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RESEARCH ARTICLE Open Access

Sampling the conformation of protein surface
residues for flexible protein docking
Patricia Francis-Lyon1†, Shengyin Gu1†, Joel Hass2, Nina Amenta1, Patrice Koehl3*

Abstract

Background: The problem of determining the physical conformation of a protein dimer, given the structures of
the two interacting proteins in their unbound state, is a difficult one. The location of the docking interface is
determined largely by geometric complementarity, but finding complementary geometry is complicated by the
flexibility of the backbone and side-chains of both proteins. We seek to generate candidates for docking that
approximate the bound state well, even in cases where there is backbone and/or side-chain difference from
unbound to bound states.

Results: We divide the surfaces of each protein into local patches and describe the effect of side-chain flexibility
on each patch by sampling the space of conformations of its side-chains. Likely positions of individual side-chains
are given by a rotamer library; this library is used to derive a sample of possible mutual conformations within the
patch. We enforce broad coverage of torsion space. We control the size of the sample by using energy criteria to
eliminate unlikely configurations, and by clustering similar configurations, resulting in 50 candidates for a patch, a
manageable number for docking.

Conclusions: Using a database of protein dimers for which the bound and unbound structures of the monomers
are known, we show that from the unbound patch we are able to generate candidates for docking that
approximate the bound structure. In patches where backbone change is small (within 1 Å RMSD of bound), we are
able to account for flexibility and generate candidates that are good approximations of the bound state (82% are
within 1 Å and 98% are within 1.4 Å RMSD of the bound conformation). We also find that even in cases of
moderate backbone flexibility our candidates are able to capture some of the overall shape change. Overall, in 650
of 700 test patches we produce a candidate that is either within 1 Å RMSD of the bound conformation or is closer
to the bound state than the unbound is.

Background
This paper concerns one aspect of the problem of pre-
dicting the interface region of two docking proteins,
namely the flexibility of side-chains. We consider sam-
pling the possible side-chain conformations to improve
the match of local shape complementarity. The main
challenge we face is reducing the exponential complexity
of the conformation space to a reasonably sized sample.
Proteins are at the heart of all biological processes,

and their functions are largely determined by their geo-
metric structures. The number of biomolecular protein

complexes is expected to be far more than the number
of individual proteins in a given proteome; in addition,
their structures are more difficult to obtain through
NMR and X-ray crystallographic studies. So the difficult
problem of docking, that is, the computational predic-
tion of a protein complex from the structures of its con-
stituent proteins, is an important focus of current
research. The constituent structures may be determined
experimentally or may be computed by a protein struc-
ture prediction algorithm.
Docking is a difficult problem and it has received

much attention [1-6]. In the docked configuration, two
proteins demonstrate excellent shape complementarity,
with the molecular surfaces matching each other closely
over an interface region which is several square Å in
area. This excellent fit is difficult to find, however, since

* Correspondence: koehl@cs.ucdavis.edu
† Contributed equally
3Department of Computer Science and Genome Center, University of
California, Davis, CA 95616, USA
Full list of author information is available at the end of the article

Francis-Lyon et al. BMC Bioinformatics 2010, 11:575
http://www.biomedcentral.com/1471-2105/11/575

© 2010 Francis-Lyon et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:koehl@cs.ucdavis.edu


proteins are not rigid. The protein backbone may
undergo significant changes when docking. Even in the
absence of large backbone motions, the conformations
of the side-chains in the docked complex may differ
greatly from their conformations in the unbound pro-
teins; for instance, a side-chain may need to rotate to
allow space for the docking partner. Although side-
chain conformation changes are typically small
compared to the larger backbone motions, they can be
crucial in forming the tight fit between docked proteins.
In this work, we consider the problem of producing can-
didate docked side-chain conformations, given the struc-
ture of the unbound protein. We focus solely on the
flexibility of side-chains and as a first approximation we
ignore backbone flexibility.
Docking methods currently incorporate conforma-

tional changes upon binding in different ways. The most
common approach adopts an implicit “soft” surface
representation that allows some degree of penetration of
rigid proteins [3,7-10]. The rigid protein is rotated and
translated with respect to its partner. Each configuration
is evaluated by a scoring function which usually mea-
sures shape complementarity as well as chemical and
physical information. The scoring function is adjusted to
accommodate some steric clash at the surface and there-
fore accounts implicitly for flexibility. These algorithms
are usually implemented as low-resolution methods due
to the computational complexity of sampling the six-
dimensional space of rigid motions. But as computers
become more powerful the resolution of these methods
cannot be substantially improved, since the “soft” sur-
face representation is required to mask the difference
between docked and undocked conformations.
Soft rigid-body docking methods are generally fol-

lowed by a refinement stage in which an atomic-level
energy minimization is carried out to allow for explicit
flexible protein-protein docking and then by an all-atom
rescoring scheme. The HADDOCK [11] algorithm, for
example, implements this refinement in a three-stage
process: rigid body energy minimization followed by two
refinement steps: semirigid simulated annealing in tor-
sion angle space and refinement in Cartesian space with
explicit solvent. Backbone and side-chains flexibility is
allowed during refinement. RDOCK [12] is an energy
minimization process on side-chains that refines
ZDOCK’s [7] initial rigid-body docking candidates.
Molecular dynamics simulations (MD) have also been
used to refine both side-chain and backbone conforma-
tions [13,14].
Alternative approaches to the soft rigid body docking

procedures described above account for flexibility by
considering multiple conformations of the proteins
involved in the complex. These conformations corre-
spond to alternative models (such as those derived from

NMR studies), models constructed from point mutation
studies, or models derived from dynamics simulations.
This has been referred to as “cross docking” or “ensem-
ble docking” [1] and has been implemented in protein-
ligand docking programs [15,16].
Side-chain flexibility needs to be accounted for in the

docking process. Cherfils et al. [17-19] introduced dock-
ing methods that represent side-chains with a crude
low-resolution model to account for flexibility. Jackson
et al. [20] include side-chain flexibility in a two-step
process for interface refinement that is iterated until
convergence. In the first step, the self-consistent mean
field (SCMF) algorithm is used to find the optimal side-
chain conformation of the protein from its rotamer
states, taking solvation into account. In the second step
rigid-body minimization of the intermolecular interac-
tion energy is performed on the interface region only,
while the larger molecule is held stationary. In the soft-
ware ATTRACT, Zacharias [21] incorporated flexibility
by using a rotamer library having up to three pseudo
atoms for each amino acid [22]. In RosettaDock, Wang
et al. [23] begin with a discrete rotamer library supple-
mented with side-chain conformations taken from the
unbound structure, and then perform continuous opti-
mization of side-chains in the vicinity of the rotamers.
Our approach to the docking problem is related to the

