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ABSTRACT 

An Analysis of 2005 NAEP 8th Grade Mathematics Achievement Items By Content 
Strand, Problem Type And Language Complexity  

 
The purpose of this study was to conduct a descriptive analysis the 2005 NAEP 

8th-grade mathematics assessment. In order to determine if a relationship between 

mathematical language fluency and mathematics achievement exists, the Mathematics 

Assessment Language Framework was created to classify the 2005 8th-grade NAEP 

mathematics assessment test items according to problem type and language complexity. 

The magnitude of the achievement gap on each content strand was then related to the 

percentage of items classified by problem type and language complexity.  

Three procedures were used to analyze the research data. First, a comparative data 

analysis disaggregated racial/ethnic group data and compared mean scores by five 

mathematic content strands to examine differences in achievement on the 2005 NAEP 

Math. A series of t-tests were performed to compare White student group mean 

performance to group mean performance of Black students, Hispanic students, and Asian 

students. Second, a content analysis of the items was completed first by problem type and 

by MALF categories.. Third, the magnitudes of the achievement gaps within each strand 

were related to the percentage of items classified according to problem types and 

language complexity and a rank order correlation was computed.  
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Results revealed that measurement was the most difficult of the five strands based 

on overall mean achievement scores. Data analysis was the least difficult of the five 

content strands based on mean achievement but showed the second highest gap for Black 

students and Hispanic students when compared to their White peers. Achievement gap 

differences in the content strand of numbers and operations could be attributed more to 

computational competency than language complexity based on the analysis of problem 

types x language categories. Achievement gap differences in the content strand of data 

analysis could be attributed more to language complexity than computational competency 

based on the analysis of problem types x language categories. The Spearman rank order 

correlation suggested that relationships exist between achievement gap rank and problem 

type; achievement gap rank and language complexity category; and problem type and 

language complexity category. 
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CHAPTER ONE 

STATEMENT OF THE PROBLEM 

In 1966, the landmark Coleman Report (Coleman, et al, 1966) used student test 

score performance in reading and mathematics for the first time as indicators of equality 

in the American educational system for children of different races, gender, and 

socioeconomic status. Using data from over 600,000 students from across the nation, the 

Coleman Report found that White students out-performed minority students, wealthy 

students outperformed poorer students, and students with highly-educated parents 

outperformed students with less-educated parents. 

More than 40 years of research based on the factors identified by the Coleman 

Report have not resolved the issue of the achievement gap between White and minority 

students (Abedi & Lord, 2005; Atweh, Bleicher, & Cooper, 1998; Boaler, 2002; Fenema 

& Leder, 1990; Ladson-Billings, 1997; Lee, 2004; Lubienski, 2000a, 2000b, 2004, 2006; 

National Center for Educational Statistics (NCES), 2005-2007; National Science 

Foundation (NSF), 2004, 2007; No Child Left Behind (NCLB), 2002; Okpala, Okpala, & 

Smith (2001); Tate, 1997; U.S. Department of Commerce, 2001; U.S. Department of 

Education, 2006; Wenglinsky, 2004). In Reaching the Top: A Report of the National Task 

Force on Minority Achievement (The College Board, 1999), the differential in academic 

achievement between minority students and their White peers was thought to be 

predicated on  factors similar to those found by Coleman: (1) economic circumstances, 

(2) parent educational background, (3) racial and ethnic prejudice and discrimination, (4) 

cultural attributes of the home, community, and school, and (5) the quality, amount and 

uses of school resources. While achievement gaps exist in reading, mathematics and 

science achievement, this study is restricted to mathematics achievement. 
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The social and economic impact of the mathematics achievement gaps makes 

them a severe national problem (Kober, 2001). Mathematics performance in schools acts 

as an important determinate of successful educational attainment, career choice, and 

economic rewards (NSF, 2004). Nations require a workforce that is mathematically 

literate to adapt to increasing technological innovations and global markets for goods and 

services (Erpenbach & Forte-Fast, 2004; National Council for the Center for Excellence 

[NCCES] 1984; NCES, 2005). Yet despite the need for mathematical literacy, education 

has failed to ensure that all students are able to function with high mathematical 

attainment on assessment measures. For example, minority students' mathematic 

achievement scores today are lower than non-minority students’ scores were 10 years 

ago, before a decade of focused national school reform efforts to raise minority 

mathematical attainment (Educational Research Service, 2001; National Council of 

Teachers of Mathematics [NCTM], 2000; NCES, 2005). Investigations are needed to 

understand why certain groups consistently lack the necessary skill sets to reach 

proficiency on national and state mathematic assessments. Therefore, this study focused 

on student mathematics performance using data from the 2005 National Assessment of 

Educational Progress (NAEP).  

Since 1973, the federal government has required that a sample of the nation’s 

students be assessed in reading and mathematics to ascertain the achievement of all 

students in reaching proficient levels of educational attainment. Biannually, since 1996, 

The Nation’s Report Card has presented the achievement results in mathematics, 

disaggregated by gender, race/ethnicity, and socioeconomic status (Elementary and 

Secondary Education Act of 1965 [EASA]; National Assessment Governing Board 
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[NAGB], 2004 NCES, 2005). Despite some improvement in overall performance, gaps 

between various racial and ethnic groups continue to persist and have not narrowed 

significantly since 1990 (NAEP, 2005; NSF, 2004). For example, in a cross-grade 

comparative analysis on overall mathematics achievement over the decade from 1990 

through 2000, the difference in the achievement gap showed that Black and Hispanic 8th-

graders’ mathematic scores remained close to the achievement of White 4th graders’ 

scores. Another grade level comparison showed that in 1990, Black 12th graders scored 

similarly in mathematics to White 8th-graders, but by 2000, White 8th-graders 

outperformed Black 12th graders by an average of eight points.  

Disparities in achievement gaps due to socioeconomic status (SES) were similar 

to race-related gaps. Whites outperformed Blacks and Hispanics on mathematics in each 

of the SES quartiles. For example, in the 12th grade, low SES White students scored 

within three points of Black students in the highest SES. Between low SES White 

students and low SES Black students there was a 22-point differential (Lubienski & 

Shelley, 2003). Recent data from the 2005 NAEP mathematics assessment indicated that 

the proportion of Black and Latino 8th-graders reaching the proficient level was 9% and 

13%, respectively, compared to 39% of White students and 47% of Asian students. 

Achievement at the proficient level means the student has demonstrated competency with 

challenging grade-level content (NAGB, 2003). 

Another set of studies using 1996-2001 NAEP mathematics assessment data 

examined the effects of different instructional practices employed with students during 

mathematical problem solving on achievement. The findings suggested that students who 

had the most experience with a more discursive, student-centered approach recommended 
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by National Council of Teachers of Mathematics (NCTM) were from higher SES groups, 

disproportionally White, with achievement scores on the proficient level or above on 

NAEP mathematics assessments (Lubienski, 2000a, 2000b, 2004). 

Achievement gaps identified by these and other studies are based on NAEP test 

items that are reviewed extensively for fairness and bias and examined statistically for 

differential item functioning (DIF), or evidence that an item might put a subgroup at a 

disadvantage. DIF analyses compare the item performance of sub-groups (e.g., Black or 

Hispanic examinees), and when an item is substantially harder for one group than for 

another group, the item is reviewed to uncover, if possible, causes for the differential 

performance. If it is determined that group differences can be explained by characteristics 

unrelated to the purpose of the test, the item can be deleted from the scoring. However, if 

it is determined that the differential performance is caused by relevant knowledge being 

assessed for mastery (e.g., algebraic equations on a mathematics exam), then it is likely 

that the item would be retained and scored (Zumbo, 1999). 

 Thus, the achievement gaps between minority and White students continue to 

persist even with items screened for potential bias, and these achievement gaps have 

important implications for America’s ability to compete globally.  Understanding the 

achievement gaps is a top priority among educators and researchers alike.   

 One area not well studied is the effect of mathematical language fluency on 

mathematical achievement (RAND Mathematics Study Panel, 2003). Language fluency 

in mathematics refers to the ability of a student to understand what is required in a 

mathematics test item and delineates the differences between language used on a daily 

basis and the language associated with problem solving. One aspect of mathematical 
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fluency is the use of complex language that is required to represent abstract structures and 

relationships using words, mathematical notation, symbols, and logic, which in 

mathematics, is more careful and accurate than everyday speech (Nowak, Komarova, & 

Niyogi, 2002; Wakefield, 2000). Though the acquisition of mathematical literacy draws 

on many of the same skills as print literacy (Adams, 2003; Wakefield, 2000), Wakefield 

(2000) theorized that mathematics qualifies as a separate language based on the socio-

linguistic structures of words, symbols, and expressions used to communicate ideas. He 

suggested that the understanding of mathematical concepts depends upon a student’s 

fluency, proficiency, and comprehension of mathematics vocabulary.  

This theory suggests that language complexity is one factor that may contribute to 

the achievement gap between White and minority students. To date, the NAEP 

achievement gaps have been based on subtests defined by the five strands of mathematics 

curriculum--number sense, measurement, geometry, data analysis, and algebra (NCTM, 

1989).  NAEP items consist of multiple-choice and open-ended questions of varied 

complexity that meet the standard parameters of current mathematics assessments 

(Levine & Reed, 2000).  The content strands across item types may use language that 

confounds the measurement of students’ mathematics abilities with their language 

fluency - the ability to understand complex language in problem solving.  If language 

complexity plays a role in the achievement gap in mathematics, then analyzing 

mathematical items according to language-based categories may reveal a source of the 

achievement gap. Few studies have examined the language difficulty of NAEP math 

items to determine to what extent, if any, language complexity plays a role in the 

achievement gap. This underlies the need for the present study.  
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Purpose of the Study 

The purpose of this study was to conduct a descriptive analysis the 2005 NAEP 

8th-grade mathematics assessment. In order to determine if a relationship between 

mathematical language fluency and mathematics achievement exists, the Mathematics 

Assessment Language Framework was created to classify the 2005 8th-grade NAEP 

mathematics assessment test items according to problem type and language complexity. 

The magnitude of the achievement gap on each content strand was then related to the 

percentage of items classified by problem type and language complexity. It was thought 

that analyzing NAEP mathematics items according to problem type and language-based 

categories may reveal sources of the achievement gaps.  

The analysis was conducted in three steps. First, achievement gaps on each of the 

five content strands (number and operation, measurement, geometry, data analysis, and 

algebra) were computed by race. Second, the percentage of item problem types and 

categories of language complexity from the Mathematics Assessment-Language 

Framework were calculated within each strand. Third, the magnitudes of the achievement 

gaps within each strand were related to the percentage of items classified according 

problem types and language complexity.  

Significance of the Study 

This study was important for three reasons. First, even though the influence of 

language and language factors in mathematics has become more important in our 

pluralistic society, research on such factors has not kept up with their importance. Most 

research on the 2005 NAEP Mathematics Assessment, the largest national representative 

sample of students’ mathematics performance ever constituted by the NCES, has focused 
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on student performance, attitude, instructional practice, and race-related equity issues.  

Very little NAEP research has considered the impact of language factors on NAEP 

mathematics performance. 

Second, this study used data from the restricted-use data set, enabling analysis of 

language complexity, problem type, and achievement gaps to be disaggregated by strand. 

Most NAEP studies do not have access to content strand data and must rely on the total 

mean score of the NAEP assessment for analysis purposes. Disaggregating by content 

strand should help to identify language related factors in mathematics achievement.  

Third, examining the relationship between language complexity and mathematics 

achievement may reveal bias not uniformly identified through current differential item 

function (DIF) techniques. Drawing attention to the underlying language factors may help 

improve mathematical assessments’ ability to capture the knowledge and skills that 

students need to know and better portray students’ academic ability (Lubienski, 2000a, 

200b, 2004, 2006; NAGB, 2003, 2004; NCES, 2005; NCTM, 2004, RAND, 2004). 

Theoretical Framework  

The theoretical foundation for this study is the language-based framework of 

Wakefield (2000).  This framework defines the foundational social-linguistic constructs 

of mathematical language that identifies the interdependence of words, symbol, and 

expressions used to construct meaning and communicate ideas. Wakefield suggested that, 

similar to the processes children use to acquire fluency in their native language, 

mathematic language fluency has innate qualities that are predetermined prior to formal 

instruction. For example, prior to entering school, most preschoolers have mastered 

mathematical concepts such as the concepts of equality, greater than, lesser than, 
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addition, and subtraction. Wakefield uses Chomsky’s(1975)  Theory of Language 

Acquisition and Piaget’s (1969) Theory of Cognitive Domain to support his contention 

that acquiring mathematic language fluency shares many attributes of early language 

acquisition such as when children learn to talk. Wakefield equates the early conceptual 

mastery of mathematical concepts as math-acquisition devices (MAD) that are similar to 

the language-acquisition devices (LAD) suggested by Chomsky (1975). Chomsky 

theorized that a complex but finite set of rules governs all languages. Further, humans are 

born with an innate capacity to learn whatever language they hear and this learning of 

language is an integral part of neurological functioning.  

Wakefield draws further parallels to mathematics as a separate language when 

citing Piaget’s (1969) preoperational stage of cognitive development (ages 2-7) as the 

stage when rapid development of language ability and early acquisition of mathematical 

concepts of preschool children coincide. Wakefield posits that if speaking to and 

engaging young children in activities that build vocabulary and help them to make sense 

of the world increases cognitive development and language acquisition, then mathematics 

ability may be increased as well by engaging in conversations and using play involving 

mathematic operations such as counting, sorting, sharing, and valuing.  

Wakefield’s (2000) mathematics framework details ten attributes and/or 

characteristics of mathematical language based on unique socio-linguistic structures 

required to reason, communicate, and express ideas.  These attributes and/or 

characteristics are: (1) abstractions (verbal or written symbols representing ideas or 

images) are used to communicate; (2) symbols and rules are uniform and consistent; (3) 

expressions are linear and serial; (4) understanding is based on opportunities to practice; 
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(5) memorization of symbols and rules are required to engage in discourse and practice; 

(6) a continuum from novice to expert requires translations and interpretations; (7) 

meaning is influenced by symbol order; (8) communication requires encoding and 

decoding; (9) increasing intuition, insightfulness and spontaneity accompany fluency; and 

(10) the possibility for expression is infinite. 

Wakefield’s attributes characterize the components of mathematics that 

distinguish it as a separate language. However, this framework does not provide objective 

measures which can be used to quantify the words, terminology, and vocabulary that are 

key factors in the communication process nor does the framework identify how these 

attributes can be used to evaluate mathematical performance by students. In order to 

develop objective measures for classifying items by language categories on the 2005 

NAEP mathematics assessment, Wakefield’s epistemological framework had to be 

adapted for use in the present study.  

Successful problem solving depends on students’ conceptual understanding, their 

relative strength in each series of steps to interpret meaning in terms of mathematical 

symbols (e.g., graphs, equations, relevant details), and whether the students can see and 

make use of the relationships among those steps. Because students’ first judgments about 

how to approach  mathematics items are based on whether graphic material is included in 

the item (Lai, Griffin, Mak, Wu, & Dulhunty, 2001), the present study first classified 

items into graphic versus non-graphic content. Graphic representations are used as a 

visual aid to interpret mathematical data such as symbols, pictures, graphs, grids, charts, 

maps, geometric shapes, and numerical graphics that include number lines, computation 

items with less than three word directions, frequency tables, and extended numerical 
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patterns. Non-graphic representation refers to those items that have no visual or pictorial 

representation.  

The graphic items were then were subdivided into three categories based on 

language complexity: (1) graphic vocabulary only (2) organize and plan, and (3). 

draw/manipulate to solve. Graphic Vocabulary refers to items that require understanding 

of specific mathematical terms to identify or confirm mathematical notation, geometric 

shapes, location on a map or grid, or to find discrete information on a graph or chart. 

 Organize and plan refers to graphic representational items that also require knowledge 

and skills of syntax (word order), words (e.g., prepositional, proportional, multiple 

meaning), and directional signs to set up numerical expressions for computation. 

Draw/manipulate to solve refers to those items that require the use of additional resources 

not found within the stem of the question. These items may require the respondent to 

confirm an answer, extend, transform, locate, or plot patterns, or apply new information 

to solve an equation.  

The non-graphic items were also subdivided into three categories based on 

language complexity: (1) non-graphic vocabulary,(2) convert-to-solve, (3) convert only. 

These items require an evaluation of relevant written information to solve. 

Non-Vocabulary only refers to items that require understanding of specific mathematical 

terms to identify or confirm mathematical notation, operations and formulas. Convert and 

solve refers to those items that require the understanding of the interrelationship of 

symbols and words to mathematical notation, and requires words or symbols to be 

changed into numerical notation prior to computation. Convert only refers to those items 

that require the knowledge of technical vocabulary and/or mathematical notation to locate 



  11 

 

or identify the same information using symbols, and words. This classification includes 

the automaticity of basic facts in addition, subtraction, and multiplication of whole 

numbers.  

Background and Need 
 

The No Child Left Behind Act of 2001 (NCLB) is the most recent in a series of 

legislative acts (e.g., Elementary and Secondary Education Act [ESEA], 1965; Goals 

2000 - Educate America Act, Title III, Sec.302; Improving America’s Schools Act of 

1994) intended to improve the educational system and increase student performance. 

Policies designed in NCLB focused on the public accountability of student learning and 

the achievement gap among groups of students. The critical difference between NCLB 

and other federal educational acts is that states must show gains in total achievement and 

demonstrate progress in closing the achievement gap among subgroups defined by 

ethnicity, SES, English Language Learners and students with disabilities (Erpenbach, 

Forte-Fast, & Potts, 2003; NCLB, 2001; Resnick, 2005). This accountability measure is 

based on an “Annual Yearly Progress” index of the percentage of all students and the 

percentage of disaggregated subgroups scoring at proficient levels on statewide language 

arts and mathematics assessments. The NAEP assessments are used as comparative 

benchmarks to assess the rigor of the statewide assessments. 

The effectiveness of NCLB to foster higher achievement for minority students has 

thus far proved inconclusive (Forte-Fast & Erpenbach, 2004).  Despite changes in federal 

educational policy and state curriculum standards, the disparity in achievement remain 

especially in mathematics and science among White, Black, Latino, and Asian students. 

The achievement gap continues to be an intractable measure of the inequality of 
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educational opportunities for all students to learn (Kober, 2001; NCES, 2005; PISA, 

2005; TIMSS-R, 2003).  As minority students are becoming an increasingly larger part of 

the school age population, there is an economic and social imperative to enhance the 

performance of minority groups so they may be integrated into an increasingly global 

workforce (NAEP, 2005; RAND Mathematics Study Panel, 2003; Resnick, 2005).  

Assessing the Achievement Gap  

Academic success in mathematics requires precision, consistency, attention to 

detail, conceptual agility, problem-solving flexibility, quick processing and recall, and 

cumulative learning that is integrated with verbal skills and reading proficiency to create 

strategic approaches to new tasks or learning (Levine & Reed, 1999; Resnick, 1987; 

2005). Mathematics fluency depends on cumulative skills in computation, the ability to 

integrate words, symbols, and vocabulary to create meaning and communicate ideas.  

According to Smith (2004), students acquiring mathematical fluency go through a 

series of stages that include: (a) initial and advanced acquisition where students learn to 

perform a skill with accuracy; (b) proficiency where students develop automaticity of a 

skill while maintaining accuracy; (c) maintenance where students have mastered the 

discrete skill at proficient levels over time and develop conceptual understanding; (d) 

generalization where students apply a skill(s) to different situations; and (e) adaptation 

where students apply their understanding to problem solving, reasoning, and real-life 

situations.  While assessments vary according to grade level and state frameworks, many 

current mathematics achievement assessments focus on the skills found at the adaptation 

stage of student learning.  According to Levine and Reed (2001), every mathematics 

assessment consists of the eight basic parameters for mathematic skills identified in Table 
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1, adapted for grade level complexity and content strand. The content of NAEP 

mathematics assessment questions is aligned to these parameters as identified in the test 

specifications for the NAEP framework (Federal Register, 2003; NAGB, 2004; 

Vinovskis, 1998). 

The NAEP mathematics framework specifies mathematical content in five strands 

(number and operations, measurement, geometry, data analysis, and probability, and 

algebra) and as shown in Table 2, defines the proportion of questions assessed within 

each content strand for grades 4 and 8.  The framework also specifies that students’ 

ability to understand mathematics be demonstrated by using three problem types: 

multiple choice (50%), short-constructed response (25%) and extended-constructed 

response (25%).  In addition, there are predetermined levels of the difficulty of test  

items across strand (NAGB, 2004; NCES, 2005).   
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Table 1 
 
Basic Parameters of Mathematics Assessments (Levine & Reed, 2001). 
 
Skill 

 
Components 

 
Basic number knowledge  
 
 
 
 
 
Math Facts 

 
Rote counting 
Object Counting 
Symbol recognition 
Symbol formation 
Symbol quantity association 
 
Use of counting strategies 
Accurate recall 
Automatic fluency of basic facts 
 

Math Notation Knowledge of operational signs 
Understanding of quantitative and directional signs (e.g., 
 <, <. = ) 
 

Written computation Procedures and algorithm knowledge  
Sequencing of steps  
Fact recall 
Alignment 
Attention to signs 
Understanding of place value 
Self-checking 
 

Mathematics vocabulary  Examples include: intersection, rounding, perimeter, mean 
 

Concept Formation 
 
 

Equation 
Proportional reasoning 
Prepositional reasoning 
Place value 
Spatial appreciation 
Imaging 
 

Problem solving Identification of relevant information  
Understanding of syntax and vocabulary 
Selection of operations 
Setting up problems 
Sequencing of steps 
Computational accuracy 
Self-monitoring 
Flexibility 
 

Mental Calculation With number problems 
With word problem 
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Table 2 
 
Distribution of Test Questions Across the Five Content Strands for Grades 4 and 8 

Content Strands 4th Grade 8th-grade 

Number and Operations 40% 20% 

Measurement  20% 15% 

Geometry 15% 20% 

Data Analysis 10% 15% 

Algebra 15% 30% 
 

NAEP mathematics scores are typically reported in three ways.  First, scaled 

scores are reported on a 500-point scale from 0 to 500. Second, the percentage of students 

scoring at five predetermined national percentiles are reported and labeled as far below 

basic, below basic, basic, proficient, and advanced achievement.  These five proficiency 

levels and their cut-off scores are shown in Table 3.  Finally, for some reporting 

purposes, three levels of student competency are reported and aligned to NCLB: basic 

(minimal grade level proficiency), proficiency (mastery of grade level standards), and 

advanced (exceeds grade level standards) (NAGB, 2004; NCES, 2005).  

Because the current NAEP framework was first used in 1990, there are 

comparative data available for the past 15 years.  In the overall national comparison 

between students in 1990 and 2005, average scores for all groups have increased for both 

4th- grade and 8th -grade students: fourth grade students improved 25 points and the 

percentage of 4th-grade students at the proficient level increased from 13% in 1990 to 
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36% in 2005; 8th-grade students improved 16 points overall and the percentage of 8th -

grade students at the proficient level increased from 15% to 30%.   

Table 3 

Minimum Score Required for Performance at Each NAEP Achievement Level  
on a 500 point scale 

Achievement Levels 
 

Grade 4 
 

Grade 8 
 
Far Below Basic 

 
Less than 170 

 
Less than 240 

 
Below Basic 

 
170 

 
240 

 
Basic 

 
214 

 
262 

 
Proficient 

 
249 

 
299 

 
Advanced 

 
282 

 
333 

 

Despite overall scores increasing over the past 15 years, the percentage of Black 

and Hispanic students at the proficient level is low relative to White and Asian students.  

Figures 2 and 3 present the 1990 and 2005 percentages of 4th -grade and 8th-grade 

students at three NAEP proficiency levels for Whites, Blacks, Hispanics, and Asians.  

The percentage of White and Asian students at the proficient level is considerably higher 

than the percentage of Black and Hispanic students (NCES, 2006). 

Moreover, the actual achievement gaps have remained roughly the same from 

1990 to 2005.  In 1990, there was a 32 point gap in 4th-grade achievement between White 

and Black students; in 2005, the gap was 26 points. Between White and Hispanic students 

in 1990, the score gap was 20 points; in 2005, the score gap remained exactly the same. 

