer lab  30 144 4 6,307 $39.95  $1,198.37  10,091.52 

Monitors computer lab  30 31 4 1,358 $8.60  $257.98  2,172.48 

Printer computer lab  2 460 4 1,343 $127.60  $255.21  2,149.12 

Desktop 

(idle) 
computer lab  30 85 20 18,615 $117.90  $3,536.85  29,784.00 

Monitors 

(idle)  
computer lab  30 31 20 6,789 $43.00  $1,289.91  10,862.40 

Printer 

(idle)  
computer lab  2 19 20 277 $26.35  $52.71  443.84 

          34,690 $363.39 $6,591.02  55,503.36 

 

Computer lab has 4 classes a day with each class lasting for 1 hour.  If in between each class 

all equipment was turned off. We can observe 82% energy savings when all the equipment is 

turned off in between class periods.  
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Table 6:  Calculations for computer lab functioning for class hours only and then turning equipment off.  Utilizing Professor 

Laura Seidman lecture notes. 

Equipment Location Qty 
Unit 

Watts 

Hours 

per day 

Total      

Annual      

kWh 

Annual 

Energy Cost 

each 

Total Annual 

Energy Cost 

Annual CO2 

Emissions 

(lbs) 

Desktop computer lab  30 144 4 6,307 $39.95  $1,198.37  10,091.52 

Monitors computer lab  30 31 4 1,358 $8.60  $257.98  2,172.48 

Printer computer lab  2 460 4 1,343 $127.60  $255.21  2,149.12 

Desktop 

(off) 
computer lab  30 1 20 219 $1.39  $41.61  350.40 

Monitors 

(off)  
computer lab  30 1 20 219 $1.39  $41.61  350.40 

Printer 

(off)  
computer lab  2 0 20 0 $0.00  $0.00  0.00 

          9,446 $178.92 $1,794.78  15,113.92 

 

Occupancy  

Building occupancy is defined by the Merriam-Webster dictionary (2016) as the 

number of people who are in a particular building or room at one time. The more people in a 

place, the more ventilation needed and lighting used. The difference between the need and 

the use is that ASHRAE requires more ventilation by code (15 cfm/person) while with lights, 

the more people in a room, the higher the chances that someone will have the need to turn the 

lights on.  

Buildings are designed to perform specific functions, for example a residential 

building’s purpose is for people to live in them while an office building’s main purpose is for 

people to go and work. These two types of buildings are similar in terms of how their 

occupants have a daily pattern or routine.  Academic buildings, on the other hand, are 

multipurpose buildings, where the occupant density is constantly varying and often have low 

but non-zero occupancy (Sekki et al., 2015). According to Gul and Patridar’s study (2014) at 

University of Edinburgh, the post-graduate center showed that 92% of the building’s users 

were visitors.  This means that only 8% of the buildings occupants have a daily routine in 
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that building. In an academic building, a non-visitor is referred to the teachers and 

administrative staff who have an office in that building. A visitor is defined as a student, 

someone attending a conference and even a teacher who does not have an office in that 

building and is only there for one lecture.  

Occupancy not only affects energy usage but occupant behavior affects it as well. It 

has become extremely important to increase awareness in academic buildings in regards to 

the relationship between indoor environment comfort and productivity (Yang et al., 2015). 

Occupants release both sensible and latent heat to indoor space (Yang et al., 2015).  

Sensible heat is the heat that plants, animals or objects produce.  This heat is produced by the 

body and released into the room causing changes in temperature which can be detected by 

the thermostat.  Latent heat is energy released by the change in physical state without 

changing temperature (i.e. melting a solid, freezing a liquid). Latent heat is usually expressed 

as the amount of heat per unit of mass of the substance undergoing a change of state 

(Encyclopedia Britannica, 2016).   

In this section, I will show the effects of occupancy diversity and how their behaviors 

affect energy consumption as well as why is occupancy modeling important and what 

information is needed to create a successful occupancy schedule.  An occupancy schedule is 

the schedule for HVAC equipment that reflects back to occupancy density at any given time.  

 

Occupant diversity in buildings 

As stated earlier, academic buildings have a large occupancy variability while office 

buildings occupant variability is less. Occupant variability creates a barrier for energy 

modeling predictions in academic buildings.   

When designing for a residential building, occupants of these buildings are more 

aware of their purpose and schedules; if they leave the room where they are at they are more 

likely to turn the lights and equipment off. This is mainly due to the fact that residents are 

able to modify and adapt their behavior through energy bill feedback.  Office buildings 

occupancy is not as stable as residential building occupancy, but the permanent user to visitor 

ratio is fairly constant. In addition, office buildings have a consistent use of their space; they 

are not multipurpose buildings.  Finally academic buildings are considered multipurpose 

buildings where the permanent user to visitor ratio is low.  The building occupants do not 
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associate their behavior with the energy usage impact.  To them, they are only temporarily 

utilizing the building and are not responsible for the energy consumption.   

Building energy consumption has shown that occupancy variability and building 

energy consumption are closely related.  Occupancy variability is also closely related to 

occupancy behavior.  A building can have the top of the line energy efficiency equipment in 

place and based on calculations it should consume minimum amounts of energy.  However, if 

the occupants of that building are careless and not conscious of their decisions, the full 

potential of these technologies will not be observed, unless behavioral changes are also 

implemented (Earhardt-Martinez & Laitner, 2010).  

 

Occupancy behavior 

The Annex 66 organization, a division of the International Energy Agency, defines 

occupant behavior as the key issue for building design optimization, energy diagnosis, 

performance evaluation and building energy simulation contributing to building energy 

consumption. To achieve energy efficiency, it is necessary to combine energy conservation 

awareness into occupant’s daily routines.   

Occupant behavior is also closely related to comfort.  An occupant will act in a 

certain way because they need to achieve comfort in the space and time where they are 

interacting.  As stated in section 2, the two main areas affecting occupant behavior are visual 

comfort and thermal comfort, mainly lighting and HVAC usage (Dounis & Caraiscos, 2009).   

Yang & Wang (2012) mention that the interaction of users and the environment 

always has a direct effect on the system’s performance.  For example, lighting, users may 

turn the lights on and off or may set the electrical lighting level to control the interior light.  

For HVAC, users may change the temperature set point to star the heating or cooling of their 

space. These are all observations of bad occupancy behaviors.   

 In academic buildings, occupants have a tendency of turning classrooms lights on.  

Sometimes for morning classes, it is not necessary to turn the lights on, and instead of taking 

advantage of the daylight, occupants will choose to turn on the artificial lights instead.  

Moreover, once the class is over, occupants will not turn the lights off.  Sometimes 

classrooms will not be utilized right away, so if the last person to leave would turn the light 

off, energy consumption can be reduced.  
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Just like occupants leave equipment on when this is not needed, in academic 

buildings, when occupants are hot or cold, they immediately try to change the thermostat 

settings. But why would they need to change the thermostat settings if most academic 

buildings have operable windows to allow for cross ventilation?  This should only be done if 

the building does not have a cooling system and the only ventilation strategy is opening 

windows and this would only be available in certain classrooms as this is not possible in a 

science laboratory.  Occupants can also wear more layers to increase their clothing factor 

instead of increasing the thermostat temperature in the winter time. People seem to not want 

to inconvenience themselves to dress up accordingly to the weather; instead, they want to 

change the buildings settings to adapt to their comfort. Another problem is that this comfort 

only applies to one person.  So in a class of 30 students, one of them is hot, another student is 

cold and the other 28 feel alright.  It will be one of these 2 outlier students who will change 

the settings to make themselves feel comfortable without taking into consideration how this 

affects not only the other occupants in the classroom but also the occupants of the 

surrounding classrooms as sometimes there is only one thermostat per 3- 4 classrooms.  

As we can see, occupant behavior can play a big role in energy consumption and if 

this behavior is made a priority, it is possible for buildings to achieve maximum energy 

efficiency and, therefore, experience significant savings in energy consumption.  

 

Occupancy Scheduling  

Due to occupancy behavior being so closely related to energy consumption in 

buildings, it is important to develop an occupancy schedule that not only takes into account 

weather information but also occupancy schedules and possible bad behavior to minimize 

energy consumption.   Occupancy modeling is especially important for appropriate 

conditioning in rooms and increases HVAC system efficiency. Having the ability to adjust an 

HVAC system based on real-time occupancy is an important step towards greater efficiency, 

perhaps just as important is the ability to anticipate room usage based on current room usage 

(Erickson et al., 2012).   