ensemble docking model. We propose a strategy that
includes three steps: (i) generate ensembles of confor-
mations for multiple patches that span the surfaces of
the two proteins considered, (ii) develop a fast method
for generating candidate docked conformations of the
two proteins based on these ensembles, and (iii), develop
an energy function that ranks the candidate conforma-
tions such that the actual native docked structures can
be identified. In step (i), we acknowledge the fact that
proteins may change shape upon binding; this is impli-
citly captured by the ensemble of conformations, with
the hope that this ensemble includes a conformation
that is close to the conformation found in the bound
protein. In step (ii), the major difficulty is to overcome
the combinatorial explosion that arises from accounting
for multiple patches, each represented with an ensemble
of conformations. Fortunately, solutions are available.
Firstly, it is possible to test the complementarity of two
patches by mapping the two patches onto a feature
space and by directly comparing their representations in
this space. Secondly, the combinatorial explosion of
handling multiple patches can be significantly reduced
using a geometric hashing technique [24]. Finally, in
step (iii) we anticipate that both geometry and ener-
getics need to be incorporated into the scoring function
for this function to be selective.
In this paper we focus on step (i) of the procedure

outlined above. We explore the question of how well
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we can sample side-chain conformations so as to
approximate the bound conformation of the protein. We
leave the backbone conformation fixed as observed in the
unbound state. Even with this fixed backbone, sampling
all possible states of the side-chains is of course not com-
putationally feasible. For a medium-sized protein of 250
residues, if each residue were allowed an average of 5
sampled states, the number of possible side-chain config-
urations would be on the order of 10 raised to the 175th
power. In order to reduce this exponential complexity,
we decompose the protein surface into a set of overlap-
ping small patches; only the interactions between side-
chains within each patch are considered.
Our main contribution is a procedure that produces a

small sample of the space of side-chain configurations
within a patch. We test our procedure using the docking
benchmark of Hwang et al. [25]. This data set includes
pairs of proteins for which the geometry of the bound
configuration, as well as the unbound, is known for
each protein. For each patch, we compute 50 sample
configurations (see Methods) and we compare the
experimental conformations we produce to the bound
conformation. Our results are given in the Results and
Discussion section. We find that in most cases our
method produces a docking candidate that is within 1 Å
RMSD of the bound configuration.
An ensemble of 50 configurations for each surface

patch produces a very large space within which we need
to search for shape complementarities. If, however, we
can require better shape complementarity, at higher
resolution, in the first phase of docking, we may be able
to reduce rather than increase the number of false posi-
tives which must be considered in later stages.

Methods
Outline
Our overall goal is to represent a protein with an
ensemble of conformations, which we refer to as a sam-
ple, in which side-chain flexibility is accounted for by
sampling their possible conformations so as to include a
good approximation to the bound state. The main chal-
lenge we face is to reduce the huge number of possible
side-chain conformations so that we end up with a sam-
ple of reasonable size. To address this challenge, we
employ a series of strategies that are schematically
described in Figure 1.
Our first observation is that it is not necessary to

represent conformations of the complete molecule, or
even the complete molecular surface; the protein-pro-
tein interface region is usually a small part of the sur-
face, so it suffices to represent conformations within
local surface regions. We define small patches on the
surface, consisting of overlapping sets of eight or nine
residues. In an actual docking experiment, the set of

patches would be chosen to cover the entire molecular
surface. In this study, however, we only consider patches
that actually intersect the interface region, so that we
can compare our synthetically sampled conformations to
the side-chain conformations in the docked (bound)
complex.
To account for flexibility, we allow for different posi-

tions of the side-chains of the residues included in the
patch, while leaving the backbone fixed. As in other
methods for predicting the conformations of side-chains,
we consider a discrete version of their conformational
space, with each discrete conformation referred to as a
rotamer [26]. These rotamers correspond to optimal, i.e.
low energy states; they are usually grouped into libraries
that have been compiled by performing statistical stu-
dies on known protein structures. An exhaustive enu-
meration of all possible rotamer combinations for the
residues contained in a patch still leads to a very large
number of conformations: in the example shown in
Figure 1 the patch contains one tryptophan with 6 rota-
mers, two aspartic acids, each with 3 rotamers, one glu-
tamine with 28 rotamers, two lysines, each with 8
rotamers, one arginine with 6 rotamers, one serine with
3 rotamers, and one alanine, leading to a total of:
6 × 3 × 3 × 28 × 8 × 8 × 6 × 3 = 1,741,824 possible

conformations.
Taking just the lowest-energy conformations in this

set would not provide a good sampling of the confor-
mational space accessible by the patch. Indeed, confor-
mations with similar low energies usually represent
small variations on essentially the same local mini-
mum. To provide a broader sampling, we subdivide
the conformational space of each residue into thirds
using its three common c1 torsion angles (typically
60°, 180° and -60°). Our approach is to sample every
possible c1 configuration of the patch residues. With 9
residues to a patch, each having up to three c1 angle
possibilities, the number of c1 configurations is up to
39, ≈ 20,000. Instead of taking the lowest energy sam-
ples from among all exhaustive conformations, we
select the lowest energy conformation of each of the
approximately 20,000 c1 configurations as follows.
With the c1 configurations fixed, we select the other
torsion angles within the patch (c2 and c3) by energy
minimization using the self consistent mean field
(SCMF) algorithm, described below. The energy func-
tion we use includes both Van der Waals and Cou-
lomb energies. Our final step is to use k-means
clustering, based upon RMSD, to further reduce the
set of about 20,000 configurations to a set of 50 clus-
ters. One representative, that with the lowest energy, is
selected from each of the 50 clusters, and the unbound
configuration is added to form the final sample of
docking candidates for the patch.
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Interface
receptor (blue) and ligand (green) 

1)  Define patch: 
Selected patch includes 9 residues 

2) Generate all side chain conformations:   
 1,741,824  configurations 

3) SCMF Filtering: 
3888 configurations Ê

. 4) Clustering:
.