At the 8th-grade, the score gap between White and Black students in 1990 and 
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Figure 1. Average scale score comparison by achievement level results by race/ethnicity 
in grade 4 between 1990 and 2005 on the NAEP Mathematics (NCES, 2006). 
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Figure 2. Average scale score comparison by achievement level results by race/ethnicity 
in grade 8 between 1990 and 2005on the NAEP Mathematics (NCES, 2006). 
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2005 remained basically unchanged, 33 points in 1990 and 34 points in 2005. From 1990 

to 2005, the White-Hispanic score gap increased from 24 points to 27 points. 

Mathematics Language and the Achievement Gap 

Fundamental to achievement in mathematics is the premise that students have the 

skill set to perform tasks using and applying the four operations (addition, subtraction, 

multiplication, and division) across the content strands. Secondary to achievement in 

mathematics is the understanding of how written language interacts with the 

mathematical skills to perform problem-solving tasks across the content strands.  

Previous research has identified English language structures, vocabulary, and inferential 

language as areas that may inhibit mathematical achievement (Abedi & Lord, 2001). 

The connection between language fluency and mathematical achievement has also 

been studied to identify isolated language structures which may affect academic 

achievement in the classroom (Curry, 1996; Fuchs & Fuchs, 2002). Fuchs and Fuchs 

(2002), for example, examined the functional performance of students with mathematics 

disabilities (MD), with and without reading disabilities (RD), on a range of mathematical 

problem-solving tasks involving arithmetic story problems, complex story problems, and 

real-world story problems. The results suggested that the performance of students 

decreased across the three problem-solving tasks as language complexity of the items 

increased for both groups of students. In a similar vein, Leong and Jerrod (2001) 

conducted an experimental study to examine word problems involving two different 

linguistic structures found in mathematics word problems. The results indicated that an 

interaction between problem type and ability level existed in the students’ capacity to 

find information to use in the text of word problems. Additionally, the relationship 
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between the ability to read and comprehend text with the ability to problem solve may be 

confounded by the students’ understanding of complex language including non-literal 

directions and prepositional phrasing. 

Other studies have been conducted to ascertain the role of vocabulary in 

mathematical problem solving. Lachance and Confrey (1995) conducted a quasi-

experimental study using opened-ended problems to develop an understanding of 

decimals and connect new concepts to earlier multiplicative constructs of ratio and 

fractions through strategizing solutions individually and in various discussion groups. A 

paired t-test showed that students made significant gains (p <.01) between the pre- and 

posttests, from an average of 15.5 scale points on the pretest to 80.8 scale points on the 

posttest.  The researchers contend that the development of ratio and proportional 

reasoning established early in the curriculum, along with opportunities to develop the 

mathematical language to explain student thinking, provided strategies to successfully 

connect and apply knowledge in a variety of assessment measures.  

A longitudinal study by Huntsinger, Jose, Larson, Krieg, and Shaligram (2000) 

examined cross-cultural beliefs about mathematics performance between parents of 

White and Chinese primary students. Differences in belief systems were found regarding 

mathematic achievement: Chinese parents believed hard work resulted in high math 

achievement; White parents believed that innate ability was the primary reason for high 

mathematics achievement. Another difference was found in homework practice between 

the Chinese parents and the White parents. The Chinese parents spent more time on 

homework and had a significant influence on their children’s vocabulary instruction. The 

Chinese parents all reported spending time at home to ensure their children understood 
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the terminology; no White parent reported spending any time on homework support for 

vocabulary. The results suggested that the emphasis on mathematics vocabulary by their 

parents may be a primary reason the Chinese students were outperforming their White 

peers in mathematics by third grade.  

Another group of studies investigated the influence of graphic representation on 

students’ understanding of the mathematical task needed to solve word problems. Blinko 

(2004), for example, examined the effect of three different ways of presenting 

mathematics problems: manipulatives, graphic representation, and words only.  The 

evidence suggested that the context of the layout and design of a question may influence 

whether or not a student will consider a problem approachable. If context matters in the 

outcome of attempted questions, and those questions without visual presentation are 

perceived as harder, the visual representation of word problems may impact a student’s 

rate of omissions on a mathematics assessment. 

Language frameworks created to investigate the effect of various problem-solving 

strategies in mathematics have focused on English-language proficiency and reading 

comprehension. Few studies exist that explore the relationship between the characteristics 

of verbal ability to performance on the mathematical tasks contained within standardized 

assessments. One such study by Abedi and Lord (2001) used items adapted from the 

2000 NAEP assessment to investigate the importance of language proficiency. 

Modification of math items were based on six linguistic features: (a) familiarity of non-

math vocabulary -infrequent words were changed; (b) voice of verb phrase – active from 

passive tense changed to active; (c) length of nominal – shortened; (d) conditional clauses 

– replaced with separate sentence and direct literal language; (e) relative clauses – 



  21 

 

removed; question phrases – rephrased to simple directional questions; and (f) abstract 

and/or impersonal presentations – made concrete and personalized. The results suggested 

that differences in linguistic structure of math word problems affected performance of 

English-proficient students more than students who were not English proficient. The 

results also suggested that changes in the complexity of the language most benefited the 

lower achieving segments of the middle school population. 

What role does mathematical language fluency play on the achievement gap 

differential on the 2005 NAEP mathematics assessment? Currently, the NAEP 

mathematics achievement gap is based on items that vary by content strand (NAGB, 

2004). Within content strand the NAEP items may also vary by problem type and 

language complexity.  If language plays a role in the achievement gap, an analysis of the 

language complexity of NAEP items may help reveal sources of the achievement gap that 

previously have been unidentified. 
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Research Questions 

Consequently, three research questions were examined in this study: 

Research Question 1:  What are the achievement gap differences between racial 

and ethnic groups (White, Black, Hispanic, Asian) on the 8th-grade 2005 NAEP 

Mathematics Assessment by content strand (Number and Operation, Measurement, 

Geometry, Data Analysis, and Algebra)? 

 

Research Question 2:  How are the five strands characterized in terms of problem 

type (multiple response, constructed response, and extended response), and language 

complexity (graphic vocabulary, non-graphic vocabulary, operate and plan, convert-to-

solve, draw and manipulate, and convert only)? 

 

Research Question 3: What is the magnitude of the relationships between the 

achievement gaps and the percentage of items of different problem types and different 

language complexity categories? 
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Definition of Terms 

 
Academic achievement -- generally, defined by grades in pre-college courses, 

class rank, science or literary prizes, National Assessments of Educational Performance 

(NAEP) scores, Advanced Placement (AP) course enrollments and test scores of an 

individual and or group of students on state assessments (Hombo, 2003). In this study, 

academic achievement refers to the scores on the NAEP mathematics assessment for 8th-

grade students.  

Ambiguous mathematical language -- refers to words or phrases found within a 

word problem that can have multiple interpretations. Ambiguity increases the range of 

possible interpretations of natural language and two primary forms are commonly found 

in mathematics: global and local. Global ambiguity means the whole sentence can have 

more than one interpretation. Local ambiguity means that part of a sentence can have 

more than one interpretation, but not the whole sentence (Inman, 2005). 

Content strands of mathematics -- these are subject-matter content for the 

framework of NAEP mathematics assessments – number sense, measurement, data 

analysis and probability, geometry, and algebra. Each strand represents a specific subset 

of skills with an expected order of difficulty and has a direct relationship between overall 

assessment performance and proficiency on a specific skill (NAGB, 2005; NCTM, 2000). 

Cut score -- the minimum score required for performance at each NAEP 

achievement level. NAEP cut scores are determined through a standard-setting process 

that convenes a cross-section of educators and interested citizens from across the nation. 

The group determines what students should know and be able to do relative to a body of 

content reflected in the framework. NAGB then adopts a set of cut scores on the scale 
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that defines the lower boundaries of basic, proficient, and advanced levels of performance 

(NCES, 2006).  

Differential item functioning (DIF) -- an item exhibits differential item 

functioning if the probability of doing well on the item depends on group membership, 

even after controlling for overall performance (NCES, 2006). 

Item response theory (IRT) -- test analysis procedures that assume a 

mathematical model for the probability that an examinee will respond correctly to a 

specific test question, given the examinee’s overall performance and characteristics of the 

questions on the test (NCES, 2006).  

Problem types -- there are three types of item formats on the NAEP 2005 8th-

grade mathematics assessment. The first item format is a standard multiple-choice with 

each item having five choices. The second item format is short-constructed response 

(SCR) and has two variations. In the first category of SCR questions, the student writes 

an answer in the space provided and it is scored dichotomously with full credit for a 

correct response and no credit for an incorrect response. The second category of SCR is 

polytomous items in which more than two responses are possible. Students answer 

multiple questions on data contained in one item or provide a rationale for a single 

response. The students may earn partial credit on this category of SCR questions. The 

third item format is the extended-construction response (ECR) questions. On these items 

students write out their responses to questions that ask for mathematical reasoning and 

justification for the students’ problem solving. Items with ECR are scored using rubrics 

and students may be awarded on four different levels of credit for response (minimal, 

partial, satisfactory, or extended). In addition to coding all correct responses, NAEP 
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codes items that students skipped as omitted (Arbaugh, Brown, Lynch, & McGraw, 2004; 

NAGB, 2004; NCES, 2006).  

Language Complexity Categories –  this refers to the difficulty of the words in 

the item used to convey the intentionality of the item (what is required to solve the 

problem). In this study, the Mathematics Assessment Language Framework (MALF) was 

used to classify 2005 NAEP 8th-grade Mathematics items into six language complexity 

categories. From most complex, the six categories are: graphics vocabulary, non-graphics 

vocabulary, operate-to-plan, convert-to-solve, draw/manipulate, and convert-only. 

Mathematics literacy -- this refers to the amount and the nature of mathematic 

knowledge, how individuals obtain the knowledge, and the justification of the presence of 

knowledge through language and symbols (Resnick, 1989). In this study, mathematics 

literacy refers to the ability to use mathematic language to recognize and evaluate 

information whether written, video, or in conversation to make valued judgments in the 

contexts of daily life, employment, and personal decisions.  

Mathematics language fluency -- Language fluency in mathematics refers to the 

ability of a student to understand what is required in a mathematics test item and 

delineates the differences between language used on a daily basis and the language 

associated with problem solving. This includes the development and communication of 

ideas and particularly within quantitative relationships using observation, reasoned 

analysis, and prediction. 

National Assessment of Educational Progress (NAEP) -- The NAEP 

assessments are considered a monitor of student achievement. These assessments report 

on progress and identify achievement gaps by gender, racial groups and other 
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demographic factors and record changes in achievement over time. NAEP assessments 

were retooled by the National Assessment Governing Board in 1992 and in 1996 to 

reflect these national trends toward a basic national standard of what children should 

know in the 4th, 8th, and 12th grades (NAGB, 2004; Vinovskis, 1998; Walberg, 2003). 

The importance of NAEP as the only assessment that provided information for different 

geographic regions, individual states, and demographic population groups and 

comparative information on how students performed on state assessments versus national 

assessments raised its prominence from a reporting agent to a measurement tool for state 

accountability (Hombo, 2003; NCLB FAQ’s, 2005). 

No Child Left Behind -- NCLB is a federal law that requires the accountability 

for each state’s academic achievement standards. It demands that student assessments 

measure progress against common expectations for student academic achievement and 

that achievement scores are disaggregated by race/ethnicity and socioeconomic groups to 

insure that all groups are meeting academic standards. All groups are expected to show 

yearly progress and states are mandated to have 100% of all students proficient on 

standards-based assessments by 2014 in order to continue to receive federal funding for 

education. States must implement supplemental services to student in schools that are 

unable to meet yearly progress toward this goal. Under NCLB, the Annual Yearly 

Progress (AYP) must apply to all subgroups of students with the expectation that this 

level of school and district accountability will close the achievement gap for minority 

students (NCLB, 2001 HR  PB. L. No. 107-110. 1425; NCLB FAQs, 2005). 

Plausible values -- Proficiency estimates for an individual NAEP respondent, 

drawn at random from a conditional distribution of potential scale scores for all students 
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in the sample who have similar characteristics and identical patterns of item responses. 

NAEP usually assigns five plausible values to each respondent. The plausible values are 

not test scores for individuals in the usual sense; they are offered only as intermediary 

computations for calculating summary statistics for groups of students (NCES, 2006) 

Propositional referents -- This term refers to words that perform the function as 

directions of time (e.g., when, where), location (e.g., next to, sequential), size (e.g., 

greater than, lesser than) and/or relationships such as which, how, was, or prepositions 

(e.g., above, between, over) and prepositional phrases (e.g., in order to,) in problem 

solving. 

Released item -- Refers to a test question that has been made available to the 

public. After each assessment, NCES releases nearly one-third of the questions. Released 

questions often serve as models for teachers who wish to develop their own classroom 

assessments (NCES, 2006). 
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CHAPTER TWO 
 

REVIEW OF THE LITERATURE 
 

This chapter is divided into three sections. The first section reviews NAEP 

background material, included the 2005 test specification framework for mathematics. 

The second section reviews epistemological frameworks that have been developed to 

examine the influence of language on problem-solving ability. The third section reviews 

research studies that examine the influences of language factors on mathematics 

achievement. These studies are grouped into six categories: (1) reading word problems, 

(2) mathematical discourse, (3) mathematics vocabulary, (4) problem-solving transfer, (5) 

student perceptions of test items, and (6) several studies using NAEP data to examine 

content strands  

NAEP Background 

The National Assessment of Educational Progress (NAEP), the only nationally 

representative and continuing assessment of what America's students know and can do in 

core academic subjects, have been conducted since 1969 (National Center for 

Educational Statistics [NCES], 2006). The National Assessment Governing Board 

(NAGB), appointed by the Secretary of Education, sets policy for NAEP and is 

responsible for developing the framework and test specifications that serve as the 

blueprint for the assessments. The NAEP assessments use oversampling procedures to 

obtain large enough samples of subgroups so that mathematics performance among the 

subgroups can be distinguished within each grade level. The NAEP assessments are 

designed to be cross-sectional and report what a group of students are able to do at one 
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point in time; individuals or cohorts of students cannot be tracked for performance data 

over time (Elementary and Secondary Education Act [ESEA], 1965).  

The NAEP assessments have a strong influence on national curriculum in a 

number of ways. NAEP scores are used to validate an individual state’s measure of 

yearly progress toward achieving state academic standards as part of the No Child Left 

Behind accountability measure called “Adequately Yearly Progress (AYP)”. Adequate 

Yearly Progress is the minimum level of improvement that states, school districts, and 

schools must achieve each year (NCLB Act 2001). Second, states must necessarily follow 

the subject matter content used in the NAEP assessment because these assessments 

reflects national educational practices of what students are learning at specific grade 

levels. Finally, the NAEP achievement scores are used to compare student performance 

by state and on international assessments. 

NCLB targeted K-12 science and mathematics education under Title II Part B: 

The Math and Science Partnership Program. The intent of NCLB is to improve student 

achievement across the grade levels by focusing on the content knowledge and teachings 

skills of the classroom teachers (NCLB, 2001). An important component in focusing on 

yearly improvement is the development of standards for benchmarking the performance 

of all students. The improvement standards are organized into frameworks by subject 

matter content and include grade level learning objectives, teaching guidelines, and 

assessment benchmarks. The frameworks provide the context for what students should 

know and learn at every grade level from kindergarten to the 12th grade (NAGB, 2003; 

NCES, 2005; NCTM, 1989, 2000). 
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There are four types of frameworks for mathematics, and all four are affected by 

NAEP in some way. The first framework is published by The National Council of 

Teachers of Mathematics (NCTM, 1989; 1996, 2000). The NCTM mathematics 

framework provided the initial core framework of principles and standards in teaching 

mathematics in 1989, and continues to makes recommendations for national and state 

standards by grade level and topic strands. For example, in reaction to the increased 

emphasis on accountability testing brought about by the requirements of NCLB, NCTM 

(2006) recently released a national outline of mathematics curriculum, national 

assessments, and mastery benchmarks. This outline, called the Curriculum Focal Points 

for Pre-kindergarten through Grade 8 Mathematics, document the key mathematical 

concepts and skills at each grade level with an emphasis on number and operations and 

spatial reasoning aimed to reduce discrepancies of grade-level expectations and learning 

objectives between states (NCTM, 2006).  

The second type of framework is the set of specifications for the 2005 NAEP 

Mathematics Assessment which are written by the National Assessment Governing Board 

(NAGB, 2003). The NAEP specifications include descriptions of the mathematical 

content of the test, the types of test questions, and recommendations for administration of 

the test. The core concepts used for benchmarking testing objectives in the NAEP 

assessment are based on the mathematic principles and standards of the NCTM 

framework (NAGB, 2003). The NAEP framework delineates by content strand what is to 

be assessed at each grade level, unlike the state frameworks which emphasize what 

content should be taught at each grade level by mathematic strand.  



  31 

 

The third type of framework consisted of individual state frameworks. States vary 

in setting benchmarks and academic content for different grade levels. Students from one 

state may and often have different learning objectives being assessed at different 

complexity levels and at different grade levels than those from another state. Even though 

48 states have aligned their content standards in mathematics to those of the NCTM by 

2000 (Swanson & Stevenson, 2002), there continues to be a broad range of individual 

state grade level expectations. For example, a study of 4th-grade mathematics curriculum 

of 10 states found mastery benchmarks ranged from a low of 26 benchmarks in South 

Carolina to a high of 89 benchmarks in Florida (Reyes, Dingman, McNaught, Regis, & 

Togashi, 2006). 

The fourth type of framework is the international assessment framework which 

allows countries to cross-reference student achievement to global educational standards. 

The two most influential are the Trends in Mathematics and Science Study (TIMSS, 

2000) and the Program for International Assessment (PISA, 2004). The TIMSS measures 

students’ progress in mathematics and science achievement on a regular 4-year cycle for 

grades 4 and 8. The PISA assesses one subject in depth every year, focusing on the 

subject matter literacy of 15-year-old students in reading mathematics and science. For 

2003, mathematics literacy and problem solving was assessed. Forty-one nations were 

included in both of these assessments. The United States uses the NAEP achievement 

data to compare the learning and teaching of national practices to global educational 

standards (Hombo, 2003; NAGB, 2003; NCLB FAQs, 2005; PISA, 2004; TIMSS-R, 

2000). 
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Epistemological Frameworks 

Mathematics has a specialized vocabulary which must be learned. Mathematics 

fluency depends on the ability to integrate words, symbols, and vocabulary to create 

meaning and communicate ideas. This ever changing format between words and symbols 

to arrive at innumerable solutions in problem solving is the essence of mathematical 

fluency (Levine & Reed, 2001). The literature reviewed in this section uses 

epistemological frameworks to examine issues of language contained within 

mathematical problem solving on academic achievement.  

Epistemological frameworks for mathematics concentrate on categorizing the 

language complexities needed to master mathematical content by examining how  

linguistics features (the requisites and developmental functions) facilitate the attainment 

of proficiency in mathematics problem solving by students. The epistemological 

frameworks help to illuminate how potential breakdowns in vocabulary and semantic 

content of mathematics may affect achievement. The frameworks provide structures that 

outline linguistic complexities involved in becoming mathematically fluent. These 

epistemological frameworks have been used as the context to explore discrepancies 

between different subgroups by examining language involved in problem solving.  Table 

4 presents the chronology of epistemological frameworks that have influenced the 

research studies reviewed in this chapter.  

In the early 1970s, Aiken (1971) reviewed the literature on the verbal factors in 

learning mathematics. At that time, positive correlations between verbal language and 

mathematics were considered by most researchers to be a function of general intelligence 

and ability. Aiken’s review of the literature suggested that the vocabulary and syntax of 
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word problems consistently interfered with students’ ability to problem solve in 

mathematics. This issue, whether it is “innate” ability or an understanding of vocabulary, 

syntax, and readability of text that promotes successful problem solving and mathematics 

achievement, persists today. 

Table 4 
Chronology of Epistemological Frameworks used in Literature Review 
Date Author(s) Framework 

 
1942 Cronbach Establishes the role of vocabulary in academic 

assessment measures. 
 

1970-71 Aiken Meta-analysis of research on the relationship between 
reading comprehension and mathematics problem- 
solving. 
 

1978 Pactman & Riley Structure for the teaching of mathematics vocabulary as 
part of daily instruction. 
 

1981 Ciani Instructional framework for providing specific reading 
comprehension strategies to improve mathematics 
problem solving. 
 

1982 Mayer Defines mathematic problem solving as an ability to 
classify problem-solution methods into schema, and 
transfer knowledge from known to novel problem-
solving situation. 
 

1985 Halliday Outlines the role of academic discourse on mathematical 
understanding and the ability to use that language in 
problem-solving. 
 

2000 Wakefield  Framework defines mathematics as its own language 
based on its unique structures, symbols and word order to 
convey meaning. 
 

2001 Levine & Reed  Identifies the basic parameters of mathematics 
assessment into categories and discrete skills. 
 

 

Cronbach (1942) developed a framework describing types of word knowledge 

needed for students to demonstrate understanding within academic subject matter. The 

purpose of Cronbach’s framework was to define word knowledge and provide a context 
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for evaluating vocabulary on diagnostic tests. According to Cronbach (1942), there were 

qualitative dimensions to vocabulary assessments like how many words a student may 

know, how refined a student’s understanding was on a specific word, and what technical 

subject specific words were likely to cause difficulty in school if the student did not 

understand the meaning. Within the framework, five categories were used to determine 

the range and depth of student understanding of word knowledge: (1) generalization, (2) 

application, (3) breadth, (4) precision, and (5) availability.  

More specific to the teaching of vocabulary in mathematics, Pachtman and 

Riley’s (1978) framework was linked with the teaching of vocabulary connected with 

word problems. The purpose of the framework was to provide teachers with systematic 

instruction for teaching students to develop the relationship between mathematical 

vocabulary and mathematical concepts. Instruction was based on a structured overview 

for teaching the vocabulary related to word problems. This framework identified 

mathematics vocabulary necessary to solving word problems such as technical 

vocabulary, symbols, everyday words used in a mathematical context, general 

vocabulary, words with meaning specific to mathematics, and words representing 

mathematical concepts implied in the problem.  

 Ciani’s (1981) framework outlined the reading comprehension skills inherent in 

becoming proficient in solving word problems in mathematics. This framework identified 

specific areas of reading instruction that teachers could use to facilitate the understanding 

of the correspondence of the mathematical symbols to mathematical words. Ciani 

presented a four-step reading process hierarchy, with comprehension skills at each level.  

Level 1 was word recognition skills, where terms are introduced in both language and 
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math. The next level is literal meaning in which a student is able to decode symbols and 

attach definitions without conceptual understanding. The third level is interpretation of 

meaning where a student is able to recognize the symbol and describe its meaning in 

mathematical terms. The final level is application of meaning, where a student is able to 

solve word problems successfully based on a conceptual understanding of symbols and 

mathematical language.  

Influential in explaining differences in problem-solving performances have been 

frameworks focusing on the identification of students’ knowledge of problem schemas, 

level of conceptual understanding, and metacognitive skills. Mayer (1983), a primary 

researcher on schema acquisition, posited that learning can be viewed as change in 

schema organization in long-term memory based on experience.  Schemas provide a 

framework that can be used to understand new information and to retrieve that 

information later when existing knowledge or skills are transferred to novel situations. 

The more complete one’s schema for information, the better the encoding and retrieval of 

that information will be. In mathematic problem solving, Mayer (1992) suggested that 

poor schema development of problem-solution methods impairs academic performance 

due to the inability of students to apply skills in novel word problems. 

The social-semiotic perspective defined by Halliday (1985) used an 

epistemological framework to examine the relationship of language to the social 

dynamics of academic achievement. The framework provided a background for 

understanding the linguistic expectancies required to learn, participate, and communicate 

within the learning environment, and to modify and adapt individual understanding 

through language. Halliday’s (1985) theory characterized the social environment by 
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place, level of formality and spontaneity, and type of discourse. This framework 

postulated a specific relationship between instructional practice, verbal discourse, and 

written text.  Using this framework, an individual question or a recording of whole class 

instruction could be analyzed to determine the language needed to support the cognitive 

processes in learning. 

Levine and Reed’s (2001) framework identified the relevant skills universally 

measured by standardized mathematics assessments.  All assessments, according to 

Levine and Reed, require quantitative reasoning, the manipulation of rules and symbols, 

and the ability to handle high density of ideas per number of words. Assessment words 

must be combined with abstract symbols; comprehension is dependent upon the student’s 

ability to memorize symbols and discern the relationships between the symbols and 

words. According to Levine and Reed, mathematics is often taught and assessed using 

non-verbal logic, specialized vocabulary, and applying nuanced differences between 

ordinary language and word-problem language. The basic skills in the framework 

included number knowledge, mathematics facts, mathematic notation, math vocabulary 

and verbal concepts, concept formation, problems solving, estimation, and application. 

