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Chapter 1: Introduction 

 

1.1 A Bigger Picture: Atmospheric Pollution 

 The composition of Earth’s atmosphere has biological and physical 

implications. Air pollution, specifically, has been a focus of interest in the areas of 

toxicology and epidemiology. The Environmental Protection Agency (EPA) has 

identified six common air pollutants: ozone, particulate matter, carbon monoxide, 

nitrogen oxides, sulfur dioxide, and lead.1 Though air pollution is a mixture of several 

different types of gases, it is necessary to understand the independent role of each 

component on the health and well-being of humans, animals, and the environment. As 

it pertains to the current investigation, it is imperative to research new ways in which 

the production of these pollutants can be reduced and, in turn, the detrimental health 

effects mitigated.  

1.1.1 Climate Change: Ozone, Its Precursors, and Particulate Matter  

Though chlorofluorocarbons (CFCs) and other halogenated hydrocarbons 

were the main source of stratospheric O3 depletion and have been significantly 

restricted since the Montreal Protocol in 1987,2 global warming continues to be a threat 

much closer to the surface. As ozone in the stratosphere absorbs a significant portion 

of the intense cosmic and UV radiation that would otherwise harm life on the planet, it 

falls to reason that tropospheric (ground-level) ozone also possesses significant global 

warming potential.  Long-term exposure to ground-level pollutants, such as ozone (O3) 

and particulate matter (PM), is known to lead to increased rates of asthma and 

respiratory morbidity, even in ambient concentrations.3-10 



2 
 

It is important to recognize ground-level ozone precursors, such as nitric oxide 

(NO) and nitrogen dioxide (NO2). These are the primary nitrogen oxide (NOx) species 

involved in air pollution and they are related in a cycle with ozone (O3). Nitrogen is able 

to unite with oxygen to form NO at elevated temperatures. In addition, a significant 

source of NOx includes the burning of fossil fuels in internal combustion engines.3 

Though studies have not been able to show a direct correlation between NO2 exposure 

and human health conditions in the absence of O3 and PM, lung function has been 

shown to be lower in communities where NO2 concentration is higher.11-13  

In one relatively beneficial aspect, NO is able to deplete ground-level ozone 

and oxidize to form NO2, thereby reducing the effects of ground-level ozone (1.1.1a). 

This reaction typically takes place during the night, while during the day the sunlight 

breaks down NO2 to reform NO and O·, the latter of which reacts with abundant O2 to 

regenerate ground-level ozone (1.1.1b).  

NO + O3  NO2 + O2            (1.1.1a) 

NO2 + O2 + sunlight  NO + O3          (1.1.1b) 

This is a naturally occurring cycle that has existed throughout history and has not been 

of major concern until other elements, such as volatile organic compounds (VOCs), 

were added to the atmosphere in greater concentrations. 

VOCs usually take form as hydrocarbon compounds that are released to the 

air in various ways including agriculture, forestry, and burning of fossil fuels. As such, 

an increase in VOC emissions is correlated with increased industrial activity. The 

VOCs provide an additional pathway to oxidize NO, where ground-level ozone 

depletion is not necessary in the formation of NO2. With exposure to sunlight, 
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additional O3 is generated from NO2 to toxic levels known as photochemical smog. 

Thus, the addition of NO and VOCs to the atmosphere generates greater amounts of 

NO2 that are available to form ground-level ozone. The concentration of tropospheric 

ozone is now at least 34 ppt, substantially higher than pre-industrial (prior to approx. 

1750) levels of 25 ppt, and raises a major concern with respect to the future of the 

climate.14 

  While VOCs are a major contributor to increased NOx levels, the related 

greenhouse gas nitrous oxide (N2O) is another contributing source. N2O forms NO 

upon reaction with oxygen. Human-related sources of N2O account for 38% of the total 

emissions, of which 10% is generated from fossil fuels combustion and other related 

processes.15 Figure 1.1.1 shows the contribution of N2O to the total amount of 

greenhouse gases released in 2007. N2O is calculated to have between 265-310 times 

more global warming impact than carbon dioxide, which is the representative molecule 

in discussions centered around climate change, due to its prevalence in the 

environment.16, 17  

In addition to VOC, NOx, and N2O molecules as ground-level ozone precursor 

species, the influence of particulate matter (PM) upon the environment is also of 

scientific interest.  Although they are small particles, PM are highly absorbing at IR 

and visible wavelengths and are able to scatter solar and thermal radiation to effect 