Buildings, more specifically academic buildings, are in need of establishing and 

creating a successful occupancy model.  This is because the difference between real and 

predicted energy use depends on both the final realization of the construction, the technical 
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installations and the real use of the built systems operated by occupants (Hoes, 2009). To 

establish a successful occupancy schedule, it is necessary to have the following criteria: (1) 

surveys; (2) data collection; (3) visualization mechanism; (4) comparison; and (5) evaluation. 

To establish occupancy schedules, the occupants of the buildings need to be 

interviewed or fill out surveys where their usage of the building and time spent will be asked. 

The data collection stage is where all the various controls in the building will collect 

empirical data that will be later utilized to evaluate the building performance. After this data 

is collected by the controls, this data is uploaded into a building automation system where 

data trends can be observed through graphs.  These patterns will then be compared to 

historical baseline data if it is available and amongst itself to determine regular occupancy 

patterns or abnormal patterns which could be the cause of energy consumption. Finally in the 

evaluation stage, the results from the interviews and surveys will be evaluated against the 

visual patterns that have been observed in the building to attempt to find how the predicted 

and real energy consumption is taking place.  

Controls  

Achieving overall building comfort and efficiency can be quite challenging with the 

absence of controls to monitor lights and temperatures. Controls are more commonly used to 

represent the presence or absence of occupants in a building (Yang et al., 2015).  Just like it 

has been mentioned in section 3, these controls will assist in the data collection stage.  

Occupancy based controls are used in the field of air conditioning, ventilation and lighting in 

buildings (Yang et al., 2015).  There are many types of controls out in the field but for the 

purpose of this paper, I will focus on occupancy sensor controls and how they can help 

determine occupancy schedules for academic buildings and how these controls work in 

conjunction with a building automation system, a computer based program that allows for 

energy management in a building.  

 

Types of sensors 

There are two popular types of sensors in the HVAC industry: pneumatic and digital 

controls.  Prior to direct digital controls, all HVAC units would have pneumatic controls.  

The Merriam-Webster dictionary (2016) defines pneumatic as moved or worked by air 
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pressure meaning that the reading on these controls were based on an air pressure.  A direct 

digital control is composed of wired and wireless communication devices that allow for 

monitoring to occur on a real-time based scenario (Ruys, 1990). 

Direct digital controls became more popular in 1990s mainly based on their accuracy 

and how easy it is to read the controls.  In reality, replacing all the controls in a building to 

direct digital controls would be ideal in a building retrofit. For example, a building in the 

county of Santa Clara, California replaced all their pneumatic thermostats for direct digital 

control ones. A 300,000 sq. ft. facility spent $175,000 (before incentives). The retrofit lasted 

less than 20 minutes and there was minimal disturbance to the work place.  The energy 

savings experienced within a year by only replacing the controls was $42,000 per year 

(Cypress Envirosystems).  However, replacing all the pneumatic controls to direct digital 

control can become expensive, especially if they are still functioning.  This is why it is still 

common to find pneumatic controls in some buildings especially in older academic buildings, 

such as the case at the University of California Berkeley.  Starr (1999) suggests that direct 

digital controls appear to be a more reliable control system than pneumatic controls.  These 

controls will have digital readings and through their wireless networks they can send the 

recordings to a computer.   

 

Direct digital controls  

Modern buildings condition their rooms assuming maximum occupancy rather than 

their actual usage and as a result, these rooms are over conditioned (ref).  Occupancy sensors 

are needed to regulate this over conditioning capacity and help save energy.  Yan et al. 

(2015) states there are multiple types of occupancy sensors that can be utilized in a building. 

In literature, occupancy detection sensors include: (1) motion detectors; (2) carbon dioxide 

sensors; (3) video cameras and (4) wearable sensors.   

For lights, the most popular controls are timers and motion sensor controls.  Light 

timers allow building managers to allow certain lights to be turned on and off automatically 

at certain hours of the day while motion sensors allow for the lights to “sense” movement and 

turn the lights on or off as well. Timers as well as motion sensor controls can work together; 

for example, the building operation times in a building are from 8:00AM to 6:00PM, so the 

timer will allow the building lights to be on between those hours while the motion sensor 

controls will help determine if a room is occupied or not and turn the lights on or off.  
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Motion detectors include passive infrared (PIR) sensors, which are commonly used to 

control lighting.  The downside of this control is that it cannot provide any information on 

how many people are in the building (Erickson et al., 2012).  A passive infrared sensor has 

two different slots that can see past a certain distance.  When a sensor is idle, both slots will 

detect the same amount of infrared but when a person moves, one of the sensors will have a 

positive differential change (Figure 5).  When the person moves away, the opposite will 

happen and a negative differential change will occur.    The inside of the passive infrared 

sensor is sealed to improve any disturbance created by temperature, noise or humidity.   

 

 

Figure 5: Picture of a passive infrared sensor.  (https://www.adafruit.com website) 

Passive infrared sensors seem to be a good alternative for occupancy sensors because they 

help detect the presence or absence of people in a room. However, they have their own 

limitations; (1) they can only handle certain temperatures and (2) they have poor tolerance to 

ambient light and bright color objects, possibly interfering with the infrared detection 

(Saracoglu, Michigan State University).  In an academic settings where computers, projectors 

and bright clothing objects are common, passive infrared sensors might not be as effective.  

Imagine a professor or student accidentally leaves a projector on, this would shine on the 

wall and reflect on the sensor giving the wrong impression that the room is occupied. In this 

example, not only would the projector waste energy by being left on, but the occupancy 

sensor would think the room is occupied leaving lights on as well.  

Direct digital controls are important because they allow building managers to 

schedule the HVAC operating schedule.  These operating schedules allow for different areas 
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of the building to have different set points.  A set point is the temperature you want to 

maintain for the zone the thermostat is serving.  For this example, a typical room temperature 

set point would be a temperature set point of 74 degrees.  Direct digital controls also allow 

for precooling or preheating of a building or space; this allows the building manager to set up 

various start and stop times depending on the various building schedules.  For example, if a 

buildings regular operating hours are 8:00AM to 6:00PM and the zone’s set point has not 

been reached by 7:00AM then the HVAC will turn on to preheat the building before the 

building starts operating. And the case is the same in the summer time, but instead of heating 

the space, the HVAC will precool the area. 

Direct digital controls allow to stop the usage of the HVAC system a few hours 

before the building is set to be unoccupied.  Just like preheating and cooling, the HVAC 

system can stop an hour prior to the building being fully unoccupied. If the HVAC system is 

stopped half-hour earlier, it can reduce the operating times by 130 hours per year.  It is also 

possible to have different set points for unoccupied times. Buildings can be kept at 74 

degrees while occupied. The set point during the summer time can be 80 degrees to minimize 

the usage of the HVAC system and in the winter time the set point can be 68 degrees.  

Different schedules for different days of the week and holidays can also be set with the help 

of direct digital controls. If a buildings operating schedule is Monday through Friday, then 

the direct digital control can be set to either shut down the system completely for the 

weekend or to keep the weekend at a higher set point like the unoccupied hours set point. The 

same goes for holidays like Christmas, New Year’s Day, etc. It is also possible to adjust to 

daylight savings time; this adjustment is important because with this time change twice a 

year.  Having the possibility of changing this digitally would save lots of hours of human 

power to change the schedule manually.  

Carbon dioxide sensors are mainly used for HVAC purposes. They not only help 

regulate ventilation in specific rooms when occupancy levels vary but they also contribute to 

a better indoor air quality. An average adult’s breathe contains 35,000 – 50,000 parts per 

million (ppm) of CO2, this is equivalent to 10 times more the amount of CO2 found in outside 

air. ASHRAE recommends that indoor CO2 levels do not exceed local outdoors 

concentrations of 650ppm and in good practice, CO2 levels in indoor air should not exceed 

1,030ppm (WSU, 2013).  Even though these sensors do not give us an exact number of 



 

22 

 

occupants, they measure the amount of CO2 produced by the occupants of a room and send a 

signal to the building automation system to increase the ventilation needed in a specific room 

if the CO2 levels are above the equilibrium point. This is important because if a room has 

high levels of CO2, occupants may become sleepy and drowsy (WSU, 2013).  

