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Abstract: Cognitive performance is important to productivity across many fields and potentially 
correlated to air pollution and extreme temperatures. We study the effects of daily ambient air pollution 
and monthly temperature on women’s ability of recalling dates across 42 developing countries from 
1997 to 2009. We use an estimated natural air pollution data, and calculate the AQI to get an aggregate 
effect of air pollution. We find that one standard deviation increase in the AQI leads to a statistical 
decrease in women’s probability to recall dates such as birthdays, marriage date or children’s birthdays 
by 0.44 percentage point. Furthermore, there is a nonlinear effect of air pollution with a suggesting AQI 
threshold 150. We also find each degree day above 30°C increase the probability of women fail to recall 
children’s birthdays by 0.17 percentage point. Moreover, by doing a sub-sample estimation, we find that 
air pollution and temperature particularly affect uneducated women.   
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1. Introduction 

Ambient air pollution and climate extremes have become two big issues that limit the 

economic development. According to European Environmental Agency, the annual costs of 

emissions of air pollutants and carbon dioxide for the European countries is between 60 to 200 

billions euro (EEA, 2014). In addition, a growing body of literature documents that exposure to 

both high ambient air pollution and extreme temperatures have harmful consequences on human 

health (Kampa and Castanas, 2007; Simkhovich et al., 2008; Tost et al., 2015; Pope, 2000; Huynen et 

al., 2001; Hocking et al., 2001). Research has found strong evidence that particulate matter can not 

only penetrate into lungs, but also penetrate into the brain. This could potentially affect human 

cognitive performance due to its impact on blood flow and brain function (Pope and Dockery, 

2006). Other literature has linked the carbon monoxide to illness and hospitalization (Schlenker and 

Walker, 2011). Medical research has observed symptoms that carbon monoxide leads to headaches, 

dizziness and confusion (Piantadosi, 2002). On the other hand, recent studies have found that brain 

is temperature sensitive. High brain temperature particularly impacts the pre-frontal cortex, which is 

the major part supply the working memory. As a result, high temperature is associated with less 

effective working memory (Hocking et al., 2001).  

However, evidence documenting the link between cognitive performance and air pollution 

and temperature are limited. To our best knowledge, there is no research study the effects of air 

pollution and temperature on cognitive performance at the same time, and there is few research 

targets on developing countries because of the data limitation. This paper attempts to fill this gap by 

providing the first evidence of short-term cognitive performance to extreme temperatures and air 

pollution over 42 developing countries. We use survey questions as the measurement of cognitive 

performance, and use a global survey data on over 720 thousand women between 1997 to 2009. We 

also test the effect of air pollution and high temperatures on the cognitive performance of particular 
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groups (e.g., uneducated vs. educated, rural vs. urban). In addition, we investigate the nonlinear 

effects of air pollution on cognition.  

Extant literature has found evidence that air pollution and high temperatures have negative 

effects on cognitive performance and productivity in both the long term and short term.  Most 

research related to this field targets the impact of air pollution on children and infants. Among these 

papers, children’s exposure to high levels of air pollution in their early life has been found to cause 

the decline of their school performance in their later life (Lavy et al., 2014, Bharadwaj et al., 2014). 

Moreover, fetal exposure to high temperatures is associated with low income 30 years later (Isen et 

al., 2015). On the other hand, one study also finds that air pollution has negative effects on adults’ 

cognitive performance, especially elder women (Weuve et al., 2012). Moreover, extant literature has 

shown that air pollution and temperature have short-term impacts on the cognitive outcomes of 

adults and children. Students’ exposure to high levels of air pollution and temperature before the 

tests correlate to reduction in their test scores (Lavy et al., 2014; Graff Zivin et al., 2015). There are 

negative effects of high level air pollution on industrial workers’ productivity (Chang et al., 2014; Li 

et al., 2015). What’s more, Pestel (2015) finds strong evidence that high level air pollution decreases 

professional soccer player’s performance. One early study has suggested that high temperatures 

increase the probability of making mistakes by helicopter pilots (Froom et al., 1993). 

Since the air pollution monitoring data is not available in most developing countries, our 

analysis uses a newly available air pollution data, which is estimated based on the natural air 

pollution (e.g., fire activities) by the NASA GISS ModelE climate model. This air pollution data do 

not take into account industrial air pollution, which is considered the dominant source of global air 

pollution. Thus, our air pollution is exogenous and does not correlate with individual’s 

characteristics, such as wealth. The model provides the daily average of PM2.5, PM10 and CO on a 

55 km by 55 km grid. In order to get an aggregate sense of air pollution, we combine all these three 
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pollutants and calculate the Air Quality Index (AQI)1 as our major measurement of air pollution. We 

combine the air pollution data with the ERA-Interim, which is the major source of our climate data 

on a 55 km by 55 km grid at the global level. Then, we merge the air pollution and climate data with 

the Demographic and Health Surveys (DHS) by matching each pixel with the DHS cluster. The 

DHS contains rich information about women and children across 67 developing countries. 

Interviewees and interviewers are randomly assigned in each DHS countries (“DHS interviewer’s 

manual”, 2015). We use the date flag variables in the DHS as the main measurements of the cognitive 

performance. The date flag variables are indicators of whether the respondent provides the date of 

some key events, such as birthdays, marriage date, children’s birthdays etc. These dates could be 

missing or inconsistent with the fact or other records. These events recall questions serve as a simple 

test of cognition in the short run. In this paper, we consider three date flags, respondent’s birthday 

flag, marriage date flag and children’s birthday flag. We think that the ability to recall these three 

dates test women’s concentration (willingness to respond) and their short-term memory2. We use the 

daily level air pollution and monthly level growth degree days 30, which indicates the total days 

exceeding 30°C in a month to estimate the effects on these three date flags. Since the interview 

location and date are fixed, we can rule out avoidance behavior and residential sorting issues. We 

then apply these data to robust econometric models to identify the causal effects of air pollution and 

temperature on women’s ability to recall dates. We also designed a model that allows us to test the 

nonlinear effects of air pollution on cognitive performance.  

Our analysis reveals a statistically significant, positive impact of both AQI and temperature 

on women’s ability of recalling dates. In particular, a one standard deviation increase in the AQI 

																																																								
1 See details of AQI and AQI calculation in Appendix I. 
2 We consider the ability to recall birthdays as a test of women’s willingness to respond. In other word is women’s 
concentration, because a bad effects of air pollution and temperatures cannot make women forget their birthday, but can 
make them have low concentration to answer the questions. In contrast, children’s birthday flag is more likely to test 
women’s ability to remember their children's birthday, especially for women have several children. 
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raises the likelihood of women not recalling any of those dates by 0.44 percentage point, and also 

increases the probability of failing to recall women’s birthday by 0.48 percentage point. These effects 

first arise when the AQI exceeds 150 and increases thereafter, which suggests a potential nonlinear 

effect. Furthermore, we also find that each degree day above 30°C increases the probability of failing 

to recall children’s birthday by 0.17 percentage point, and this finding is consistent with Hocking et 

al.’s (2001) argument that high temperatures are associated with less accurate working memory. 

These findings are robust to numerous controls and fixed effects in each specification. In addition, 

we find both air pollution and temperature are more influential on uneducated women regarding to 

their cognitive performance with a robust control.  

This paper proceeds as follows. Section 2 describes the scientific background on air 

pollution and temperature, including the potential mechanisms that affect cognitive performance. 

Section 3 reviews the extant literature of the impact of air pollution and temperature on cognitive 

performance. Section 4 describes the data that we use, and Section 5 introduces our identification 

strategies. Section 6 presents our core results along with some robustness checks. Section 7 

concludes this paper and explores the potential implications of our results.   