Wakefield’s framework (2000) defined the foundational social-linguistic 

constructs of mathematical language that identifies the interdependence of words, 

symbols, and expressions used to construct meaning and communicate ideas.  Table 5 

defines Wakefield’s 10 attributes that designate mathematics as a specialized language. A 

detailed description of Wakefield’s framework is outlined in Chapter One.  

Wakefield’s attributes characterize the components of mathematics that 

distinguish it as a separate language. This framework does not provide objective 
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measures which can be used to quantify the words, terminology, and vocabulary that are 

key factors in the communication process nor does the framework identify how these 

attributes can be used to evaluate mathematical performance by students. Wakefield’s 

epistemological framework was adapted for use in the present study to create a 

framework for classifying items by language categories on the 2005 NAEP mathematics 

assessment. 

 
Table 5 
Wakefield’s Framework of the Attributes of Mathematical Language 
Attributes and/or Characteristics 

 1. Abstractions are used to communicate. 

 2. Symbols and rules are uniform and consistent. 

 3. Expressions are linear and serial. 

 4. Memorization of symbols and rules are required. 

 5. Continuum of experiences requires translations and interpretation. 

 6. Meaning is influenced by symbol order. 

 7. Communication requires encoding and decoding. 

 8. Understanding increases with practice. 

 9. Increasing intuition, insightfulness and spontaneity accompany fluency. 

10. Possibilities of expression is infinite. 

 

The Influence of Language Factors on Mathematics Achievement 

 The epistemological frameworks reviewed in the previous section generated a 

number of studies that examined the influence of language on mathematics achievement.  

The research is organized into the following subsections: (1) reading word problems; (2) 
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mathematical discourse, (3) mathematics vocabulary, (4) problem-solving transfer, (5) 

student perceptions of test items, and (6) several studies that examine NAEP achievement 

by content strands.  

Reading Word Problems  

The studies in this section explore the construct of mathematical fluency as the 

relationship between mathematical language and mathematic computation skills based on 

Ciani’s (1981) framework that identified specific areas of reading instruction that 

teachers could use to help facilitate the understanding of the correspondence of 

mathematical symbols to mathematical words, researchers have examined the structures 

of language in reading mathematics and word problems.  

Leong and Jerrod (2001) examined word problems involving two different 

linguistic structures found in mathematics word problems. This experimental study 

investigated the effect these structures had on elementary students’ ability to understand 

and solve mathematical word problems. The first structure can be described as the literal 

representation of the information needed to solve word problems. There is little 

inferential or extraneous information within this type of problem.  The second structure 

dealt with the adequacy of linguistic information provided to solve a word problem.  This 

structure involves word problems with inconsistent language which require higher levels 

of reading comprehension to understand the inferential subtexts and/or inverse 

relationship of words that differ from daily language.  

The types of information contained in these word problems were subdivided into 

three groups: adequate information, inadequate information, and redundant information. 

A supplementary battery of tests in general ability, vocabulary, reading comprehension, 
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mathematical concepts, and working memory was administered to determine the effects 

of nonmathematical ability on mathematical problem solving.     

The study was conducted with 91 elementary students in grades 3–5 in two 

schools in western Canada. All students were administered the Canadian Test of Basic 

Skills (CTBS).  Based on the Total mean scores on the CTBS, students were divided into 

two groups of “more able” and “less able” within each grade level.  Students within each 

group were given two tasks. The first task examined the effects of consistent and 

inconsistent language on the students’ ability to successfully solve word problems. 

Twenty-four problems were used for this measure, equally divided between the two 

linguistic features. The second task examined the effects of language information on 

students’ ability to solve word problems. Thirty-six problems were used, divided into 12 

problems containing just enough information (JE), 12 problems with insufficient 

information (NE), and 12 problems with redundant information (NN). All items were 

administered in small groups to the students at their schools. Students were credited for 

correct representation of the problems regardless of accuracy of calculations.   

For consistent versus inconsistent word problems, a 3 (grade: 3rd, 4th or 5th) x 2 

(ability: high or low) x 2 (problem type: consistent or inconsistent) ANCOVA using the 

CTBS as the covariate found significant main effects for grade and problem type. Word 

problems with inconsistent information were more difficult to solve than those with 

consistent information despite ability grouping. For adequate versus inadequate word 

problems, a 3 (grade: 3rd, 4th, or 5th ) x 2 (ability: high or low) x 3 (problem type: NN, 

JE, NN) ANCOVA showed significant main effects for grade, ability, and problem type 

in understanding and solving mathematic word problems in elementary school. The 
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results suggested an interaction between problem type and ability level where there were 

the expected grade level differences on the language information task with student in the 

lower grades having a more difficult time with the word problems than students in higher 

grades. Finally, a stepwise regression analysis indicated that scores on the 

adequate/inadequate linguistic information task was the most predictive of mathematical 

problem solving, accounting for 58% of the variation followed by chronological age 

(7%), consistent/inconsistent information (5.8%), and general ability (1.4%). This study 

suggested that specific language fluency skills have a strong impact on mathematical 

problem solving. 

Hegarty, Mayer, and Monk’s (1995) experimental study compared the reading 

comprehension of successful and unsuccessful problem solvers of two-step arithmetic 

word problems. It was hypothesized that one comprehension strategy, the direct 

translation approach, would be more consistently used by unsuccessful problem solvers, 

and the second strategy, the problem-model approach, would be used more consistently 

by successful problem solvers. Two experiments were conducted. The first experiment 

examined different patterns of eye-fixation on the premise that unsuccessful problem 

solvers would be more inclined to look at numbers and relational terms whereas 

successful problem solvers would be more likely to look at variables such as names when 

they reread a part of a problem. The participants were 38 undergraduates from a 

university psychology subject pool. Each participant was randomly assigned to a test 

version and tested individually. Test questions (N = 48) were displayed on a screen, and 

participants were videotaped discussing how they would solve each problem. There were 

no time limitations. Eye fixations were recorded with special digital equipment called a 
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Vaxstation. The analysis suggested that unsuccessful problem solvers relied more 

significantly on rereading number and relational words in a word problem than non-

successful problem solvers t(14)= 2.37, p<.05. The analysis suggested unsuccessful 

problem solvers struggle to construct a representation of the problem. Contrary, to the 

initial hypothesis of the researchers that unsuccessful problem solvers fixates on numbers 

more than successful problems solvers, both groups (successful problem t(7) = 7.18, 

p<.01; unsuccessful problems t(7) = 6.79, p <.01) fixated on more numbers than any 

other variable such as names and relational words.  

The second experiment compared how successful and unsuccessful problem 

solvers remember story problems they had solved. This experiment was based on the 

premise that successful problem solvers would more likely remember the situation 

described in the problem whereas unsuccessful problems solvers would more likely 

remember the key words such as less or more. The participants included 37 

undergraduates from a university psychology subject pool. Students were given a 

problem-solving test and one minute to solve each problem. Following the problem-

solving test, a recall test was given to determine if there was a difference between 

successful and unsuccessful problem solvers.  

In a 2 (groups: high, low) x 2 (types of questions: literal, semantic) ANOVA, it 

was found that there were significant differences between the two groups. Confirming the 

prediction, the successful problem solvers were more able to recall the situation in which 

the arithmetic problem was set and less able to recall the literal numerical details; for the 

unsuccessful problem solvers, the inverse was true. These experiments provided evidence 

that successful and unsuccessful problem solvers tend to use qualitatively different 
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strategies. It also suggested that while the direct-translation strategy may be effective for 

many word problems at the elementary level, using a situational problem-solving strategy 

may be a key component to comprehension when math language becomes more complex.  

Kelly and Mousley (2001) investigated the impact of reading level on solving 

mathematical word problems with deaf college students. This quasi-experimental study 

examined the effect of measured reading levels on students’ ability to solve mathematical 

word problems with two versions: numeric/graphic representations or words only. The 

performances of deaf college students (n = 33) were compared to a group of hearing 

college students (n = 11) at the same college. The deaf college students were 

administered the reading comprehension subtest of the California Achievement Test and 

were divided into ability groupings of low, medium, and high reading ranges. The 

comparison group of hearing college students reading scores on the ACT was used as the 

pretest score. The hearing college students’ mean scores were in the mid-range of reading 

ability. All students were enrolled in 1st or 2nd year mathematics requisite course at a 

northeastern university. 

All 44 students were given three sets of problems sequenced for increasing 

mathematics complexity involving computation of geometric dimensions. Half of the 

problems were shown with numeric/graphic representations. The other half were given a 

corresponding word-only version of each numeric/graphic problem except for differences 

in actual numbers being calculated. Word problems were designed and written with short 

sentences and literal descriptions, and contained no language structures that had been 

shown to impact reading comprehension for deaf students such as conditionals (if-when), 

comparatives (greater, least), inferential (because, could) or pronouns (it, something). 
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The reading passages in the 2nd and 3rd sets were longer due to the amount of 

information needed to describe more complex shapes. Readability for the three sets of 

problems ranged from a low grade level of 3.0 to a high grade level of 6.7. 

The results suggested that the level of complexity of the language influenced the 

ability to solve mathematical problems in both deaf and college students regardless of 

whether information is presented in numeric/graphic representation or word-only 

versions. A 4 (deaf: low, medium, high; and hearing ) x 3 (levels of complexity: low, 

medium, high) ANOVA showed a significant interaction between group performances 

and word problem complexity that shows the performance patterns of the four groups 

were different with respect to the three sets of word problems. The post hoc tests revealed 

that all three levels of deaf students performed significantly lower than hearing students 

on word-only problems with computation errors exceeding procedural. There was a 

higher incidence of omissions on word-only problems and graphic representations by 

deaf students with 20% to 48% of all problems omitted compared to no omissions by the 

hearing students.  

Additional analysis compared the actual number of correct graphic representation 

problems with those for the corresponding word-only versions by ability group (low, 

middle, high). The mean conditional probabilities for solving corresponding word 

problems correctly when numeric/graphic problems were solved correctly suggested that 

the deaf students’ ability to solve the word-only versions was weaker than the hearing 

students. The probability of deaf students answering the corresponding word-only version 

was lower when the level of reading became more complex. 
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Results suggested that although reading comprehension was a factor, the rate of 

omissions had the greatest impact on the overall performance of deaf students to solve 

mathematical word problems. Follow up interviews suggested that students declined to 

attempt the word-only problems because of prior negative experiences. The interview 

findings suggested that students’ belief that problems with numeric/graphic 

representations were easier improved the rate of success.  

Mathematical Discourse 

Halliday’s (1985) linguistic theory of learning used a socio-semiotic framework to 

examine the relationship of language to the social dynamics of academic achievement. 

His theory centers on student discourse and the language used to define student thinking 

about mathematic content. The following studies investigated the relationship of ability to 

discuss mathematics concepts to written performance assessment on measures of 

mathematics achievement.  

Moss and Case (1999) investigated the effect of instructional practice on 

developing conceptual understanding of rational numbers as assessed through student 

discourse and problem solving in an quasi-experimental study of fourth grade students (N 

= 29). The researchers designed the Rational Number Test to assess conceptual 

understanding of fractions, decimals and percents, and the proportional relationships 

among them. The experimental group received twenty, 40-minute instructional sessions 

on average of one a week over five months. The control group received twenty five, 40-

minute instructional sessions during the regular allotted math period. Both teachers used 

manipulatives, group work, and class discussions. The experimental group of students    

(n = 16) were given a specifically designed curriculum that focused on semantic 
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knowledge and conceptual meaning of rational numbers; the control group (n = 13) 

received the traditional curriculum on rational numbers as established by district 

mandates. 

The experimental curriculum introduced the concept of percent in a specific 

sequence. First, the students were introduced to exercises which developed vocabulary 

and mathematical terminology to define observations and exploration with manipulatives. 

Then, students developed strategies to solve problems involving calculating precise 

values. Finally, students were shown how to use algorithms in addition to alternate 

strategies devised by students. A similar format was followed for the introduction and 

teaching of decimals and fractions. The control group curriculum adhered to a program 

used by a mathematics textbook series adopted by the district. Fractions, decimals, and 

percents were taught with a direct instruction approach to teaching the rules and 

algorithms, with an opportunity for students to practice using manipulatives and game-

like activities.  

Test questions were presented individually in an interview format.  The results 

from the pretest (k = 41 items) to the posttest (k = 45 items) interview were based on 12 

questions on percentage, 13 questions on fractions, and 16 questions using decimals. The 

posttest was expanded to include four additional questions. Six subcategories were used 

to compare conceptual, semantic, and mathematical understanding of rational numbers: 

(1) nonstandard computation, (2) comparison and ordering, (3) misleading appearance 

(graphic representation), (4) word problems, (5) interchangeability of representations, and 

(6) standard computation.  Students were interviewed three times: pre, midpoint, and post 

treatment. All questions were scored dichotomously.  
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A repeated measures ANOVA showed the experimental group statistically 

outperforming the control group in five categories: (1) nonstandard computation, (2) 

comparison and ordering, (3) misleading appearance (graphic representation), (4) word 

problems, and (5) interchangeability of representations. The control and experimental 

group performed equally in the category of standard computation. The results indicated 

that mathematical language fluency is an important factor in building abstract thinking. 

This study’s mathematical vocabulary intervention, prior to the topic of instruction, 

suggests that developing the semantic knowledge of the learner in order to discuss the 

proportional representations accurately and to think in terms of rational number 

constructs may improve students’ problem-solving ability.  

Koponen, Mononen, Rasanen, and Ahonen (2006) examined basic numerical 

skills in children with specific language impairment (SLI) and how well linguistic factors 

explain the variance in these children’s number skills. The performance of Finnish 

children with SLI (3rd grade, n = 29) was compared with that of children within the 

general population ranging from preschool to third grade (preschool, n = 20; 1st grade, n 

= 47; 2nd grade, n = 40; 3rd grade, n = 33). Numerical skills were characterized by a 

battery of tasks then divided into two categories. Tasks measuring verbal numerical skills 

included counting, fluency, and accuracy of single digit calculations; tasks measuring 

nonverbal numerical skills included comparison and estimation of numbers using 

numerals and play money. The students were assessed twice for 45 minutes, one using 

computer simulations (30 minutes) and the other using pencil and paper (15 minutes). 

When the SLI group’s mean score was compared to the control group’s mean 

scores, the SLI group mean was similar to 1st grade students’ verbal and nonverbal skills.  
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However, when the SLI group was subdivided into three groups based on their 

differential performance on the verbal and nonverbal tasks, the mean age and 

performance score of the SLI subgroups showed differences: 12 children showed 

difficulties in verbal and non-verbal number skills (V-/N-), 8 children showed difficulties 

in verbal only (V-/N+), 9 children showed no difficulties in verbal or nonverbal number 

skills (V+ /N+), and no child had difficulties solely in nonverbal number skills. 

In verbal numerical skills, the SLI subgroup V+/N+ performed at the level of the 

third graders. The V-/N- and V-/N+ SLI subgroups scored comparably with 1st graders. 

In the nonverbal skills, the V+/N+ subgroup performed at the level of third graders and 

were currently studying third-grade texts. The V-/N+ subgroup performed a year below 

their educational age peers and were currently studying second grade texts. The V-/N- 

subgroup performed worse than first graders despite studying second grade texts. 

This study concluded the numerical skills of children with SLI are very different 

and the differentials in performance cannot be explained fully by only referencing their 

language skills, nonverbal reasoning, or number-specific attributes. The researchers 

suggested that some language skills are associated with some number skills such as the 

development of calculation fluency. These skills share the underlying processing ability 

required to access the names and objects rapidly from long-term memory and that 

linguistic deficits may also negatively influence developing numerical skills. 

Fuchs and Fuchs (2002) examined the functional performance of students with 

mathematics disabilities (MD), with and without reading disabilities (RD), on a range of 

mathematics problem-solving tasks involving arithmetic story problems, complex story 

problems, and real-world story problems. A hierarchy of mathematical problem-solving 
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tasks was created based on the comparative features of the tasks including text-based 

features like words per question, sentences per question, words per sentence, verbs per 

question, and numbers per question. Problem solving was further divided into two 

categories with levels of difficulty assigned three kinds of word problems: arithmetic 

story problems, complex story problems, and real-world problems. The first category was 

math steps with four levels (essential data, nonessential detail, irrelevant numbers, and 

location of question in narrative); the second category was math skills with three levels 

(number facts, algorithms and applications).  

Sixty-two fourth-grade students from three schools in a southeastern city were 

selected based on intelligence (90 or higher), and identification as having a mathematical 

disability based on goals on the Individualized Education Program. The students were 

given the Test of Computational Fluency in which students wrote answers to 25 second- 

grade addition and subtraction problems involving basic facts and algorithms. Students  

(n = 40) whose scores fell more than 1.5 standard deviations below district norms were 

included in the MD sample. These 40 students were given the oral reading segment of the 

Comprehensive Reading Assessment Battery. Students whose scores were more than one 

standard deviation below district norms were identified as having MD with comorbid RD 

(MD+RD; n = 22); the other students were identified with MD only (n = 18).  

Three tests were administered to students in small groups by a special educator 

trained in the testing protocol over three sessions. Story problems were read aloud; 

students worked at their own pace and could request the tester to reread portions of the 

test. All story problems were assessed on two dimensions: operations (accurate math 

work), and problem solving strategies. The language used in the three types of story 
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problems varied by complexity and level of abstraction. Arithmetic problems (n = 14) 

were one-step addition and subtraction problems involving sums or minuends of nine or 

less; students were given manipulatives to aid in solving the equations. Complex story 

problems (n = 10), based on the district’s third-grade school curriculum, involved 

problems using lists and graphs. Real-world story problems (n = 10) were based on third- 

grade skills identified by third- and fourth-grade teachers as critical to student 

understanding. These problems were multi-paragraph narratives involving tabular and 

graphic information. 

For a profile performance of students, a 2 (disability: MD versus MD + RD) x 3 

(task by type: arithmetic, complex, real-world) x 2 (performance: operations, problem-

solving) ANOVA was conducted. Of significance for this study, the main effect for 

performance of students with MD only was higher than students with MD + RD.  In the 

main effect for tasks, the arithmetic story problems were easier than complex problems, 

but there was comparable difficulty between complex and real-world problems. In a 

three-way interaction of arithmetic story problems, the effects of the disability did not 

affect the performance level of operations or the level of problem solving. On complex 

and real-world story problems the effects of the disability status affected performance. 

Students with MD with or without RD scored comparably on operations; the MD scored 

higher than students with MD + RD on problem solving.  

The results suggested that the performance of students decreased across the three 

problem-solving tasks as language complexity increased for both groups of students. 

Students with MD went from 75% accuracy for arithmetic story problems to 14% for 

complex story problems to 12% for real-world problems. For students with comorbid MD 
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+ RD, the percentage of accuracy was 55%, 8%, and 5%, respectively. The effects of the 

interaction of language with mathematical problem solving could possible contribute to 

lower performance. The results suggested that the competence level of students with MD 

in both decoding and comprehension in a relevant factor in explaining the differential in 

skill levels in the mathematical hierarchy devised by the researchers. 

Huntsinger et al. (2000) investigated the influences of ethnicity, parents’ beliefs, 

and parents’ practice on mathematics achievement of primary school age Chinese-

American and European-American children in a three-year longitudinal study. The 

participants began as kindergarteners. Forty, second generation Chinese-American and 

forty European-American children from upper-middle class, well-educated, two parent 

families (both parents had a minimum of a bachelor’s degree) participated. The children 

were followed for four years. Initial student testing and parent interviews were conducted 

at the onset of the study. Data collection procedures were followed at three points, in the 

spring of each year during grades 1, 2 and 3. Students were tested annually using the 

Sequential Assessment of Mathematics Inventories (SAMI), and the Peabody Picture 

Vocabulary Test. Two in-home interviews were also conducted.  One interview was held 

jointly with both parents; the second interview was with the child separately at the same 

time. After the interviews, parents were videotaped interacting with their children around 

a mathematics task. The children’s teachers also completed a questionnaire at each time 

point. Interviews included both Likert scale and open-ended questions.  

Repeated measure analysis was conducted for mathematics acquisition, 

vocabulary knowledge, and parental teaching methods. A 2 (ethnic group) x 2 (time of 

measurement) MANOVA on mathematics scores between Time 2 and Time 3 showed 
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that the Chinese-American students obtained higher scores than their European-American 

peers on both measures and the differential gap increased in Time 3. In a two-way 

interaction of Time of Measurement x Ethnic Group, European-American children knew 

more vocabulary than Chinese-American children; however, the Chinese-American 

children’s vocabulary growth was steeper (M = 42.20) than the slope for European-

American children (M = 29.77), indicating that the Chinese-American children’s 

vocabulary would be equal and surpass their European-American counterparts by fourth 

grade. Parents’ mathematics teaching methods were measured using a 2 (ethnic group) x 

3 (time measurement) MANCOVA. Chinese-American parents were consistently more 

systematic and formal in their mathematics instruction with their children, while the 

European-American parents became more informal as the child became older. A series of 

hierarchical multiple regressions were completed that examined the relationship between 

the early and late time points regarding parental beliefs and practices on mathematics 

performance. According to the researchers, both parental beliefs and practices at Time 1 

predicted the variance in mathematic scores at Time 3 for all 80 children. 

The results from this longitudinal study suggested that parental practices in 

teaching children mathematics in preschool and kindergarten had a significant impact on 

the children’s grade 3 mathematics performance. More formal instruction was positively 

correlated to mathematics scores. Parental beliefs about their children’s success and 

positive attitude toward mathematics at Time 1 corresponded to Time 3’s mathematics 

scores. There were also cultural differences: Chinese-American parents believed that hard 

work preceded academic achievement while European-American parents believed that 
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natural ability preceded academic achievement. Chinese parents were much more likely 

to give additional homework in mathematics to support classroom instruction.   

The most significant cultural difference between the two groups was parental 

influence on children’s vocabulary acquisition. In the initial vocabulary scores at Time 1, 

the Chinese-American children had much smaller receptive vocabulary scores when 

tested on the PIAT vocabulary test than the European-American children. By Time 3, the 

situation had changed. The Chinese-American children’s gap was not significantly 

different than their peers. During Time 3 interviews, all of the Chinese-American parents 

discussed the importance of vocabulary goals and spending additional homework time 

helping their children acquire the correct mathematical language; none of the European-

American children parents discussed vocabulary building. Researchers contended that the 

parental efforts in formal skill building, homework help, and vocabulary development in 

early childhood and kindergarten positively fostered mathematical competence and high 

achievement in the later years in school.  

Mathematical Vocabulary 

Pachtman and Riley’s (1978) framework linked the teaching of vocabulary to 

word problems. The purpose of the framework was to provide teachers with instruction 

on how to teach students to recognize the relationship between mathematical terms and 

mathematical concepts. According to Cronbach (1942), there are qualitative dimensions 

to vocabulary assessments that measure how many words a student may know, how 

refined a student’s understanding was on specific word, and what technical subject 

specific words were likely to cause difficulty in school if the student did not understand 

the meaning. Knowledge of the specific mathematic vocabulary and language used in 
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word problems is critical in achieving proficient levels of mathematics (Aiken, 1972; 

Ciani, 1981; Jitendra, DiPipi, & Perron-Jones, 2002; NCTM, 1989, 2000). The following 

studies examined the relationship of mathematics vocabulary knowledge to student 

achievement. 

Tatsuoka, Corter, and Tatsuoka (2004) completed a comparative analysis of 

mathematics achievement of 8th-grade students across 20 countries using data from the 

TIMSS-R (1999). The purpose of this study was to provide a framework for a diagnostic 

profile on how test-takers performed on the underlying knowledge and cognitive process 

skills required to answer problems on the TIMSS-R assessment. The researchers 

measured student mastery on 23 specific content knowledge and processing skills using a 

psychometric model called the Rule-Space Method (RSM). The RSM generates an 

“ideal” pattern of item response scores, and then measures the “ideal” against actual 

student response scores.  