These sensors are mostly utilized in the field because of their low cost making it more 

affordable for a retrofit. However, CO2 buildup occurs slowly and by the time the sensors 

have detected high levels of CO2 in a specific room, the occupants in that room might be 

already feeling uncomfortable (Fisk et al., 2006).  

Video cameras are a different type of sensor that might help to count how many 

occupants are in a building and in specific rooms. Knowing the number of occupants is 

important because the more occupants are present the more occupant behavior will impact 

energy consumption (Haldi & Robinson, 2010).   If high resolution cameras are utilized, 

finding the number of occupants in buildings can be achieved (Triverdi et al., 2000).  The 

downside of utilizing cameras is that not only are they expensive to purchase and install but 

there are some privacy factors to take into account.  Think about the following scenario, how 

would you feel if you knew that when entering a building you were being monitored?  Banks 

for example, not so creepy, because of the security reasons and the possibility that someone 

might go in and try to rob the bank. But academic buildings? That is not a place where you 

expect to be monitored 24 hours a day. Parents might have an issue with it and even students.  

Privacy documents would have to be signed with you application.  A reason why cameras 

might be a good idea, and a justifiable excuse could be that teachers need to ensure there is 

no cheating in classrooms.  Cameras might also add a sense of security to parents; with all 

the school shootings that have been happening lately, having cameras in all rooms and 

constant monitoring for suspicious activity might be a good thing.  

Finally, wearable sensors, which on the other hand seem like a much better idea. Li et 

al. (2012) proposed an occupancy detection system based on tags.  This system would report 

real-time occupancy and their occupancy zones within a building.  The problem with this 

sensors was that not everybody would wear them.  But with technology these days, what if 

these tags were integrated into cellular devices, computers or even shoes? Nike makes shoes 

that have a sensor that communicates back to your cell phone to track your distance run and 

number of steps. So why could not these sensors be in all shoes? Then all academic and 
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commercial buildings could benefit from it. The problem with this technology is that people 

would either have to purchase specific shoes with these sensors or get one sensor that can be 

transferred from one shoe to another. This would create the problem of people forgetting to 

change the sensor from shoe to another shoe. Or what if you are wearing sandals? How 

would we be putting a sensor on a flip flop or sandal? These are all barrier that would need to 

be investigated on how to make it easier for the consumer.   

Since almost all students and teachers own a cellular device, how about linking the 

GPS technology in cell phones with occupancy sensors? This method might eliminate the 

privacy issues that cameras have, while helping the occupancy count. If there was a detector 

at the entrance of every building and classroom that counts how many different GPS or 

cellular devices are in each room that could be the solution to how to determine occupancy in 

academic buildings or even commercial buildings in general. The topic of privacy is still an 

issue because if GPS technology used everyone’s coordinates, this will create an invasion of 

privacy. But what if instead relying on GPS technology, occupancy could be counted as how 

many devices are currently connected to the Wi-Fi?   The problem with this would be that 

every different building on campus might need their own wireless password, considering the 

example of University of San Francisco, there is only one wireless network for the whole 

campus.  

 All these various types of sensors have potential, Yan et al. (2015) believes that 

coupling motion detectors and carbon dioxide could improve occupancy detection accuracy. 

And with new technology emerging, maybe coupling wearable detectors and CO2 sensors 

might be the answer to the problem, but ever academic building will have its own limitations 

and individually they need to explore what methods will be more effective for their current 

situation.  

 

Building Automation Systems   

As stated earlier, direct digital controls appear to be a more reliable control system 

than pneumatic controls (Starr, 1999).  However, direct digital controls cannot work on their 

own. They need a building automation system in place.  A building automation system is a 

computer based control system that gathers information from multiple digital controls into 

one interphase allowing for management of a whole building performance. The way this 
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automation system works is that all the individual controls will send information to a 

building automation system that is controlled by the building manager that records and stores 

data. This automation system allows for the HVAC and lights scheduling to be set. Nguyen 

and Aiello (2013) state that recent research focuses on developing energy intelligent 

buildings by integrating occupant activity and behavior as the key element of a building 

automation system which can automatically turn off unused lights, computer, HVAC, etc.  

In a case study Kamali et al. (2014), state that in an office building in San Francisco, 

a building automation system had been set to automatically shut off the lights at a certain 

time and if anybody remained in the building they would be allowed to call a specific phone 

number to override the shut off.  The implementation of this system resulted in 50% annual 

energy savings for that building.  

Moreover, this automation system will allow for building manager to visualize all the 

energy consumption data and patterns and make the necessary adjustments for a more 

efficient building performance.  Au-Young et al (2014) stated that having a centralized and 

graphically viewable software can improve the maintenance and operation of buildings by 

allowing the building manager/engineer or technician to diagnose equipment that might need 

maintenance by looking at data trends and equipment sensors not only increasing 

productivity but also reducing labor costs. A well maintained HVAC equipment will result in 

fewer failures or wasted HVAC cycling consequently reducing energy usage.   
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Figure 6: Pictures taken from multiple websites (Distech control, Honeywell and University of Strathclyde) to explain the 

connection between direct digital controls and a building automation system when conditioning a space.  The way this 

system works is the thermostat tries to satisfy a set point that is coming from the building automation system, specifically the 

HVAC area. The thermostat sends a digital signal to the fan, cooling coil or heating coil to attempt to satisfy the 

temperature set point. Once the set point is met, then the thermostat will send another digital signal to the fan, cooling coil 

or heating coil to stop. 

 

  Case Studies  

Due to large occupancy variability in academic buildings, it is important for these 

institutions to have an adaptive schedule that deals with occupancy to achieve maximum 

energy savings (Al-Daraiseh et al., 2015). In 2012, the United States had 4,726 academic 

buildings (National Center for Educational Statistics, 2012) so what if all these institutions 

decided to commit to at least 5% energy consumption reduction? For example, University of 

San Francisco uses 750,500 kWh per month (personal communication, Craig Peterson, 

Director of Operations, University of San Francisco).  If this was used as a baseline for the 

other academic buildings in the United States, a 5% energy consumption reduction would 

yield a total energy savings of over 173 million kWh per month.  In this section, I will 
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coil  

Fan 
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describe the different methodologies that five different academic institutions around the 

world have analyzed to achieve global energy reduction techniques.     

 

Finland 

In this case study Sekki et al. (2015) acknowledges that energy consumption is 

relevant in schools where there is high occupancy variability within small time intervals and 

sometimes low but non-zero occupancy.  The focus of this study was set mainly due to the 

rise in primary energy consumption which is believed to be due to the increase in the use of 

the school and daycare premises. The efficiency of building usage is affected by the space 

efficiency or occupant density (m2/person) and building occupancy. Buildings are designed 

with a fixed schedule and fixed occupancy times.  In other words, two different size 

buildings can consume the exact same amount of energy even though one building is smaller 

than the other.  If building A is 1000 sq. ft. and has 500 occupants while building B is 500 sq. 

ft. and has 500 occupants, building A should consume more energy than building B because 

it is more dense.  Occupant density correlates almost directly with energy consumption when 

buildings are refurbished (Hietanen, 2009).  It is believed that the more effectively the 

buildings is occupied, the less space needed for a given number of people, therefore lowering 

the space heating energy consumption per person (Sekki et al., 2015).  However, when space 

efficiency is increased, measures to guarantee appropriate indoor air quality need to be 

considered.  Remember back in section 2.1, ASHRAE recommend 15cfm/person. This is 

important to avoid respiratory diseases (Milton et al., 2000).    

Dooley (2011) provided energy simulators to compare energy efficiency in terms of 

three indicators:  (1) specific energy consumption; (2) energy intensity of usage; and (3) 

specific energy consumption adjusted for person hours. The indicators were compared with 

different space efficiencies and daily operating times.  Under the specific energy 

consumption indicator, energy efficiency was found to decrease as the floor plan layout in 

the building increased. The purpose of this was to evaluate different control strategies to 

indicate energy efficiency and how each indicator can be used to make the right choices.   