. 50 configurations

Trp

Gln
Asp

Figure 1 Generating a sample of conformations for a protein surface patch. We illustrate our method on the complex between the human
MHC class I glycoprotein HLA-A2 and the T-cell co-receptor CD8, whose structure is available in the PDB [37] under the acronym 1AKJ: the
interface is the opaque region where the receptor (HLA-A2: blue) and ligand (CD8: green) come into close contact. 1) The receptor is divided
into patches; we select one that contains nine residues. 2) To allow for side chain flexibility, we generate different side chain conformations for
each of the nine residues in the selected patch; as an illustration, we show 6 rotamers of a tryptophan (top), 3 rotamers of an aspartic acid, and
28 rotamers of a glutamine (purple). This results in 1,741,824 possible conformations for the patch. 3) These conformations are filtered according
to an energy function using a self consistent mean field approach, 4) then clustered by k-means, reducing the number of docking candidates
to 50.
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Implementation
Data Set
We use in our experiments the protein-protein docking
benchmark (version 3.0) developed by Hwang et al. [25].
This benchmark includes 124 “cases” in total. In general,
a “case” represents a traditional unbound docking pro-
blem, including the unbound structures of the receptor
and ligand proteins as well as the structure of the com-
plex between these two proteins: 105 cases fall in this
category. The other 19 cases are specialized problems
representing antibody-antigen complexes for which only
the bound structure of the antibody is known. The diffi-
culty level of any case in the benchmark is measured by
the degree of conformational changes that occur in and
around the interface region upon binding, as measured
by the interface Ca-RMSD (I-RMSD) and by the fraction
of non-native residue contacts (fnon - nat). A case is
deemed “rigid-body” and therefore “easy” if its I-RMSD
is lower than 1.5 Å and its fnon - nat is lower than 0.4. At
the other end of the spectrum, a case is deemed “diffi-
cult” if its I-RMSD is greater than 2.2 Å. All the other
remaining cases are referred to as “medium”. Among
the 124 cases, there are 88 rigid cases, 19 medium cases
and 17 difficult cases.
Selecting patches
We test our conformation sampling method only in the
interface regions of the two proteins of every test case,
since only in the interface regions is it important to be
able to approximate the bound conformation of the
side-chains.
The first step is to define the interface regions. We

designate a residue on a bound protein an interface resi-
due if at least one of its atoms is within 6 Å of any atom
of the complementary protein. This gives us a list of
interface residues.
Our next step is to define a set of surface patches cov-

ering the interface regions. Patches are defined indepen-
dently of each other on the two proteins. The objective
is for the patches to be distributed evenly and with good
overlap. Since the average size of an amino acid is about
8 atoms (excluding hydrogen) and we want each patch
to contain eight or nine residues, we place a patch cen-
ter at every 64th position in the list of atoms in the
interface region of one protein. Then we draw a sphere
around each patch center. The radius of each sphere is
adjusted until the patches contain either eight or nine
effective residues of the interface; these residues define a
patch. An effective residue is a residue that is neither an
ALA nor a GLY (we separate these two types of amino
acids from the other on the basis that their side-chains
are not flexible, notwithstanding hydrogens). After this
process, if there are any residues in the interface that
have not been included in at least one patch, we set
additional patch centers at their Ca and repeat the

sphere adjusting process to create new patches that
cover the gaps.
The interface regions are defined according to the

bound structures of the proteins. Mapping the bound
patch residues to the corresponding residues in the
unbound structure is not entirely straightforward, as
there exist cases with (different) missing residues in the
X-ray structures of the unbound and bound states of
the protein. To circumvent this problem, we clean the
data set using the following procedure on each case:

• We align the two sequences of the same protein
extracted from the ATOM record of the PDB files
for its bound and unbound conformation. If there
are any missing or additional residues for the inter-
face region in the unbound structure, the case is
rejected.
• We “fix” any residues that are incomplete in the
interface region for both the bound and unbound
structure. By “fixing”, we mean that if a residue is
missing a side-chain atom, it is truncated to an ALA
or a GLY (depending on whether the Ca atom is
present or not). We reject the case if any residue is
missing a backbone atom.
• We select patches on the bound interface region
using the procedure described above. Each patch
contains eight or nine effective residues.
• Finally, we “fix” the non-interface region: (i) we
remove all residues whose backbone is incomplete,
or who are present in one of the two conformations
(bound or unbound) but not in the other, and (ii)
we truncate residues with missing side-chain atoms
to ALA or GLY, consistently in the bound and
unbound structure. If more than 5% of the residues
are removed or truncated in this process, the case is
rejected.

This stringent data cleaning led to many test cases
being rejected: only 56 cases remained, including 10
antigen-bound antibody cases: they are listed in Table 1.
From these, 700 patches were created. The number of
patches per protein complex depends on the size of the
two constituent proteins and on the shape of the inter-
face region. We found an average of 12.5 patches per
protein complex (i.e sum of the patches on the ligand
and receptor proteins), with a minimum of 5 patches
and a maximum of 22 patches. The size of these patches
varies between 15 Å and 30 Å (where size is the maxi-
mal distance between any two atoms in the patch), with
the smallest patch size at 14.55 Å and the maximum at
43.05 Å (average 20.75 Å).
Rotamer library
As described in the overview, we allow side chain flexibil-
ity by having our docking candidates take on a sample of
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low-energy combinations of different torsion angles for
each amino acid type. To reduce the size of the search
space, we use only those torsion angles contained in a
rotamer library [26]. Our rotamer library is a modified
version of the averaged library compiled by Tuffery et al.
[27], which has been corrected for duplicate rotamers.
The backbone-independent rotamer library of Dunbrack
and Cohen [28] was used for leucine residues. The miss-
ing dihedral angles in the Tuffery library c4 for arginine
and lysine were defined as 180 and c5 for arginine as 0.
To alleviate the effects of this approximation, we do not
include the atoms defined by these dihedral angles in the
energy calculations. Because there are many docked resi-
dues that stay close to their undocked conformations, we
supplement our rotamer choices with the unbound con-
formation if there is no rotamer from the library that is
within 0.6 Å RMSD of it.
The side chains are built upon the native backbone of

the unbound protein using the torsion angles from the
rotamer library and standard bond lengths and bond
angles from the Charmm 19 force field. Figure 2 shows
three different side-chain configurations for a patch
from the 1AKJ receptor.
Energy function
We use a simplified physics-based energy function E
that takes into account non-bonded interactions. It
includes a Coulomb term and a Lennard-Jones term,
which accounts for Van der Waals attractions and
repulsions:

E
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i j

ij
ij

ij

ij
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In this equation, rij is the distance between atoms i
and j that has been capped below at 2 Å, to circumvent
problems that may come from using discrete rotamers
(such as an atom being shifted from a favorable position
to a new position leading to a severe steric clash). For
the same reason, we use an upper cutoff value for Van
der Waals energies of 2 Kcal/mol (introduced with the
min function). Both summations run over all atoms i in
the patch considered and all atoms j in the protein that
contains this patch. The interaction is computed only if
the two residues to which i and j belong have their Ca

atoms less than 20 Å apart. In addition, if j belongs to a
residue that is accessible (i.e. whose accessible surface
area is greater than 50% of its total accessible surface
area), the interaction is scaled by a factor 1/2. Finally,
the parameters Ai,j, Bi,j , �i,j and the charges are taken
from the CHARMM19 force field [29].
In addition, if the patch includes two cysteines, we add

an additional geometric energy term that checks for dis-
ulfide bridge formation [30].
SCMF Filtering
The energy defined above is used in conjunction with
mean-field theory to select low-energy conformations
from the list of possible rotamer settings. Mean-field
theory (MFT) is a way of addressing the combinatorial
issues of a many-bodied system. In MFT, interactions
with any one body are expressed as an average of inter-
actions over an ensemble of states. When an exhaustive
search of a space is intractable, and minimization occurs
within the context of many local minima, MFT is an
approximation that enhances the sampling protocol of
the minimization algorithm. In its most general form,
the MFT approximation can be applied to the average
(denoted <X >) of any physical quantity X. <X > is
expressed as the sum of the values of X for its subsys-
tems weighted by their probabilities.
We employ the self-consistent mean field (SCMF)

algorithm [30], an application of MFT to side-chain pre-
diction. Consider a protein of N residues, with the ith

residue having Ri rotamers. Assume that we are given a
probability distribution on the rotamers. We replace the
ith side-chain with an ensemble containing all of the
possible rotamer conformations, all attached to the ori-
ginal backbone at the Ca atom. Each rotamer is
weighted by its probability. All residues now interact
with the entire rotamer ensemble.
To sum up the details (provided by Koehl and Delarue

[30]) the effective energy of the multi-copy protein is
given as:

< > = < >
==

∑∑E p Eir i r

r

R

i

N

i i

i

i

11

(2)

Table 1 The different docking test cases included in our
experiments

Complex PDB ID

1ACB 1AHW 1AK4 1AKJ 1AY7

1B6C 1BJ1 1BKD 1BUH 1BVK

1BVN 1CGI 1D6R 1DFJ 1DQJ

1E6E 1E6J 1EAW 1EER 1EWY

1FC2 1FSK 1GHQ 1I9R 1IBR

1IQD 1KAC 1KTZ 1KXQ 1M10

1MAH 1ML0 1MLC 1NCA 1NSN

1QFW 1R0R 1S1Q 1SBB 1TMQ

1UDI 1VFB 1WEJ 1WQ1 1Y64

2AJF 2B42 2FD6 2I25 2JEL

2MTA 2QFWa 2SIC 2UUY 2VIS

7CEI
a Note that the name 2QFW does not correspond to the actual PDB file with
this ID. the PDB file 1QFW corresponds to a ternary complex between human
chorionic gonadotropin and two Fv fragments; it has been artificially
separated into two binary complexes in the docking database of Hwang et al
[25], with one complex stored as 1QFW and the other one stored as 2QFW
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where < E >, i, N, ri and Ri are as described above,

piri is the probability that the ith residue is in the ri
th

rotamer conformation, and < >Ei ri is the effective

energy felt by the ith residue in its ri
th rotamer confor-

mation, which is given by:

< > = + +
==

∑∑E E E p Ei r r BB r jr r r

r

R

j

N

i i i j i j

j

j
1
2

11

(3)

Here Er BBi
is the energy of interaction of the back-

bone with i’s ri
th rotamer and Eri is this rotamer’s self

energy. Er ri j is the energy of interaction of residue i’s

ri
th rotamer with residue j’s r j

th rotamer.

We then define the effective free energy of the multi-
copy system as:

 =< > + ( )
==

∑∑E p pjr jr

r

R

j

N

j j

j

j

log
11

(4)

In this formulation, the problem of finding the global
minimum of the energy landscape in the original con-
formational space is replaced by the problem of finding
the minimum of the effective free energy given by equa-
tion 4 in a new conformational space where the degrees
of freedom, i.e. the unconstrained values, are the prob-
abilities. The energy function in this space is better
behaved, with far fewer local minima [31]. The SCMF

algorithm predicts protein side-chain configuration by
choosing the highest probability rotamer for each
residue.
SCMF optimization typically seeks only a single mini-

mal configuration for the protein. As described in the
Outline, we instead use SCMF as a filter to reduce our
ensemble from an exhaustive sampling of all configura-
tions of rotamers to a sampling covering the regions of
c1 space. Our approach is to sample each residue in
turn in all its three c1 angles of 60°, 180° and -60°. For
each combination of c1 angles of patch residues we cre-
ate a multi-copy protein and have SCMF select the
minimum energy configuration of the c2 and c3 torsion
angles.
We do have two exceptions of this c1 space discretiza-

tion. Firstly, we retain exhaustive sampling of histidine
as this residue is difficult to model given the ambiguity
of its protonation state. We achieve better results by
extensively sampling all of the histidine rotamers, each
of which being protonated in the delta position. Sec-
ondly, we do not sample each of the 3 c1 angles of ser-
ine and cysteine; rather, we allow the SCMF algorithm
to select one unique conformation from their three
rotamers.
Clustering
The SCMF filtering procedure significantly reduces the
size of the sample of conformations for any given patch,
to the roughly 20,000 conformations determined by the
choices of c1 angles. To reduce this size to something
that would be reasonable to use in docking, we apply a
clustering algorithm.
We use k-means clustering, with the distance between

two conformations measured as the root mean square

A B C

D E F

Figure 2 Configurations of a patch. Three configurations of the 1AKJ receptor patch in space filling mode (D, E, F) and with side chains
viewed as ball and stick (A, B, C). The different configurations are seen easily in the top panel, and their impact on the shape of the patch is
seen in the bottom. For example, the different rotamers of tryptophan (cyan) can be seen to affect the shapes of the 3 configurations of the
patch.
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distance (RMSD) computed over all the side-chain
atoms (we do not include the backbone atoms as they
remain at the same position in all conformations). We
selected k = 50 clusters as a good balance of small
ensemble size and quality. We then select one represen-
tative for each cluster, chosen to be the conformation
with the minimum energy, where the energy is given by
equation 1.
Running time
Computing time is a key parameter for our procedure as
it defines what are reasonable values for some of the
parameters we use. Our procedure includes three steps,
namely definition of the patches on the surface of the
protein, generation and filtering of the conformations
for each patch, and finally clustering of the resulting
conformation to generate the ensembles of each patch.
While the first step is fast, the second and third steps
are controlled by the size of the patches, i.e. by the
number of effective residues with flexible side-chains
they contain. Patches with too many effective residues
would lead to a combinatorial explosion in the process
of exploring their conformational space. We have found
that sizes of up to 9 residues are computationally tract-
able. The slowest step in our procedure is the clustering
of the SCMF-filtered conformations. With patch size of
up to 9 effective residues, we find that the average com-
puting time for clustering is approximately 5 minutes
per patch. This was computed on a desktop computer
with an Intel Core 2 Quad CPU of 2.40 GHz, using one
core per patch.