The researchers assembled a team of experts to create a mathematics framework 

to classify predetermined performance scores from the RSM into three attributes sets 

(knowledge, skill, and process) to explain student achievement scores. There were 163 

test items recoded as either knowledge, skill, or process, the recoding process was 

completed with 99.5% agreement among the team of experts.  A multiple regression 

analysis was then performed to predict item difficulties and derive estimated attribute 

mastery probabilities for students in 20 of the most industrial countries. The researchers 

suggested that by analyzing the various attributes for student mastery, a hypothesis could 

be formed about the teaching of curriculum, skills, and culture by country. 
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 A hierarchal multiple regression was performed and an adjusted R2 value of .87 

showed that the coded attribute composition fairly represented the predicted level of 

difficulty across countries. Attribute mastery probabilities were standardized to compare 

performance on single attributes across countries grouped in three categories of 

knowledge, skill, and process. A second comparison across countries was completed by 

analyzing a specific country’s performance to the mean item percent score. Three 

composite variables were developed to investigate comparative achievement across 

countries: process, spatial, and reading. This second score was used to examine 

discrepancies between different country’s approaches in teaching specific skills and 

topics across the mathematical strands assessed by TIMSS.  

General patterns of mastery of subject matter were correlated by country based on 

student performance. Results were presented for all 20 countries; here, just the results for 

the United States are presented. In overall mathematic achievement, the students in the 

U.S. ranked 17th. Specifically, U.S. students showed relative weakness compared to 

other industrialized countries in the areas of geometry (ranked 18 out of 20 countries) and 

fractions (ranked 13 of 20 countries), but showed strength in the areas in the areas of 

algebra and in computational skills (5 of 20 for both). In a second comparison of 

composite variables based on three mathematical skills (process, spatial, and reading), the 

student in the US ranked 13/20 in process skills, 16/20 in spatial and 11/20 in reading 

tasks.  

An analysis of attributes and skills found that geometry correlated highly with 

attributes measuring higher-order thinking skills including use of logical and proportional 

reasoning, application of knowledge, and processing data. The results indicated that 
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geometry may be a better topic than algebra to teach the skills of logical reasoning and 

other higher-order skills, as those countries who have instituted middle school geometry 

into the curriculum performed highly on the TIMMS-R. The researchers suggested that a 

shift of the emphasis from algebra to geometry in current US mathematics curricula could 

improve student performance.  

Lachance and Confrey (1995) conducted a quasi-experimental study with an 

intact class of 5th-grade students (N = 20) to evaluate a new type of mathematical 

curriculum. This curriculum was designed to develop understanding of decimal notation 

through contextual problem solving by making connections between decimals and 

multiplicative constructs. The curriculum is based on the mathematical concept of 

splitting action (how to group sets to show relationships), a key concept to develop 

multiplication, division, and ratio. This curriculum to teach rational numbers was piloted 

over three years and was initially introduced to the fifth-grade students when they were 

third graders. This study focused on the introduction of decimal notation over a six-week 

period in the final year of the pilot program. Students were given three open-ended 

problems constructed to develop the understanding of decimals and to connect new 

concepts to earlier multiplicative constructs of ratio and fractions through strategizing 

solutions individually and in various discussion groups.  

Students were assessed through a series of pre-and-post written assessments and 

interviews. Assessment items were grouped into four tasks: meaning of decimal notation, 

ordering tasks, converting fraction into decimals, and computation with decimals. The 

assessment items were taken from four previous research studies on decimal instruction 
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to establish comparative results between the piloted curriculum and other studies 

involving the performance of students after decimal instruction. 

A paired t test showed the students made highly significant gains (p≤ .001) between 

the pre-and-post tests averaging 15.5 (pre) to 80.8 (post) on a scaled score. Compared to 

students in previous studies, a greater percentage of students were considered expert by 

consistently performed decimal number task correctly. The researchers contended that the 

development of ratio and proportional reasoning established early in the curriculum along 

with opportunities to develop the mathematical language to explain student thinking 

provided strategies to connect and apply knowledge.  

Abedi and Lord (2001) investigated the importance of language in student test 

performance through an experimental study of the performance of 8th-grade  students (N 

= 1,174) on two word problems tests from:(1) the 1992 NAEP main mathematics 

assessment and (2) a parallel form that modified linguistic structures in the test items. 

The primary focus of the study was identifying differences in student performance of 

English language learners and proficient speakers of English on the modified test items. 

Modification of the math items was based on six linguistic features: (1) familiarity of 

non-math vocabulary – infrequent words were changed; (2) voice of verb phrase – active 

from passive tense changed to active; (3) length of nominal – shortened; (4) conditional 

clauses – replaced with separate sentence and direct literal language; (5) relative clauses 

– removed; question phrases – rephrased to simple directional questions; and (6) abstract 

and/or impersonal presentations – made concrete and personalized.   

Two field tests were conducted using the parallel form of the NAEP math 

assessment. The first tested the perceptions of students (N = 36) to the parallel form of 
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the mathematics content by interviewing students to read and compare pairs of similar 

math problems – original and revised – and to select the one which would seem easier. 

Students chose the revised items 63% of the time. The second field test examined the 

impact of the linguistically-revised items on students’ mathematics performance using 20 

NAEP released and linguistically-simplified items. For the second field test, 1,174 8th-

grade students from 11 schools in greater Los Angeles were selected for the sample. 

Students were given one of the two versions of the test for comparative analysis; if the A 

version had a non-modified item; the B version would have the same item revised. The 

two books were rated as similar based on four criteria: type and number of linguistic 

complexities, graphic representations, number of mathematical strands, and difficulty 

level. Data were analyzed using the following variables: language proficiency (ELL/ 

Non-ELL), social economic status (high, low), gender, booklet (Form A or B), and type 

of math class (ELL math, low math, average math, high math, algebra, honors algebra).  

Three different ANOVAs were run to investigate the impact of the linguistic 

modifications on the different subgroups. Groups performed as expected with students in 

higher level mathematics classes outperforming the students in lower levels mathematics 

classes. The first model, item type (original and revised) by ELL classification (English 

learner and proficient English speaker), showed a significant impact of the revised items 

on student performance in both groups with proficient English speakers outperforming 

English learners. The second model, item type (original and revised) by SES, indicated 

that the higher SES students performed better than the lower SES students on both 

revised and original items. The third model, item type (original and revised) by math 

class (low, average, ESL, high, algebra, honors algebra), indicated that students 
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performed differently depending on level with high algebra and honors algebra 

performing higher than low and average students on both the revised and the original 

items. However, students in the average groups had higher scores on the revised items, 

and students in the high algebra and honors algebra higher scores on the original items  

A second analysis compared the performance of students on linguistically 

simplified items and original items by devising a measure of percentage of average gain 

score improvement. The results suggested the overall gains for the total sample using 

modified testing items was 2.9%; ELL students (3.7%) benefited more than non-ELL 

(2.45%), and students from low SES (3.3%) benefited more than student in high SES 

(2.6%). Among the different levels of math class, students in low and average classes 

showed the greatest gains 6.7% and 6.6%, respectively, while students in the highest 

level, honors algebra, had a slight negative gain (-0.8%). Students in the ESL class made 

slight improvements on revised items (0.9%). This study suggests that there is 

relationship between the ability to read and comprehend the text with the ability to 

problem solve. Two important findings of this study were: (1) differences in linguistic 

structure of math word problems can affect student performance; and (2) changes in the 

complexity of the language can possibly benefit those most affected in lower achieving 

segments of the middle school population. These studies suggest that the lack of 

understanding of specific mathematical terms and/or facility with vocabulary used during 

mathematics instruction interferes with the student’s ability to problem solve beyond 

literal one-step tasks.  
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Problem-solving Transfer 

The next set of studies examined mathematical problem solving as a form of 

transfer which requires students to transfer previously mastered problem-solution rules to 

novel situations. Accordingly, students who have poor mathematical language may have 

not developed appropriate schemas or classification systems to group problems into types 

that require similar problem-solution strategies (Mayer, 1992).  

In a quasi-experimental study, Fuchs, Fuchs, Prentice, Hamlett, Finelli, and Coury 

(2004) examined: (1) the effects of schema-based instruction (SBI) on promoting 

mathematical problem-solving; (2) the effectiveness of explicit schema-based instruction 

on the development of mathematical problem solving; and (3) the impact of guided 

sorting practice on schema development and problem-solving skills. This study sought to 

broaden SBI by defining and refining two types of schemas: problem-type schemas and 

superficial-features schemas. The problem-type schemas had four problem types 

(shopping lists, half, buying bags, and pictographs) with three levels (immediate transfer, 

near transfer, and far transfer). Four superficial-features schemas were included: format, 

key vocabulary, question, and scope. Specifically, this study investigated if a SBI 

variation of explicitly teaching transfer skills to recognize how superficial features altered 

problems (without changing problem type and solution method) would improve 

mathematic problem-solving performance of third-grade students.  

Twenty-four teachers in six schools within one district volunteered to participate 

in the study. Student participants were the 366 children in these classrooms who were 

present for the pre- and post-testing. In a stratified random assignment by school, eight 

teachers were designated to be in one of three treatment conditions: contrast, SBI, and 
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SBI plus sorting. Based on pretreatment scores on a transfer problem-solving measure, 

students were designated low, average, and high performing. Student distribution by 

performance levels and demographic factors (race, gender, SES, ELL) were comparable 

across the three treatment groups.  

All three conditions shared three instructional features: district curriculum with a 

weekly pacing guide, a proscribed basal text, and a three-week unit on general 

mathematic problem-solving strategies. The four problem types used in the study were 

selected from the basal texts including: shopping list (multi-step addition/subtraction), 

halving and sharing groups of items (introductory division), buying groups of items 

(introductory multiplication), and pictographs (graphic representation). In addition, all 

students received three weeks of instruction (two lessons per week) designed by the 

researchers and taught by the research assistants in a whole-class format on basic 

problem-solving strategies including making sure answers made sense, lining up numbers 

from text to perform mathematical operations, checking computation, labeling work with 

words, monetary signs, and mathematical symbols.   

All SBI and SBI plus sorting received 26 SBI lessons over 13 weeks grouped in 

four three-week units by problem type and one week of review of the previous lessons. 

All units had four lessons of problem-solutions methods by problem type and two lessons 

developing superficial-feature schemas that make a problem appear novel without 

altering problem type or solution method. All lessons were taught by the research 

assistants and used examples from the basal with explicit instruction, dyadic practice, 

independent practice, and homework. In the SBI plus sorting group, students were given 

instruction in categorizing problems by problem type and superficial features.  
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Student schema development to recognize problem types by superficial features 

was measured in three problem-solving situations: immediate transfer, near transfer, and 

far transfer. The immediate transfer measure was similar to problems used in the 

problem-solution method instruction with novel cover stories. The scoring rubric 

awarded points for correct computation and correct labeling of each step of the problem. 

The near transfer included one novelty feature per problem type. The scoring rubric 

awarded points for correct computation and correct labeling of each step of the problem 

including monetary signs and symbols. Far transfer introduced multiple sources of 

novelty by: (1) combining all four problem types, (2) varying all four superficial-features, 

(3) adding irrelevant texts and numbers, and (4) assessing six additional skills from the 

district curriculum. The measure was formatted to look like a commercial test to decrease 

association from the experimental treatment.  

Data were analyzed using a 2-way ANOVA of ability by treatment with change in 

scores from pretest to post test as the dependent variable. To evaluate the data for 

significant effects, a pairwise comparison was used and effect sizes (ESs) for practical 

significance on the problem-solving scores were computed. A regression analysis was 

performed to explore the relationship of schema development to problem-solving 

development.  

The results showed that high ability students performed better than average and 

low ability students regardless of treatment group on pretest/posttest gain scores. Across 

the three ability levels, students who received SBI and SBI plus sorting outperformed 

students in the contrast group in schema development by problem type mean scores: SBI, 

12.39; SBI plus sorting, 12.72; contrast 8.67; and by superficial-feature schema: SBI, 
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4.06; SBI plus sorting, 4.67; contrast, 2.94. In problem-solving transfer measures, 

students in the contrast group showed the least gains when compared to students in the 

SBI and SBI plus sorting groups. On immediate transfer problems, the SBI and SBI plus 

sorting outperformed the contrast group by approximately 24 points, on near transfer 

problems by 15 points, and on far transfer by 12 points. Differences in the SBI group and 

the SBI plus sorting were statistically insignificant for immediate transfer, near transfer, 

and far transfer measures with actual gain score differences less than one point between 

the two groups in all three measures.  No statistically significant correlation was found 

between schema development and problem-solving learning.  A stepwise regression 

using pretreatment problem solving and schema development to predict post treatment 

problem solving found that schema development accounted for approximately 39% of the 

variance versus 2.9 for initial problem-solving competence on immediate- and near-

transfer problems. On far transfer problems, schema development accounted for 11% of 

the variance versus 18% for initial pretreatment problem solving. 

The study suggests that schema training can positively affect problem-solving 

scores across the range of ability levels of third-grade students even on measures which 

do not resemble tasks used during instruction. The research suggests SBI provided 

concurrently with general mathematic strategies can induce schema development in 

young children across all performance ability levels. Guided sorting practice provided no 

additional advantage to students who received the sorting practice instruction along with 

SBI except with students with very low achievement profiles (students with disabilities) 

who showed a small effect size (.37) in the far transfer achievement measure.  
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Student Perceptions of Test Items 

  Students’ perceptions of test items and their perceived ability to successfully 

complete the test item have been acknowledged as a factor in mathematics achievement 

(Fenema, 1989; Ladson-Billings, 1997; Tate, 1997).  The following group of studies 

suggests that the visual representations found in word problems (e.g., charts, diagrams, 

and illustrations) may play a crucial role in students even attempting a test item and 

having an opportunity to complete and item. 

Blinko (2004) examined the perceived discrepancies between student responses to 

assessment questions when there were representational features embedded such: pictures, 

graphs or diagrams, versus abstract items that were words only using variety of 

mathematical problem contexts. The researcher suggested that the context of the problem 

affected the students’ performance. Mathematical contexts were defined as one of three 

different types: (1) realistic based on what the child have met or experienced, (2) abstract 

based on knowledge of mathematical terms and concepts, and (3) graphic based on 

models, diagrams and/ number lines.  

This study examined the influence graphic representation may have on assessment 

item performance by asking student to sort items by level of difficulty. Students were 

given items with similar mathematic content knowledge and skills to sort based on the 

following four categories: (1) realistic – words only; (2) realistic – graphic representation; 

(3) abstract – words only; and (4) abstract –graphic representation. Fourteen fifth-grade 

students from four schools were selected by their teacher to be of average ability and 

socially adept at discussing their thinking articulately. Students were given a series of 

questions to sort, based on first impressions of primarily looking at the graphics; they 
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were then given an opportunity to re-sort after reading the questions. Questions were 

sorted into three piles based on the student’s perceived accessibility into the following 

groups: questions most likely to attempt, those that were too hard to attempt, and unsure.  

Students were interviewed individually to discuss their response to sorting prior to and 

after reading the questions. 

In the initial sort, students were presented with two versions of a question 

involving the same mathematical skills and knowledge. Without specific direct 

instructions to read the problems, students were told to select problems that they thought 

they could solve from a stack on cards.  The majority of students (93%) chose the version 

of each question with the visual presentation as being more accessible and easier to do. In 

the second sort, students were given similar problems and told to read each question 

closely and then sort the problems into two stacks of “could solve” or “could not solve” 

easily. The students sorted the questions, after reading each of the problems. In the 

second sort the majority of students (79%) felt confident about attempting the question 

with or without illustration. The evidence suggests that the context of the question 

(realistic versus abstract) may be less important than graphic representation in 

influencing students’ decision-making to attempt a test item. 

 Because an analysis of the TIMSS-R (2001) performance of 8th-graders 

suggested that Singapore’s 8th-graders scored higher than U.S. 8th-graders on all items in 

the strands of number sense and algebra, Beckmann (2004) investigated the use of 

elementary mathematics texts as a factor in Singapore’s students having the highest 

academic achievement. Elementary mathematics texts and workbooks are designed by 

the Singaporean Curriculum Planning and Development Division, Ministry of Education, 
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and are the only adopted texts for the nation. Compared to the major elementary school 

mathematics texts in the U.S., there is a heavy use of pictures and diagrams to accompany 

problems. The use of pictorial aids may help students make sense of problems as part of 

solution strategies. Unlike most texts found in the U.S., Singapore’s curricula materials 

place less emphasis on lengthy explanations, procedural aids like cartoon characters, and 

factoids unconnected to basic content.  

The same types of pictures and diagrams were used repeatedly across problem 

types and grade levels to facilitate problem-solving skills and develop an understanding 

of mathematical concepts over time. Strip diagrams are one primary pictorial 

representation in Singaporean texts that helped students calculate some of the addition, 

subtraction, multiplication, division, fraction, and decimal story problems from grades 3-

8. These same types of strip-diagrams were used across the strands enabling students to 

be involved in the study of complex algebra problems in fourth and fifth grade as well as 

more traditional problems involving Number and Operations. Beckmann contended that 

the effectiveness of the Singaporean instruction was based on the problem-solving 

methods of pictorial representation and this allowed for those students to be exposed to 

more challenging and linguistically complex story problems.  

Examination of NAEP of Content Strands 

The culture of mathematics instruction, curriculum, assessment, and pedagogy are 

based on the experiences of the White middle class (Ladson-Billings, 1997; Pennington, 

2000; Smith, 2004). Those students who do not share in White middle class social norms 

may be at a disadvantage in developing high levels of mathematical skills because of bias 

overlooked within the structure of the tests. Differential item functioning (DIF) is a 
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statistical procedure that looks for cultural and gender bias within NAEP to ensure that 

individual items assess equally across groups. The following studies examined the five 

content strand of mathematics (Number and Operation, measurement, geometry, data 

analysis, and algebra) for differences in student performance and difficulty level. 

Beginning around 1990, reform movement in mathematics intended to rectify 

past inequities by offering all students a mathematics education centered on problem 

solving and critical thinking (NCTM, 1989, 1995, 2000). This focus may actually have 

exacerbated the gap in achievement between racial/ethnic groups (Boaler, 2002; 

Lubienski, 2000, 2002; Wenglinsky, 2004). As assessments and instructional practices 

became more aligned with reform movement standards and expectations, disparities 

were created regarding how reform practices should be instituted at the school and 

classroom level according to race and socioeconomic status (Cohen & Hill, 2000; Lee, 

2004; Lubienski, 2004).  

Lubienski and Shelly (2003) examined trends related to race, SES, and 

mathematics achievement using NAEP data. This descriptive study investigated how the 

achievement gaps in mathematics had changed over time among White, Black, and 

Hispanic students. In addition, the study sought to determine if there were race-related 

differences in the implementation of NCTM mathematics reform-oriented instructional 

practices and to identify instructional factors that may correlate to race-related 

achievement gaps. In order to do this, Lubienski and Shelly used data from the 1990, 

1992, 1996, and 2000 NAEP main mathematics assessments regarding 4th, 8th and 12th 

graders. The 1990 samples had 8,072 students divided equally among the three grade 

levels. Samples for 1992 and 1996 totaled approximately 21,000 students; the 2000 
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student sample size was over 42,000. The 2000 NAEP assessment was the last year in 

which 12th graders were assessed as part of the national representative sample until 2005 

(NAEP, 2005).  

Achievement and survey data were taken from the restricted-use main NAEP 

mathematics CD-ROM and the NAEP’s web-based data tool. The NAEP web-based tool 

feature for cross-tabulation was used to calculate mean and standard errors for student 

achievement and analyze the differences among racial groups. The variables in the 

analysis included mathematics achievement, student demographics, student course-taking 

practices, attitudes toward mathematics, teachers’ instructional practices, and teacher’s 

educational backgrounds. Between 1990 and 2000, mean scores for mathematics 

achievement and instruction-related practices were compared for race-related 

achievement gaps across the five strands.  

A SES composite variable was created using seven factors: types of reading 

materials, computer and internet access in the home, extent to which studies are discussed 

at home, school lunch, Title 1 eligibility, and education of the mother and father. In 

fourth grade, parent education levels were not reported so the SES composite variable 

consisted of only five factors. SES quartiles based on the weighted sample of students 

were examined for race/ethnicity differences. The higher SES quartiles had a greater 

proportion of White students and the lower quartiles had a greater proportion of Black 

students across all five strands.  

The largest gap differential among the content strands was between Hispanic and 

White students in the 4th and 12th grades in measurement. For 8th-grade students, 

statistics and probability showed the greatest difference between White and Hispanic 
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students. Measurement showed the largest disparity in performance for all three grade 

levels between Black and White students. The 1996 and 2000 NAEP mathematics 

assessment showed race-related differences in two statements on the student survey: 

“There is only one correct way to solve a math problem” and “Learning mathematics is 

mostly memorizing facts.” Black and Hispanic students were more than twice as likely to 

agree with these statements regardless of SES or grade level. Access to instructional 

practices as recommended by NCTM were similar for all students as reported in a teacher 

survey with two exceptions: White students were more likely to have access to 

calculators for daily use and tests than their non-White peers, and Black and Hispanic 

students were twice as likely to be assessed monthly by multiple-choice tests.  

Lubienski and Shelly (2003) also reported differences in teacher quality, 

instructional access, and instructional practices. The analysis of teacher educational 

background revealed that there were no significant differences between access to 

credentialed teachers by demographics or SES; however, those who had teachers certified 

in mathematics tended to score an average of 14 points higher than students who did not 

have a certified mathematics teacher. An examination of patterns of student course taking 

for 8th and 12th graders showed that course taking was more associated with SES than 

race. Students in the lower SES groups took less mathematics than students in higher SES 

groups.  

Instructional practices are factors that can be affected by educators and policy 

makers (Lubienski & Shelly, 2003; NCLB, 2001). Lubienski and Shelly contended that 

an examination of the disparities between groups’ access to mathematical instruction 
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provided an opportunity to identify factors of instructional practices that underlie the 

achievement gap.  

Most prevalent was the emerging pattern that inequality still existed regarding 

access to grade-level curriculum. The study found that there were race-related disparities 

with student access to content based on NCTM (1995) mathematics standards mostly 

focused on the use and access to high problem-solving instruction. The researchers 

suggested that this lack of access to higher level math content may negatively impact 

achievement between Whites and their minority peers. In order to meet the proficient 

standard at each grade level on NAEP assessments, students must have the ability to 

answer complex and open-ended questions. Findings based on student beliefs and 

experiences taken from the teacher and student surveys suggested that lower-SES, Black 

and Hispanic students were being taught and assessed with an emphasis on basic skills.  

Schulz et al. (2005) used a multi-stage content analysis to categorize the 2003 

NAEP mathematics assessment items according to levels of difficulty within each of the 

content strands. This study examined if a relationship existed between performance test 

items by strand and achievement levels (basic, proficient, advanced) to an order of 

difficulty based on a hierarchal criterion of skill mastery on the NAEP mathematics 

assessment. Four assumptions were met prior to the reclassification of items: (1) multiple 

strands were defined within the test and that each strand addresses specific skills; (2) each 

strand had an expected order of difficulty; (3) scores within a strand represented a 

relationship between the overall test performance and proficiency on a specific skill; and 

(4) items are assigned based on content not by item statistics or level of difficulty.   
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In the first phase of the study, items were reclassified as either dichotomous with 

one correct answer (multiple choice and short constructed responses), or polytomous, 

scored with rubrics with three or more levels (extended response). Items were selected 

from three sources: (1) secured items on the NAEP 2000 mathematics assessment (n = 

159), (2) released items on the NAEP 2000 mathematics assessment (n = 136), and (3) 

released items from previous NAEP mathematics assessments between 1990 and 1996   

(n = 136). Released items were used to pilot the classification system and to train raters. 

Using Item Response Theory (IRT) models, items from the NAEP assessment were 

recalibrated to create domain characteristics based on the content strands. These models 

showed a relationship between the mastery level of each content strand (65% correct) and 

the achievement levels of the students (basic, proficient, and advance). Because of the 

relationship, strands could be ordered from hardest to easiest as follows: measurement, 

data analysis, geometry, algebra, and number sense, respectively.  

In the second phase, the researchers designed new content domains using the 

difficulty order as a framework to organize and rate NAEP mathematic items into two 

criterion-referenced categories, introduction and mastery. Ratings were based on grade-

level curriculum frameworks. Using a 7 point scale ranging “from below grade 5” to 

“above grade 9,” each test item was assigned three ratings. The first rating assigned the 

grade level when the skill should have been introduced to the average student. The 

second rating assigned a grade level when the same skill should have been mastered. The 

items were then ordered by difficulty based on the average instructional time between 

introduction and mastery. Items that were introduced prior to fifth grade and expected to 
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be mastered by fifth grade were ranked the lowest. Items that were introduced in 8th-

grade and projected to be mastered in later grades were ranked the highest.  