To evaluate these indicators, data were collected from various monitor systems, via 

direct digital controls, specifically heating and electricity data. The results for the daycares 
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and school can be seen in table 7. This shows that the more space a child has, the more the 

building consumes energy.  

 

Table 7:  Showing results from Sekki et al. (2015) study. 

  Daycares Schools 

Building usage range 

(m2/child ) 6.8 - 22.1 4.7 - 59.5 

Heating 

consumption(kWh/ m2 ) 551 - 61 383 – 45 

Electricity consumption 

(kWh/ m2 ) 372 - 37 125 – 10 

 

For the daycares, the results show that there is a rising trend between occupant densities in 

function of age (Figure 7) since the year 1970. This means that because buildings are 

growing in size, they are becoming less dense. This could mean that there is a relationship 

between newer buildings consuming more energy. In this specific case, newer buildings have 

more space per child and similar operating times, which yields a higher energy consumption.   

 

Figure 7: Building occupancy as a function of age efficiency of building usage (m2/child and yearly operating times) 

(source: Sekki et al. 2015) The X axis represents the year the buildings were built. The first Y axis represents the occupant 

density and the second Y axis represents the yearly operating times. In this graph we can see that most building operate for 

2500 hours. 

 

For the schools, the results from table 7 show that there is a trend (Figure 8 ) between building 

age and occupant density but no correlation between building usage as a function of age and 

operating times as well and no relationship between energy consumption and occupant density.  
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Figure 8: Building usage as a function of age and occupant density (m2/student) and yearly operating times (source: Sekki 

et al. 2015) The X axis represents the year the buildings were built. The first Y axis represents the occupant density and the 

second Y axis represents the yearly operating times. In this graph we can see that most building operate between 2000 and 

3000 hours.  

 

The energy consumption has also been adjusted based on occupancy density and in 

both cases, daycares and schools (Figures 9 and 10), there was a connection found.  This 

means that the difference between occupancy densities has a connection with the energy 

consumed by the building.  Energy consumption has also been adjusted for usage and 

occupant density, and again in both scenarios, there has been a connection.  In this case, the 

energy consumption based on space value in design guidelines is higher than when the 

energy consumption is calculated based on the actual size of the buildings themselves (Sekki 

et al., 20015). Energy consumption measurements had to be adopted and combined with the 

occupancy per building and the yearly operating times throughout the whole year. With this 

approach, the difference between the most effective and least effective school/daycare has 

shown a significant variation.  
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Figure 9: Energy consumption (kWh/m2/a) in comparison with energy consumption adjusted for usage [kWh/(m2u)] in 

studied daycare centers. (Source: Sekki et al. 2015).  This graph shows that the predicted value based on design guidelines 

value is higher than the actual value of energy consumption. 

 

 

 
Figure 10: Energy consumption (kWh/m2/a) in comparison with energy consumption adjusted for usage [kWh/(m2u)] in 

studied schools. (Source: Sekki et al. 2015).  This graph shows that the predicted value based on design guidelines value is 

similar to the actual value of energy consumption 

 

 This case study shows that there is a close relationship between occupancy and 

energy consumption (Sekki et al., 2015).  When a building is occupied it will consume 

energy, but there will be variations between different buildings. In the case of the Finnish 
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daycares and schools, newer buildings have longer operating times and are used more 

efficiently. The older buildings have operation times from 07:00AM to 05:00PM while the 

newer buildings operating times are from 06:00AM to 06:00PM.  In newer building the 

occupancy density grew but with it, the building floor space also grew meaning that newer 

buildings have more space per user. 

 

University of California Berkeley 

In this case study, Granderson et al. (2010) focused on finding out if energy 

information systems can improve the overall building performance at University of 

California Berkeley. Data from meters, sensors and external data streams were used to collect 

data and perform a baseline, load profile and benchmarking analysis with the hope of 

determining any building anomalies (Granderson et al., 2010).  An energy information 

system provides hourly whole-building electric data that is web accessible with analytical 

and graphic capabilities (Motegi & Piette, 2003).  Energy information systems are very well 

known; however, there is still a gap that needs more attention, and this is investigating how a 

building functions between occupied and unoccupied hours.  

The University of California Berkeley was analyzed because the university consumed 

large amounts of energy due to the potential wasted energy.  This campus is a large campus; 

15.9 million sq. ft. and it is 140 years old.  The campus is located in Berkeley, CA and it has 

a Mediterranean climate with dry summers and wet winters. This campus does not have a 

building automation system in place but they use an online website where all the data is 

uploaded. This case study shows what information is needed and what kind of energy savings 

are desired when an old campus is trying to reduce their energy consumption.  

Utility bills were combined and manually uploaded into these systems.  Eight people 

had to go to each of the sixty-one Berkeley buildings to check how the HVAC and light 

equipment was running and if there were any problems.  They usually checked for on/off 

status and temperature set points were confirmed. After all this data was uploaded into the 

system, energy performance was evaluated in 15 minute intervals. Figure 11 shows the 

detailed building plot for Wurster Hall, the architecture hall at University of California 

Berkeley, and two different week’s energy consumptions were plotted against each other. 

These plots include the minimum, average and maximum energy demand in the hall.  These 
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plots revealed that there has been an excessive use of the ventilation system and over 

illumination in the architecture building.  To fix this problem, the ventilation scheduled was 

reduced by 6 hours per day and a lighting retrofit was put in place.  Once all this was done, a 

30% energy reduction was achieved (Granderson et al., 2010). The University of California 

Berkeley energy manager stated that a limiting factor to achieving energy reduction was the 

lack of remote access interval metering and sub-metering beyond the whole-building level.  

Overall the common findings of this study were the incorrect implementation of scheduled 

HVAC and lighting loads in buildings.  

 
Figure 11: University of California Berkeley Energy Dashboard “detailed building plot” (Source: Granderson et al., 2010) 

The Y axis shows the energy consumption in kW and the X axis shows the dates and times there has been data inputs in the 

system.  “Previous week” data is the data observed prior to the lamping campaign and ventilation schedule change. “This 

week” shows the data observed after the schedule change and lamping campaign were successfully executed.  

 

 

Singapore 

In this case study, Yang et al. (2015) focus on the daily energy consumption variation 

and developed identification tools which can calculate the variability of the building 

occupants.  The black box, white box and grey box approach were taken (Li& Wen, 2014). 

The black box is a data driven approach, the white box is a physics based approach and the 

grey box is a hybrid between the black box and the white box.    
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The black box approach is a data driven approach; it has an empirical value.  This 

model needs a lot of data collection, but this is difficult since the data needed is limited to 

specific buildings.  The purpose of this model is to develop a model with limited data without 

losing its accuracy.  However, if there is a lack of input data that might allow for 

generalizations and these generalizations need to be taken cautiously due to the lack of input 

quantity (Lu et al., 2015).  Because most buildings have access to their energy consumption 

data, it is possible for other institutional buildings to use this model.   For the Singapore 

institutions, data was collected for a whole year, and that is the data that will be used for the 

black box approach.   

The white box approach is more of a physics based approach; it is a calculated value. 

It relies on the ENERGY PLUS software to predict energy consumption. ENERGY PLUS is 

a whole building simulation program that building designers use to model energy 

consumption in buildings (DOE, 2011).  This approach also requires a lot of information like; 

the building materials, the door and windows insulation factor, local weather data, etc. 

Outdoor temperatures are important because they have an impact on HVAC systems (Dong 

et al., 2001). The software requires having occupancy information, which is probably the 

hardest piece of information to acquire in institutional buildings. The more occupants there 

are in a building the more heat they generate, therefore affecting the HVAC load (Kwok, 

2011).  Occupancy density and energy consumption are directly related and knowing the 

occupancy information is crucial for designers to provide the best thermal comfort for the 

occupants.  

The grey box approach is a hybrid approach from the black and white box. This 

approach uses the black box data to identify the variability of occupant density in buildings 

and inputs this data into the white box and ENERGY PLUS to achieve a higher building 

simulation accuracy.  The purpose of this model is to find a model that will reduce errors 

between predicted values and real time measurements.  The final result of this model is to 

quantify the real effect of a specific energy solution in a specific building allowing the 

possibility to compare two different scenarios such as before and after building retrofits.  