Results and Discussion
We first reiterate our overall goal: to represent a protein
patch with an ensemble of conformations that account
implicitly for side-chain flexibility. This ensemble, or
sample, must satisfy two seemingly contradicting cri-
teria: it must cover as much as possible the conforma-
tional space accessible to the patch, so as to optimize
the probability that it includes a conformation close to
the one present in the bound complex, and it must be
as small as possible so as to remain manageable when
used in docking experiments. The process of selecting
our ensemble consists of a series of filtering steps, each
of which produces a smaller sample of conformation
space. Of course, any reduction in size can only result
in a reduction of the quality with which some elements
of the set can approximate the bound conformation. To
evaluate our selection procedure, we performed a series
of experiments to determine the quality of the sample of
conformations at the end of each step, as well as to
measure how this quality is affected by the reduction in
size enforced by these steps.

Quality of the rotamer representation of side-chains
Our first experiment addresses the following question:
does limiting the set of conformations that we consider
to those representable using our rotamer library, in and
of itself prevent us from closely approximating the
bound configuration? That is, given an unbound patch
and our rotamer library, can we produce a configuration
that is close to the bound conformation of that patch?
The fact that the bound and unbound backbone con-

figurations might differ makes it difficult to answer this
question directly. To remove the effect of the backbone
difference, we graft side-chains in their bound confor-
mation onto the unbound backbone (the bound_UBB
conformation) of the patch and compare this with the
most similar rotamers grafted onto the unbound back-
bone (the rotamer_UBB conformation), where similarity
refers to proximity to the bound conformation. We pro-
duce the bound_UBB conformation as follows: for each
patch residue we superimpose its bound state onto its
unbound state using a best fit alignment of backbone
atoms. Then we translate that residue’s side-chain from
the bound conformation so as to superimpose its Ca

atom onto the unbound Ca. To produce the rotamer
UBB conformation, we select from the rotamer library
the closest rotamer to the bound conformation for each
patch residue, as observed in bound_UBB (recall that as
described in the Methods Section, a rotamer represent-
ing the unbound state is added to the rotamer sampling
of any residue that has no rotamer from the library
within 0.6 Å RMSD). We build these rotamers onto the
unbound patch backbone. Note that these two con-
structs are used for analysis only, since they are derived
using information from the bound state, which would
not be available in a predictive setting.
Figure 3 addresses the question of quality of the rota-

mer representation of side-chains by comparing all-
atom RMSDs from our data set with and without back-
bone difference. We calculated the RMSD of the boun-
d_UBB with respect to the rotamer_UBB for all 700
patches and found that for 614 of them the two confor-
mations are within .7 Å of each other, for 676 patches
they are within 1 Å, and none are found to be more
than 1.6 Å from each other (see Figure 3). We conclude
that the rotamer library is adequate for side-chain repre-
sentation of the bound state, meaning that at least one
configuration that can be built from the rotamer library
is close enough to the bound conformation of the side-
chains.
These results illustrate the adequacy of using a rota-

mer library to represent side-chain conformations, but
they are somewhat misleading since they explicitly
remove the effects of backbone flexibility. Therefore we
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also directly compute the all-atom RMSD between both
the bound_UBB and the rotamer_UBB conformations
and the bound conformation of the patch. We see in
Figure 3 that the bound conformation of the patch is
usually close to the rotamer_UBB conformation: for 515
of the 700 patches this RMSD is within 1 A. However,
in 61 patches this RMSD is greater than 2 Å, twelve of
these are above 4 Å with a high of 5.43 Å. We expect to
to encounter difficulty in prediction when the patch
backbone changes significantly. This is not unexpected
when considering the results from the CAPRI experi-
ment [32].

Quality of the sample after SCMF filtering
Having established that for 74% of our test cases at least
one configuration based on our rotamer library is close
to the bound conformation of the patch (97% if we ignore
backbone flexibility), we next considered the set of con-
formations produced by the SCMF filtering step
described in the section on SCMF filtering. To give a
qualitative view of the results of this step, we first exam-
ine the filtered sample of conformations obtained for the
typical patch on the receptor of the protein complex
1AKJ which appeared in Figure 1 and 2. This patch con-
tains eight residues with flexible side-chains and one

alanine whose side-chain is fixed, as we do not consider
the hydrogen. In Figure 4 we plot the energies of the
3888 conformations of the patch that were selected by
the SCMF filtering procedure as a function of their all-
atom RMSDs to the bound conformation of the patch.
Interestingly, the conformations in the filtered ensemble
are not uniform but appear in distinct clusters in this
Energy-RMSD space. Further analysis shows that these
clusters are mostly determined by the c1 angle of one
tryptophan, named T, in the patch, which in the bound
state has a c1 angle of -59° and a c2 angle of 114°. For all
members of the cluster identified as Group I in Figure 4
T has a c1 angle of 180° and a c2 angle of -90°. This is
the cluster whose elements have the highest energies ran-
ging from 40 to 80 Kcal/mol. All members of group II are
far from the bound conformation, with RMSDs higher
than 2 Å; in all of these T has a c1 angle of 60° and a c2
angle of 90°. In group III, T has a c1 of -60°, i.e. close to
its value in the bound conformation. This set is the most
dispersed with at least three apparent subgroups. Inter-
estingly, those members of this group whose RMSD with
the bound conformation is below 1.53 Å have a trypto-
phan T c2 angle of 90°, while all those with RMSD above
1.53 Å have a c2 angle of -90°. There are 88 patch confor-
mations within 1 Å RMSD of the bound conformation.
The behavior we describe here is not unique to 1AKJ: we
observed the same clustering determined by the c1 angle
of an influential residue (usually the largest) for most of
the 700 patches we studied.
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Figure 3 Quality of our rotamer library. We study the extent to
which our set of rotamers can approximate the bound side-chains
for our data set of 700 patches. For each patch we graft the bound
side-chains onto the unbound backbone (bound_UBB conformation)
and make an alternate graft of the closest rotamers in our rotamer
library (rotamer_UBB conformation). The all-atom RMSDs between
these grafts provide evidence that our rotamer library is extensive
enough to produce a side-chain configuration near the bound. In
all but 24 of the 700 patches this RMSD (blue, left bar) is within 1 Å.
When we account for the changes in the backbone conformation
between the bound and unbound conformations of the patch
however, results are not as good. The maroon (center) and yellow
(right) bars show the all-atom RMSD between the bound
conformation of the patch and the bound_UBB and rotamer_UBB
conformations, respectively. In 185 of the 700 patches, the
rotamer_UBB conformation is more than 1 Å away from the bound
conformation of the patch.
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Figure 4 Distribution of the SCMF-filtered conformations of a
patch. We consider a patch on the receptor of the complex 1AKJ
(illustrated in Figure 1) and plot the energies of the corresponding
3888 filtered conformations versus their all-atom RMSDs to the
bound conformation of the patch. We observe a clustering of these
conformations in three main groups, labeled group I, group II, and
group III that are mostly defined according to the values of the c1
angle of one tryptophan in the patch, named T (see text for details).
Note that this graph shows that many good conformations for the
patch have been retained by the filtering (88 of these are within 1
Å RMSD of the bound conformation of the patch).
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In addition to the clustering of the different conformations
of a patch, Figure 4 illustrates a good correlation between
the energy of a conformation of a patch and its RMSD to
the bound state, in the sense that the conformations with
the lowest energies correspond to the conformations that
most resemble the bound state. While this is a very desirable
property (if it were to be consistently true it would mean
that the conformation that is closest to the bound confor-
mation could be easily identified), it was found unfortunately
to be more qualitative than quantitative. When we checked
all seven hundred patches in our test set, we found in fact
that picking the conformations with the lowest energies did
not guarantee that we would retain a conformation that
resembles the bound state, unless we retained a very large
number of conformations. This is by no means surprising:
the energy function we use here is simplified and only
include internal interactions, neglecting solvent and most
importantly neglecting the effect of the partner protein in
the complex, as the position of this partner is not known.