2. Scientific Background 

2.1 Air Pollution and Health 

The major pollutants we considered are carbon monoxide (CO) and particulate matter (PM2.5 

and PM10). Particulate matter (PM) consists of metals, organic compounds, material of biologic 

origin, dust particles, reactive gases and particle carbon core (Kampa and Castanas, 2007). In 

recognition of the growing evidence that only particles less than 10 micrometers (PM10) penetrate 

into the lungs and damage human’s health, further research demonstrated that smallest particles, 

those less than 2.5 micrometers, can not only penetrate deep into the lungs, but also enter the 
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bloodstream3. Particulate matter can be produced from human activities and natural sources (i.e. 

dust from desert, fire activities and volcanoes).  Those human activities include factories, power 

plants, motor vehicles and construction activity, resulting in major sources of particulate matter. It 

has been found that particulate matter, especially PM2.5, can remain in the air for a long time and can 

travel hundreds of miles (Chang et al., 2014). Unlike other pollutants, which we can avoid by going 

indoors, going inside does little to reduce one’s exposure to PM2.5. Vette et al. (2001) have shown 

that PM2.5 can easily enter buildings. Another important pollutant we are going to use in this study is 

carbon monoxide (CO), which is an odorless, colorless gas largely generated by automobile 

emissions, fossil-fuel furnaces and fires (Piantadosi, 2002). Fire activities are the major natural source 

responsible for a large amount of CO emissions worldwide. 

A large body of evidence has associated PM and CO with various health issues. Specifically, 

inhaling a certain amount of PM2.5 can be toxic to lungs and cardiovascular tissue (Simkhovich et al., 

2008), and cross the blood-air barrier of the lungs, gaining access to peripheral circulation and the 

brain (Muhlfeld et al., 2008). In addition, multiple cell types in the brain are sensitive to air pollution, 

and there is research claims that PM can even enter the brain and may be related to 

neurodegenerative pathology (Tost et al., 2015; Thomson et al., 2007; Peters et al., 2006). Classic 

studies of the lungs and cardiovascular system have indicated inflammation and oxidative stress as 

the common mechanisms that damage human health (Mills et al., 2009; Riedl, 2008). On the other 

hand, CO binds to the iron in hemoglobin, inhibiting the body’s ability to deliver oxygen to vital 

organs and tissues. This reduction in oxygen availability can affect the function of those vital organs 

and tissues, (particularly for high oxygen-consuming organs such as the brain and the heart), leading 

to impaired concentration, slow reflexes and confusion (Kampa and Castanas, 2008).  

																																																								
3 Particulate matter is categorized by its size. For any particles with an aerodynamic diameter of 2.5 to 10 um are defined 
as coarse particles(PM10), fine particles of less than 2.5 um(PM2.5), and ultrafine particulate matter of less than 0.1 
um(UFPM). 
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Exposure to high levels of ambient air pollution in the long run is associated with increases 

in human morbidity and mortality, especially to infants (Currie and Neidell, 2005). Despite the 

impact on children’s health outcome, air pollution can also have negative effects on adults’ health 

(Schlenker and Walker, 2011). Short-term exposure to PM may associate with respiratory diseases, 

for instance asthma attacks and also cardiovascular events, such as heart attacks (Pope, 2000). 

Scientists have also observed symptoms such as change in blood pressure, irritation in the ear, nose, 

throat and lungs, and mild headaches after a few hours’ exposure to PM, especially for sensitive 

groups of people with cardiovascular and respiratory diseases (Pope, 2000; Auchincloss et al., 2008). 

In addition, short-term exposure to CO may also result in heart attack and stroke (Dockery and 

Pope, 1996). Although there is no direct evidence showing whether either of these air pollutants 

affect cognition, it is clear that these two air pollutants can affect the function of important organs, 

especially the brain. Since the brain consumes a large amount of oxygens, any deterioration in 

oxygen quality can, in theory, affect cognition (Clark and Sokoloff, 1999). Hence, those short-term 

symptoms can be the main reasons that result in the decline of people’s cognitive performance and 

productivity.  

2.2 Temperatures and Health 

We also investigate the impact of heat on cognition. How can temperature impact human’s 

cognitive performance? The various heat regulation systems in the body can cope with both high 

and low temperatures. Under certain limits, thermal comfort can be maintained by appropriate 

thermoregulatory responses such that physical and mental activities can be processed without any 

detriment to health or performance (Huynen et al., 2001). However, when temperature exceeds 

certain limits, the capacity of the body’s heat regulation systems may overload so that damage 

occurs. Particularly, extreme hot temperatures are generally associated with increases in blood 

viscosity and blood cholesterol levels, which can lead to cardiovascular stress (Huynen et al., 2001). 
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Moreover, extant literature has shown that the brain’s chemistry, electrical properties, and functions 

are temperature sensitive (Yablonskiy et al., 2000; Hocking et al., 2001), and the brain’s performance 

can be influenced by rising temperatures. Under normal conditions, excessive heat diffuses into the 

bloodstream, and our body transports the heat to either the skin or lungs, and then transfers it to the 

environment. As environmental temperatures increase, heat transfer through the skin and lungs 

slows, which reduces the flow of cool blood to the brain. As a result, the brain’s temperature can 

temporarily increase (Graff Zivin et al., 2015). This is the main way that high temperature affects 

cognitive performance in the short term. In particular, working memory is less effective when the 

brain’s temperature is high4 (Graff Zivin et al., 2015). 

 Previous research has documented that heat is associated with morbidity and mortality. In 

one early study, Semenza et al. (1999) reported that the heat wave in Chicago in 1995 resulted in 

large increases in hospital admissions among all age groups. In addition, Deschenes and Greenstone 

(2011) found that climate change increases the overall annual U.S> mortality rate, particularly in 

infants.  

3. Literature Review 

Negative effects of air pollution and heat on human health have been well documented in 

economics literature. Hence, one could believe that the negative consequences can not only damage 

a population’s health, but also indirectly affect human productivity and cognitive performance. In 

extant literature, people’s cognitive performance is usually measured as their productivity in different 

occupations. For example, economists use school outcomes (e.g. test scores), as the major 

measurement of students’ cognitive performance. For adults, cognitive performance is measured 

																																																								
4 Hocking et al. (2001) state that the pre-frontal cortex is the major part that supply the working memory, which stores 
data in neural circuits. As Graff Zivin et al., (2015) explain, “Performing tasks that utilize working memory when core 
body temperature is elevated increases neuronal activity in the pre-frontal cortex for any given level of performance, 
suggesting that working memory is less effective when brain temperature is high.” 
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through people’s verbal memory, category fluency, working memory, attention and workplace 

productivity. Most of these studies have shown negative consequences of air pollution and excessive 

heat on human cognitive performance in both the long term and short term. 

3.1 Air Pollution 

3.1.1 The Long-Term Impact 

In most extant research, children, especially infants, are used as the major research 

participants of their studies, because most important organs of children are not well developed. 

Hence, children are more sensitive to the damage of air pollution. Bharadwj et al. (2014) examine the 

impact of fetal exposure to air pollution on 4th grade test score in Santiago, Chile. Their research 

uses sibling fixed effect to control family characteristics and avoid the residential sorting issues5. The 

authors also exploit data on air quality alerts to help address concerns related to avoidance behavior6. 

Bharadwj et al.’s paper found a strong and robust negative effect on fetal exposure to high levels of 

CO on math and language test scores in their later life.  

There is little research indicating that air pollution has long-term effects on adults’ cognitive 

performance. One study by Weuve et al. (2012) investigated the impact of particulate matter on 

older women’s cognitive performance in the long run. The author tested older women’s verbal 

memory, category fluency, working memory, and attention three times at two-year intervals via 

telephone assessments, and he found that higher levels of long-term exposure to particulate matter 

were associated with significantly faster cognitive decline for women over 70. 