This would allow identifying the best energy renovation practices to define optimal long term 

strategies.  
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Energy consumption is highly dependent on building space and function of the 

building.  For example, an office building has a consistent number of permanent user which 

decrease occupancy variability, the same 80% of people come to work every day and usually 

perform the same function daily.  Academic institutions are more complex and have a high 

occupancy variation.  Questionnaire studies have demonstrated that 92% of the institutional 

building users were visitors with only 8% of the users claiming to have a permanent office 

(Gul & Patridar, 2015).  Previous studies in Ireland, Slovenia, UK and Serbia have shown 

that occupancy is an important factor regarding energy consumption so it is critical to track 

occupancy data.  This includes occupancy detection, occupancy tracking and energy 

consumption estimation.   

 

University of California Merced  

In this case study Narayanan et al. (2010) created two projects that are related to 

building occupancy at University of California Merced.  These two projects are: (1) metering 

the energy usage to aid facility operations; and (2) demand control ventilation per occupant 

density.  

When metering the energy usage of a facility, having a visualization tool that allows 

the user to not only look at the actual energy trends but also monitors constantly and integrate 

data is important and very useful.  The building automation system allows this visualization 

to be possible.  Using the building automation system to plot the data into standardized 

quantities allows for a quicker understanding of how the building as a whole is functioning 

and how the end-use energy is affecting the overall operational energy trends. Being able to 

compare data trends to historical baselines can allow the user to look at the building 

operation requirements as well as the areas for possible energy savings potential.  This is a 

representation of the black box model discussed in the previous case study.  

Having a demand control ventilation approach allows for the building automation 

system to integrate data into actionable items.  The CO2 sensors utilized will allow 

determining the correct ventilation required instead of using fixed scheduling which limits 

the possibilities for energy usage reduction. Moreover, occupancy data will be needed.  As 

mentioned in the previous case study, occupancy data is important for the white box model in 

order to come up with a predicted energy savings.  To measure occupancy, low power and 
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low-resolution cameras (Figure 12) were used and whenever a building occupant crossed the 

camera, this was detected and the information was sent back to the monitoring hardware for 

an occupancy count (Erickson et al., 2009).  Along with cameras, class schedules were 

collected that will also be an input in the white box predictive model.  Once all this 

occupancy information was collected, this data was uploaded to the eQUEST software.  The 

eQUEST software is a similar tool to ENERGY PLUS, which predicts building energy 

consumption based on weather, building materials and equipment information.  This 

predictive model has estimated potential energy reduction of 10-20%.   

 
Figure 12: (top) Wireless camera sensor network (bottom) observed occupancy patterns in lab and office space (Source: 

Narayanan et al., 2010). When an occupant crosses the transition point, the cameras capture the image to determine 

occupancy count. 

 

 

Once the black box and white box applications at the University of California Merced 

have been combined to simulate the grey box model, this allows the building manager to find 

if there is any faulty equipment in the building that is consuming unnecessary energy. This 

grey box model has predicted a 10-20% energy consumption reduction based on historical 

baseline data and a 4% energy consumption reduction based on CO2 sensor data. 
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University of Edinburgh  

In this case study Gul and Patridar (2014) evaluated how to use occupancy patterns to 

redesign different control strategies for optimum building performance.  Throughout this 

study barriers like human behavior were discovered and discussed.  

The study takes place at the University of Edinburgh in Scotland where electrical 

consumption (kWh) was studied in undergraduate and graduate buildings.  Electrical data 

between the years 2012 and 2013 was collected.  The results are shown in Figure 13 where 

there is a higher energy consumption trend in January and February than in May. This could 

be attributed to the climate, as January and February are the colder months while in May 

temperatures are also higher as well as possibly the end of the school year. Based on the 

energy analysis, the peak in energy consumption is probably recognized to be the on/off of 

the HVAC system (Kilpatrick & Banfill, 2011).  This consumption could also be credited to 

the use of active and standby appliances in the building.  An active appliance is one that is in 

constant use like lights, printers, etc. while a standby appliance is one that is not actively 

working like a computer, projector, etc. 

  To determine occupancy, a bi-directional infrared beam was used to count how 

many people entered and left the building.  Classrooms were also monitored to determine 

how many people were in each classroom throughout the day.  Because this is an academic 

building, not all classes have the same student capacity.  For example one class can have 30 

students while the next class will only have 10.  Determining the amount of students per 

classroom is important for the ventilation standards set by ASHRAE.   

Surveys were also conducted to determine the different types of energy usage.  Figure 

14 shows the maximum number of occupancy at approximately 200 with some slight 

variation, and the various energy consumption activities performed. Three main activities 

that contribute to energy consumption were determined; more than half of the occupants in 

the building do not switch the lights off when a room or area is not in use; over 50% of the 

occupants do not switch the projector off when they are done using it; and more than half of 

the occupants use the electric hand dryer in the bathrooms.  
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Figure 13:  Electrical demand at the post graduate center in Edinburgh for the months of January – May 2013.  The X axis 

shows the operating hours of the building and the Y axis shows the electrical consumption in kW. This figure shows that the 

maximum electrical consumption occurs between the months of January and February indicating the need for heating in the 

winter time. This also shows the demand profile rising from 04.30AM to opening hours at 07:00AM and a semi consistent 

value until 12:00PM.  The profile then starts slowly decreasing until 07:00PM and onwards until 09:30PM.   

 

 

 

Figure 14:  Occupant activity while in the post-graduate center (PGC).  The X axis shows the different activities building 

occupants partake while in the post graduate center and the Y axis shows the number of responses.  Each color s 

representative of a different answer. (i.e., green: always; red: sometimes; black: rarely and blue: never).  These are the 
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results of a survey where 208 responses were received; 81 from post-graduate students, 116 from undergraduate student, 2 

from academic staff and 11 from administrative staff.  

This study shows that human behavior is closely related to energy consumption.  For 

this matter, awareness campaigns are needed in academic buildings to educate building 

occupants that their careless behavior is affecting the energy consumption in the building as 

well as the effect of this energy consumption in the world. 
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Table 8:  Case study summary 

Case study Problem presented Method used Results Recommendation 
Schools and daycares 

in Espoo, Finland 

Studied the effects of occupant 

density on building energy usage 

Collected building 

energy usage data for 

one year and the 

number of occupants in 

each building.  

Occupant density is directly 

proportional to energy 

consumption Newer buildings 

are less dense due to larger 

floor plans, but still utilize the 

same amount of energy or 

more 

To implement control 

strategies that are based on 

occupant density. (e.g. 

occupancy sensors to 

operate as needed, on a 

demand basis) 

University of 

California Berkeley  

An old university campus wants to 

improve their building efficiency 

Collected data from 61 

different buildings at 

various times 

Visualization patterns allowed 

to determine a building was 

consuming more energy than it 

should 

Once this was fixed, 30% 

energy savings was achieved 

Implementing a remote data 

collection system is 

necessary 

Singapore Discovered that multipurpose 

buildings  are at higher risk of 

energy waste due to large 

variability of occupancy density 

Collected building 

energy usage data for 

one year  

Created a method of “black 

box”, “white box” and “grey 

box” to help analyze building 

energy usage and potential 

savings through occupancy 

driven schedules  

Utilize the new method to 

identify best energy 

renovation practices and 

strategies. This method can 

be implemented to other 

universities as well 

University of 

California Merced 

Buildings had fixed equipment 

schedules that ran independently 

and not based on occupancy density 

Collected occupancy 

data by installing 

wireless network of 

low-power, low-

resolution cameras  

Based on empirical data from 

cameras and predictive models, 

10-20% energy consumption 

reduction can be found  

Install CO2 sensors and tie-

in to BMS to allow 

equipment to vary capacity 

per occupancy density 

University of 

Edinburgh  

Human behavior influences a 

buildings energy consumption.  

Collected data via 

surveys and interviews 

on occupant’s use of a 

building.  