Quantitatively, we can see that the SCMF filtering sig-
nificantly reduces the size of the sample of conformations
for any given patch while retaining many good docking
candidates, i.e. conformations of the patch that are close
(in RMSD) to its bound conformation. This is illustrated
in Figure 5. Among the 700 test cases we consider, we
found that for 521 of them, the filtered sample includes
at least one conformation that is within 1 Å RMSD from
the bound conformation, and for 644 of them, there is at
least one conformation within 2 Å RMSD. (At a later
stage we improve our results by adding the unbound
conformation to the ensemble.) For 481 of our test cases,
the closest conformation of the patch to the bound con-
formation in the filtered ensemble is better than the
unbound conformation. This by itself validates our
approach: it is possible to start with a better conforma-
tion than the unbound structure in docking experiments.
Figure 5 highlights another important aspect of our

procedure: the best conformation generated for a patch
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Figure 5 Reducing sample size of test patches with SCMF. All-atom RMSD between the unbound conformation (green dot), the best pick in
the SCMF-filtered ensemble (red cross), the theoretical rotamer_UBB conformation (black diamond), and the bound state for all 700 patches in
our data set. To improve clarity, these test cases are arranged along the x-axis in order of increasing RMSD between the unbound and bound
conformations. For 521 of the 700 cases, the best pick is within 1 Å RMSD of the bound conformation. (Note that the unbound conformation is
not yet added to ensemble). We observe that for some of the patches, the best pick is better than the rotamer_UBB conformation: this indicates
that local arrangement of the side-chain does not always lead to a good conformation for the patch as a whole (see text for details).
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is not always the one in which the conformation of each
of its side-chains is as close as possible to its configura-
tion in the bound state of the patch. Recall that for test-
ing our rotamer library, we designed an artificial
conformation of the patch, rotamer_UBB, in which each
side-chain was represented by a rotamer that best
matches the conformation observed in the bound state.
We observe that in 476 cases, the best pick in the fil-
tered ensemble is better than the rotamer_UBB confor-
mation. In these cases, some of the side-chains in the
best pick have shifted from what would be their best
rotamer state according to rotamer_UBB to provide a
better approximation for the patch as a whole.
There is a limit however to how much we can improve

upon the unbound conformation (or even the theoretical
rotamer_UBB conformation): when the backbone changes
significantly between the unbound and bound states (i.e.
with an all-atom RMSD larger than 2 Å), we could not
find any good conformation in the patch ensembles.

Quality of the sample after clustering
The size of the sample of conformations that passed the
SCMF filter is still too large for this sample to be used
in a docking experiment. This size varies from 27 to
331,776 in our test set of 700 patches, depending on the

number and nature of the residues they include. We
therefore used a final size-reducing step, k-means clus-
tering, with k set to 50. Note that the behavior observed
in Figure 4 suggests a clustering approach.
Our final sample of conformations includes the repre-

sentatives of the (up to) 50 clusters plus the unbound
conformation of the patch. In Figure 6 we plot the all-
atom RMSD between the best conformation in this final
sample and the bound conformation of the correspond-
ing patch, with the all-atom RMSD between the
unbound and bound conformations serving as a refer-
ence. This figure presents our main result in this study.
When the all-atom RMSD between the unbound and
bound states is small (less than 0.7 Å), there is very little
room for improvement on the unbound conformation.
When the same RMSD however is between 0.7 and 2.4
Å, our sampling procedure usually finds a better config-
uration with smaller RMSD to the bound configuration.
When the RMSD of unbound to bound is above 2.4 Å,
our best representatives continue to do better than
unbound, but this improvement is no longer significant:
in these cases, there is a relatively large backbone displa-
cement. Overall we see 480 cases, from the 700, in
which the all-atom RMSD of the best representative in
the sample to the bound conformation is less than 1 Å
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Figure 6 Further reducing sample size of test patches with clustering. All-atom RMSD between the unbound conformation (green dot), the
best pick in the final ensemble after clustering (red cross), and the bound state for all 700 patches in our data set. We observe that in most
cases, we are able to retain in our small sample of conformations for a patch a best pick that is better than the unbound conformation in
representing the bound state.
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and 160 additional cases for which this RMSD is
between 1 Å and 2 Å. In 650 of the 700 test patches we
produce a candidate that is either within 1 Å RMSD of
the bound conformation or is closer to the bound state
than the unbound is. On average, we see an improve-
ment of 0.12 Å for the best picks in our ensembles com-
pared to the corresponding unbound conformations.
The improvement increases as the backbone changes
increase: we see an average RMSD improvement of 0.25
Å from unbound state for the cases where the backbone
RMSD of unbound to bound is greater than 1 Å.