3.1.2 The Short-Term Impact 

																																																								
5 Residential sorting refers to individuals choosing residential locations based on the attributes of the area, which cause 
to a non-random assignment of pollution (Graff Zivin and Neidell, 2013). 
6Avoidance behaviors are actions that people take to avoid exposure to ambient air pollution (e.g. indoor), without 
considering such avoidance behaviors, the effects of air pollution could be underestimated.	
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Some literature in this field pays particular attention to the short-term effects of air pollution 

on people’s cognitive performance. Lavy et al. (2014) estimate the relationship between air pollution 

and teenagers’ cognitive performance. Lavy et al.’s study indicates the significant negative 

consequences of both CO and PM2.5 on teenagers’ high school test scores in the short run. The 

authors use both PM2.5 and CO levels in Israel at a specific time before the high school testing was 

to start, to examine if there is a short-term effect of air pollution on students’ test performance. 

Israel’s unique high school test system allows the authors to control each individual’s characteristics 

as well as the difficulty of the tests7. The results show that a 10-unit increase in the ambient 

concentration of fine particulate matter reduces the test scores by 0.46 points, and increasing the 

amount of CO decreases test scores by 0.85 points.  

The negative effects of air pollution on adults’ productivity in the short run have also been 

documented. Estimating the impact of air pollution on labor productivity is particularly difficult, 

because pollution is more tightly related to industrial production, which may have reverse causality. 

Chang et al., (2014) presented evidence on the impact of outdoor pollution on the productivity of 

indoor workers. The paper focuses on the effect of PM2.5 on the efficiency of pear packers in a pear 

packing facility in Northern California.  To solve the endogeneity of pollution, the authors use a 

large wildfire as a natural experiment, which increases the overall level of PM2.5. The result suggests 

that an increase in PM2.5 of 10 micrograms per cubic meter reduces the productivity of workers by 

$0.41 per hour, which is equivalent to 6 percent of average hourly earnings. The paper also finds 

evidence that PM2.5 has a non-linear effect on worker productivity. 

However, one can argue that the indoor work environment in the Chang et al. (2014) study 

is naturally ventilated, and without the temperature, any variation in temperature might lead to the 

																																																								
7 High school students in Israel are allow to the high-stakes exit exams more than once and start from grade 10, and 
students will get reward points depends on the difficulty of the exams. 
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change of PM2.5. Without controlling temperature, the estimation will be biased. In order to address 

these concerns, Li, Liu and Salvo (2015) provide a more valid method to estimate the impact of air 

pollution on labor productivity for manufacturing workers. They used the daily PM2.5 

concentrations to estimate the impact on worker output in a Beijing’s textile mill. In their study, all 

laborers work in an environment that is indoor, temperature controlled, and sheltered from rain and 

wind. This rules out other factors (e.g. heat, extreme weather conditions) that affect labor 

productivity. The major finding of this paper is that every additional 10 ug/m3 of exposure to PM2.5 

leads to 4.3 meters of fabric reduction for each worker. The paper also finds a huge non-linear effect 

of PM2.5 on labor productivity.  

Pestel (2015) argues that a very detailed data of individuals’ short-run productivity is missing 

for a lot of occupations. He estimates the causal effect of ambient air pollution on individuals’ 

productivity by using the information on the universe of professional soccer players and teams in 

the German Bundesliga in 2,956 matches and 32 different stadiums throughout the country over a 

twelve-year period. Since professional sports data offer very detailed information of each match, it 

allows the author to measure individuals’ short-run productivity consistently. Because the match 

schedule is fixed, the ambient air pollution could be considered as exogenous to each player, which 

overcomes the concerns of residential sorting and avoidance behavior. The results indicate that one 

percent increase in the concentration of particulate matter leads to a 0.02 percent reduction in the 

number of passes. The negative effects increase with players’ age over 30.  

3.2 Heat and Temperature 

3.2.1 The Long-Term Impact 

Similar to the air pollution, there is little evidence that shows high temperatures have long-

term consequences on cognitive performance. Isen et al. (2015) investigate how exposure to extreme 

temperatures in utero and early childhood affects adults’ earnings 30 years later. By controlling 
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country by day of year by race by sex and year fixed effects, it isolates other factors that may affect 

later life outcomes. Since temperatures are different across different years on the same day, this 

technique allows the authors to quantify any differences in the later life outcomes of two children of 

the same gender and same race, who are born in the same country on the same day, but in different 

years. This paper finds that an extra day with mean temperature above 32°C (89F) in utero and in 

the first year of life is associated with a 0.2 percent reduction in average annual income 30 years 

later.  

Some literature has linked the negative effects of temperature on productivity in the long 

run. Dell et al. (2012) find evidence that higher temperatures substantially reduce economic growth 

in developing countries. Not just developing countries, Deryugina and Hsiang’s (2014) paper 

investigates the effects of daily temperature on annual income in U.S. counties over 40 years, and 

they indicate that total personal income per capita is highest if the 24-hour average temperatures are 

between 9-15°C (48-59F), and it will decline as the temperature increases. In addition, high 

temperature can also decrease the productivity at firm level. Somanathan et al. (2014) look at the 

impact of temperature on firm productivity for manufacturing firms in India. They find that, above 

25°C (77F), the overall firm output decreases 5.6 percent as one additional degree increases. 

Particularly, they show that temperature has more effects in plants with a high labor share and low 

electricity intensity. Although there is no direct evidence supporting that high temperature affects an 

individual’s productivity, the literature we list above suggests that high temperature can cause a 

decline in countries’ and firms’ productivity due to the reduction of labor productivity8. 

3.2.2 The Short-Term Impact 

																																																								
8 Deryugina and Hsiang (2014) examine the impact of temperature on both farm and non-farm income losses, and they 
conclude high temperature reduces the productivity of both workers and crops. Somanathan’s et al. (2014) paper uses 
the daily output of a manufacturing unit as the measurement of the firm productivity, and they find that temperature 
affects more in plants with a high labor share. Therefore, one can believe high temperature can impact a country’s and 
firm’s productivity through the decline of laborers’ productivity. 
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There is little extant literature focused on analyzing the relationship between weather and 

cognitive performance in the short run. One paper written by Graff Zivin et al. (2015) provides the 

first estimates of the impact of temperature on children’s cognitive performance in the short run. 

They use assessments of cognitive ability from the children included in the National Longitudinal 

Survey of Youth and link it with temperature. By doing the child fixed effects, they can capture all 

other children’s characteristics that may affect their cognitive performance, and they exploit the 

exogenous interview date and daily fluctuations in temperature across the same children over time to 

find any causal effects. The results imply that math performance declines above 21°C (70F), and 

becomes significant beyond 26°C (79F). Moreover, early research has linked heat with adults’ 

cognitive performance. Froom et al. (1993) provide evidence that helicopter pilots are more likely to 

make mistakes if the ambient temperature is above 25°C(77F). What’s more, Pilcher et al. (2002) use 

a meta-analysis9 to summarize the effects of hot temperature exposure on cognitive performance. 

Based on 22 original studies, hot temperature negatively impacts performance on different cognitive-

related tasks. Specifically, if the temperature is above 32°C (89F), it will lead to the greatest 

decrement in cognitive performance.  

4. Data 

We use three major data sources, the Demographic and Health Surveys, air pollution and 

ERA- Interim in this study. We use the pixel ID to match with the DHS cluster. Pixel ID is the 

geographic code of air pollution, which is measured in a 0.5-degree spatial resolution. The size of the 

DHS cluster is smaller than the size of pixel ID. DHS cluster is a geographic identification that DHS 

use for interviewing.  There are 28 women, on average, who took surveys in each DHS cluster each 

year. We combine these three data by using pixel ID, DHS cluster and interview dates. This section 

																																																								
9 Meta-analysis is a statistical technique for combining and summarizing the findings from different independent studies. 
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briefly describes these data and points out key summary statistics. Table 1 lists the detailed summary 

statistics.  

