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Accessible energy is crucial for the sustainability of modern societies.1

During the last century, fossil fuels have been used as the main source of 
energy in the world.2 Fossil fuel sources are diminishing while the global 
demand for energy is growing. Thus, investment in finding alternative fuels, 
which would be more efficient, sustainable, and environmentally friendly is 
increasing.3-7 In recent years biofuels have been receiving great attention 
because of their potential in decreasing carbon emissions and providing a 
long-term renewable solution to unsustainable fossil fuels.8,9

Other advantages of biofuels to make them a more attractive alternative 
are their accessible source and their relative ease of processing.10 Currently, 
lactones are some of the alternatives being produced.11-13 Many lactones 
occur in a range of natural substances and they have many advantages over 
bioethanol.14 One of the renewable lactonic biofuels that have attracted, 
which is one of the world's energy renewable source attention is alpha 
angelica lactone (AAL).

In this study, oxidation of AAL initiated by ground oxygen, O(3P), was 
studied at 550 and 700 K using synchrotron radiation coupled with 
multiplexed photoionization mass spectrometry at the Lawrence Berkeley 
National Lab (LBNL). Photoionization spectra (PIS) and kinetic time traces 
were measured to identify primary products.

The experiment were performed at Chemical Dynamics Beamline 9.0.2 
at the Advanced Light Source (ALS) of LBNL.15 Reaction species were 
identified by multiplexed time and energy-resolved mass spectrometry 
coupled with tunable synchrotron radiation for photoionization. A three-
dimensional data block, consisted of the ion signal as a function of photon 
energy (eV), mass-to-charge ratio (m/z), and reaction time (ms), was 
collected.16 Two- dimensional slices of the three-dimensional data were 
obtained by fixing one variable ((Figure 1).

The reactants have negative signals from kinetic time curves (ion signal 
vs kinetic time) and products show positive signals. Figure 2 shows the 
kinetic time traces of primary products compared with the reactant which 
is multiplied by -1 at 550K. Then the signal was integrated in the 20-60 ms 
time range for minimizing the presence of nonprimary products at two 
temperatures.

In this research, the branching fraction of each primary product is 
calculated by the following equation:

P and R stand for the products and the reactant. CP and CR are 
concentrations of the product and reactant, SP and SR represent signals 
from the PIS at 11 eV in this study. MP and MR are the mass of primary 
products and reactant to the power of 0.67. 𝛔P and 𝛔R represent the 
energy-dependent PI cross-sections.

The structures of identified molecules were optimized by the CBS-QB3 
composite method 17, 18 to find zero-point vibrational energy (E0), which 
allows calculating the various thermodynamic quantities; for instance, 
enthalpy of reaction and adiabatic ionization energy (AIE). Then simulated 
PIS based on the Franck-Condon approximation were obtained using the 
B3LYP functional level of theory with the basis set of CBSB7.19 The available 
literature or simulate PIS was used to identify the primary products (Figure 
3).20

In this experiment, two possible main reaction pathways are feasible, 
O(3P) addition and hydrogen abstraction. The O(3P) addition pathway is more 
favorable than hydrogen abstraction and it produces two triplet diradicals (C 
and D) which they end up with diketone (E). On the other hand, the 
hydrogen abstraction pathway forms the doublet radicals and O(3P) binds to 
molecule A and B to generate products (scheme 1). The products of AAL and 
O(3P) were identified by comparison with experimental PIS and literature or 
simulated PIS.

The primary products were identified based on their kinetic time traces. 
The observed primary products at 550 K are ketene (m/z 42), acetaldehyde 
(m/z 44), methyl ketene (m/z 56), methyl vinyl ketone (m/z 70), 
methylglyoxal (m/z 72), dimethyl glyoxal (m/z 86), and 5-methyl-2,4 
furandione (m/z 114). The same products except for methyl ketene (m/z 56) 
and 5-methyl-2,4 furandione (m/z 114) are observed at 700 K.

Ab initio calculations will be employed to study the potential energy 
surface to determine the reaction pathway leading to the formation of 
primary products. Also, branching fractions of primary products will be 
calculated. 
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Figure1. Diagram of the three-dimensional dataset ( the middle diagram) of photon energy, 
mass-to-charge ratio (m/z), and time (ms) obtained at the ALS in Berkeley, CA. PI curve (top 
left) and Time traces (top right). 16

Scheme 1. Reaction pathways for H subtraction and for O(3P) addition. The energies that 
presented are relative to AAL and O(3P). 

Table 1. Primary products with mass-to-charge ratio and PI energy at 550K. The same products 
except for methyl ketene (m/z 56) and 5-methyl-2,4 furandione (m/z 114) are observed at 700 
K.

Primary Product Mass-to-charge ratio (m/z) AIE (eV)

Ketene 42 9.58

Acetaldehyde 44 10.1

Methylketene 56 8.94

Methyl vinyl ketone 70 9.64

Methylglyoxal 72 9.59

Dimethyl glyoxal 86 9.11

5-methyl-2,4 furandione 114 9.83

Figure 2. Kinetic time traces of primary product (m/z 42) and the inversed time traces of 
reactant at 550k. The kinetic time trace of the primary product matches well with the 
inverse curve of the reactant. 

Figure 3. Experimental PI plots with 
appended literature/simulated PI curves of 
primary products at 550K.  The primary 
products are ketene (m/z 42), acetaldehyde 
(m/z 44), methyl ketene (m/z 56), methyl 
vinyl ketone (m/z 70), methylglyoxal (m/z 
72), dimethyl glyoxal (m/z 86), and 5-
methyl-2,4 furandione (m/z 114). 
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