Occupancy data was 

collected through the 

use of cameras 

Energy consumption and 

occupant behavior are closely 

related 

 

Behavior awareness 

campaigns are needed 
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Discussion of case studies  

Looking at the previous case studies, occupancy diversity has a big impact on energy 

consumption. The problem with academic buildings is that most of them have been designed 

to have a fixed schedule for operations. But because of the diversity of these buildings there 

can be wasted energy when there is low but non-zero occupancy.  Findings have been 

consistent throughout the case studies showing that the path to fixing this problem includes 

gathering data, the use of metering devices, interviews and surveys, the utilization of sensors 

and the need for an occupancy schedule. The creation of this occupancy schedule will allow 

the possibility of creating variable schedules that work in academic buildings.  The creation 

of these variable schedules is not the only answer.  We have to take into account that the 

occupants of these buildings have habits that contribute to increased energy consumption.  To 

overcome these barriers, awareness and education to academic building occupants are 

extremely important.  Once the occupancy schedules and the awareness have been 

implemented is when academic buildings can perform more efficiently.   

In Finland daycares and schools, the importance of variable occupant density was 

established.  Within the schools and daycares themselves, buildings that serve the same 

purpose were found to have a relationship between building occupancy and energy 

consumption.  The electrical usage had a more steady variation.  However, the heating load 

has a much larger variation.  This variation in energy usage is related to the space available 

per person or occupant density.  The more children there are in a smaller space, the less 

heating a room will require.  There is a smaller area that needs to be heated, as well as 

humans releasing latent and sensible heat, reducing the mechanical load needed.  The case 

study produces the relation between occupant density and heat load (energy usage).  Thus a 

fixed equipment schedule would not suffice for a building that has variable occupant density 

if energy consumption is to be reduced.   

Occupancy scheduling needs to work in conjunction with a visualization tool, which 

is why building automation systems are important.  At the University of California Berkeley, 

there was an absence of a building automation system, but the students had created an 

automation system where the data was manually uploaded. The uploading of this data took 

time because the temperature set points and light information needed to be collected 

manually.  This could increase room for error due to human error, the people in charge of 
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collecting the data could write down numbers wrong or could input the number wrong in the 

computer program.  If direct digital controls were installed, the data collection process would 

have been a lot easier and possible problems would have been detected much earlier. Either 

way, this automation system allowed the building managers to find a relation between 

occupancy profiles and energy consumption (Figure 5). These plots allow for the building 

managers to observe recurring or unusual patterns in the energy consumption and make the 

correct adjustments.  By analyzing these graphs, a retrofit to the lights in the building as well 

as a ventilation schedule adjustment was performed, and 36% of the energy consumed by the 

architecture building was saved.  It seems like with the visualization tools available to us, we 

are able to identify energy consumption trends and fix any problem that arises at the time it 

occurs.  

Through the process of occupancy profiles and visualization tools Yang et al., (2015) 

created the black box, white box and grey box methods to analyze building energy usage and 

potential savings based on occupancy driven schedules. The black box model can simulate 

the energy performance of academic buildings; the white box model is a predictive model 

which requires a lot of data to achieve high accuracy; and the grey box model will utilize the 

information acquired from the black box and white box models to determine a much higher 

accuracy at simulating the energy consumption in academic buildings. The purpose of a more 

elaborate grey box model is to quantify the real effect of a specific energy solution in a 

specific building.  This model will allow building managers to analyze different scenarios 

and even a before and after retrofit energy savings.  For example, the University of California 

Berkeley is manually imputing all their data collection manually and achieving a certain 

percentage of energy savings.  If the University decided to take a further step and upgrade 

their controls to digital controls and change their building automation system to a building 

automation system then the digital controls would be able to upload the information 

automatically giving a more accurate real-time energy management tool.  If the grey box 

model is applied here, then the University of California Berkeley will be able to show their 

before and after control retrofit and the predicted as well as actual energy savings 

comparison.  After this analysis is performed, the grey box calculation will be able to 

determine if investing in digital controls is a safe way to get a jump start at energy savings 

and increasing building efficiency.   
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The case of University of California Merced by Narayanan et al. (2010) can be 

considered an application model to the black, white and grey box methodology created by 

Yang et al. (2015).  The University of California Merced refers to the black box model as the 

performance metrics.  During this analysis, the building automation system, in conjunction 

with the digital controls around the campus buildings gathered a large amount of data; total 

electrical consumption, electricity demand, total gas consumption and the gas demand 

throughout a whole year. A building automation system usually determines how to run the 

equipment based on operational requirements, it is the building manager’s job to tailor this 

information in terms of energy performance.  This building automation system does not have 

a brain of its own, it needs to be told what to do.  This why the building manager becomes 

the energy analyst and evaluates the data that has been obtained from this system.   

The white box model in this study is referred to as the performance benchmark 

analysis.  In this section, the historic baseline is evaluated as well as the climate, temperature, 

and code regulations.  Information like wall insulation, overhangs, glazing and weather files 

for that year were also collected (Narayanan et al., 2010).  All this information was then 

uploaded into the ENERGY PLUS software to generate predictive calculations.  In section 

5.3 I mentioned that occupancy information was probably the hardest piece of information to 

find.  In the study of the University of California Merced, occupancy sensors already 

available on campus were used to gather this information.  Some of these sensors included 

low power and low-resolution cameras to track the number of occupants entering and leaving 

the building.   

The grey box model in this study is referred to as the occupancy-based energy 

automation system where an existing eQUEST model of the classroom and office building, 

developed during building design was analyzed to evaluate the energy savings potential 

(Narayanan et al. 2010).  This model would combine the data gathered from the black box 

model such as the occupancy information as well as the predictive model from the white box 

to determine that by adjusting the air flow of the HVAC in classrooms, auditoriums and 

conference rooms, the potential energy savings on HVAC itself are of 10-20% (Emmerich & 

Persily, 2001).   

If the black, white and grey box model approach is adapted to individual schools, 

significant energy reductions can occur based on building specific information as well as 
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weather information. This is important because weather information varies between various 

academic buildings.  If this model is successful at predicting the potential energy savings and 

can prove it after building retrofits have taken place, then the academic sector can find itself 

being successful at reducing their total annual energy consumption.  

In theory, the prediction models are a great concept, but we all know that occupants 

have a tendency to deviate from theory to make themselves comfortable allowing behavior 

that contributes to energy waste.  This causes a barrier on any building efficiency model that 

can be implemented. This is the case in the University of Edinburgh where occupant 

behavior was the main cause of energy consumption.  Through the surveys and interview 

answers, occupants admitted to not turning projectors off when they were done using them, 

as well as not switching lights off when leaving classrooms. However turning the lights 

completely off can be a safety risk, people can trip and fall.  These lights can be set to motion 

sensor detection or, at least, limit to hallway lights stay on while on a dimmer light.  

Awareness campaigns would also be needed to inform and educate the occupants on how 

their actions are affecting energy consumption.  If occupants saw the numbers of how much 

energy is being wasted by leaving a projector on all the time, I believe they would think 

twice before forgetting to turn it off next time they use a projector. The use of hand dryer is 

another use of energy at the University of Edinburgh.  The given choices are electric hand 

dryers or paper towels. To make a decision, what is best hand dryers or paper towels depends 

entirely on what type of hand dryer is in place.  If an energy efficient hand dryer is in place, it 

might be worth it to use that dryer instead of the 2 or 3 paper towels that you would use to 

dry your hands.  Most paper towels these days are compostable but these still require to be 

transported to the composting facility using energy in transportation and the composting 

process.  But educating building occupants on reducing the amount of paper towels used to 

dry your hands, if that is your preference, will become useful at the end of the day.   

Overall, if academic buildings monitor energy consumption, occupancy patterns are 

established and inputted into the predictive model then this will allow building managers to 

detect any unusual consumption peaks reducing energy consumption.  As long as wasteful 

occupancy behavior is kept in mind and awareness is raised, then academic building can 

increase their overall efficiency.   
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University of San Francisco  

Background 

The University of San Francisco’s facilities automation mission statement is the 

commitment to responsibly steward the USF campus with integrity, while conserving USF 

campus heritage and improving the campus to meet the challenges of today and the future 

(University of San Francisco, 2015).  This caused me to think, what is USF doing on campus 

to increase building energy efficiency?  Especially since it is located in California where 

energy reduction is such an important goal.   