4.1 Air Pollution and Temperature 

Our air pollution data is generated by the Ruth Defries’ Lab at Columbia University. It is an 

estimating data based on the natural resource, such as global fire emissions (e.g., forest fires, savanna 

fire, burning agriculture waste and peat fires). They used the MODerate resolution Imaging 

Spectrooradiometer (MODIS) sensor on satellites to detect the burned area of different fire 

activities. They use a revised version of GISS-E2-PUCCINI, which is the latest version of the 

NASA GISS ModelE climate model10  to estimate the pollution emissions of global fires from 1997 

to present on a 0.5 degree (55km) spatial resolution11 at the daily level(Marlier et al., 2014; Van der 

Werf et al., 2010). We encode each of this 0.5-degree spatial resolution as one pixel. This means the 

pollution will vary across different pixel. This pollution data does not take into account industrial air 

pollution and only estimate the air pollution based on natural activities, which means the air 

pollution could be considered as exogenous. The model can simulate the PM, CO and Ozone level 

at each pixel conditional on the certain fire activity. Figure 1 shows the overall estimation of daily 

average PM2.5 emissions from 1997 to 2008. It is clear that the variation of air pollution in Afican 

countries is very high, and countries with high forest density, for example Indonesia, also associate 

with high PM2.5.  

PMs (PM2.5 and PM10) in our data are reported as a 24-hour moving average (ug/m3). CO 

data is measured as an 8-hour moving average (ppm). We exclude Ozone from our pollution data 

																																																								
10 “The climate modeling program at GISS is primarily aimed at the development of coupled atmosphere-ocean models 
for simulating Earth's climate system. Primary emphasis is placed on investigation of climate sensitivity —globally and 
regionally, including the climate system's response to diverse forcings such as solar variability, volcanoes, anthropogenic 
and natural emissions of greenhouse gases and aerosols, paleo-climate changes, etc” (Global Climate Modeling, 2015). 
11 Spatial resolution specifies how large (in degrees of latitude and longitude or in km or miles) the grid cells in a model 
are. 
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because the Ozone emission from fire activity is too small compared with CO and PM. In order to 

find the aggregate effect of air pollution on cognition, we combine all pollutants (PM2.5, PM10, 

CO) and calculate a daily Air Quality Index (AQI) according to the Guidelines for the Reporting of 

Daily Air Quality, which is conducted by the U.S. Environmental Protection Agency (Mintz, 2006). 

The AQI is a composite measurement of air pollution, which ranges from 0 to 500 and a consistent 

unit. Another advantage of using the AQI is that the EPA clearly defines the AQI standard, and 

ranks air quality based on various health risks. We can take this advantage to estimate the non-linear 

effects of air pollution. Figure 2 presents the total number of days that the AQI falls to the different 

categories. The six AQI categories (Good, Moderate, Unhealthy for Sensitive Group, Unhealthy, 

Very Unhealthy and Hazardous) corresponds to a different level of health concern.  

We combine our air pollution data with the climate data using information on the DHS 

cluster and exact date. Our climate data are from the ERA-Interim, by the European Centre for 

Medium-Range Weather Forecasts, which produce a reanalysis of the global atmosphere start from 

1979 to present. In this study, we look at the growing degree days (GDD) and precipitation. 

Particularly, we use monthly GDD-30, which is an indicator of the total days exceeding 30°C in a 

month, and the precipitation is a monthly average in millimeters. Based on Table 1, the average 

GDD-30 of the whole sample is 5.25, and the mean of the monthly precipitation is 1108 mm. 

4.2 The Cognitive Performance Data 

The main data source for measuring the cognitive performance comes from the 

Demographic and Health Surveys (DHS). The DHS collects primary data, which contains rich 

information on the health of children and women as well as household characteristics. In a majority 

of DHS, only women between 15 and 50 are eligible to take the surveys. The data are available from 

1986 to 2011, and it includes over 1.7 million women from 67 developing countries, and most of 
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these countries are located in tropical areas (“Description of the Demographic and Health Surveys”, 

2010). 

We use the date flag variables in the DHS as the main measurement of cognitive performance. 

Date flag variables are indicators of whether or not the woman can recall important dates. In DHS, 

there are some dates of key events in respondents’ lives, which are missing. It is either because they 

do not provide the date information when they responded to the surveys or the dates the 

respondents provide are inconsistent with the facts or the official record. These events include 

respondents’ birthday, marriage date, children’s birthday, conception dates of the current pregnancy, 

the start date of using birth control method, and the interview date. Since these dates are very 

important to the surveys, DHS has to impute these missing dates according to respondents’ age, 

official records and other information. The date flag variables indicate what format the information 

was in prior to imputation, and what basis was used for the imputation.  

We categorize the date flag variables into three groups: 1) respondents provide correct and 

full date information for the event; 2) respondents do not provide correct and full date information, 

but the respondent’s age is not missing, and DHS imputed these dates according to respondent’s 

age; 3) respondents do not provide correct and full date information for the event, and respondent’s 

age information is also missing.  In this research, we exclude the third group because women in this 

group may not know the date of the event at all. Therefore, there is no way for this group of women 

to recall the date when they respond to the survey.  

We consider three date flag variables in our study, the flag of respondents’ birthdays, the flag 

of respondents’ marriage date and the flag of respondent’s children’s birthday, referring to them as 

birthday flag, marriage date flag and children’s birthday flag. We only use these three date flag variables 

because these dates are more likely to be remembered, and it is easy to find a record and to impute it 

accurately. We only include women who are married when we look at the marriage date flag, and 
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exclude those who do not have children when we use children’s birthday flag as the cognitive 

measurement. We think these three date flag variables test both respondents’ willingness to 

complete the survey questions and their short-term memory. The birthday flag is testing women’s 

willingness to respond to the question. On the other hand, the children’s birthday flag is more likely 

to test women’s short-term memory, especially for those who have several children. This children’s 

birthday flag is the average child’s birthday flag per child, which is equal to the total children’s 

birthday flags divided by total children the mom has. The marriage date flag is kind of testing both 

characteristics. We also create two aggregate date flag variables to test their effects of the whole 

sample: 1) any flag is a dummy variable that turns to 1 if any of those three dates flags pop up. 2) total 

flag is the sum of those three dates flags. We use these five date flags as our measurements of 

women’s cognitive performance in all of the specifications. The average of any flag is 0.347 for the 

whole sample. Women who have not been educated and live in rural have higher probability to have 

date flags than women who have been educated and live in urban area. 

After we merge our DHS data with air pollution data and ERA data, we have 736,160 

women across 42 countries left in our sample. Figure 3 shows the countries left in our sample. The 

interview interval is from 1997 to 2009. Since the DHS is conducted once a year, the sample in each 

year is different. Thus, our final data is a cross-sectional data. According to the DHS interviewer 

guidelines, all interviewees are randomly selected each year. The interviewers are also randomly 

assigned to each country, and only the best-qualified interviewers in the training are allowed to go in 

the field. All interviews are finished in one month. Based on this information, we can assume all of 

our sample have been randomly selected. Table 1 reports the average daily AQI is higher in rural 

area than it in urban area, which is not consistent with the situation in real world. However, what we 

observe is totally making sense for our air pollution data since our pollution data does not take the 

industrial pollution into account. On the other hand, rural area is more likely to have fire activities 
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(e.g., burning agriculture waste). Thus, the air pollution in rural area should be higher than urban 

area in our data.  