Filtering does not damage the quality of our sample
As mentioned earlier, we are well aware that any reduc-
tion in the size of the sample of conformations can only
reduce the quality of the approximation provided by the
best element of the sample. Figure 7 shows that we lose
very little in approximation quality (as measured by all-
atom RMSD) through both the SCMF filtering and the
clustering stages. In the SCMF filtering, there is only
one case in which nothing similar to the best pick in

the exhaustive sample was retained; in this case, the
best conformation after filtering is .59 Å RMSD away
from the best possible pick when all degrees of freedom
are considered. We noticed that this is due to a a 93°
change in the c1 angle of a tryptophan of the patch that
was not energetically favorable unless the docking part-
ner was taken into account. The largest loss in RMSD
in the clustering step was .51 Å RMSD.
The failure to maintain a good conformation for the

patch (i.e. similar to its bound conformation) in the fil-
tered ensemble is therefore not a consequence of the fil-
tering process: we observed that when the backbone of
the patch changes less than 1 Å RMSD upon docking,
we generate a conformation for the patch that is within
1 Å of its bound state in 78% of the 700 initial exhaus-
tive ensembles, as compared with 75% of the SCMF fil-
tered ensembles and 68% of the final ensembles. With
backbone change in this range, 82% of the final ensem-
bles are within 1.4 Å of the bound conformation. When
the backbone changes are larger however, sampling
side-chain configuration alone does not allow us to
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Figure 7 Quantify loss of quality at each step in generating docking candidates. All-atom RMSD between the best picks in the exhaustive
ensemble (green dots), the SCMF-filtered ensemble (black boxes), the final ensemble after k-means clustering (cyan triangle), and the bound
conformation of the corresponding patch. To improve clarity, the test cases are arranged along the x-axis in order of increasing RMSD between
the best pick in the final ensemble and the bound conformation. For comparison purposes, the bound conformation has been added to both
the exhaustive ensemble and to the SCMF-filtered ensemble, rather than only after clustering.
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generate a conformation for the patch that resembles
the bound state.

Patch size and quality of the ensemble
As mentioned above, the number of effective residues
included in a patch is limited to about 9, as a larger
number would lead to combinatorial explosion that
would become intractable at the clustering stage of our
procedure. It is not clear, however, how this limit affects
both our overall strategy for protein docking and the
quality of the ensemble of conformations we generate
for one patch.
We do not believe that patch size will significantly

affect our ability to find good docking conformations, as
we will generate patchworks of patches of the surfaces
of the unbound proteins to ensure that we cover the
interface region. This will be studied in more detail,
however, as we develop the next steps of our procedure.
In addition, we do not believe that patch size has an

effect on the quality of the ensemble of conformations
we generate. We did test this assertion on the interface
of the test case with PDB code 1B6C in our data set.
We considered patches of varying sizes, from 4 to 15
effective residues covering the interface on the receptor
protein. Ensembles were generated for each patch and
filtered by SCMF. The quality of each ensemble was
defined as the best RMSD to the bound state computed
over all conformations contained in the ensemble. We
found very little difference between the qualities of the
patches for patches of different sizes covering the same
interface. As for all 700 patches in our data set, we
found that it is the extent to which the backbone
changes between the unbound and bound structures of
the patch that mainly defines the quality of the
ensemble.
We also eliminated the possibility that edge effects

might be important (i.e. the influence of the residues
bordering the patch): we varied the weight of the energy
contributions of these residues (whose conformations
are fixed) from 0 (i.e no influence) to 1.0 (i.e. full contri-
bution) and found no effects on the quality of all
patches in the interface of 1B6C, for all sizes considered.

Conclusion
This paper focuses on how to incorporate flexibility in
protein-protein docking studies. We divide the surfaces
of each protein into local patches and describe the effect
of flexibility on each patch by sampling the space of
conformations of its side-chains. Likely positions of indi-
vidual side-chains are given by a rotamer library; this
library is used to derive a sample of possible mutual
conformations within the patch. We control the size of
the sample using the so-called SCMF filtering that
maintains broad coverage while selecting conformations

with low energy, and by clustering similar configura-
tions. We have shown that in most cases this procedure
allows us to generate a good sampling of a patch con-
formation that includes at least one configuration that is
close to the bound conformation of the patch. We have
also shown that usually this best configuration is a bet-
ter match to the bound state than the given unbound
conformation of the patch.
Our procedure however breaks down for cases in

which the backbone configuration for the residues in
the patch changes significantly between the unbound
and bound states. This points to a direction for future
work. We expect an improvement in our sampling of
the conformation of a patch if we account for backbone
flexibility explicitly. Recently there has been progress in
modeling backbone flexibility in the initial surface
matching stage of docking. For example, in FlexDock
[24,33], molecules are decomposed into rigid domains,
which are docked separately and then the possible
dockings are reconnected using a graph-based algo-
rithm. RosettaDock [34,35] creates a “fold tree” repre-
sentation of the molecular system which explicitly
handles backbone flexibility. ATTRACT [36] adopts sys-
tematic protein-protein docking starting from confor-
mations generated from normal mode analysis using a
Gaussian network model to represent the protein. In
future work we will investigate such methods to incor-
porate backbone flexibility into our ensembles where
needed, again addressing the issue of computational
complexity.

Author details
1Department of Computer Science, University of California, Davis, CA 95616,
USA. 2Department of Mathematics, University of California, Davis, CA 95616,
USA. 3Department of Computer Science and Genome Center, University of
California, Davis, CA 95616, USA.

Authors’ contributions
All authors participated in the design of the study. PFL and SG performed
the experiments. All authors helped to draft the manuscript. They all read
and approved the final manuscript.

Received: 20 May 2010 Accepted: 23 November 2010
Published: 23 November 2010

References
1. Bonvin AM: Flexible protein-protein docking. Curr Opin Struct Biol 2006,

16:194-200.
2. Gray JJ: High-resolution protein-protein docking. Curr Opin Struct Biol

2006, 16:183-193.
3. Heifetz A, Katchalski-Katzir E, Eisenstein M: Electrostatics in protein-protein

docking. Protein Sci 2002, 11:571-587.
4. Halperin I, Ma B, Wolfson H, Nussinov R: Principles of docking: an

overview of search algorithms and a guide to scoring functions. Proteins:
Struct Func Genet 2002, 47:409-443.

5. Méndez R, Leplae R, Maria LD, Wodak SJ: Assessment of blind predictions
of protein-protein interactions: current status of docking methods.
Proteins: Struct Func Genet 2003, 52:51-67.

6. Andrusier N, Mashiach E, Nussinov R, Wolfson H: Principles of flexible
protein-protein docking. Proteins: Struct Func Bioinfo 2008, 73:271-289.