In the last phase of the study, three item classifications were performed. The 

classification procedures defined ordered difficulty within each of the five NAEP content 

strands by mutually exclusive subsets of sequential skills. Using instructional timing 

(mean introduced or mean mastered ratings), three teams of curriculum specialists and 

researchers identified 26 subclassifications within the mathematics content strands 

thought to match the skills needed to perform at the highest levels of achievement on the 

NAEP 8th-grade  assessments. Next, five teachers sorted NAEP 2000 secure items (n = 

148) corresponding to the domain definitions of each of the sub-classifications within a 

given strand. An unclassified category was available if the teachers felt the item did not 

fall into one of the sub-classifications. There was unanimous agreement on 67% percent 

of the secure items and a majority agreement (3 out of 5 teachers) on 96% of the secure 

items. The agreement rate between preliminary classifications and teacher classifications 

was 91%. Eleven items were designated as unclassified.  Final item classifications were 

made by the consensus of the domain content team with 95% inter-rater reliability to the 

teacher classifications (Schulz et al., 2005). 

Results showed that within strands, sub-classifications were ranked in the same 

order by mean IRT item difficulty (b-value), mean introduced, and mean mastered 

ratings. Item classification was consistent by teachers. The depiction of item level 

statistics to the relationship of between achievement and mastery of a skill was 

unreliable. Some items appeared to differentiate between proficient and basic 

achievement levels; other items appeared to differentiate between proficient and 
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advanced levels. Some items indicated partial mastery of sub-classification by lower level 

students and some of the skills needed to perform items were not included in the 

subclassification.  

Procedures in the Schulz et al. (2005) study followed the general recommendation 

of Popham (1994) for validating instructional relevance. These include: (1) established 

domain definitions for mastery levels across strand, (2) proved consistency of domain 

definitions as qualified experts were able classify items based on definitions, (3) 

confirmed reliability by teacher classifications of items, (4) validated criterions levels to 

performance levels on the achievement test, and (5) verified usefulness and creditability 

of domains with teachers using a Likert rating scale. The researchers suggested that there 

were important practical implications to defining the expected order of difficulty within a 

learning strand on assessments for both educators and the general public. 

Criterion-referenced mastery levels can possibly better explain what students can 

or cannot do at any given achievement level and show student growth in achievement 

through the mastery of difficulty-ordered sub-skills found in strands of subject-matter 

content (Shultz et al., 2005). This study suggested that there are factors within the NAEP 

mathematics assessments at the item level that may affect achievement of students across 

the content strands. These item level differences have strong educational implications 

with regard to instructional practices and accessibility to mathematics content by 

students. Mathematical language fluency may also have implications at the item level on 

the NAEP mathematics that has not been identified as a factor in achievement 

performance levels of students.  
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Summary 

The literature review has examined language factors in math achievement. Most 

of this research examined the influence of problem-solving language on mathematics 

performance in the classroom and did not focus on the influence of mathematics language 

on assessment performance. Mathematically-specialized vocabulary must be learned. 

Words are combined with symbols, and comprehension depends on the student’s ability 

to remember the relationships between words and symbols and use this knowledge to 

show mastery of mathematic content. The studies in this literature review do not 

investigate how potential breakdowns in vocabulary and the semantic content of 

mathematics may affect achievement directly nor do they examine discrepancies that may 

exist between different subgroups when reviewing the linguistic complexities involved in 

becoming mathematically fluent. This dissertation focused on the mathematical language 

needed to acquire mathematical literacy. 
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 CHAPTER THREE 
 

METHODOLOGY 
 

This chapter contains five sections. The first section provides a brief overview of 

the study’s design. The second section discusses the content analyses of the mathematics 

content strands, problem types and the Mathematics Assessment Language Framework 

for the 2005 NAEP 8th grade Mathematics Assessment. The second section describes the 

development of a Mathematics Language Assessment Framework (MLAF) classification 

scheme used in this study to classify 2005 NAEP mathematic items into language 

categories. The third section describes the sample procedures for students and the 

concomitant procedures for data analysis. The fourth section describes study procedures. 

The final section presents the statistical procedures for each of the research questions. 

Hereafter, for the purpose of readability, the 2005 NAEP 8th-grade Mathematics 

Assessment will be referred as the 2005 NAEP Math. 

Design of the Study 

This study was a secondary and content analysis of items on the 2005 NAEP 

Math. Typically, secondary analyses use existing data for reanalysis by asking new 

research questions or applying new statistical techniques not available at the time of the 

primary analysis (Heaton, 1998). In the current study, two statistical analyses were 

performed. The first analysis identified the extent of achievement gaps by strand 

disaggregated by race (White, Black, Hispanic, and Asian).  The second analysis was a 

content analysis of items by problem type as assigned by the NAEP framework, and by 

language complexity on the Mathematics Language Assessment Framework created for 

this study. This study used the 2005 NAEP Math because it is the largest representative 
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sample of mathematics assessment with a wide range of implications regarding 

educational policy and teaching and learning. The design of this study incorporated the 

unique feature of using national data collected by the National Center for Education 

Statistics. Both public-released data and secure-license data were used in accordance to 

the regulations defined by the National Assessment Governing Board (2005).   

Content Analysis 

For the content analysis, three areas were analyzed: (1) NAEP Math content 

strands, (2) problem types, (3) language complexity. The three areas are described below.  

Content Strands. The 2005 NAEP Mathematics Assessment is based on five 

content strands that are universally used in the U.S. for K-12 instruction: (1) number and 

operation, (2) measurement, (3) geometry, (4) data analysis and probability, and (5) 

algebra. Each strand is further subdivided by objectives and mastery benchmarks 

intended for each grade-level assessed. All strands are assessed at every grade level; 

however, the distribution of items varies depending upon grade. Table 6 lists the 

mathematics content strands, learning objectives and an example of an 8th-grade mastery 

benchmark for the NAEP 2005 Math. 
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Table 6 
 
Item Specifications by Strand, Learning Objective, and Exemplar Benchmark for 8th-
grade  2005 NAEP Mathematics Assessment (NAGB, 2004) 
Strand Learning Objectives Exemplar Benchmark 
Number and 
Operations 

Number sense  Apply representations of rational 
numbers (fractions, decimals, and 
percents)  
 

 Estimation Make estimates appropriate to a given 
situation analyzing the accuracy of results 
 

 Number operations Solve application problems involving 
rational number and operations 
 

 Ratios and Proportional 
Reasoning 

Use fractions to represents and express 
ratios and proportions 
 

 Properties of Number 
and Operations 

Recognize or use prime and composite 
numbers to solve problems 

   
Measurement Measuring physical 

attributes 
Use appropriate measurement instrument 
to determine a given length, area, 
volume, angle, weight, or mass 
 

   
 Systems of measurement Estimate the measurement and the 

conversion factor of an object  
 

Geometry Dimensions of shape Represent or describe a three-dimensional 
situation in a two dimensional drawing  
 

 Transformation of shapes 
and preservations of 
properties 

Identify and use the relationships of 
conservation of angle and  proportionality 
of side length and perimeter 
 

 Relationships between 
geometric figures 

Use the Pythagorean theorem to solve 
problems 
 

 Position and direction Describe the intersection of two or more 
geometric figures in the plane 
 

 Mathematical direction Make and test a geometric conjecture 
about regular polygons 
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Table 6, continued 
 
Item Specifications by Strand, Learning Objective, and Exemplar Benchmark for 8th-
grade  2005 NAEP Mathematics Assessment (NAGB, 2004) 
Strand Learning Objectives Exemplar Benchmark 

 

Data 
Analysis and 
Probability 

Data representation Given a graph or a set of data, determine 
information is represented effectively  
 

 Characteristics of data 
set  

Calculate, use, or interpret central 
tendency 
 

 Experiments and samples Evaluate the design of an experiment 
 

 Probability  Interpret probabilities within a context 
 

Algebra Patterns, relations, and 
functions 

Identify functions as linear or nonlinear 
or contrast properties of functions from 
tables, graphs or equations 
 

 Algebraic representations Solve problems involving coordinate 
pairs  
 

 Variables, expressions, 
and operations 

Perform basic operations, using 
appropriate tools, on linear algebraic 
expressions  
 

 Equations and 
inequalities 

Solve problems using linear equations 
and inequalities with rational coefficients  
 

 
 

Problem Types. Items were categorized into one of three problem types with in 

each of the strands: multiple choice, constructed response and extended response. These 

problem types are used to define the level of mathematical ability of students on the 2005 

8th-grade NAEP Math across the five strands. The first problem type is standard 

multiple-choice with each item having five choices. The second problem type is short-

constructed response (SCR) and had two variations. For the first category of SCR 

questions, the student writes an answer in the space provided. This item format is scored 

dichotomously with full credit for a correct response and no credit for an incorrect 
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response. The second category of SCR is polytomous items in which more than two 

responses are possible. Students answer multiple questions on data contained in one item 

on the assessment or provide a rationale for a single response. The students may earn 

partial credit on this category of SCR questions. The third problem type is the extended- 

construction response (ECR) questions. On these items students write out their responses 

to questions that ask for mathematical reasoning and justification. Items with ECR are 

scored using rubrics and students are assigned one of four levels of credit (minimal, 

partial, satisfactory or correct). In addition to scoring all correct responses, NAEP also 

coded skipped items as omitted. Table 7 shows the items overall specifications of the 

2005 NAEP Math.  The breakdown of the three types of item formats were 50% multiple 

choice and 50% either SCR or ECR questions (Arbaugh et al., 2004; NAGB, 2004; 

NCES, 2005). 

Language Complexity. To code NAEP items according to language demands, a 

Mathematics Language Assessment Framework (MLAF) was developed by the author 

using the mathematical language theory of Wakefield (2000) and the language 

epistemology of mathematical problem solving (Aiken, 1971, 1972; Ciani, 1981; 

Cronbach, 1942; Halliday, 1985; Levine & Reed, 2001; Mayer, 1982; Pachtman & Riley, 

1978). The MLAF established new language category boundaries. Q-sort methodology 

(Stephenson, 1935) was used to define language category boundaries and the unique 

characteristics of each category.  The items used to develop the MLAF were from the 

2003 and 2005 NAEP release mathematics items; the items that were actually reclassified 

for this study were 2005 NAEP 8th-grade mathematics items from the secure CD-ROM.  
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Table 7 
 
Distribution of Items on the 2005 NAEP Mathematics Assessment by Content Strand and 
Problem Type Established by NAGB (2004) 
Content Strand and Problem Type   

Content Strand  

     Number and Operation            20% 

     Measurement           15% 

      Geometry           20% 

     Data Analysis           15% 

     Algebra           30% 

Problem Type  

     Multiple Choice           50% 

     Constructed-Response           25% 

     Extended-Response           25% 

 

  Q-Sort Procedures. Q-sort methodology has typically been used to 

categorize and rank complex or partially overlapping qualitative statements into 

quantifiable units. Traditional Q-sort procedures use belief statements by participants in 

the study. The belief statements comprise the Q-set and are based on the theoretical 

model relevant to a particular study and are used in a way similar to a questionnaire. 

Typically, participants are asked to divide statements into three piles consisting of the 

statements “most like their beliefs”, “those most unlike their beliefs”, and those 

statements for which they have “neutral feelings”.  A basic principle of the Q-sort 

methodology is that items are evaluated relative to each other. This is usually 
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accomplished by providing the items on cards which the subject lays out and sorts into 

horizontally ordered category piles on a desk. Then those statements are rated and ranked 

against a standard measure to operationalize and scale attitude or belief statements. As 

data are confirmed by repeated Q-sorts, validity of the statements toward the subject of 

inquiry is established (McGowan & Brown, 1988; Stephenson, 1935).  

 A major activity in conducting a Q-sort is to establish the exclusiveness and 

inclusiveness of the categories. The criterion of exclusiveness, called the Q-standard, is 

met when the characteristics defining any single category do not overlap the 

characteristics of another category. For example in category A, the characteristics A1, 

A2,… An are not included as characteristics B1, B2,…., Bn in category B. The criterion 

of inclusiveness, called a Q-sort, stipulates that the category system has specific 

definitions for data that applies within that system. As part of the validation process, the 

Q-sort methodology involves the contrasting of the different Q-sorts compared to the Q-

standard (Boyd, 1996). 

As applied in this study, the Q-sort technique was adapted to develop and validate 

the MLAF. First, the 2003 NAEP 8th-grade mathematic released items were sorted into 

groups to examine if mutual exclusivity could be found among the items. This initial sort 

was the basis for the mathematics categorization scheme. Second, the 2005 NAEP 8th-

grade mathematic release items were used to validate the criteria of the Q-sort for the 

exclusiveness and inclusiveness of the mathematics’ framework categorization. Third, the 

validation of the exclusiveness (Q-standard) of the MLAF was completed by a curricular 

team composed of the researcher and two curriculum specialists. Fourth, the validation of 

the inclusiveness (Q-sorts) of the MALF was completed by a team of mathematics 
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teachers. Two teams (curricular and teacher) made up the validation panel for the MLAF 

used in this study. All members of the panel were fully credential with extensive multi-

cultural urban teaching experiences. The curriculum team’s experience in education 

ranges from 15 to 35 years, and the teacher team’s experience ranges between 7 and 28 

years.  

To set the Q-standard, the curricular team (speech pathologist, special education 

K-12 content specialist, and the researcher) studied release items from the 2003 NAEP 

Math for 8th-grade to establish the characteristics of language differences between items 

across content strands and item formats. At this stage, the curricular team’s primary 

function was to establish the categories and characteristic boundaries defined in the 

MLAF. The curricular team reviewed all release 2003 NAEP math items and focused on 

the question stems only as the essential component of mathematics assessment. Items on 

the assessment are designed based on IRT theory (NAGB, 2004). Item parameters 

include difficulty, discrimination, and pseudo-guessing. Items may be questions that have 

incorrect and correct responses, or statements that allow respondents to indicate level of 

agreement and are subject to multiple interpretations.  The ability to understand and act 

on ambiguous information in the question stem requires both the understanding of the 

complexities of mathematics language and computational skills.  

The ambiguity found in assessment word problems increases the range of possible 

interpretations between everyday language and the two types ambiguity found most 

commonly in mathematics: global and local. Global ambiguity means the whole sentence 

can have more than one interpretation. Local ambiguity means that part of a sentence can 

have more than one interpretation, but not the whole sentence (Cotton, 2000; Inman, 
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2005). This analysis focused on the local ambiguity found in the question stem of items 

on NAEP Math to determine the categories for the MALF and the placement of items 

within each category.  

Graphic representations were used as the first identifying marker for differences 

between assessment items. Questions were then subdivided into the two categories 

(graphic or non-graphic) in order to examine each group separately. For each category, 

the team determined the intentionality of the question stem (what each student would 

need to do to solve the question). See Final Coding Categories in Methodology for more 

details on the MALF categories. The team determined that the question stems fell into 

two major groups (graphic and non-graphic representation) and a total of six 

subcategories (graphic vocabulary, non-graphic vocabulary, operate-to-plan, convert-to-

solve, draw/manipulate, convert only).   

The criterion of inclusiveness for the MLAF was measured by the middle school 

mathematics teachers using the Q-sort method with the 2003 release items. Five middle 

school teachers of mathematics independently classified release items into established 

categories. Each teacher met individually with the researcher at various school locations. 

The researcher reviewed the definitions and exemplars for the three subcategories in each 

of the two main categories with the teachers. The researcher used six release items to 

train the teachers by modeling how to use the definition of each subcategory with the 

examples to sort the items by question stem, according to the designated classifications.  

Teachers were then given an opportunity to ask clarifying questions. Teachers had 

headers on the table in order to sort and place the questions by category. All five teachers 

sorted questions into the two categories, graphics and non-graphics matching the sorting 
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of the curricular team. All five teachers opted to sort graphic representation items first. A 

separate category was available for items that may not fit into any of the classifications. 

The teachers sorted the items into piles based on category definitions and examples. All 

items fit into one of the two classifications. Once the teachers completed the sort, they 

were asked by the researcher to review the work and confirm choices. Each teacher 

changed approximately 2-3 items from one subcategory to another within the graphic or 

non graphic category. No teacher changed an item from graphic to non-graphic or vice 

versa. 

The placement of the item into a category was recorded by the researcher. After 

the completions of the final sort by the teachers, interrater agreement was calculated 

using percent agreement among raters. Overall, inter-rater agreement was 90%. Three 

quarters of the items had 100% inter-rater agreement, 25 % of the items had 66% 

agreement. After the preliminary classification of items occurred, the curricular team met 

to compare teacher classifications to the original Q-sort. Similar Q-sort procedures were 

used to classify the actual items from the 2005 NAEP Math. 

A final field test of the MLAF was completed using 2005 release items.  Two 

members of the teacher team and three members of the curricular team classified the 60 

release items from the 2005 NAEP Math. This composition team followed the exact 

procedure described above that determined the inclusiveness of the Q-sort classification 

system. Each group classified items separately and then compared results. The researcher 

clarified questions and participated in discussion on reaching consensus for each of the 

release items. Using percent agreement, the first classification yielded a 94% inter-team 

reliability. The two groups discussed each item until 100% agreement. This 100% 
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agreement indicated that it was appropriate for the researcher to reclassify the secure 

items. The curricular team rank ordered the six MALF language subcategories by the 

degree of language complexity from most (1) to least complex (6) as follows: (1) graphic 

vocabulary, (2) non-graphic vocabulary,  (3) operate and plan, (4), convert-to-solve, (5) 

draw/manipulate, (6) convert only. These rankings were supported by the research (Abedi 

and Lord, 2001, Blinko 2004; Fuchs et al, 2002; Tatsuoka, Carter, Tatsuoka 2004).  

          Final Coding Categories. The procedures described above resulted into six 

categories. The MALF categories met the Q-sort criteria for exclusiveness and 

inclusiveness as determined by the curricular panel assembled for this study. The six 

categories are described below. 

Three distinct subcategories emerged for graphic representation, and three 

subcategories for non-graphic representation. The three graphic categories were: (1) 

draw/manipulate and solve; (2) organize and plan; and (3) relate vocabulary to 

recognition of formulas, graphs, or numerical expressions. The non-graphic categories 

were: (1) convert only; (2) convert-to-solve; and (3) relate vocabulary to definitions for 

formulas and or mathematical notation. The curricular team jointly (by consensus) 

synthesized the final set of items by language category classifications. Examples were 

selected for each of the classification categories of the released items.  

Graphic representations are used as a visual aid to interpret mathematical data 

such as symbols, pictures, graphs, grids, charts, maps, geometric shapes, and numerical 

graphics that include number lines, computation items with less than three word 

directions, frequency tables, and extended numerical patterns. These items allow the 

students to examine and use the representation in order to support their understanding of 
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the written part of the question on the assessment. Non-graphic representation referred to 

those items that have no visual or pictorial representation and items that rely on the 

understanding of the interrelationship of symbols-to-words and words-to-mathematical 

notation to solve. There are two types of problems presented in this group: words with 

numbers include items that have mathematical notation using the four operations (+, -, *, 

/), and words-only items that do not contain any numbers within the question stem. All of 

the items in non-graphic representation depend upon the understanding of written 

mathematical terminology to evaluate relevant information required to solve. The 

following categories are Non-graphic representation: non-graphic vocabulary, convert-to 

solve, and convert only. Figure 3 shows examples for each of the classification categories 

on the MALF taken from the 2003 NAEP release items. 

 This section provides details of each of the six categories on the MALF in the 

order of the most linguistically complex to least: 

Graphic-Vocabulary only. This graphic category refers to items that require 

understanding of specific mathematical terms to identify or confirm mathematical 

notation, geometric shapes, location on a map or grid, or find discrete information on a 

graph or chart. This also includes mathematical formulas either as definitions or 

confirmation commonly used in geometry and measurement. The formulas can be 

depicted as words to picture or picture to words.  

Non-graphic vocabulary only. The next category, non-graphic vocabulary, refers 

to items that require understanding of specific mathematical terminology in order to solve 

problems without pictorial representation. This category includes confirming 



  86 

 

mathematical definitions and formulas. In non-graphic vocabulary, these confirmations 

found as formulas can be depicted as key words in scenarios or examples.  

Organize and plan. The third category includes graphic representation and refers 

to representational items that require knowledge and skills of syntax (word order), words 

(prepositional, proportional, multiple meaning), and directional signs to set up numerical 

expressions for computation. These are typically two-step word problems and require the 

student to use or validate the graphic representation included in the assessment.  

Convert-to-solve. The fourth category, containing non-graphic items, usually 

includes two-step problems that require words or symbols to be changed into numerical 

notation prior to computation without graphic illustration. These problems, for example, 

ask students to translate between proportional relationships of decimal, percents and 

fractions; solve for unknowns, or apply a formula to solve hypothetical situation.  

Draw or manipulate. This fifth category is graphic and refers to those items that 

require the use of additional resources not found within the stem of the question. These 

items may require the respondent to confirm an answer, extend, locate, or plot patterns, or 

apply new information to solve an equation. “Draw” in this study means to create a two 

dimensional shape based on directions in the item. “Manipulatives” are tools used during 

the NAEP mathematics assessment as part of the testing protocol to aid students in setting 

up or solving an item including paper rulers, protractors, markers, and grid paper to draw 

or extend graphic representations.  

Convert-only. The sixth category is non-graphic and refers to those items that 

require the knowledge of technical vocabulary and/or mathematical notation to locate or 

identify the same information using symbols and words. This classification includes the 
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automaticity of basic facts in addition, subtraction, and multiplication of whole numbers. 

There are no pictorial representations in these items i.e. (graphs, tables, charts or figures). 

 Exemplars for each of the six categories were selected from the 2003 NAEP 8th 

grade Mathematics Assessment. Each item was downloaded from the 2003 released 

questions from NAEP Questions Tool (http://nces.ed.gov/nationsreportcard/itmrls/) as 

part of the initial Q-sort. Theses examples were selected by the curricular team as best 

meeting the criteria for each category of the MALF.  These items were used with the 

math teachers along with writing descriptors of each category. The category, Operate-

and-Plan, had two examples: the first example contains both words and a figure, and the 

second example have symbol notation only with no words or directions.  The examples 

for the Q-sort to establish the criteria of inclusiveness of the language categories on the 

MALF among the curricular panel are shown in Figure 3. 
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(1) Graphic Vocabulary 
Description: Find location on a grid 
 

 
 
 
 
 
 
 
 

 

 
 

On the map below, the rock is located 2 miles west and 1 mile north of the tree. A treasure 
chest (not shown) is located 8 miles east and 4 miles north of the rock. Mark the location of 
the treasure chest on the map with an X. 
  
.    What is the position of the treasure chest with respect to the tree? 

   
   Answer: _____ miles east and _____ miles north of the tree 

  

 

 
(2) Non Graphic Vocabulary 
Description: Identify property of a graph line 
 
 
 

  

In a coordinate plane, the points (2,4) and (3,-1) are on a line. Which of the following 
must be true? 

   
 A)  The line crosses the x-axis. 
 B)  The line passes through (0,0).  
 C) The line stays above the x-axis at all times. 
 D) The line rises from the lower left to the upper right. 
 E)  The line is parallel to the y-axis   

Figure 3 
Exemplars for the Mathematics Assessments Language Framework Categories with Graphic 
and Non-Graphic Representation  
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(3) Organize and Plan (with figure) 
Description: Use pie chart and percents to solve an equation 
 

 
1There are 1,200 students enrolled in Adams Middle School. According to the graph above, how 

many of these students participate in sports? 
   
 A)  380 
 B)  456 
 C)  760 
 D)  820 
 E)  1,162  

 

 
Organize and Plan  (symbols only) 
Description: Compute using order of operation 
 
 
  3 + 15 ÷ 3 - 4 × 2 =  
   
 A) -9 
 B)  -2 
 C)  0  
 D) 4 
 E)  5  

(4) Convert-to-solve  
Description: Counter-example of even –odd numbers 
 
Consider the statement "If n is an even number, then n is two times an odd number." For 
which of the following values of n is the statement FALSE? 
   