5. Empirical Strategies 

Our goal is to estimate the effects of air pollution and heat on women’s cognitive 

performance, particularly on women’s ability to recall dates. We estimate linear fixed effects 

regression models of following form: 

   DateFlagsi,t,j = 𝛃AQIt,j + 𝛄GDD-30t,j +	𝛝 Prect,j +  𝛈Xi,t + Country * Year + Mt + Cj + 𝛆i,t,j     (1) 

where DateFlags are five date flags (total flags, any flag, birthday flag, marriage date flag and children’s 

birthday flag) of women i at DHS cluster j at the interview date t; AQIt,j is our measurement of air 

pollution (daily average AQI) at DHS cluster j at the interview date t. In our regressions, we calculate 

the z score of the AQI, and use it as the independent variable. GDD-30t,j is the monthly mean of 

growing degree days over 30°C at DHS cluster j at the interview month t. It is the primary 

measurement of heat; Prect,j  Xi,t is a vector of women’s characteristics possibly related to date flags. 

We control women’s age, age square and total fertility. We also control women’s education level and 

whether women live in a rural or an urban area. The education indicator report women’s highest 

education level, which is indicated as uneducated, primary school, secondary school or higher 

education. Instead of including education dummy and rural dummy in our controls, we interact the 

education dummy and rural dummy with the country. By doing so, we control the effects of women’s 

education level and living area on their cognitive performance differently across different countries12, 

which yield a robustness effects of air pollution and heat on date flags. Moreover, we include the 

country by year fixed effects to control country and year trends. It also can be considered as a “survey” 

																																																								
12 Including country * education and country * rural means each country gets its own coefficient on education variables 
and rural dummy. By doing so, we control for average date flag by women’s education level and living area for each 
country differently. We rule out some country specific effects of education level and living area on date flags. 
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fixed effects, which controls all the effects caused by the DHS taking place in a certain country in a 

certain year. Mt is the month fixed effect, which captures all month invariant effects; Cj is the DHS 

cluster fixed effects, which controls for all time invariant characteristics of each cluster. Since the 

interview schedule and location are fixed, we can rule out any avoidance behavior and residential 

sorting issues, and identify the causal effects of air pollution and temperature on performance. εi,t,j is 

an idiosyncratic error term.   

Our second specification test effects whether air pollution and temperature can reduce 

women’s cognitive performance for those who belong to a specific group. Since we observe in Table 

1 that women in rural areas and with low education levels are more likely to have to date flag, we will 

compare the effects between women who have been educated and not, and also, between women 

who live in rural areas and urban areas. The models we estimate are of the following form: 

DateFlagsi,t,j | Group = 𝛃AQIt,j + 𝛄GDD-30t,j +	𝛝 Prect,j +  𝛈Xi,t + Country * Year + Mt + Cj + 

𝛆i,t,j     (2) 

where we retain all the date flag measurements, air pollution and temperature treatments the same, 

and keep all controls and fixed effects in the first model. The only difference is we estimate the sub-

sample effects, in which we only include women who belong to each group in our sample (e.g., 

educated, uneducated, rural and urban). The main purpose of testing this model is we want to check 

if air pollution and heat have more effects on women who have relatively low levels of human 

capital.,  

Extant research has found non-linear effects of air pollution on adults’ productivity in the 

short run (Chang et al., 2014; Li et al., 2015). Our last estimation will test whether air pollution has 

non-linear effects on women’s cognitive performance. We are not able to test the non-linear effects 

of temperature because we cannot find a clear temperature standard, and GDD-30 is already a high 

temperature. The models of testing non-linear effects of air pollution are formed as follows: 
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DateFlagsi,t,j = 𝛃1 Moderatet,j + 𝛃2 Sensitivei,j + 𝛃3 Unhealthyt,j  + 𝛃4 VeryUnhealthyt,j + 𝛃5 

Hazardoust,j + 𝛄GDD-30t,j +	𝛝 Prect,j +  𝛈Xi,t + Country * Year + Mt + Cj + 𝛆i,t,j         (3) 

With the same date flag measurements, controls and fixed effects, we change our air pollution 

treatment to five dummy variables, which indicate whether the AQI at interview day t falls in the 

correspondent AQI health category. The coefficient of each of these health categories indicates the 

marginal effects of the AQI in the category relating to women’s ability to recall dates compared with 

a good AQI day.  

6. Empirical Results 

6.1 Main Results 

 In Table 2, we present our baseline results of the relationship between the AQI, GDD-30 

and five date flag variables. All of our results are controlled with country by year fixed effects, 

month fixed effects and DHS cluster fixed effects. In Columns (1) and (2), we report the correlation 

between the AQI, temperature and two aggregate date flag measurements. In Column (1), we 

estimate that one standard deviation increase of the AQI is associated with a 0.44 percentage point 

increase in women’s probability to not complete any of these three dates (birthday, marriage date 

and children’s birthday), and the coefficient is significant at the 5% level. Moving from Column (1) 

to Column (2), it illustrates a one-standard deviation increase in the AQI significantly increase 0.007 

total date flags. However, we do not see any significant effect of temperature on these two date 

flags. In Column (3) to (5), we estimate the effects of air pollution on each of the three date flags, 

e.g., birthday flag, marriage date flag and children’s birthday flag. As mentioned earlier, we only take 

into account women who have married and have children when we look at the marriage date flag 

and children’s birthday flag. The estimate of 0.0048 in the first row of Column (3) implies that one 

standard deviation increase in the AQI rise the birthday flag 0.48 percentage point. We do not see 

any significance of the AQI on marriage date flag and children’s birthday flag, and it suggests that 
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the effects of the AQI on aggregate date flags are driven by the birthday flag. On the other hand, we 

only observe significant coefficient of temperature on children’s birthday flag. In the second row of 

Column (5), the coefficient indicates that each degree day above 30°C increase the probability of 

failing to recall children’s birthday by 0.17 percent. This result is consistent with Hocking et al.’ 

(2001) finding that is high brain temperature is mostly affect ability of memory.  

Table 3a is comparing the effects of the AQI and temperature on date flags between women 

who live in rural areas and urban areas. In Table 3a, panel A estimate the effects of the AQI and 

temperature on women living in rural areas. We do not see any significant effects of the AQI. 

However, the temperature shows the significant positive effect on children’s birthday flags of 

women in rural area. It is consistent with the result in the first model. In contrast, panel B presents 

the results of the AQI and temperature on women living in urban areas, and reveals very strong 

signals of the AQI increase in the aggregate date flags. Column (1) indicates that a one-standard 

deviation increase in the AQI increases the probability of not recalling any of these three dates by 

0.81 percentage point, and Column (2) reports a one-standard deviation increase in the AQI raising 

the total amount of date flags by 0.0051. These two coefficients are significant at 1% level. We also 

see significantly weak positive effects of the AQI on the birthday flag and children’s birthday flag. 

The positive effects of temperature on children’s birthday flag is still significant in panel B, but the 

effect is smaller than it is in panel A (0.21 percentage point increase on children’s birthday flag for 

women living in rural areas and 0.16 percentage point increase on children’s birthday flag for women 

in urban areas).  

We consider that the major reason that the AQI has a strong effect on women’s date flag 

only for those in urban areas is that our pollution data fail to take into account the industrial air 

pollution. However, industrial air pollution is the major source of global air pollution, and urban 

areas are most likely to be affected by industrial air pollution. Therefore, we expect the baseline air 
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pollution in urban areas should be higher than it is in rural areas. Women in urban areas may be 

exposed to higher levels of air pollution in the long term and short term than those living in rural 

areas. Our results in Table 3a suggest that high pollution levels in urban area cause more severe 

damages to women’s health than those living in rural areas, so that air pollution significantly 

decreases women’s cognitive performance in urban areas. On the other hand, we observe that high 

temperatures have more of an effect on women in rural areas than their urban counterparts. One 

explanation is that women are more likely to work outdoors in rural areas and indoor in urban ones, 

which makes the temperature have stronger long-term effects on rural women. In addition, since 

urban areas are more developed than rural areas, the interview locations in urban areas are more 

likely to be indoors and temperature controlled.  