In 2014, USF created a Climate Action Plan and these are the energy savings 

strategies that were agreed to (Brooks et al., 2014). Implementing an energy auditing and 

metering system to identify opportunities for energy demand reduction in water heating, 

space heating and electrical appliance usage as well as the implementation of an energy 

management system.  USF will also require that all new construction and upgrades have an 

extensive use of passive energy systems (solar gain, shading, daylight, ventilation).  

Moreover, working with the city of San Francisco towards net-zero energy in all new 

construction and major retrofits will be a major focus. Additional energy efficiency upgrades 

will be analyzed; these upgrades include examining the potential for efficiency gains in 

refrigeration, lighting, cooling of computer clusters and other commonly used appliances.  

I decided to reach out to Michael London, the Associate Vice President of the 

Facilities Management, at USF to learn more about what they were doing towards academic 

building energy efficiency.  I was directed to get in contact with Craig Petersen the Director 

of Operations at the University of San Francisco.  After a few email exchanges, I finally 

learned what USF has implemented thus far (Appendix A).   

Craig Petersen stated that to date: 

USF’s main source of energy consumption is the co-generation plant, which produces 

1.5mW of electricity.  Co-generation is the simultaneous production of electricity with the 

recovery and utilization heat.  It is highly efficient form of energy conversions and it can 

achieve energy savings of approximately 40% when compared to the separate purchasing of 

electricity from the national electricity grid and a gas boiler for onsite heating (Clarke 

Energy, 2016).  The way a co-generation plant works is that fuel goes into the generator, this 

generator produces electricity for the university campus.  While generating this electricity, 
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waste heat is produced.  This wasted heat is then captured and used to create steam that will 

then be used to provide heat to the lower campus buildings as well as for domestic water 

needs for all resident hall rooms, showers, and the heating of the Olympic sized swimming 

pool (Brooks et al., 2014). Even though, originally the heat generator is using energy to 

supply to campus, the “waste heat” is then being recycled to be utilized in other areas of the 

university campus which is considered the production of energy (Figure 15).  

 

Figure 15: Made by compiling data from Madison Gas and Electric website.  Diagram explaining how a co-generation 

plant, engine uses fuel to provide electricity, the exhaust gases from the engine are then sent to a heat recovery unit which 

will use this waste heat for hot water used for cooling or heating of the facility.  

The average energy consumption at USF is of 750,500 kWh per month.  However, 

42% of this energy demand is produced by the co-generation plant and the solar farms 

around campus.  Solar farms are located on the roof tops of the Gleeson Library, Geschke 

Learning Center, Kalmanovitz, Cowell Hall, University Center and Koret Health and 

Recreation Center.  These solar farms have a total capacity of approximately 590 kW and 

have generated over 2.5 gigawatt-hours.  These panels have contributed to 4.5% of the 

Universities electrical output (753,000 kWh per year) (Brooks et al., 2014).  USF building 

automation system has been updated to be accessible in every building on campus and can 

also be monitored by the co-generation plant. USF is working on the upgrade of their 

controls to be fully digital to allow for web-accessing monitoring. As of right now, they have 

a mixture of the three kinds of controls; pneumatic controls, fully digital controls and the 

hybrid of pneumatic/digital controls.  
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A comprehensive energy auditing was performed and it was suggested to implement a 

detailed monitoring system.  The primary goal is to be able to monitor individual campus 

buildings and the secondary goal is to monitor energy consumption in individual offices, 

resident hall floors and individual rooms in the resident halls. USF has started their re-

lamping campaign, replacing over 8,000 ballasts and 16,000 lamps for LED fixtures 

specifically in buildings and garages. Looking back at the re-lamping campaigned at 

University of Massachusetts Amherst, that campus is 1,463 acres big which is equivalent to 

26 times larger than University of San Francisco’s campus which is 55 acres big. If 

University of Massachusetts Amherst observed 154,191 annual kWh savings, that number 

divided by 26 could show a relative energy savings of 5,930 annual kWh savings.  If this is 

compared to the previously establishes California kWh rate of $0.19, then the monetary 

savings in light fixtures could be equivalent to $1,126.70.  And for the resident hall re-

lamping campaigned, the observed 509,600 annual kWh divided by 26 could show a relative 

energy savings of 19,600 annual kWh savings which could be equivalent to $3,724 in 

California.  

 

Recommendations to University of San Francisco  

If the black, white and grey method approach were to be followed by USF, just like in 

the University of California Merced study, the first step would be to implement metering 

devices to evaluate energy usage.  This is important because monitoring energy usage of a 

building is critical to adapt control strategies that will reduce energy consumption.  From my 

experience, when I go to class on some weekday nights as well as Saturdays, I have noticed 

that in Kalmanovitz Hall and the University Center, all the classrooms lights are turned on, 

but not all the classes are in use.  This results in energy waste in terms of providing light and 

ventilation in a room that is unoccupied.  If these classrooms, were equipped with light 

motion sensors as well as CO2 sensors, USF just like University of California Merced could 

expect at least 10-20% energy savings.   

Following the sensors, if infra-red low- resolution cameras were set at all entrances of 

campus buildings, occupancy numbers can be calculated and entered into a white box model 

which along with climate information and building material information would have a 

predictive model.  If USF and University of California Merced were compared, I would say 
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that USF has a higher value of energy savings mainly because of the different climates 

between the two cities aiding a possible higher percentage of energy savings. University of 

California Merced is located in the Central Valley between Fresno and Modesto where the 

weather is dry and hot with summer temperatures above 100 degrees experiencing the need 

of mechanical ventilation to stay cool in the buildings while USF is located in San Francisco 

where there is usually fog and lower temperatures that allow free cooling.  Free cooling is 

when the outdoor air temperature is at or below the set point temperature at which the HVAC 

equipment does not have to work as hard to cool down the space.   

Finally, if the occupancy data has been set and the metering devices have collected 

enough data, occupancy schedules can be created for each academic building and even 

individual classrooms within the building, just as Mr. Peterson stated is their secondary goal. 

The grey box model would be able to combine all this information and allow for building 

managers to create live buildings that react to real-time occupancy density instead of working 

with fixed schedules consuming energy that is not necessary.   

Currently, USF buildings appear to have occupancy schedules from 8:00 AM to 

8:00/9:00 PM.  Buildings remain open with student ID card access until midnight.  What if 

USF implemented a system where occupancy past operating times was controlled by the 

swipe of an ID card when entering a building?  That could grant you access to allow motion 

sensors to start working because they are aware someone is in the building, especially after 

hours. Moreover, if lights are left on, the person who left the lights on will be able to be 

identified since the card reader can record the student ID that was swiped to enter the 

building.  This might bring up some privacy concerns that users might not be very happy 

about. Looking back to the Kamali et al. (2014) case study, where the lights were 

automatically shut off at a certain time, might have been more convenient for an office 

building due to the consistent occupancy schedule. Doing something along those lines in an 

academic building would be complicated as students tend to stay after class for group 

meetings or to talk to the professors.  

Overall, USF has started to make significant progress towards building efficiency but 

there is still some more room for improvement.  More control strategies could be 

implemented as well as occupancy sensors to work with the new building automation system 

implemented on campus. Setting accurate occupancy profiles will maximize energy savings 
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in buildings and rooms that are not being utilized. More solar panels could be installed on 

other buildings on campus allowing for the increased production of more green energy.  If 

the university can generate more green energy, then the co-generation plant could utilize it 

and be a self-sustainable mechanism.  If they do so, this will aid in the energy reduction 

efforts in their buildings and help achieve a great feat, net-zero energy, ay USF.  

Recommendations 

Just like in the case of University of San Francisco, managerial recommendations are 

necessary for academic buildings to take into consideration when attempting to reduce their 

energy consumption and becoming more sustainable.  The following recommendations are 

more of a general managerial recommendation on what to consider when thinking of energy 

reduction specifically to academic buildings but not limited to commercial buildings in 

general (Figure 16).   

Lighting is one of the largest areas of energy consumption, therefore a re-lamping 

campaign is necessary. This is an easy, inexpensive and immediate solution that will generate 

instant energy reduction.  If an academic building utilizes T12 fluorescent lamps, a common 

fluorescent type of light, re-lamping the buildings with T8 lamps, a more energy efficient 

fluorescent type of light, energy consumption can be reduced by 35% (Natural Resources of 

Canada and U.S. Energy Information Administration, 2003).  The resident hall re-lamping 

campaign at University of Massachusetts is also a good idea.  It would probably be more 

economic for academic buildings to partner up with a company that sells LED lamps and 

offer students to replace their lamp bulbs for free than to have to pay for the different lamps 

student bring from home.   