A)  2 
B)  6 
C) 8 
D) 10 
E)  14 
   

Figure 3 (continued) 
Exemplars for the Mathematics Assessments Language Framework Categories with Graphic and Non-

Graphic Representation  
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(5) Draw and manipulate  
Description: Form a parallelogram using shapes 
 

 Refer to the following information. 

 
Triangles 1, 2, and 3 shown above can be rearranged with no overlap to form either of the following 
figures. 

 
  
.    Draw lines on the figure below to show how triangles 1, 2, and 3 can be rearranged without 

overlap to form this parallelogram. 
   

   

 
 

 
(6) Convert only  
Description: Identify number of feet in 15 miles 
 
1 mile = 5,280 feet 
  
How many feet are in 15 miles? 
   
A)  352 
B)  35,200 
C) 79,200 
D) 84,480 
E)  89,760 
  

Figure 3 (continued) 
Exemplars for the Mathematics Assessments Language Framework Categories with Graphic and 

Non-Graphic Representation 
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Sample and Sampling Procedures 

The 2005 NAEP Math used a multistage stratification procedure to select sample 

schools and students for each state. Schools were stratified based on variables such as 

region of the country, urbanization, percentage of minority enrollment, and median house 

income based on state data reported to the Department of Education and Census Bureau. 

The primary sampling units (PSUs) were based on four geographic locations: Northeast, 

South, Central, and West. Schools were then randomly chosen within each state or PSU 

unless that school had special characteristics that made it unique within the state 

demographics (e.g., an urban school within a majority rural state). 

On average, 100 public schools in each state were chosen with a total population 

of 2,500 students per grade, per subject assessed. States with large populations (i.e., 

California - 400 schools selected, 9,800 students) or with very small populations (i.e., 

North Dakota - 200 schools selected, 2,400 students) had more schools selected. Each 

selected school was intended to represent about 1% of the students in public schools 

nationally. The student participants were selected using a nesting procedure based on 

national, state, district, and school demographics. About 30 students were randomly 

chosen within each school as the representative sample for the assessment. A similar 

procedure was used to select participants for the non-public school sample (NCES, 2006). 

Students in more than 6,500 schools participated in the 2005 mathematics 

assessment administered from January to early April 2005, yielding approximately 

172,000 students at grade 4 and 162,000 students at grade 8. Each state’s sample was 

designed to be proportionally representative of the different demographic characteristics 

of students in the state. Before the data were analyzed, responses from specific subgroups 
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of students were assigned sampling weights to guarantee that the representation actually 

matched the percentage of the school population in the nation at the grade-level assessed. 

Sample weights were adjusted for oversampling or undersampling of a particular group 

of students based on national census data. Weighting was also used to adjust for missing 

data, within school variability and student non-responses (NCES, 2006). For each release 

item, mean scores were reported on a secure-licensed CD-ROM by content strand, 

problem type and item-level disaggregated by race/ethnicity, SES, and gender (NCES, 

2006). 

Unique to NAEP was the stratified multistage probability sampling design that 

included over-sampling of certain subpopulations at higher rates. For example, schools 

with high Black or Hispanic populations were sampled at twice the rate to obtain larger 

sample of respondents from these subpopulation in order to have a total sample that was 

representative of the nation based on Census Data (poststratification). Because of the 

differences in probability of selection rates due to oversampling and to allow for 

compensation for nonresponses, each student was assigned two sets sample weights: (1) 

reporting sample weights and (2) modular sample weights. Reporting samples are 

weights series of individual attributes that are assigned to each individual student and 

reflect the proportional representation of the characteristics and variety of individuals in 

the population. Modular weights are attributes that are assigned to individual students 

that allow for desegregations of groups of students from the total sample or for 

comparing results. A third procedure called “trimming” was conducted to equate reported 

and modular weights to equal the total population of the sample.   
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In NAEP, the complex sampling procedures affect the estimate of variance. The 

estimation of variability of the sample was affected by the weighting procedures used to 

compensate for oversampling. The estimation of variability or sample error is the 

condition of probability that a normal distribution of the population would fall within 

confidence interval of a range of values, defined by a lower and upper bound. Because 

not every student answered every question and some students within certain blocks of 

items either answered all questions correctly or below chance level, standard marginal 

maximum likelihood (MML) estimates used for missing values was not an inappropriate 

statistical procedure to arrive at mean score achievement for the NAEP’s population 

proficiency distribution (Johnson, 1992; NAEP Primer, 1994; NCES, 2005). To 

compensate the fourth and final procedure (jackknife), NAEP calculates standard error 

measurements for the total population. The jackknife procedure uses 62 replicate weights 

to account for differences among students, and PSU’s characteristics. (Allison, 2001; 

Arbaugh et al., 2003; Carlson et al., 2000; Lubienski, 2001; Lubienski & Lubienski, 

2005; Lubienski & Shelley, 2003; NCES, 2006; Sowder, Wearne, Martin, & Strutchens 

(2004). 

Missing data were handled through a predictive statistical procedure requiring 

multiple imputation that created five estimates of the overall score, called plausible 

values, to generate complete data sets with a value estimate for each question for every 

student taking the test (Allison, 2001; Carlson et al., 2000; Honaker & King, 2006; 

Horton & Kleinman, 2007). Plausible values were used to compute overall mean 

achievement for students in the 8th-grade, disaggregated mean achievement by race and 

ethnicity, and mean achievement by subsets of content strand and problem type (Carlson 
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et al., 2001; NCES, 2005). The plausible values were combined to create a composite 

value for each content strand based on the distribution percentages established in the 

NAEP Mathematics Framework, and provided achievement data based on the 

performance range of the total of the actual students who answered the item on the 

assessment within a 500 point scale (NAGB, 2004; NCES, 2004). 

Study Procedures 

The study began when the researcher attended a NAEP Database Training 

Seminar in 2003 to become familiar with NAEP data structures and to obtain hands-on 

experience with NAEP-specific software. The researcher’s qualifications to attend the 

training and conduct this study are itemized in Appendix A. The training seminar 

prepared the attendees to use the NAEP Data Tool Kit which was needed to access NAEP 

restricted-use data on the CD-ROM.  

The NAEP Data Tool Kit contains two data analysis tools. One tool is NAEPEX, 

a data extraction program for choosing and customizing variables for extracting data into 

SPSS. The NAEPEX program allows for the identification and selection of data files that 

contain all responses, scores, weights, demographic variables, and derived variables from 

the sample. The second program, AM software, is a specialized tool used to estimate 

regression models through marginal maximum likelihood (MML) and to automatically 

provide appropriate standard errors. 

The University of San Francisco obtained a secured-license agreement with 

National Center for Education Statistics (control number-030904785) in order to have 

access to restricted-use micro-level data contained on CD-ROM for the purpose of 

secondary analysis. In accordance with the licensing agreement, adequate security 
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measures were put in place so that the data were secured from unauthorized disclosure, 

use, or modification. This entailed building a computer with special security features to 

run the data and the implementation of a protocol for use and storage of the CD. The 

details of the protocol are detailed in Appendix B (Computer Security Act of 1987, 

Public Law 100-235; E-Government Act of 2002, Title V, subtitle A; NAGB, 2005; 

NCES, 2006). 

The release items commonly available to researchers and educators are only a 

small portion of the total items and do not represent complete coverage of the content, 

cognitive skills, and range of difficulty in the NAEP assessment for mathematics. Access 

to the total mathematic items from the 2005 NAEP assessment was to be provided for 

this study through two sources: (1) released items that were questions from the 

assessment and available to the public through the NAEP Questions Tool 

(http://nces.ed.gov/nations reportcard/itmrls/); and (2) a secure-licensed CD-ROM that 

had all of the items on the assessment.  

Because the secure-licensed CD was not released in time for the completion of the 

current study, the researcher and one member of the curricular team went to the National 

Center of Education Statistics (NCES) in Washington, DC, to reclassify all of the 2005 

NAEP Math items (secure and release) into language categories. With an NCES observer 

present at all times, the researcher and one member of the curricular team coded each 

item 2005 NAEP Math from the secure CD-ROM, in accordance with the MLAF 

designed for this study. The researcher and curricular team member independently rated 

each item and then discussed the rating of items until 100% inter-rater agreement was 

reached.  
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At the American Institute of Research (AIR) in Washington DC, the researcher 

used the NAEP software to download the 2005 NAEP Mathematics 8th-grade items, 

background variables, and assessment data into an SPSS spreadsheet. Each item was 

coded by content area (algebra, measurement, geometry, data analysis and algebra), and 

problem type (multiple choice, short-constructed response, extended response). The AM 

software extracted the data from SPSS spreadsheet following the protocol established by 

NCES licensing agreement. AM software was then used to recode items language 

categories and perform all statistical procedures.  

Data Analysis Procedures 

Three statistical procedures were used to analyze to determine the impact of 

mathematic language on achievement and examine if mathematical assessment language 

affected achievement gap differentials between Whites and minority students (Black, 

Hispanic, and Asian). First, a computation of achievement gaps on the NAEP 2005 8th-

grade Mathematics Assessment was conducted by content strand. Second, a content 

analysis of items by content strand, problem type, and language complexity based on 

MALF language categories was conducted. Third, in order to relate the magnitude of 

problem type to language complexity, frequency tables were created, cross tabulations 

were analyzed and a Rank Correlation was performed. Analyses were discussed and 

organized according to research questions. 

Research Questions 

Research Question 1:  What are the achievement gap differences between racial 

and ethnic groups (White, Black, Hispanic, Asian) on the 8th-grade  2005 NAEP 
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Mathematics Assessment by content strand (Number and Operation, Measurement, 

Geometry, Data Analysis, and Algebra)? 

In order to compute achievement mean scores and analyze NAEP data for 

Research Question #1, the following factors were considered prior to data analysis. Test 

specifications that included the distribution of Research Question #1 used the average 

mean scores of the overall achievement for the 2005 NAEP Mathematics Assessment, 

and the five plausible values by content strand (Number and Operations; measurement, 

geometry, data analysis) to disaggregate achievement by race/ethnicity (White, Black, 

Hispanic, and Asian).  

Research Question 2:  How are the five strands characterized in terms of problem 

types and language complexity on the 2005 NAEP 8th Grade Mathematics Assessment?  

The primary purpose of this study was to develop and use a mathematics 

framework to investigate the linguistic complexities of items on the NEAP mathematics 

assessment as a possible explanation of linguistic factors beyond English language 

proficiency that may contribute to mathematics achievement.  The development of the 

Mathematics Language Frameworks (MALF) was created to examine language 

complexity using Q-sort methodology.  Two content analyses were performed on the 

2005 NAEP 8th grade Math items: first by problem type (multiple choice, short 

constructed response, and extend response); second by the MALF language complexity 

categories (graphic vocabulary, non-graphic vocabulary, operate and plan, convert-to-

solve, draw/manipulate, convert-only).  
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 Research Question 3: What is the magnitude of the relationships between the 

achievement gaps and the percentage of items of different problem types and different 

language complexity categories? 

 To analyze the data for Research Question #3, frequency tables were established 

for each category, which were reviewed for actual item distribution by category and 

problem type for the 2005 NAEP Math. Using SPSS, two crosstabulations were 

conducted to identify whether a relationship existed between achievement gap ranking 

and language complexity on each content strand. The first crosstabulation related 

achievement gap ranking to the number of items for each problem type and number of 

items for each language complexity code.  The second crosstabulation related 

achievement gap ranking to a subset of language complexity codings representing just 

vocabulary.  Spearman rank-order correlation coefficients were calculated.  

Summary 

This study examined mean score differences on the 2005 NAEP Math by content 

strand to find out if there are: (1) differences on the 2005 NAEP Math for achievement 

performance by race/ethnicity by content strand found in previous research (Arbaugh et 

al., 2004; Lubienski, 2001; Lubienski & Lubienski, 2005; Lubienski & Shelley, 2003; 

Schulz et al., 2005); (2) differences between problem type and language complexity; and 

(3) the relationship of problem type to language complexity identified in Mathematics 

Language-Assessment Framework (MLAF) across the content strands.  
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CHAPTER FOUR 
 

RESULTS 
 

The purpose of this study was to conduct an analysis of the 2005 National 

Assessment of Educational Progress (NAEP) 8th-grade mathematics assessment items’ 

language complexity to examine if there is a relationship between language complexity 

and student achievement. Three statistical analyses were performed.  

The first analysis identified the extent of achievement gaps by strand 

disaggregated by race (White, Black, Hispanic, and Asian).  T tests were performed by 

strand to evaluate the mean differences between groups. The second analysis was a 

content analysis of items by problem type as assigned by the NAEP framework, and by 

language complexity on the Mathematics Language Assessment Framework created for 

this study. A descriptive analysis by strand was completed to characterize each strand in 

terms of problem type and language complexity. The third analysis was a rank-order 

correlation that examined the magnitude of the relationships between the achievement 

gaps and the percentage of items of different problem types and different language 

complexity categories. Correlation coefficients were calculated for achievement gap rank 

and problem types; achievement gap rank and language complexity categories; and 

problem types and language complexity categories.  Results are discussed and organized 

according to research question.  

Research Question 1:  What are the achievement gap differences between racial 

and ethnic groups (White, Black, Hispanic, Asian) on the 8th-grade  2005 NAEP 

mathematics assessment by content strand (number and operation, measurement, 

geometry, data analysis, and algebra)? 
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Using AM Software and the NAEP plausible value scores, mean scores were 

generated for the overall scores and for each of the five content strands by race.  T tests 

were completed to compare White achievement mean scores to three minority student 

group scores (Black, Hispanic, and Asian).  Tables 8-13 present the mean scores, t-test 

scores, standard errors, and p-values for each comparison. Because of the large sample 

size, degrees of freedom were calculated as infinity (Brownlee, 1960; NCES, 2007). A 

summary of the performance benchmarks for each of the content strands is presented 

before analysis.  

Overall scores.  Results for the composite plausible values analysis indicated that 

the overall average mean score for the 2005 NAEP Mathematics Assessment for 8th-

grade was 278. The White student group mean score was 289. The Black student group 

mean score of 253 was 36 points lower than the White student group mean score, the 

Hispanic student group mean score of  264 was 25 points lower, and the Asian student 

group mean score of 294 was 4 points higher than the White student group mean.  Three 

t-tests were run to compare the significance of achievement mean differences between 

White and Black students, White and Hispanic students, and White and Asian students. 

The t-tests indicated that there were significance differences for race on composite mean 

scores between White students and Black, (t=13.30, p < .01), and between White 

students and Hispanic students, (t=21.08, p < .01), with White students receiving higher 

mean scores than Black or Hispanic students. There was no statistical significance 

between Asian students and White students. Table 8 gives the result of the composite 

achievement mean scores, achievement gap for the total measure (228) and for the white 

group score compared to minority groups, t-tests, standard errors, and p-values by groups.  
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Table 8 
 
Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Overall Achievement  

  *p < .05    ** p < .01 

 

Number and Operations. Mastery of number sense is a major expectation of the 

2005 NAEP Mathematics. This content area focuses on students' abilities to represent 

numbers, order numbers, compute with numbers, make estimates appropriate to given 

situations, use ratios and proportional reasoning, and apply number properties and 

operations to solve real-world and mathematical problems. By 8th-grade, students should 

be able to use rational numbers, represented either as decimal fractions (including 

percents) or as common fractions. They are expected to use them to solve problems 

involving proportionality and rates. In middle school, number begins to coalesce with 

geometry via the idea of the number line. It is recommended that the number line be 

connected with ideas of approximation and the use of scientific notation. It is also 

recommended that 8th-graders should be able to use occurring irrational numbers, such as 

square roots and pi (NAGB Framework, 2004).  

Results of the achievement gap for Number and Operations analysis indicated that 

the strand average mean score was 278. The strand mean was the same as the overall test 

mean. When disaggregated by race/ethnicity, the White student group means score of 289 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 289 11     

Black 43,075 253 -25 36 1.67 21.08** .01 

Hispanic 31,954 264 -14 25 1.87 13.30** .01 

Asian 8,690 294 16 5 3.44 -1.47 .16 
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was 11 points higher than the average mean score for the strand. The Black student group 

mean of 254 was 24 points lower than the strand average and 35 points lower then the 

White student group mean. The Hispanic student group mean of 264 was 14 points lower 

than the group mean and 24 points lower than the White group mean. The Asian student 

group mean (292) was three points higher than White group.   

Three t-tests were performed to compare the significance of achievement mean 

differences between White and Black students, White and Hispanic students, and White 

and Asian students. The t-tests indicated that there was a significance effect for race on 

Number and Operation content strand mean scores between the White students and 

Black, (t=18.98, p < .01 0); and between White students and Hispanic students, (t=10.73, 

p < .01), with White students receiving higher mean scores than Black or Hispanic 

students. There was no statistical significance found between Asian and White mean 

scores. Table 9 gives the result of the composite achievement mean scores, achievement 

gap for the total measure (277) and for the white group score compared to the minority 

groups, t-tests, standard errors, and p-values by groups.  

Table 9 

Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Achievement in Number and Operations  

  *p < .05    ** p < .01 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 289 +12     

Black 43,075 254 -23 -34 1.80 18.98** .01 

Hispanic 31,954 264 -13 24 2.25 10.73** .01 

Asian 8,690 292 +15 3 4.08 8.02 0.4 
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Measurement.  This content area focuses on students' understanding of 

measurement attributes such as capacity, weight/mass, time, and temperature, the 

geometric attributes of length, area, and volume, attributes such as capacity, weight/mass, 

time, and temperature, as well as the geometric attributes of length, area, and volume. 

More emphasis is placed on area and angle in grade 8, nonstandard, customary, and 

metric units are assessed. Measurement at Grade 8 includes the use of both square and 

cubic units for measuring area, surface area, and volume; degrees for measuring angles; 

and constructed units such as miles per hour. Converting from one unit in a system to 

another (such as from minutes to hours) is an important aspect of measurement included 

in problem situations (NAGB Framework, 2004).  

Results of the achievement gap for Measurement analysis indicated that the strand 

average mean score for the strand of Measurement was 273. When disaggregated by 

race/ethnicity, the White student group mean score of 288 was 15 points higher than the 

mean average score strand. The Black student group mean of 241 was 37 points lower the 

content strand mean and 47 points lower then the White student group mean. The 

Hispanic student group mean of 255 was 23 points lower then content strand mean and 

33 point lower than the White group mean. The Asian student group mean of 293 was 15 

points higher than the strand mean and five points higher than the White group mean.  

Three t-tests were run to compare the significance of achievement mean 

differences between White students and Black students, White students and Hispanic 

students, and White and Asian students. The t-tests indicated that there was a significant 

effect for race on Measurement mean scores between the White students and Black 

students, (t= 16.78, p < .01); and between White students and Hispanic students, (t=9.88, 
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p < .01), with White students receiving higher mean scores than Black or Hispanic 

students.  There was no statistical significance found between Asian and White mean 

scores. Table 10 gives the result of the composite achievement mean scores, achievement 

gap for the total measure (277) and for the white group score compared to the minority 

groups, t-tests, standard errors, and p-values by groups.  

Table 10 

Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Achievement in Content Strand Measurement (277) 

  *p < .05    ** p < .01 

 

Geometry. In middle school, students are expected to be familiar with simple 

figures and their attributes, both in the plane (lines, circles, triangles, rectangles, and 

squares) and in space (cubes, spheres, and cylinders) and use understanding of these 

shapes with cross-sections of solids. Students in 8th-grade are expected to demonstrate 

the beginnings of an analytical understanding of properties of plane figures, especially 

parallelism, perpendicularity, and angle relations in polygons. Right angles and the 

Pythagorean Theorem are introduced, and geometry becomes mixed with measurement. 

Students are expected to be familiar with the basic types of symmetry transformations of 

plane figures, including flips (reflection across lines), turns (rotations around points), and 

slides (translations), with each type of transformation being distinguished from other 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 288 +11     

Black 43,075 241 -32 -47 2.78 16.78** .01 

Hispanic 31,954 256 -18 -32 3.28 9.88** .01 

Asian 8,690 294 +21 +6 5.47 1.03 0.30 
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types by their qualitative effects. The basis for analytic geometry is laid by study of the 

number line (NAGB Framework, 2004).  

Results of the achievement gap for Geometry analysis indicated that the strand 

average mean score was 275. When disaggregated by race/ethnicity, the White student 

group mean score of 285 was 10 points higher than the average mean score for the strand. 

The Black student group mean of 252 was 23 points lower then the strand mean, and 33 

points lower than the White student group mean. Hispanic student group mean of 264 

was 11 points lower than the test mean, and 21 points lower then the White group mean. 

The Asian student group mean of 292 was 7 points higher than White group. 

Three t-tests were run to compare the significance of achievement mean 

differences between White students and Black students, White students and Hispanic 

students, and White students and Asian students. The t-tests indicated that there was a 

significant effect for race on Geometry content strand mean scores between the White 

students and Black, (t=17.84, p < .01); and between White students and Hispanic 

students, ( t=11.01, p < .01), with White students receiving higher mean scores than 

Black or Hispanic students.  There was no statistical significance between the mean 

scores of Asian students and White students. Table 11 gives the result of the composite 

achievement mean scores, achievement gap for the total measure (275) and for the white 

group score compared to the minority groups, t-tests, standard errors, and p-values by 

groups.  
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Table 11 

Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Achievement in Geometry (275) 

  *p < .05    ** p < .01 

 

Data analysis. Data analysis covers the entire process of collecting, organizing, 

summarizing, and interpreting data. By the end of grade 8, students should be expected to 

apply their understanding of number and quantity to pose questions that can be answered 

by collecting appropriate data. They should be expected to organize data in a table or a 

plot and summarize the essential features of center, spread, and shape both verbally and 

written. Using summary statistics, students are expected to analyze statistical claims 

through designed surveys and experiments that involve randomization for making simple 

statistical inferences. Students are to begin to use more formal terminology related to 

probability and data analysis (NAGB Framework, 2004). 

Results of the achievement gap for Data Analysis strand indicated that the average 

mean score was 281. The strand mean was three points higher than the overall test mean 

of 278. When disaggregated by race/ethnicity, the White students group mean score of 

295 was 14 points higher than the average mean score. The Black student group mean of 

255 was 40 points below the White student group mean. The Hispanic student group 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 285 +10     

Black 43,075 252 -23 -33 1.84 17.84** .01 

Hispanic 31,954 264 -11 -21 1.90 11.01** .01 

Asian 8,690 292 +17 +7 3.51 2.59 0.4 
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mean of 266 was 29 points lower than the White group mean. The Asian student group 

mean of 293 was two points lower than White group mean.   

Three t-tests were run to compare the significance of achievement mean 

differences between White students and Black students, White students and Hispanic 

students, and White students and Asian students. The t-tests indicated that there was a 

significant effect for race on data and analysis content strand mean scores between the 

White students and Black, (t=17.07, p < .01); and between White students and Hispanic 

students, (t=11.18, p < .01), with White students receiving higher mean scores than Black 

or Hispanic students.  There was no statistical significance found between the mean 

scores of Asian students and White. Table12 gives the result of the composite 

achievement mean scores, achievement gap for the total measure (281) and for the white 

group score compared to the minority groups, t-tests, standard errors, and p-values by 

groups.  

Table 12 

Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Achievement in Data Analysis (281) 

*p < .05    ** p < .01 

 

Algebra. By 8th-grade, understanding of functions and variables become more 

important and students are expected to have comprehensive background for the 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 295 +14     

Black 43,075 255 -26 -40 2.31 17.07** .01 

Hispanic 31,954 266 -15 -28 2.55 11.18** .01 

Asian 8,690 293 +12 -2 5.06 .24 0.4 
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mathematics concept of function and set theory. Representation of functions as patterns, 

via tables, verbal descriptions, symbolic descriptions, and graphs are expected to be used 

as part of linear functions. Students are expected to connect the ideas of proportionality 

and rate including graphing by hand or with calculators and use linear equations to find 

solutions (NAGB Framework, 2004). 

Results of the achievement gap for Algebra analysis indicated the average mean 

score 280. When the strand was disaggregated by race/ethnicity, the White student group 

mean score of 290 was 12 points higher than the average mean strand. The Black student 

group mean of 258 was 22 points lower than the strand mean, 32 points lower the White 

student group mean. The Hispanic student group mean of 268 was 12 points than the 

strand mean, and 22 point lower than the White group mean. The Asian group mean, 290, 

was two points higher than the White group mean.   