In Table 3b, we examine heterogeneity in these date flags by women’s education. We expect 

higher effects of air pollution and temperature on uneducated women, since low human capital is 

associated with low cognitive performance. Based on panel A, there is no significant signal of the 

AQI on women’s date flag in the uneducated sub-sample. In contrast, panel B presents the weak 

effects of the AQI on two aggregate date flag measurements. These results are not consistent with 

what we expect. However, one explanation could be that most educated women live in urban areas. 

As we mentioned before, industrial air pollution dominates global air pollution, and urban areas are 

mostly polluted by industrial air pollution. Figure 4 shows the total number of women with different 

education levels between rural and urban areas. It is clear to see most uneducated women live in 

rural areas, and the density of educated women in urban areas is higher than it is in rural areas. If we 

take into account the industrial air pollution, the AQI is not high enough to affect women’s 

cognitive performance in rural areas. In addition, the dominant education level in urban areas is 

secondary school, which we consider not to be a high education level. What Figure 4 presents 

supports the results of the AQI in Table 3b. On the other hand, temperature show very strong 
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effects on almost all date flags in rural areas, but no significant effects on urban areas. Specifically, in 

the second row of panel A, each degree day above 30°C increases the probability of women failing 

to recall any of these three dates by 0.7 percentage point, and cause an increase of 0.0127 amount of 

total flags. Moreover, each degree day above 30°C also leads to an increase of women not recalling 

marriage dates and children’s birthday by 0.89 and 0.41 percentage point, respectively. These two 

coefficients are significant at 1% level. The results of temperature confirm our suspicion that women 

in rural areas are more likely to work outdoors, and women in urban areas have a higher likelihood 

of working indoors, which makes the temperature less influential.  

Table 4 presents the nonlinear estimation of the AQI criteria on date flags. In Column (1), 

we find that the AQI between 51 to 150 increase the probability of failing to recall dates by 0.2 

percentage point, though this effect is not significant at a conventional level. When the AQI reaches 

151 – 200 (Unhealthy), the effect increases to 0.7 percentage point, but it is still not significant. As 

the AQI increases to 201 – 300 (Very Unhealthy), the effect increases to 1.5 percentage point and is 

significant at 5% level. The effect further increases to 3 percentage point when the AQI exceeds 300 

(Hazardous) and significant at 1% level. Note that the average of any flag is 0.347. The effect of 

Hazardous implies that one out of three interviewers will fail to recall any of those three dates 

conditional on a Hazardous day. We also observed similar patterns of the AQI criteria on total flags, 

marriage date flag and birthday flag. These results provide clear evidence of a nonlinear relationship 

between the AQI and date flags. To further illustrate this, Figure 5a plots the nonlinear coefficients. 

These coefficients suggest a possible threshold of around 101 – 150 (Unhealthy to Sensitive Group) 

for most date flags. To make it clear, Figure 5b only indicates the nonlinear estimation of any flag. 

Based on Figure 5b, it is clear that the nonlinear effect occurs as the AQI exceed 150. While we 

cannot be certain of a threshold at this point, we note that this pattern is consistent with what the 

AQI suggest, which implies that as the AQI reaches Unhealthy (over 150), “everyone may begin to 
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experience some adverse health effects, and members of the sensitive groups may experience more 

serious effects (AQI).”  

6.2 Robustness Checks 

Our results indicate that air pollution has a higher effect on women’s cognitive performance 

in urban areas than those in rural areas. As explained earlier, it could be the case that industrial air 

pollution dominates the urban area air pollution, so this affects women’s cognitive performance. 

Since we do not have the industrial air pollution data, we cannot examine this suspicion directly. 

What’s more, in Table 3b, we find the AQI only has significant effects on educated women, and 

Figure 4 shows that the proportion of educated women in urban areas are far more than it is in rural 

areas. In order to investigate this suspicion, we tested the effect of the AQI on women who live in 

urban areas by their education level, because we believe women with low human capital would be 

affected more by air pollution. In Table 5, panel A indicates the effect on uneducated women in 

urban areas. Compare with the results of the whole, we lost the significance of two aggregate dates 

flags. The major problem here is I lost nearly 85% sample size when decompose the sample to 

women who are uneducated and in urban areas. However, the significance appears on children’s 

birthday flag, which reports that a one-standard deviation increase in the AQI is associated with 0.48 

percentage point increase in children’s birthday flag. We also observe significant results of 

temperature on aggregate date flags and children birthday flag. Columns (1) and (2) report that each 

degree day above 30°C increases any flag by 0.76 percentage point and raise the total amount of date 

flags by 0.014. In Column (5), the coefficient 0.005 implies that an additional degree day above 30°C 

increases the probability of not recalling children’s birthday by 0.5 percentage point. On the other 

hand, we do not see any significant results of both the AQI and temperature on educated women in 

panel B. Under the appropriate controls and fixed effects, these results imply that industrial air 
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pollution should somehow respond to the effect on urban sub-sample. In addition, both air 

pollution and high temperatures are more likely to affect poor human capital women.  

Since our air pollution data are primarily estimated according to the global fire activities, one 

concern is that the temperature may correlate with our pollution, which makes our estimation 

biased. For example, high degree days have higher probability to cause fire activities (e.g., forest 

fires).  In order to test this concern, we exclude the temperature and precipitation variables from our 

main specification, and check the effects of the AQI only. Table 6 presents the results that exclude 

the temperature measurement.  The results are very similar to Table 2, which rules out any concern 

about correlation between temperature and air pollution. 

Finally, we explore heterogeneity in the effects of each pollutant. We decompose the AQI to 

PM2.5, PM10 and CO, and run the same regressions of Table 2 to test the whole sample’s effects. 

Table 7 indicates that the significance is only revealed on any flag, and driven by PM2.5 and PM10. 

It is consistent with the results in Table 2, because the AQI in our sample is also mainly driven by 

PM2.5 and PM10.  

7. Conclusion 

In this paper, we estimate the causal effects of ambient air pollution and temperature on 

women’s cognitive performance. Using the date flag variables (a measurement of women’s ability to 

recall dates, which test women attention and short-term memory) from the Demographic and 

Health Surveys as the measurement of cognitive performance and daily information of air pollution 

and monthly temperature on a 55 km by 55 km grid, we exploit exogenous variation in respondents’ 

exposure to air pollution and temperature due to the natural air pollution source and fixed interview 

dates and locations.  

Our results indicate that air pollution and temperature have negative effects on women’s 

ability to recall dates in the short run, and these effects particularly affect uneducated women. These 
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linear effects are statistically significant and robust. In addition, when allowing for a nonlinear dose-

response relationship, substantial positive effects of air pollution on date flags are found: any date 

flag increases dramatically as the AQI reaches 150 (Unhealthy to Sensitive Group), and keeps 

increasing when the AQI exceeds 200 (Unhealthy), and becoming significant. These nonlinear 

effects suggest a threshold of 150 of the AQI.  

Although the interviewers and interviewees have been randomly assigned, our cross-

sectional data do not allow us to identify each individual and apply an individual fixed effects to 

control all individuals’ characteristics. While we suspect there is a negative effect of industrial air 

pollution on cognitive performance, our results could be underestimated without taking into account 

industrial air pollution. Since our temperature measurement is at monthly, our results of monthly 

GDD-30 on date flags could be noisy. Future research on adults’ cognitive performance should 

further examine the effect of daily air pollution with taking into account industrial air pollution. 