The HVAC can have multiple phases of improvement. Primarily, a control retrofit, to 

update the universities controls from pneumatic to digital direct controls.  Just like the office 

building in the county of Santa Clara, California performed.  This is a minimal invasion 

process that will not even disturb the building function.  

  The second phase of an HVAC energy consumption reduction plan would be to 

implement a building automation system. Having performed a control retrofit will also allow 

for a smooth transition during the implementation of the building automation system.  This 

building automation system will allow building managers to have a platform to gather all the 
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data from the direct digital controls. Moreover, this platform will allow the data to be turned 

into graphs to visualize energy trends.   

Once the data collection platform has been generated, then the black box model can 

be implemented.  An energy consultant firm or energy analyst will then need to be hired.  

The analyst’s purpose is to create a white box model and find predictive values of energy 

conservation and consumption in academic buildings. Following the black box and white box 

model implementation, then together they will create the grey box model where it will be 

determined what control strategy will yield the highest energy savings in academic buildings. 

Control strategies like installing CO2 sensors and passive infra-red cameras to work in 

conjunction with occupancy profiles will be evaluated.   

To overcome the barriers caused by occupant behavior and wasteful energy 

behaviors, awareness campaigns will need to be promoted. These campaigns will be done via 

flyers, internet and word of mouth.  Students and professors should all be distributed surveys 

that have a self-evaluation.  Some of the questions to be answered in the survey could be: Do 

I forget to shut the lights off when I leave? Do I forget to close my windows? Do I leave my 

computer on when I will not be using it for more than 15 minutes? Do I turn my printer off 

when I am not using it? Do I keep my TV on even if I am not watching it? Etc. Once these 

questions have been answered, students and professor can tally their scores and they can find 

out if they are being energy conscious or not. Some energy conservation facts can be added 

to the survey as well as facts about how their energy consumption is affected in dollars (e.g. 

If 75% of the students leave their computers on for 12 hours straight it will cost this amount 

of dollars per day).  
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Figure 16: Flow chart explaining the standard procedure to reduce energy consumption in buildings. Applying these 

various techniques should work on all commercial buildings but specifically in academic buildings.  
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Conclusions 

 

Through the analysis of the five case studies, occupancy scheduling techniques and 

occupancy sensors have been analyzed based on how can they reduce energy consumption in 

academic buildings. The case studies show that energy reduction is possible but challenging.  

Energy reduction is a challenge in academic buildings because of occupancy 

diversity.  In the Gul and Patridar’s study (2014) 92% of the people in the post graduate 

center at University of Edinburgh were visitors. This variation shows a large percentage of 

occupancy diversity but that is not the only problem.  Another problem is that academic 

buildings are multipurpose buildings, meaning that multiple activities are happening in the 

same building, sometimes even at the same time. Just take a look at the University Center at 

University of San Francisco. That building has, the student bookstore, cafeteria, classrooms 

and administrative offices. It is a challenge to please every occupant, especially due to 

occupancy variability.  Especially when the occupancy variability can be so drastic, 

comparing occupancy during lunch time and dinner time against occupancy between 

03:00PM and 05:00PM.  

It is not impossible to achieve building sustainability but it takes time and major 

building retrofits. A re-lamping campaign is necessary, just like at University of 

Massachusetts Amherst where the re-lamping campaign yielded over 150,000 annual kWh 

savings.  A direct digital control retrofit is also necessary, and like the office building in 

Santa Clara, where over $40,000 savings were experienced in the first year.   A building 

automation systems would also allow academic buildings to increase energy savings.  This 

system will gather information from the digital controls and allow the building manager to 

visualize trends on energy consumption, like in the University of California Berkeley where 

the architecture building was utilizing energy in non-operational hours, and after the fix was 

made 36% energy savings were observed.  When all these tools are available, the black box 

model will already be in progress, this is because the black box model is the data collection 

stage.  

Following that, the white box model will need a weather evaluation as well as 

building evaluation to come up with predictive values for energy conservation.  Finally 

together the grey box model will allow energy conservation strategies to be analyzed 
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individually.  Each individual climate will be able to evaluate independently the various 

occupancy sensors and occupancy schedules react to each specific climate to find what 

control strategy works best for their own situation.  An academic institution in Arizona will 

not behave the same as an academic institution in California. However, the steps that need to 

be taken towards energy efficiency can be generalized, it is at the grey box model stage 

where each academic building will need to analyze and decide what the best strategy is for 

them depending on their geographic location and climate variation. 

And finally, campus awareness will be absolutely necessary.  If academic building 

occupants are not aware of how their behavior and actions affect building performance and 

therefore energy consumption, building sustainability will not be able to go to the next level. 

Surveys and self-evaluations will be required to narrow down what behaviors and actions are 

affecting energy consumption to later focus on the main issues individually.  Education and 

awareness are necessary to work in conjunction with building retrofits and energy analysis to 

reduce energy consumption and achieve building sustainability.   
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Appendix A 

Email to Craig Peterson, Director of Operations, University of San Francisco: 

 

Q: Does USF have DDC or a BMS?   

A: USF is in the process of upgrading its buildings to a building A: automation system that is 

accessible in each building as well as provides the ability to be centrally monitored in our Co-

generation Plant workstation.   Are thermostats fully pneumatic, pneumatic/DDC or fully 

digital?  We use a combination of all three thermostat systems, since each of our buildings and 

HVAC systems are one of a kind and unique.  Over time we will be transitioning to fully digital 

and web-accessible monitoring. 

 

Q:  How does USF monitor their energy consumption?   

A:  Unfortunately we have not yet invested in energy monitoring for the campus.  We recently 

conducted a comprehensive energy audit that identified the need to provide detailed 

monitoring.  Our first goal is to monitor individual buildings, but ultimately we will want to 

monitor individual offices and resident hall floors and even individual rooms. 

 

Q:  What is your average monthly energy consumption?   

A:  On average, we use 750,500 kWh per month.  Of this total, we produce approximately 42% of our 

demand through our cogeneration power plant and our solar farms atop several of our buildings. 

 

Q:  What do you think is the main source of energy consumption?  

A:  Our main source of energy consumption is the cogeneration plant, which produces 1.5 mW of 

electricity, while simultaneously providing much of our domestic water heating needs in the 

resident halls for steam heat, showers, and heating the swimming pool. 

 

Q:  Has there been any energy/building retrofits? Specifically towards lighting, HVAC and  

controls?  If so, do you have any energy data before and after the retrofit?   

A:  There have been several energy retrofits, to include upgraded LED lighting in several buildings, 

garages, and other locations.  Unfortunately, since we did not have precise metering, we could not 

accurately gauge before and after energy usage.  But it was decided to install these upgrades 

quickly, rather than spend the money to meter, then assess, and finally make retrofits.  In some 
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cases this caused us to lose out on rebates and other incentives, but the decision was made when 

we were needing to perform large renovations anyway. 

 

Q:  What is USF approach to energy efficiency and building efficiency?  

A:  USF fully supports energy efficiencies through building automation, improved technology, and 

behavior modification.  No one option solves the problem; it is a holistic effort across the entire 

spectrum. 

 

Q:  What is the typical occupancy schedule for campus buildings?  And how has this been 

determined? Are there any other additional steps that can be taken to improve the occupancy 

schedule?   

A:  The occupancy rate for USF buildings is quite high.  In fact most campus classrooms start 

at 8am and run until 8 or 9pm.  This makes it a challenge to perform preventive maintenance and 

when a classroom goes out of service for mechanical issues, it is difficult to provide alternate 

locations for teaching, especially in the laboratories and other low density, high demand locations. 

Dormitory rooms typically run in excess of 95% capacity, although that may change throughout 

the academic year due to attrition (drop outs, transfers, etc).  

 


	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	Spring 5-20-2016

	How can occupancy modeling and occupancy sensors reduce energy usage in academic buildings: An application approach to University of San Francisco
	Paloma R. Duong
	Recommended Citation


	tmp.1463632022.pdf.pajL8