Three t-tests were performed to compare the significance of achievement mean 

differences between White students and Black students, White students and Hispanic 

students, and White students and Asian students. The t-tests indicated that there was a 

significant effect for race on Algebra mean scores between the White students and Black, 

(t=17.90, p < .01); and between White students and Hispanic students, (t=9.88, p < .01), 

with White students receiving higher mean scores than Black or Hispanic students. There 

was no statistical significance was found between the mean scores of Asian students and 

White students. Table 13 gives the result of the composite achievement mean scores, 

achievement gap for the total measure (280) and for the white group score compared to 

the minority groups, t-tests, standard errors, and p-values by groups.  
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Table 13 

Weighted N’s, Mean Achievement Scores, Achievement Gaps, and T-tests Disaggregated 
by Race for Achievement in Algebra (280) 

*p < .05    ** p < .01 

 Summary. The achievement gap results on the 2005 8th grade NAEP Mathematics   

trends were consistent across the five content strands.  Asian students outperformed all 

other groups on all strands except Data Analysis; White students outperformed Black and 

Hispanic students; and Hispanic students outperformed Black students. For all five of the 

content strands the achievement gap differences between White students and Black 

students, and between White students and Hispanic students were statistically significant. 

None of the gaps between White student and Asian students were statistically significant. 

Measurement was ranked the most difficult of the five strands based on overall mean 

achievement scores. This strand showed the largest gap for both Black and Hispanic 

students when compared with their White peers. Data Analysis was ranked the least 

difficult of the five content strands based on the overall mean achievement scores but it 

showed the second highest gap for both Black students and Hispanic students when 

compared to their White peers. Geometry ranked second in difficulty, but this strand had 

the smallest gaps between White students and their non-Asian peers and the largest gap 

between White students and Asian students. Table 14 presents a summary of the 

Achievement Gaps  

Race 
Students 

(N) 
Mean 

Score  Total  Whites 

Std 

Error 
T-value p-value 

White  114,149 290 +11     

Black 43,075 258 -22 -32 1.77 -17.90** .01 

Hispanic 31,954 267 -13 -23 2.30 -9.88** .01 

Asian 8,690 292 +12 +2 2.43 2.01* 0.4 
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achievement gap data by content strand with the overall means, race/ethnic group means, 

and achievement gaps  by strand mean, the achievement mean scores, and achievement 

gaps disaggregated by race, and difficulty ranking by strand mean (1=largest gap, 5 = 

smallest gap). 

Table 14 

Content Strand Achievement Gaps  
Means and Ranks 

Whites Blacks Hispanics Asian 

Content Strand Overall 
Mean 

Mean Mean Rank Mean Rank Mean Rank 

Measurement 273 288 241 
(-47) 1 256 

(-32) 1 294 
(+6) 2 

Geometry 274 285 252 
(-33) 5 264 

(-21) 5 292 
(+7) 1 

Number and 
Operation 

278 289 254 
(-34) 4 264 

(-23) 3 292 
(+3) 3 

Algebra 280 290 258 
(-38) 3 267 

(-23) 3 292 
(+2) 4 

Data Analysis 281 295 255 
(-40) 2 266 

(-29) 2 293 
(-3) 3 

 

Clearly, wide differences exist between among ethnic groups in 8th grade NAEP 

mathematics achievement. The question is whether these differences in achievement can 

be explained as a result of language complexity. On which strands are the achievement 

gaps the largest, and do these have more complex language and more difficult problem 

type? For example, is it possible that the Data Analysis achievement gap could be due to 

difficulty with understanding the language used in the items? This strand had the highest 

mean score, but the second highest achievement gap. The second research question 

examines these issues of language complexity using the MALF framework constructed 

for this dissertation.   
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Research Question 2:  How are the five strands characterized in terms of problem 

types and language complexity?  

The primary purpose of this study was to develop and use a mathematics 

framework to code assessment items according to linguistic factors that may contribute to 

mathematics achievement on the NEAP mathematics assessment.  The first step was to 

identify the distribution of 2005 NAEP mathematics items by the problem types found 

within each of the content strands. The second step was to examine the distribution of 

these items when reclassified in accordance to the language categories. The third and 

final step was to examine the distribution of language categories by problem type across 

strands.  

Problem Type.  An analysis of the items on the 2005 NAEP Math was conducted 

within content strand and across problem type to determine if there were relationships 

between problem type and achievement gap among the content strands. Three problem 

types, multiple choice, constructed response and extended response, are used to define 

the level of mathematical ability of students on the 2005 NAEP Math across the five 

strands. The first item format is standard multiple-choice with each item having five 

choices. The second item format is short constructed response (SCR) and had two 

variations. The third item format is the extended construction response (ECR) questions. 

Items were placed in one of the three problem types by strand based on the NAEP coding 

contained in AM software.  For each of the five content strands the numbers of items by 

problem type and percentages were calculated. For all five strands, multiple choice items 

represented the largest problem type, although the actual number of items varied by 

strand. Short constructed response represents the second largest percentage of items 
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followed by extended constructed response, with the exception of data analysis. Table 15 

summarizes the number of items by problem type for the five content strands.  

 
 
Table 15 
 
Number and Percentage of Items by Problem Type for the Five Content Strands 

                                   Problem Type Content 
Strand Multiple Choice Constructed 

Response 
Extended 
Response* Total 

Measurement 20 
(71%) 

 

6 
(21%) 

 

2 
(7%) 

 

28 
 

Geometry 23 
(61%) 

 

11 
(29%) 

 

4 
(11%) 

 

38 
 

Number and 
Operations 

36 
(69%) 

 

9 
(25%) 

 

3 
(6%) 

 

48 
 

Algebra 29 
(66%) 

 

10 
(23%) 

 

5 
(11%) 

 

44 
 

Data 
Analysis 

20  
(69%) 

 

1 
(3%) 

 

8 
(28%) 

 

29 
 

 

Mathematics Language Assessment Framework Categories. The initial coding for 

the Mathematics Language Assessment Framework (MALF) organized 2005 NAEP 

Math items first by graphic representations or non-graphic representations, then into one 

of six language categories based on the questions stem across the five content strands. 

The six categories were ranked order by language complexity from highest to lowest as 

follows: (1) graphic vocabulary, (2) non-graphic vocabulary, (3) operate and plan, (4) 

convert-to-solve, (5) draw and manipulate, (6) convert only. After the initial sort 

identified and categorized each item according the language framework, items were then 

reorganized by strand. A comparative analysis of problem type x language category was 
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conducted for items contained in each strand. A final analysis compared the content 

strands by mean scores, achievement gaps, and the percentage of total vocabulary items 

based on the MLAF categories.  

According to the overall item distribution on the NAEP Math using the MLAF, 

112 items (60%) were classified as graphic representation and 75 items (40%) were 

classified as non-graphic representation. Two of the sub-categories in graphic 

representation, graphic vocabulary (24%) and operate-and-plan (20%), equaled 44% of 

the total assessment. Non-graphic vocabulary represented 48% of the total items on 2005 

NAEP Math, and 19% of the total reclassified items according Mathematics Assessment 

Language Framework. Table 16 summarizes the types of language complexity found in 

each strand by number and percentage of items for the five content strands.  

Table 16 

Number and Percentage of Items by Language Complexity Categories for the Five 
Content Strands  
 Language Complexity  

Strand GV NV OP CS DM CO 

 

Total 

Measurement  5 
(18%) 

 

8 
(29%) 

 

3 
(11%) 

 

2 
(7%) 

 

9 
(32%) 

 

1 
(3%) 

 

28 
 

Geometry 
 

11 
(29%) 

 

6 
(16%) 

 

5 
(13%) 

 

2 
(5%) 

 

14 
(37%) 

 

0 
 

38 
 

Numbers and 
Operations 
 

9 
(19%) 

6 
(13%) 

10 
(21%) 

14 
(29%) 

3 
(6%) 

6 
(13%) 

48 
 

 
Algebra 

9 
(20%) 

11 
(25%) 

13 
(30%) 

3 
(7%) 

2 
(5%) 

6 
(14%) 

44 
 

 
Data 
 

10 
(34%) 

5 
(17%) 

7 
(24%) 

4 
(17%) 

2 
(7%) 

1 
(5%) 

29 
 

Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  
CS = convert to solve, DM = draw and manipulate, and CO = convert only. 
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Problem Type x Language Category.  An analysis was performed to compare 

items on the NAEP Math problem type and language category by content strand. Table 

17 provides a summary of the results comparing strand mean scores, achievement gap 

ranking, percentage of problem types, and percentage of vocabulary items. Tables 1-5 in 

Appendix C presents the breakdown of items on the NAEP Math by each content strand, 

problem type and language category.  Language categories have been ranked from most 

to least language complex as follows: graphic vocabulary (GV), non graphic vocabulary 

(NG), operate plan (OP), convert to solve (CS), draw and manipulate (DM), and convert 

only (CO). 

 Measurement. This strand had the lowest overall mean score and the highest 

achievement gaps between Whites and Blacks, and Whites and Hispanics. It had the 

second highest gap between Asian students and Whites students. Measurement had the 

largest representation of content multiple choice items than any strand 71% to the total 

strand (20 /28items). The two vocabulary categories represented 13 items, 46% of the 

total strand. Graphic vocabulary had five items (18%), and non-graphic vocabulary had 8 

items (28%). This suggests that language complexity may have effected the mean 

achievement of this strand. Appendix C - Table 1 shows measurement items by language 

categories and problem type. 

Geometry. This strand had lowest achievement gaps between Whites and Blacks, 

and Whites and Hispanics. It had the highest gap between Asian students and Whites 

students. The majority of problems for this strand was content multiple choice, 

representing 61% of the strand (23/ 38 items). The two vocabulary categories represented 

17 items, 45% of the total strand. Graphic vocabulary had eleven items (29%), non-
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graphic vocabulary had 6 items (16%).This indicates that language complexity may have 

effected the mean achievement of this strand. Appendix C -Table 2 shows geometry 

items by language categories and problem type. 

Number and Operations. This strand followed the trend of the achievement gaps, 

as White students outperformed Blacks students and Hispanics students, and Asian 

students out performed White students. Number and Operation had a substantial 

percentage of multiple choice problems representing 69% or 33/48 of total items within 

the strand. The two vocabulary categories were the least represented in the five content 

strands with a total of 15 items (31%). Graphic vocabulary had nine items (19%); non-

graphic vocabulary had 6 items (13%).The results suggest that language complexity may 

have less of an effect on the mean achievement in Number and Operations than in other 

content strands. Appendix C – Table 3 shows number and operations items by language 

categories and problem type. 

Algebra. This strand had the third highest achievement gaps between Whites and 

Blacks, and Whites and Hispanics. It had the smallest gap between Asian students and 

Whites students. Algebra had the least amount of multiple choice questions relative to the 

total strand (36%) or 16 out of 44 items. The two vocabulary categories represented 20 

items, 45% of the total strand. Graphic vocabulary had 9 items (20%), non-graphic 

vocabulary had 11 items (25%).These results indicates that language complexity may 

have affected the mean achievement of this strand. Appendix C –Table 4 shows algebra 

items by language categories and problem type. 

Data Analysis. This strand had highest achievement overall and the second 

highest gaps between Whites and Blacks, and Whites and Hispanics. It is the only strand 
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in which Asian students did not outperform Whites students. Data analysis items types 

were 69% (20/29) multiple choice and the largest representation of extended response 

relative to the strand of 28%. Because of the large extended response questions, partial 

credits may have had the largest effect on the strand mean achievement. For example one 

item had 6% of responses fully correct, when partial credits were calculated for percent 

correct the item’s p-value increased to 49%. For the purposes of this study however, the 

researcher focused on total correct response. This strand had the greatest items 

categorized as vocabulary with 52% of the total strand classified as graphic or non-

graphic vocabulary (15/29). Graphic vocabulary had ten items (34%); non-graphic 

vocabulary had 6 items (16%).These findings suggest that language complexity may have 

affected the mean achievement of this strand more than any of the other strands. 

Appendix C – Table 5 shows data analysis items by language categories and problem 

type. Table 17 presents a summary of 2005 NAEP 8th Grade Mathematics by 

achievement gap rankings with the percentages of problem types and language 

complexity categories by the five content strands.  
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Table 17  
 
Achievement Gap Rankings, Percentage of Items in Each Problem Type, and Percentage 
of Items in Each Language Categories for the Five Content Strands 

Problem Type 
(percentages) 

Language Complexity 
(percentages) 

Strand Gap 
Rank 

MC CR ER GV NV OP CS DM CO 
Meas 1 71 21 7 18 29 11 7 32 3 

Geom 5 61 29 11 29 16 13 5 37 0 

Numb 4 69 25 6 19 13 21 29 6 13 

Alg 3 66 23 11 20 25 30 7 5 14 

D-A 2 69 3 28 34 17 24 17 7 5 

 

Vocabulary is the most complex of the linguistic categories (Cotton 2000, Iman, 

2005). Similarly, the combined vocabulary categories (graphic and non-graphic) were 

also considered the most complex on the MALF according the validity panel. To identify 

the impact that language complexity has on the overall assessment, vocabulary items 

were isolated. The results show that the overall assessment had a total of 80 items or 43% 

classified in two vocabulary categories: graphic or non-graphic.  Results for vocabulary 

language complexity by strands ranged from a high of 52% of the total in Data and 

Analysis to a low of 33% in Number and Operations.  Measurement and Geometry both 

had 45% of the total items classified as vocabulary. Algebra had 46% of the items.  

Table 18 presents a summary of mean achievement, achievement gap ranking, and total 

percentage of vocabulary items (graphic and non graphic) based on the MALF 

classifications. 
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Table 18 

Content Strand Mean Scores, Achievement Gap Ranking, and Percentage of Items in the 
Vocabulary Category  

Content Strand 
Mean 
Score 

Achievement 
Gap Ranking 

Percentage 
Vocabulary 

Measurement 273 1 45 

Geometry 275 5 45 

Number and Operation 278 4 33 

Algebra 280 3 46 

Data analysis 281 2 52 

  

Summary. The analysis for this research question determined that problem types 

were consistent across all strand except data analysis. Language complexity factors were 

represented across all strands, with vocabulary showing the highest representation. What 

effect, if any, do problem type and language complexity, more specifically vocabulary, 

have on the achievement gaps by content strand? A Rank Correlation was calculated to 

analyze relationships of achievement gap ranks, problem type and language complexity. 

Research Question 3: What is the magnitude of the relationships between the 

achievement gaps and the percentage of items of different problem types and different 

language complexity categories? 

Spearman rank-order coefficients were calculated between the achievement gap 

ranking and the percentages of items in each problem type and each language complexity 

category (see Table 17). Obviously having only 5 content strands is too small to draw 

conclusions about relationships. However, the correlations maybe suggestive of possible 

relationships between achievement gaps, problem types, and language categories on the 

2005 8th grade NAEP Math. 
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The findings for the relationships between achievement gap ranks by strand and 

item type or category suggested there was a strong negative correlation between 

achievement gap rank and multiple choice items (.81); a moderate positive correlation 

between achievement gap rank and short constructed response items (.59); and a small 

positive correlation between achievement gap rank and extended constructed response 

items (.29). In addition, there was a strong correlation between achievement gap ranks 

and non-graphic vocabulary items (.70), which is notable because non-graphic 

vocabulary is considered one of the most linguistically complex of the MALF categories. 

The findings for the relationships between language category and problem type 

suggested a strong positive correlation between graphic vocabulary and extended 

constructed response item (.97); and strong negative relationship between graphic 

vocabulary and short constructed response items (.89).  There were small statistically 

insignificant correlations that existed between the other language categories (non-graphic 

vocabulary, operate-and-plan, convert-to-solve, draw/manipulate and convert only) and 

the three problem types.  

Summary.  This current study introduces the new variable of language complexity 

which was used to begin to investigate language fluency by examining the 2005 NAEP 

Math using the MALF framework developed to study language complexity on 

assessments.  A descriptive analysis of the 2005 NAEP mathematics for problem type on 

achievement content strand was completed. First, items from the NAEP Math were 

examined by content strand for achievement, and achievement gap differences 

disaggregated by race. Second, items were reclassified into six categories by language 

complexity using the MALF. A descriptive analysis was completed for language 
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complexity by strand. Items were found to be organized into two primary language areas: 

vocabulary (43%) that encompassed the graphic and non-graphic vocabulary categories 

on the MALF, and multi-step problems (50%) encompassed operate-and-plan, convert-

to-solve, and draw/manipulate categories; with a small subset of single-step items of 

convert-only items (7%). Finally, a correlation coefficient was calculated to analyze the 

relationships among achievement gaps, problem type, and language complexity 

categories.  

The analysis of Research Question 1 substantiated the differences in achievement 

by racial groups (White, Black, Hispanic, and Asian) on the 2005 8th-grade NAEP 

Mathematics Assessment. The analysis of Research Question 2 suggested that language 

complexity as categorized by Mathematics Assessment Language Framework can be 

isolated as a separate component of mathematics. The analysis of Research Question 3 

suggested that there may be relationships among achievement gap ranks, problem types, 

and language complexity categories. These results will be discussed in Chapter Five. 
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CHAPTER FIVE 

SUMMARY, LIMITATIONS, DISCUSSIONS, AND IMPLICATIONS  
 
 
 

The purpose of this study was to conduct a descriptive analysis the 2005 NAEP 

8th-grade mathematics assessment. In order to determine if a relationship between 

mathematical language fluency and mathematics achievement exists, the Mathematics 

Assessment Language Framework was created to classify the 2005 8th-grade NAEP 

mathematics assessment test items according to problem type and language complexity. 

The magnitude of the achievement gap on each content strand was then related to the 

percentage of items classified by problem type and language complexity.  

Even though the influence of language and language factors in mathematics has 

become more important in our pluralistic society, research on such factors has not kept up 

with their importance. Since Coleman (1966) first disaggregated mathematics 

achievement scores by race, gender, and SES, achievement gaps have been observed 

between minority students (Black and Hispanic) and Whites, demonstrating that many 

minority students are not developing the mathematical skills necessary to compete 

effectively in the workforce. Because mathematics has a specialized vocabulary which 

must be learned and depends on the ability to integrate words, symbols, and vocabulary 

to create and communicate ideas, it is possible that linguistic features of mathematics 

may play a role in mathematics achievement.  

The effect of mathematical language fluency on mathematical achievement is not 

well studied (RAND Mathematics Study Panel, 2003). Language fluency in mathematics 

refers to the ability of a student to understand what is required in a mathematics test item 
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and delineates the differences between language used on a daily basis and the language 

associated with problem solving. One aspect of mathematical fluency is the use of the 

complex language that is required to represent abstract structures and relationships using 

words, mathematical notation, symbols, and logic, which in mathematics is more careful 

and accurate than everyday speech (Nowak, Komarova, & Niyogi, 2002; Wakefield, 

2000). Investigations are needed to determine if language factors are one reason why 

certain groups consistently lack the necessary skill sets to reach proficiency on 

mathematic assessments measured by disaggregated state and national achievement 

performance.  

A number of epistemological frameworks have been developed to examine and 

characterizes language features on mathematic items(Aiken, 1970, 1971; Ciani, 1981; 

Cronbach, 1942; Halliday, 1985; Levine & Reed, 2001, Mayer, 1982; Pachtman & Riley, 

1978; Wakefield, 2000). This study focused on linguistic complexities or features as 

these are seen as the prerequisites for the attainment of mathematical fluency. 

 Primary to this study was Wakefield’s (2000) epistemological framework that 

characterizes mathematics as a separate language. Wakefield’s framework defines the 

foundational social-linguistic constructs of mathematical language that identify the 

interdependence of words, symbol, and expressions used to construct meaning and 

communicate ideas. Though the acquisition of mathematical literacy draws on many of 

the same skills as print literacy, there are important characteristics of mathematics that 

qualify it as a language and, thus, require different strategies to engage students (Adams, 

2004; Wakefield, 2000). Wakefield (2000) suggested that the understanding of 
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mathematical concepts depends upon the students’ fluency, proficiency, and 

comprehension of mathematics vocabulary.  

Research has identified that mathematical language fluency may affect student 

performance on word problems, but little research has been done to examine language 

complexities contained on assessment items used to judge student achievement (Abedi & 

Lord, 2001; Heagerty, Mayer, & Monk, 1995; Pape, 2004; Quilici, & Mayer, 1996). 

Previous research related to NAEP examined if aspects of the content strands (number 

sense, measurement, data analysis, geometry, and algebra) or individual test items 

affected achievement performance (Lubienski & Shelly, 2003; Schulz et al., 2005).  

Lubienski and Shelly (2003) examined the NAEP 2000 mathematics data by 

content strand and suggested that there was a relationship between the content area 

domain and the achievement gap between White students and their minority peers (Black 

and Hispanic). The Schulz et al. (2005) reclassification of items from the NAEP 2003 

mathematics assessment suggested that the assessment contains subsets of questions that 

represent criterion-referenced mastery anchor points and are related to achievement 

performance levels. The current study proposed that there are embedded language factors 

within the assessment that impact mathematics achievement. In order to examine if the 

relationship between mathematical language complexity and mathematics achievement 

exists, items were categorized into the Mathematics Assessment Language Framework 

(MALF) in order to reclassify the NAEP 2005 test items. Then analyses of the 

assessment were conducted to compare the five content strands for differences in: (1) 

mean scores, (2) achievement gaps, (3) problem types and (4) language complexity. 
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Finally, a correlation coefficient was calculated to identify the relationships among 

achievement gap ranks, problem types and language complexity categories.  

The Mathematic Assessment-Language Framework (MALF) created for this 

study was designed around the multistage stratification procedures of the NAEP 

assessment in order to establish new language category boundaries to examine 

achievement data from the 2005 NAEP Math for 8th-grade. Achievement was reported 

on the NAEP Mathematics Assessment by subpopulations through the use of two student 

weighting formulas and a post-stratification jackknifing procedure to provide likelihood 

estimates of mean achievement (plausible values) for subpopulations (Allison, 2001; 

Carlson et al., 2000; Honaker & King, 2006; Horton & Kleinman, 2007; Johnson, 1992; 

NAEP Primer, 1994).  

The Q-sort (Stephenson, 1935) was used to: (1) define language categories 

boundaries and the unique characteristics of each category; and (2) establish objectivity 

of the framework through the classification of 8th-grade NAEP release items from the 

2003 and 2005 NAEP mathematics website by language complexity categories. Secure 

test items from the 2005 NAEP mathematics were classified according to the MALF, and 

new categories were created according to this classification: (1) graphic representation – 

draw/manipulate, organize and plan, vocabulary; and (2) non-graphic representation – 

convert only, convert-to-solve, and vocabulary).  

Three procedures were used to analyze the research data. First, a comparative data 

analysis disaggregated racial/ethnic group data and compared mean scores by five 

mathematic content strands (number and operations; measurement; geometry; data 

analysis, and algebra) to examine differences in achievement on the 2005 NAEP Math. A 
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series of t-tests were performed to compare White student group mean performance to 

group mean performance of Black students, Hispanic students, Asian students, and to 

assess whether the means of each two group comparison were statistically different from 

each other (White/Black; White/Hispanic/; and White/Asian). Second, a content analysis 

of the items was completed first by problem type (multiple choice, constructed response, 

and extended constructed response) and by MALF categories: (1) graphic representation 

– draw/manipulate; operate and plan, and vocabulary, and (2) non-graphic vocabulary – 

convert only, convert-to-solve, and vocabulary within each strand. Third, the magnitudes 

of the achievement gaps within each strand were related to the percentage of items 

classified according to problem types and language complexity and a rank order 

correlation was computed.  

These procedures were conducted to answer the following research questions: 

Research Questions 

(1) What are the achievement gaps by race for each of the five strands 

(number and operations, measurement, geometry, data analysis, and 

algebra) on the 8th-grade 2005 NAEP Mathematics Assessment? 

(2) How are the five strands characterized in terms of problem types and 

language complexity? 

(3)            What is the magnitude of the relationships between the achievement  

                  gaps and the percentage of items of different problem types and  

       different language complexity categories? 
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Major Findings 

There were eight major findings from the results of the data analysis: 

 (1) There were differences in mean achievement between the five content 

strands. Data analysis (Mean = 281) had the highest mean achievement followed by 

algebra (Mean = 280), number and operations (Mean = 277), geometry (Mean = 275), 

and measurement (Mean = 273). The difference in mean achievement between the 

highest strand (data analysis) and lowest strand (measurement) was significant at the p 

<.01 level.  