Furthermore, future research should test the short-term effects of daily temperatures instead of 

monthly temperatures. Moreover, a perfect panel data could be applied in future research to re-

examine the short-term effects of air pollution and temperatures on adults’ cognitive performance. 

Our analyses highlight that air pollution and temperature are not limited to adverse impacts 

on population health. Even moderate concentrations of air pollution that is generated by natural 

sources can negatively affect women’s cognitive performance. Our findings complement previous 

studies of air pollution and high temperatures negative effects on cognitive performance in the short 

term (e.g. Graff Zivin et al., 2015; Froom et al., 1993; Lavy et al., 2014; Chang et al., 2014; Li et al., 

2015; Pestel 2015), and add new evidence that both air pollution and temperature affect adult 

women’s cognitive performance, particularly that of low-educated women. The results presented 

here suggest that the benefits from regulating air pollution and greenhouse gases emission may be 

underestimated by a narrow focus on health impacts. As air pollution and high temperatures may 
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have decreased cognitive performance, the consequences of air pollution and climate change may be 

relevant to everyday activities which require concentration and working memory. Low schooling 

performance and reduced worker productivity could be the byproducts of decreased cognitive 

performance. Furthermore, the results suggest that air pollution and extreme temperatures may also 

reduce the accuracy of large surveys’ outcomes. Therefore, an optimal design of climate change and 

air pollution regulating policies may yield tremendous benefits to the welfare of population.  
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(1) (2) (3) (4) (5)

Variable

AQI (Z-Score) 0.0044** 0.007** 0.0048** 0.0030 0.0009
(0.00213) (0.00330) (0.00238) (0.00250) (0.00118)

Temperature (GDD-30) 0.0007 0.0035 0.0009 0.0015 0.0017***
(0.00224) (0.00306) (0.00215) (0.00199) (0.000494)

Age 0.0024*** 0.0119*** 0.0010 0.024*** 0.0027***
(0.000787) (0.00178) (0.000716) (0.00264) (0.000682)

Age Square 3.07e-06 -9.58e-05*** 6.12e-06 -0.000281*** -1.36e-05
(1.20e-05) (2.61e-05) (1.05e-05) (3.69e-05) (8.67e-06)

Fertility 0.0125*** 0.0204*** 0.00646*** 0.00815*** 0.00301***
(0.000572) (0.00114) (0.000431) (0.000823) (0.000276)

Precipitation (mm) 2.64e-06 2.93e-06 -5.33e-07 2.04e-06 -1.90e-07
(4.29e-06) (6.24e-06) (4.08e-06) (6.40e-06) (1.30e-06)

Country by Education Yes Yes Yes Yes Yes
Country by Rural Yes Yes Yes Yes Yes
DHS Cluster FE Yes Yes Yes Yes Yes
Country by Year FE Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Constant 0.605*** 0.603*** 0.549*** 0.0225 -0.00747

(0.0191) (0.0386) (0.0209) (0.0555) (0.0145)
Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390
Notes: For marriage date flag, we only test women who have married in our regression. For children's birthday flag, we 
only include women who have at least one child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Table 2: Whole Sample Cognitive Performance

Any Flag Total Flag Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday Flag

Dependent Variable: 1 = The Correspondent Dates are not Complete
OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level



	
	

36	

 

(1) (2) (3) (4) (5)

Variable

AQI (Z-Score) 0.0024 0.0051 0.0048 0.0025 -0.0003
(0.00284) (0.00486) (0.00338) (0.00326) (0.00165)

Temperature (GDD-30) 0.0022 0.006 0.0027 0.0019 0.0021***
(0.00339) (0.00435) (0.00328) (0.00235) (0.000795)

Constant 0.685*** 0.686*** 0.632*** 0.121* -0.0134
(0.0291) (0.0581) (0.0320) (0.0627) (0.0201)

Observations 449,087 449,087 448,922 225,101 345,972
R-squared 0.590 0.652 0.591 0.630 0.410

AQI (Z-Score) 0.0081*** 0.011*** 0.0053* 0.0037 0.0032*
(0.00282) (0.00384) (0.00297) (0.00406) (0.00172)

Temperature (GDD-30) 0.0002 0.0026 5.63e-05 0.0004 0.0016***
(0.00177) (0.00271) (0.00158) (0.00265) (0.000498)

Constant 0.558*** 0.599*** 0.488*** 0.0246 0.0152
(0.0223) (0.0394) (0.0248) (0.0633) (0.0154)

Observations 287,073 287,073 287,015 126,953 195,755
R-squared 0.552 0.601 0.565 0.544 0.322
Note: All regressions control age, age square, fertility, precipitation and country by education. All regressions also include 
country by year fixed effects, month fixed effects and DHS cluster fixed effects. For marriage date flag, we only test 
women who have married in our regression. For children's birthday flag, we only include women who have at least one 
child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Any Flag Total Flag Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday Flag

Table 3a: Sub-Sample Cognitive Performance (Rural vs.Urban)
Dependent Variable: 1 = The Correspondent Dates are not Complete
OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level

Panel A: Rural Sub-Sample

Panel B: Urban Sub-Sample
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(1) (2) (3) (4) (5)

Variable

AQI (Z-Score) 0.0026 0.0047 0.0047 0.0012 0.0005
(0.00324) (0.00493) (0.00352) (0.00325) (0.00152)

Temperature (GDD-30) 0.007* 0.0127** 0.0037 0.0089*** 0.0041***
(0.00411) (0.00518) (0.00420) (0.00301) (0.00127)

Constant 0.421*** -0.140 0.447*** -0.302*** -0.163***
(0.0428) (0.0974) (0.0462) (0.0742) (0.0381)

Observations 230,467 230,467 230,331 116,804 195,837
R-squared 0.535 0.613 0.540 0.647 0.454

AQI (Z-Score) 0.00615* 0.00798* 0.00424 0.00140 0.00148
(0.00357) (0.00428) (0.00344) (0.00443) (0.00143)

Temperature (GDD-30) -0.00178 -0.00132 -0.00105 -0.000899 0.000516
(0.00225) (0.00300) (0.00195) (0.00242) (0.000318)

Constant 0.187*** 0.174*** 0.163*** -0.162** -0.000434
(0.0205) (0.0295) (0.0188) (0.0699) (0.00691)

Observations 505,693 505,693 505,606 235,250 345,890
R-squared 0.492 0.549 0.515 0.472 0.278

Table 3b: Sub-Sample Cognitive Performance (Uneducated vs. Educated)
Dependent Variable: 1 = The Correspondent Dates are not Complete

OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level
Panel A: Uneducated Sub-Sample

Panel B: Educated Sub-Sample

Note: All regressions control age, age square, fertility, precipitation and country by rural. In panel B, we 
control the country by education (country by primary school, country by secondary school). All regressions 
also include country by year fixed effects, month fixed effects and DHS cluster fixed effects. For marriage date 
flag, we only test women who have married in our regression. For children's birthday flag, we only include 
women who have at least one child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Any Flag Total Flag Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday 
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(1) (2) (3) (4) (5)

Variables
Any Flag Total Flag

Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday 

Flag

Moderate 0.0029 0.0027 0.0004 0.0048* -0.0012
(51-100) (0.00255) (0.00345) (0.00248) (0.00281) (0.000961)
Unhealthy to Sensitive Group 0.0022 0.0017 0.0012 0.0011 9.29e-05
(101-150) (0.00452) (0.00675) (0.00528) (0.00487) (0.00214)
Unhealthy 0.007 0.0031 0.0016 0.0105 -0.0015
(151-200) (0.00567) (0.00892) (0.00598) (0.00745) (0.00301)
Very Unhealthy 0.0151** 0.0092 -0.0005 0.0208 0.0063*
(201-300) (0.00727) (0.0122) (0.00828) (0.0127) (0.00361)
Hazardous 0.0303*** 0.0373** 0.0292*** 0.0173 0.0027
(Over 300) (0.0103) (0.0156) (0.0112) (0.0125) (0.00612)
Temperature (GDD-30) 0.000762 0.00357 0.0009 0.0015 0.0017***