Francis-Lyon et al. BMC Bioinformatics 2010, 11:575
http://www.biomedcentral.com/1471-2105/11/575

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/16488145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16546374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847280?dopt=Abstract


7. Chen R, Li L, Weng Z: ZDOCK: an initial-stage protein docking algorithm.
Proteins: Struct Func Bioinfo 2003, 52:80-87.

8. Gabb HA, Jackson RM, Sternberg MJE: Modelling protein docking using
shape complementarity, electrostatics and biochemical information.
J Mol Biol 1997, 272:106-120.

9. Vakser IA, Matar OG, Lam CF: A systematic study of low-resolution
recognition in protein-protein complexes. Proc Natl Acad Sci (USA) 1999,
96:8477-8482.

10. Jiang F, Lin W, Rao Z: SOFTDOCK: understanding of molecular
recognition through a systematic docking study. Protein Eng 2002,
15:257-263.

11. Dominguez C, Boelens R, Bonvin AMJJ: HADDOCK: a protein-protein
docking approach based on biochemical or biophysical information.
J Am Chem Soc 2002, 125:1731-1737.

12. Li L, Cheng R, Weng Z: RDOCK: refinement of Rigid-body Protein Docking
Predictions. Proteins: Struct Func Genet 2003, 53:693-707.

13. Smitha GR, Sternbergb MJ, Bates PA: The relationship between the
flexibility of proteins and their conformational states on forming
protein-protein complexes with an application to protein-protein
docking. J Mol Biol 2005, 347:1077-1101.

14. Camacho CJ, Gatchell DW: Successful discrimination of protein
interactions. Proteins: Struct Func Bioinfo 2003, 52:92-97.

15. Claußen H, Buning C, Rarey M, Lengauer T: FLEXE: efficient molecular
docking considering protein structure variations. J Mol Biol 2001,
308:377-395.

16. Knegtel RMA, Kuntz ID, Oshiro CM: Molecular docking to ensembles of
protein structures. J Mol Biol 1997, 266:424-440.

17. Cherfils J, Duquerroy S, Janin J: Protein-protein recognition analyzed by
docking simulation. Proteins: Struct Func Bioinfo 1991, 11:271-280.

18. Cherfils J, Janin J: Protein docking algorithms: simulating molecular
recognition. Curr Opin Struct Biol 1993, 3:265-269.

19. Cherfils J, Bizebard T, Marcel Knossow JJ: Rigid-body docking with mutant
constraints of influenza hemagglutinin with antibody HC19. Proteins:
Struct Func Bioinfo 1994, 18:8-18.

20. Jackson RM, Gabb HA, Sternberg MJE: Rapid refinement of protein
interfaces incorporating solvation: application to the docking problem.
J Mol Biol 1998, 276:265-285.

21. Zacharias M: Protein-protein docking with a reduced protein model
accounting for side-chain flexibility. Protein Sci 2003, 12:1271-1282.

22. May A, Zacharias M: Protein-protein docking in CAPRI using ATTRACT to
account for global and local flexibility. Proteins: Struct Func Bioinfo 2007,
69:774-80.

23. Wang C, Schueler-Furman O, Baker D: Improved side-chain modeling for
protein-protein docking. Protein Sci 2005, 14:1328-1339.

24. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: Geometry-based
flexible and symmetric protein docking. Proteins: Struct Func Bioinfo 2005,
60:224-231.

25. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z: Protein-protein docking
benchmark version 3.0. Proteins: Struct Func Bioinfo 2008, 73:705-709.

26. Ponder JW, Richards FM: Tertiary templates for proteins: use of packing
criteria in the enumeration of allowed sequences for different structural
classes. J Mol Biol 1987, 193(4):775-791.

27. Tuffery P, Etchebest C, Hazout S, Lavery R: A new approach to the rapid
determination of protein side chain conformations. J Biomol Struct Dyn
1991, 8(6):1267-1289.

28. Bower MJ, Cohen FE, Roland L, Dunbrack J: Prediction of protein side-
chain rotamers from a backbone-dependent rotamer library: a new
homology modeling tool. J Mol Biol 1997, 267(5):1268-1282.

29. Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M:
CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. J Comp Chem 1983, 4:187-217.

30. Koehl P, Delarue M: Application of a self-consistent mean field theory to
predict protein side-chains conformation and estimate their
conformational entropy. J Mol Biol 1994, 239:249-275.

31. Roitberg A, Elber R: Modeling side-chains in peptides and proteins:
application of the locally enhanced sampling and the simulated
annealing method to find minimum energy conformations. J Chem Phys
1991, 95:9277-9287.

32. Lensink M, Mendez R, Wodak S: Docking and scoring protein complexes:
CAPRI 3rd edition. Proteins: Struct Func Genet 2007, 69:704-718.

33. Schneidman-Duhovny D, Nussinov R, Wolfson HJ: Automatic prediction of
protein interactions with large scale motion. Proteins: Struct Func Bioinfo
2007, 69:764-773.

34. Wang C, Bradley P, Baker D: Protein-Protein Docking with Backbone
Flexibility. J Mol Biol 2007, 373:503-519.

35. Chaudhury S, Sircar A, Sivasubramanian A, Berrondo M, Gray JJ:
Incorporating biochemical information and backbone flexibility in
RosettaDock for CAPRI rounds 6-12. Proteins: Struct Func Bioinfo 2007,
69:793-800.

36. May A, Zacharias M: Energy minimization in low-frequency normal
modes to efficiently allow for global flexibility during systematic
protein-protein docking. Proteins: Struct Func Bioinfo 2007, 70:794-809.

37. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I,
Bourne P: The Protein Data Bank. Nucleic Acids Res 2000, 28:235-242.

doi:10.1186/1471-2105-11-575
Cite this article as: Francis-Lyon et al.: Sampling the conformation of
protein surface residues for flexible protein docking. BMC Bioinformatics
2010 11:575.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Francis-Lyon et al. BMC Bioinformatics 2010, 11:575
http://www.biomedcentral.com/1471-2105/11/575

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11983926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11983926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15784265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15784265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15784265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15784265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11327774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11327774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9047373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9047373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9514726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9514726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15802647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15802647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2441069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2441069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2441069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1892586?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1892586?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9150411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9150411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9150411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8196057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8196057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8196057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract

	Sampling the conformation of protein surface residues for flexible protein docking
	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Outline
	Implementation
	Data Set
	Selecting patches
	Rotamer library
	Energy function
	SCMF Filtering
	Clustering
	Running time


	Results and Discussion
	Quality of the rotamer representation of side-chains
	Quality of the sample after SCMF filtering
	Quality of the sample after clustering
	Filtering does not damage the quality of our sample
	Patch size and quality of the ensemble

	Conclusion
	Author details
	Authors' contributions
	References