(2) Within achievement gap differences, when disaggregated by race/ethnicity, 

had the same overall pattern among White students, Black students and Hispanic 

students. White students outperformed Black students and Hispanic students on all five 

content strands at the p .<01 level. Asian students outperformed White students on mean 

achievement on every strand except Data Analysis. None of the differences between 

Asian students and White students were statistically significant.  

 (3) Within strands, mean achievement gaps varied in size. For example, 

measurement had the lowest overall mean achievement and the largest gap between 

White students and Black students (46.8) and White students and Hispanic students 

(23.5). Data analysis (281) had the highest mean achievement and the second largest 

achievement gap between White students and Black students (39.6) and White students 

and Hispanic students (28.3).   

(4) Mathematics Language Assessment Framework categories were represented 

across five strands (number and operations, measurement, geometry, data analysis, and 
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algebra) and three problem types (multiple choice, constructed response and extended 

response) on the 2005 NAEP Mathematics Assessment  

 (5) Linguistic complexity as a component of mathematical fluency can be 

classified and categorized on the item level using the MALF for the 2005 NAEP 

Mathematics Assessment. 

  (6) Achievement gap differences in the content strand of numbers and operations 

could be attributed more to computational competency than language complexity based 

on the analysis of problem types x language categories. 

(7) Achievement gap differences in the content strand of data analysis could be 

attributed more to language complexity than computational competency based on the 

analysis of problem types x language categories. 

(8) Strong relationships exist between achievement gap rank and problem type; 

achievement gap rank and language complexity category; and problem type and language 

complexity category. 

Limitations 

There were four limitations to this study.  

First, overall limitations in using NAEP Assessments are that they are cross-

sectional, not longitudinal. The assessments represent a single point in time which cannot 

reflect achievement over time for individuals or groups of students. The design of the 

data collection procedures can not be generalized to other assessment measures that 

report large-scale achievement results. Because all states create their own individual 

achievement benchmarks for 8th-grade mathematics, findings on achievement 
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performance on the 2005 NAEP can not be generalized to state performance measures by 

content strand.  

Second, the need for specific statistical weighting adjustments of the sampling 

data requires the use of specific software and limits the type of procedures that can be 

run. Specific to this study, due to fact that the secure-license CD for the NAEP 2005 

Mathematics data was not available for dissemination, the researcher was allowed only 

two days in Washington DC to code items and collect data and perform the statistical 

procedures used in this study. Further support was needed to run the reclassified data 

using the plausible values to insure the validity of the statistical procedures that were 

conducted through telephone conversations.  

Third, it is difficult to create variables that are not pre-existing when using 

national data sets. The use of item statistics for categorization on the Mathematic 

Assessment-Language Framework does not align language categories across strands and 

problem types. The weighting formulas used to determine plausible values affected the 

cross-comparisons of items. Item means by language category to generate statistical 

comparisons could not be generated within the limited time the researcher had access to 

the data. 

Fourth, the limited number of mathematical content strands (five) affected the 

statistical significance of the correlation coefficients generated among achievement gap 

rank, problem type, and language complexity category. These correlations are suggestive 

only. 
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Discussion 

For many years educators and policy-makers have been concerned about the 

continued achievement gap between White students and their minority peers (Black and 

Hispanic students). Much of the research around achievement gap issues has been 

devoted to socio-economics (Common Core Data, 2003; Kober, 2001; Lubienski, 2001, 

2002), student motivation (Greenberg, Skidmore, & Rhodes, 2004; Turner 2004; Singh, 

Granville, & Dika 2002; Stodlolsky, 1985), cultural differences (Boaler, 2002; Ladson-

Billings,1997; Lee, 2004; Lubienski, & Shelley 2003; Okpala, Okpala, & Smith, 2001; 

Tate, 1997), and the integration of English–language learners in core classes (Abedi, 

2000; Abedi, Lord, & Hofsetter, 2004; Gutierrez, 2002; Hofstetter, 2003). 

Current educational policy has focused on content standards and accountability 

measures that emphasize teacher-quality and student achievement benchmarks based on 

federal guidelines (Cohen, & Hill, 2002; Coley, 2003; Erpenbach, Forte-Fast, & Potts, 

2003; NCLB, 2001; Resnick, 1987; Volger, 2002). Disparities in mathematics among 

subpopulations of students evident since kindergarten continue to exist and are 

exacerbated as students move through the grades (Colman Report, 1966; NCES, 2006; 

NSF, 2007). 

Few studies have looked at the content contained within mathematics to examine 

if there may be differences that may influence achievement measures (Abedi & Lord, 

2003; Bailey, & Butler, 2003; Lubienski, 2003). This study examined the 2005 NAEP 

8th-grade Mathematics Assessment to analyze the achievement gap by race and ethnicity 

in two ways: (1) to consider if differences among the content strands (numbers & 

operations, measurement, geometry, data analysis, and algebra) varied by subpopulations; 
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and (2) to investigate if mathematic language complexity impacted student performance 

by developing and testing a mathematics assessment-language framework.  

Findings show that significant differences in achievement occurred between the 

content strands but the overall consistency of achievement among subpopulations 

remained the same: Whites students outperformed their Black and Hispanic peers, Asian 

students slightly outperformed White students.  

Overall mean score differences between race/ethnic groups is the primary basis 

used for achievement gap explanation in mathematics on NAEP Mathematics Assessment 

(Lubienski & Shelley, 2003; Hombo, 2003; NAGB, 2004; NCES, 2005). Previous 

research on NAEP Mathematics Assessments (1996 – 2003) found significant differences 

between groups by race and SES when the mathematics achievement was examined by 

content strand (Lubienski & Shelley, 2003; Schultz, Lee, Mullin, 2005; Tatsuoka, 

Tatsuoka, Carter, Tatsuoka, 2004). When Lubienski & Shelley (2003) did a comparative 

study of NAEP Mathematics Assessment for 8th-graders on content strands, between 

1992 – 2000, they found that measurement showed the greatest disparity of achievement 

for Black students and White students, and data analysis showed the greatest achievement 

gap between White students and Hispanic students. Similarly, this study’s analysis of the 

2005 NAEP Mathematics by content strand found that measurement had the greatest 

achievement gap between Whites and their minority peers (46.75 points for Black 

students and 32 points for Hispanic students).  

Schultz, Lee, and Mullen (2005) suggested that there were difficulty factors 

within items on 2003 NAEP Mathematics that affect achievement. Achievement 

performance on the 2005 8th grade NAEP varied. Strand differences in achievement and 
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achievement gaps related to problem type were inconclusive. The present study suggested 

that while content strands were relatively similar to each other, items in numbers and 

operations were found to be the easiest in terms of language complexity, and items in 

measurement were found to be the most difficult. Strand and gap achievement differences 

by linguistic complexity could not be discerned with the statistical procedures used in the 

current study. However, differences between strands by language complexity categories 

do exist, for example, items that were classified as vocabulary on the Mathematics 

Assessment Language Framework (MALF) tended to test for skills in measurement and 

geometry. 

 Particularly disturbing were the substantial performance differences found 

between racial/ethnic groups in mathematics, and the fact that those gaps generally 

remained stable from 1990 to 2005 (Fagan, 2006; Lubienski, & Shelley, 2003; NCES, 

2005; NSF, 2007).  Previous research and findings from this study suggest that minority 

students, Black students in particular, are getting shortchanged in receiving educational 

opportunities to learn higher level mathematical concepts needed to perform spatial 

relationships found in measurement and geometry (gap between Whites students and 

Black students 46.75 and 32.77 respectively). The research suggests minority students 

with the highest achievement gaps are also lacking skills in grade level computation and 

problem-solving. The current study corroborated these findings. On the 2005 NAEP 

mathematics assessment the achievement gap for the strand of numbers and operations 

between White students and Black student was substantial at 34 points.  

In the content analysis of the items by language categories, it was found that 

vocabulary was an important aspect of the NAEP 2005 assessment. Based on this finding, 
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knowledge of mathematical vocabulary may improve performance across the strands. 

Content strand items were fairly distributed by problem type (multiple choice, 

constructed response, extended response) and by language categories on the Mathematics 

Assessment-Language Framework. All NAEP items were able to be sorted into two 

major categories, graphic (having pictorial representation) or non-graphic. All 

subcategories, draw /manipulate, operate and plan, graphic vocabulary, convert-only, 

convert and solve and non-graphic vocabulary, had item representation from each of the 

content strands and problem types. This suggests that the distribution of the Mathematics 

Assessment-Language Framework language categories was aligned to 2005 NAEP 

Mathematics specification content and problem type and may be able to expose 

differences on achievement gap by language complexity.  

Both short constructed response items (SCR) and extended constructed response 

items (ECR) have greater individual differences in achievement gap than the overall 

strand for all five content areas.  Guessing is minimized, for ECR and SCR items, as 

students need confirm or prove their mathematical thinking using the correct vocabulary, 

symbols and notation to get full credit. Students lacking an understanding of the language 

complexity of mathematic assessments would be at an inherent disadvantage causing 

greater gaps in overall performance. Because SCR and ECR items are weighted at 50% 

of the NAEP Mathematics Assessments, knowledge of mathematics language directly 

influences performance.  

Primary to this study was the analysis of mathematical language on achievement 

performance and the determination of the type of language that would have the greatest 

effect on mathematical performance. The analysis focused on the question stems because 
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stems set-up the intention of the action needed to operationalize and solve each problem. 

The student, after reading the problem, must decide what to select as the best answer 

(multiple choice), or to write explanations based on their understanding of the 

mathematics required to order to solve the problem correctly (SCR and ECR).  

Analyses of the relationships among achievement gap ranking, problem type and 

language complexity categories revealed both positive and negative correlations. There 

was a strong negative correlation(-.81) between the percentage of multiple choice items 

and achievement gap rank – the more multiple choice items the smaller the achievement 

gap; and a moderate positive correlation (.59) existed between the percentage of 

constructed response items and achievement gap rank – the more constructed response 

items the higher the achievement gap. These findings suggest that the percentage of an 

item type within a content strand could be a factor in achievement differences by race.  

In the analyses of relationships among achievement gap rank and language 

categories, a moderate negative association (-.70) between percentage of non-graphic 

vocabulary items and achievement gap rank existed, suggesting that non-graphic 

vocabulary items effected achievement differences in the content strands with the lowest 

gaps. There were no other significant associations found between language complexity 

and achievement gap ranks. This suggests that, while overall language complexity 

categories may not be a critical factor in determining achievement gap differences, non-

graphic vocabulary as part of language complexity may be a factor in mathematical 

performance of race/ethnicity subpopulations in individual content strands. 

In the analysis of the relationships among problem types and language complexity 

categories, a strong positive correlation (.97) existed between extended constructed 
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response items and graphics vocabulary, this suggest that pictorial representation using 

specific vocabulary was a predominate feature of ECR items. There was strong negative 

correlation (-.84) between short constructed response items and graphic vocabulary. 

These two polar correlations suggest that there are differences in language complexity 

between ECR and SCR items. This finding supports the research that mathematical 

statements need to be analyzed into their structural components. By definition, the 

question stem on assessment items give the instructional cues or stimuli that convey to 

students the content elements to be selected and directions for what they are to do and 

how they are to do it (Cotton, 2000, Iman, 2004). 

Because the Mathematics Assessment-Language Framework focused on 

intentionality of the questions rather than on a specific word language-factor analysis, it 

is possible that it could not capture enough of the subtle distinctions of the language 

effects that would lead to statistical significance. A content analysis of key words or 

phrases found within each of the items on the NAEP Math using the MALF categories 

could contribute to understanding the effects of ambiguity and intentionally of questions 

stems on achievement for mathematics assessments. 

According to MacGregor (1990) major stumbling blocks for student proficiency 

in mathematics were the fact that students lacked the experience and skill in reading 

analytic text, and unfamiliarity with the standard uses of prepositions.  It may be that 

minority students do not understand the linguistic cues in the question stems that provide 

students with the basic relational concepts that provide directions on selecting the discrete 

mathematic skills needed to problem solve. For example, the preposition of in a phrase in 
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the question stem should indicate to the reader that the use of the multiplication operation 

is probably needed solve the problem.  

Wakefield suggested that acquiring mathematic fluency follows similar social- 

constructs children use to become fluent in their primary language (2000). Recent studies 

suggested that if students come to school lacking in primary understanding of relational 

mathematical language concepts, it will be difficult for them to show gains in 

achievement starting in kindergarten or maintain pace with grade level instruction when 

much more sophisticated academic language is required to move beyond basic skills 

(Bailey & Butler 2003; Boehm 2000; NSF, 2007; and Zhou & Boehm 2004).  

Much of the language of mathematics is found within the set of basic relational 

concepts needed for understanding and following directions as identified by Boehm 

(2000) and should be mastered by second grade, including concepts as such most, every, 

all, each; and comparing and ordering attributes using adverbs and prepositions such as 

first, right, left, inside, between. For example, in a language analysis of a fifth grade 

mathematics texts, it was found that the 20 the most commonly used words accounted for 

34% of the total words used in the mathematics selections overall. Words that pertained 

to specific mathematics content (e.g. mode, median) accounted for 8% of the total and 

often occurred just once in the mathematics selections analyzed (Bailey & Butler, 2003). 

Current trends of achievement show that young children start school in 

kindergarten with small disparities in achievement of basic math skills between White 

students and minority peers -Black student and Hispanic students (NSF, 2007). By the 

end of third grade, however, the difference between groups widen, as Whites students 

gain more mathematics knowledge and skills at faster rates than minority students. White 
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students continue to obtain more advance skills leading to increasing achievement gap in 

mathematics performance whereby 12th grade, Black students and Hispanic students are 

outperformed by 8th grade White students (NSF, 2007). The examination of achievement 

gap by strand and the content analysis of items on the 2005 NAEP  8th- grade Math by 

problem type and language category suggest that the lack of basic relational language 

may persist through later grades.  

Conclusions 

1. The Mathematics Language Assessment Framework was able to discern that  

mathematics language complexity categories was represented across strand and 

problem type. 

2. Language complexity is a factor for mathematic fluency on the 2005 NAEP 

Mathematics Assessment.  

3. The results are inconclusive about the effect of language complexity on achievement 

gaps performance on 2005 NAEP Math; however, language complexity affects 

achievement for all racial/ethnic groups (White, Black, Hispanic, and Asian).  

 

Implications for Research 

  The current study was a preliminary analysis intended to provide the structure 

needed to conduct statistical procedures based on the blueprint of the NAEP assessment. 

One way to continue this research on language fluency and mathematical assessments 

would be to use statistical procedures to separate the MALF categories by performance in 

order to judge the impact of language complexity on achievement.  
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Researchers could reanalyze the 2005 NAEP Mathematics Assessment using the 

Mathematics Assessment-Language Framework with more sophisticated statistical 

procedures such as ANCOVA. The ANCOVA would allow for the covariance of socio-

economic status, parental education, and student motivation variables to be partialed from 

student achievement. 

 Future research should examine earlier NAEP data for trends or patterns across 

content strands by language category. This could inform and improve the validity and 

reliability of the framework by uncovering specific weaknesses in achievement in 

mathematics by strand and/or subpopulation. Currently, there is consistent lower 

achievement in measurement and geometry when compared to the content strands of 

algebra, data analysis, and numbers and operations; and with items involving spatial 

reasoning (NAEP 2000, 2003, 2005; TIMMS, 2003; PISA, 2003).  

A comparison study could be conducted using the Mathematics Assessments-

Language Framework with other assessments such as the state achievement tests, Iowa 

Basic Skills, and other standardized tests. A comparative content analysis could examine 

differences in linguistic complexity and problem types at the item level. Rankings could 

then be determined by mathematic language category. 

Similar to the research by Butler, et al (2004), a language content analysis of 

mathematics assessments could be implemented in order to measure the impact of 

grammatical structures on student performances. The content analysis could include such 

words as prepositions, transitives, and ordinals that could cue student response. Butler 

concluded that these grammatical forms of English should be directly taught as part of 

mathematics instruction. In addition, a comparison of conceptual development research 
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and achievement research regarding mathematics language issues could produce a more 

sophisticated language fluency framework. This may unearth the root of the math 

language fluency factor on the achievement gap. For example, studies from conceptual 

development research have suggested that basic relational concepts such as temporal 

ordering and prepositions are key factors for determining mathematical proficiency by 

the end of kindergarten (Boehm, 2002).  

A quasi-experimental study can be conducted with 8th-grade mathematics 

students regarding language intentionality in question-stems of word problems. 

Comparing students with strategic training to those students without the training may 

demonstrate statistical significance of language intentionality. The strategic training 

could include grammar lexical rules, and opportunities to transfer skills used in 

comprehending reading literature based on specific text structures to comprehending 

mathematics assessment based on specific language used in question-stems. 

Implications for Practice 

Fluency in specific mathematical terminology is an important aspect of 

mathematics education for all students. Further emphasizing the understanding of 

relational basic concepts in early grades may increase the foundational knowledge needed 

for language fluency to develop mathematical reasoning and skills for many minority and 

at-risk students. Teaching for mathematical language fluency is similar to teaching for 

computation automaticity and is an essential component of mathematics comprehension 

(North Central Educational Laboratory, 2004). Additionally, reinforcing relational 

concepts in conjunction with other problem solving strategies may improve student 

performance on recall and lower level mathematical computation.  
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Critical to the instruction of mathematics are the meanings of words found in 

everyday language that have multiple interpretations. Direct instruction of these words is 

critical to helping students decipher the subtexts of intentionality that exist in the 

question-stem and reduce ambiguity. It can not be assumed that students have the analytic 

reading skills or syntactic awareness to read and respond appropriately to assessment 

items in mathematics. Learning how to read mathematical texts should be part of the 

mathematics curriculum. Teaching students specific strategies for understanding how the 

question stems function and providing cues for problem solving may improve assessment 

achievement in mathematics across the strands for all students.  

Teacher preparation programs need to refocus the curricula to strengthen teacher 

knowledge of mathematics content and mathematics language fluency. Perhaps teacher 

candidates need to develop their own mathematical language fluency skills. They could 

have more observations of teacher-practitioners who are successful in promoting minority 

students’ mathematic achievements.  

Summary 

The No Child Left Behind Act of 2001 has held accountability to high educational 

standards, mandating every child in the US be proficient on state and NAEP assessments 

by 2014. The purpose of this stringent mandate is twofold: first, to eradicate the 

achievement gap in reading and mathematics between white students and minority 

students; and second, to improve the standing of US students in international 

achievement tests used to prove the readiness for an economically competitive workforce 

(NCLB, 2001, Resnick, 2006). The degree to which the requirements of NCLB are 

pressuring schools and teachers to narrow curriculums to the subject and content areas 
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that appear on standardized tests may, in fact, be problematic to obtaining the necessary 

achievement gains for minority and under-achieving students. There is very little 

flexibility for the classroom teacher to place into practice supplemental instructional 

activities such as math language strategies (Keyes, 2007; National Education Association, 

2007). Keyes (2007) describes this narrowing of curriculum as a class caste system where 

students in underperforming schools have very focused instruction on recall and test 

preparations, while students in high performing schools are taught subjects not being 

measured for accountability indexes used for NCLB such as science, social studies, and 

creative projects.  

 Despite the stricter accountability measures and higher standards of NCLB, the 

continuing trend in the achievement gap between White students and their minority peers 

on the NAEP 8th Mathematics Assessments (NCES, 2001, 2003, 2005) remains. Student 

achievement levels for the majority Black and Hispanic students are at Basic or Below 

Basic.  Given that all students must meet the goal of 100 percent proficient scores on and 

mathematic assessment by the 2013-2014 school year, minority groups’ lack of 

mathematic attainment is cause for concern. Practical and tangible ways must be found to 

increase achievement. Incorporating mathematics language strategies may be one way to 

improve achievement for all students. 

While language proved to be an important factor, further study is needed to 

identify the salient features of mathematics assessments that prevent the Black and 

Hispanic students from completing the final transfer task required for sequestered 

problem-solving in standardized testing situations (NCREL, 2004). Findings in this 

research study suggest that there is a relationship between mathematical performance and 
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language fluency for all groups. The current study explored the achievement gap by 

mathematic strands and examined items by problem type and language categories in 

order to examine if there is a relationship between student performance and mathematical 

language fluency. 
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Appendix B 

Computer Security Act of 1987 

Public Law 10-235 
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Appendix C 

An Analysis of the 2005 8th Grade 

NAEP Mathematics by Content Strand 

 Problem Type and Language Category 
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Appendix Table A.1 

An Analysis of the Measurement Strand by Problem Type and Language Categories  
Problem 

Type 
Language Category # 

of Items 
% of Items 
per Strand 

CO 1  4 
DM 4 14 
CS 2   7 
OP 2   7 
NG 7 25 

Multiple 
Choice 

GV 4 14 
    

CO 0  
DM 4 14 

Constructed 
Response 

CS 0  
 OP 1   4 
 NG 1   4 
 GV 0  

    
CO 0  
DM 1 4 
CS 0  
OP 0  
NG 0  

Extended 
Response 

GV 1   4 
   

28 
 

15 
Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  
CS = convert to solve, DM = draw and manipulate, and CO = convert only. 
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Appendix Table A.2 

An Analysis of the Geometry Strand by Problem Type and Language Categories  
Problem 

Type 
Language Category #  

of Items 
% of Items 
per Strand 

CO 0  
DM 6 16 
CS 2   5 
OP 2   5 
NV 4 11 

Multiple 
Choice 

GV 9 24 
    

CO 0  
DM 7 18 
CS 0  
OP 1   3 
NV 2   5 

Constructed 
Response 

GV 4 14 
    

CO 0  
DM 1   3 
CS 0  
OP 2   5 
NG 0  

Extended 
Response 

GV 1   3 
   

38 
 

20 
Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  

CS = convert to solve, DM = draw and manipulate, and CO = convert only. 

 

 

 

 

 

 

 

Appendix Table A.3 
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An Analysis of the Number and Operation Strand by Problem Type and Language 
Categories  

Problem 
Type 

Language Category #  
of Items 

% of Items 
per Strand 

CO 6   6 
DM 1   3 
CS 13 39 
OP 3   6 
NG 7 15 

Multiple 
Choice 

                    GV 7 15 
    

CO  0   6 
DM 3  
CS 0   6 
OP 5   2 
NG 1   4 

Constructed 
Response 

GV 2  
    

CO 0  
DM 0  
CS 1   2 
OP 2   6 
NG 0  

Extended 
Response 

GV 0  
  

48 
 

26  
Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  
CS = convert to solve, DM = draw and manipulate, and CO = convert only. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix Table A.4 
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An Analysis of the Algebra Strand by Problem Type and Language Categories  
Strand Problem 

Type 
Language Category #  

of Items 
% of Items 
per Strand 

CO 3   7 Algebra 
DM 0  

 CS 2   5 
 OP 8 18 
 NG 8 18 
 

Multiple 
Choice 

GV 8 18 
     
 CO 1   2 
 DM 1   2 
 CS 0  
 

Constructed 
Response 
 

OP 4   9 
  NG 3   7 
  GV 1  
     

CO 0  
DM 0  

 Extended 
Response 

 CS 0  
  OP 3   7 
  NV 1   2 
  GV 1   2 
 

Total strand 
   

44 
 

24 
Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  
CS = convert to solve, DM = draw and manipulate, and CO = convert only. 

 

 

 

 

 

 

 

 

 

Appendix Table A.5 
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An Analysis of the Data Analysis Strand by Problem Type and Language Categories  
Problem 

Type 
Language Category #  

of Items 
% of Total 

Items 
Multiple CO  6 29 
Choice DM 0  

CS 1   3 
OP 2   7 
NG 5 17  

 

GV 6 21 
    

CO 0  
DM 0  
CS 0  
OP 0  
NG 0  

Constructed 
Response 

GV 1   3 
    

CO 0  
DM 2   7 
CS 2   7 
OP 1   3 
NG 0  

Extended 
Response 

GV 3 10 
  

29 
 

16 
Note: GV = graphic vocabulary, NG = non graphic vocabulary, OP = operate plan,  
CS = convert to solve, DM = draw and manipulate, and CO = convert only. 

 

 

 

 

 

 

 

 

 



  181 

 

 

 

 

 

 

 


	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2007

	An analysis of 2005 NAEP 8th grade mathematics achievement items by content strand, problem type and language complexity
	Yvette Marie Fagan
	Recommended Citation


	Microsoft Word - Dissertation Final.doc