(0.00225) (0.00306) (0.00214) (0.00199) (0.000493)
Constant 0.603*** 0.601*** 0.545*** 0.0202 -0.00595

(0.0191) (0.0386) (0.0214) (0.0557) (0.0147)
Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390
Note: All regressions control age, age square, fertility, precipitation country by education and country by rural.  All 
regressions also include country by year fixed effects, month fixed effects and DHS cluster fixed effects. For marriage 
date flag, we only test women who have married in our regression. For children's birthday flag, we only include 
women who have at least one child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Table 4: Whole Sample Nonlinear Effects on Cognitive Performance
Dependent Variable: 1 = The Correspondent Dates are not Complete

OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level
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(1) (2) (3) (4) (5)

Variable

AQI (Z-Score) 0.009 0.009 0.004 4.51e-08 0.0048**
(0.00610) (0.00744) (0.00487) (0.00850) (0.00239)

Temperature (GDD-30) 0.0076* 0.014** 0.0006 0.0099 0.005**
(0.00411) (0.00643) (0.00452) (0.00677) (0.00247)

Constant 0.534*** 0.0522 0.577*** -0.330*** -0.135**
(0.0778) (0.163) (0.0885) (0.120) (0.0550)

Observations 47,585 47,585 47,556 21,934 39,222
R-squared 0.531 0.592 0.538 0.648 0.428

AQI (Z-Score) 0.0052 0.006 0.0048 -0.0013 0.0013
(0.00383) (0.00427) (0.00331) (0.00574) (0.00169)

Temperature (GDD-30) -0.000470 0.000139 0.000114 -0.000889 0.000400
(0.00210) (0.00297) (0.00166) (0.00302) (0.000373)

Constant 0.162*** 0.130*** 0.137*** -0.172** -0.00345
(0.0233) (0.0317) (0.0212) (0.0686) (0.00797)

Observations 239,488 239,488 239,459 105,019 156,533
R-squared 0.442 0.492 0.474 0.403 0.236

Panel B: Educated Sub-Sample (Urban)

Table 5:Urban Sample Cognitive Performance (Uneducated vs Educated)

OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level
Dependent Variable: 1 = The Correspondent Dates are not Complete

Note: All regressions control age, age square, fertility and precipitation. In panel B, we control the country by 
education (country by primary school, country by secondary school). All regressions also include country by year fixed 
effects, month fixed effects and DHS cluster fixed effects. For marriage date flag, we only test women who have 
married in our regression. For children's birthday flag, we only include women who have at least one child in our 
regression. * p≤.1; ** p≤.05; *** p≤.01.

Any Flag Total Flag Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday 

Panel A: Uneducated Sub-Sample (Urban)
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(1) (2) (3) (4) (5)

Variable

AQI (Z-Score) 0.00439** 0.00693** 0.00482** 0.00294 0.000923
(0.00215) (0.00332) (0.00239) (0.00250) (0.00118)

Age 0.00238*** 0.0119*** 0.00104 0.0240*** 0.00274***
(0.000787) (0.00178) (0.000716) (0.00264) (0.000681)

Age Square 3.08e-06 -9.58e-05*** 6.12e-06 -0.000281*** -1.36e-05
(1.20e-05) (2.61e-05) (1.05e-05) (3.69e-05) (8.67e-06)

Fertility 0.0125*** 0.0204*** 0.00646*** 0.00815*** 0.00301***
(0.000572) (0.00114) (0.000431) (0.000823) (0.000276)

Country by Education Yes Yes Yes Yes Yes
Country by Rural Yes Yes Yes Yes Yes
DHS Cluster FE Yes Yes Yes Yes Yes
Country by Year FE Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Constant 0.611*** 0.620*** 0.552*** 0.0293 -7.33e-05

(0.0198) (0.0371) (0.0210) (0.0540) (0.0139)
Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390

Table 6: Whole Sample Cognitive Performance without Temperature
Dependent Variable: 1 = The Correspondent Dates are not Complete

OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level

Notes: For marriage date flag, we only test women who have married in our regression. For children's birthday flag, we 
only include women who have at least one child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Any Flag Total Flag Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday 



	
	

41	

 

1 2 3 4 5

Variables
Any Flag Total Flag

Birthday 
Flag

Marriage 
Date Flag

Children's 
Birthday 

Flag

PM2.5 (ug/m3) 7.86e-05** 9.18e-05 7.18e-05 4.92e-05 1.43e-05
(3.67e-05) (5.98e-05) (4.36e-05) (5.04e-05) (2.06e-05)

Temperature (GDD-30) 0.000744 0.00354 0.000870 0.00153 0.00173***
(0.00225) (0.00306) (0.00215) (0.00199) (0.000494)

Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390

PM10 (ug/m3) 3.57e-05** 4.25e-05 3.16e-05 2.45e-05 7.12e-06
(1.79e-05) (2.91e-05) (2.13e-05) (2.33e-05) (1.00e-05)

Temperature (GDD-30) 0.000742 0.00354 0.000867 0.00153 0.00173***
(0.00225) (0.00306) (0.00215) (0.00199) (0.000494)

Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390

CO (ppm) 0.00878 0.0321 -0.00331 0.0347 -0.000550
(0.0209) (0.0290) (0.0195) (0.0274) (0.0100)

Temperature (GDD-30) 0.000691 0.00346 0.000831 0.00149 0.00172***
(0.00224) (0.00306) (0.00215) (0.00199) (0.000492)

Observations 736,160 736,160 735,937 352,054 541,727
R-squared 0.596 0.653 0.601 0.618 0.390
Note: All regressions control age, age square, fertility, precipitation country by education and country by rural.  All 
regressions also include country by year fixed effects, month fixed effects and DHS cluster fixed effects. For marriage 
date flag, we only test women who have married in our regression. For children's birthday flag, we only include 
women who have at least one child in our regression. * p≤.1; ** p≤.05; *** p≤.01.

Panel C: CO

Table 7: Each Air Pollutants on Cognitive Performance (PM2.5, PM10 and CO)
Dependent Variable: 1 = The Correspondent Dates are not Complete

OLS on Cross-Sectional Data, Cluster Standard Errors at Region Level
Panel A: PM2.5

Panel B: PM10
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Appendix I: The AQI Calculation 

The Air Quality Index (AQI) is calculated according to the “Guidelines for the Reporting of 

Daily Air Quality – the Air Quality Index (AQI).” The calculation is based on the pollutant 

concentration data, the following parameters table and the following equation (linear interpolation): 
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The relationship between the AQI and each air pollutant is shown in the Figure below: 
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The table below indicates each AQI category and its correspond health concern:  

Air Quality Index 

Levels of Health 

Concern 

Numerical Value Meaning 

Good 0 to 50 
Air quality is considered satisfactory, and air pollution 

poses little or no risk. 

Moderate 51 to 100 

Air quality is acceptable: however, for some pollutants 

there may be a moderate health concern for a very 

small number of people who are unusually sensitive to 

air pollution. 

Unhealthy for 

Sensitive Groups 
101 to 150 

Members of sensitive groups may experience health 

effects. The general public is not to be affected. 

Unhealthy 151 to 200 

Everyone may begin to experience health effects: 

members of sensitive groups may experience more 

serious health effects. 

Very Unhealthy 201 to 300 
Health alert: everyone may experience more serious 

health effects. 

Hazardous 301 to 500 
Health warming of emergency conditions. The entire 

population is more likely to be affected. 
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