Earth’s climate.  Specifically, studies have focused on the refractive index of soot 

particles and other PM to gain insight to their radiative properties.18-22 In terms of health 

and well-being, PM has been found to cause respiratory problems and are 

carcinogenic.23, 24 



4 
 

PM is produced by a wide range of sources and comes in many forms. Airborne 

soot and soot-containing aerosols (carbonaceous smokes) comprise a portion of the 

PM in the atmosphere and are produced from aircraft, rocket, and automobile engines, 

as well as industrial flames.25, 26  

They can be classified into two distinct categories by diameter size: coarse 

particles (>2.5 µm) and fine particles (<2.5 µm). An additional category, ultrafine 

particles (<100 nm), often termed “aerosols”, are suspended in gas and are the most 

abundant category of PM in the atmosphere. Under some circumstances, these can 

be converted from particle to gas and vice-versa.27 

 

Figure 1.1.1: Global emissions of greenhouse gases as of 2007.28 

 

1.2 Sustainable Energy: The Preservation of Health and Climate 

NOx, VOCs, N2O, CO2, and soot are all released by the combustion of fossil 

fuels, which include natural gas, petroleum, coal, shale oil, and bitumen. The 
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dependence on fossil fuels for energy spans centuries, and the combustion for 

transportation has been growing since the Industrial Revolution (Figure 1.2a). 

Approximately 13% of the fossil fuels used in 2007 was for transportation (Figure 1.2b), 

and the International Energy Agency (IEA) reported that 23% of global CO2 emissions 

in 2009 were due to transportation, the largest contributor being motor vehicles.29  

Environmentally “clean” sources of energy, such as wind and solar, have seen 

a mild increase in popularity as they can meet some home and office energy needs. 

However, these methods may have limited potential within the realm of transportation 

and supply-chain logistics. The energy demand for long-distance and daily transport 

of large volume of goods for trade are not so easily met by these alternative energy 

sources, and therefore focus has also been given to researching more efficient 

combustion methods that burn more efficiently with fewer emissions. 

 

Figure 1.2a: The changes in the amount of fossil fuel used for various purposes over 

time.30  
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Figure 1.2b: The relative consumption of fossil fuels by use in 2007.28  

 

1.3 Combustion Basics 

 Early on, the knowledge and necessary tools to understand the adverse effects 

of combustion on the environment were not available. Indeed, the first internal 

combustion engines were developed without much understanding of the complex 

chemical processes.31 The general equation that has governed combustion processes 

is idealistic in that it is only accurate for complete combustion of very simple molecules, 

and therefore does not reflect the intermediates and byproducts that are now known 

to result: 

  Fuel + O2  H2O + CO2 + heat              (1.3) 

 Figure 1.3 highlights the complexity of the oxidation of methane, the smallest 

hydrocarbon. Numerous intermediates, byproducts, and polycyclic aromatic 

hydrocarbons (PAH) are formed and can be released into the environment due to 

incomplete combustion, which can attribute to pollution levels.  
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 The reaction mechanisms and the formation of potential pollutants vary greatly 

depending upon the fuel itself, as well as the engine in which the fuel is combusted.  

 

 

Figure 1.3: A simplified scheme showing the main reaction paths of methane 

oxidation.32 

 

1.4 Engine Technology 

Most of the energy for transportation is provided using internal combustion 

engines, specifically the spark ignition (SI) and the compression ignition (CI) engines. 

The SI engine is relatively simple and is therefore quite attractive in its lower initial 

cost. This engine relies upon gasoline or other fuel and requires a spark plug as an 

external ignition source. As such, there is only one point of ignition, which leads to 

engine knocking and lower thermodynamic efficiency. Engine knocking occurs when 

combustion takes place at a time or location other than that intended by the spark and 

generally happens when the compression ratio (the volume of the combustion 
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chamber when the piston is at the top vs. the volume of the combustion chamber when 

the piston is at the bottom)33 is high. Theoretically, thermal efficiency is expected to 

increase with higher compression ratios, however limitations are usually 

experimentally determined and set to avoid knocking. The CI engine is much more 

efficient, although it releases substantially greater amounts of NOx and PM. Newer 

combustion engines aim to reduce NOx and soot emissions, knock sensitivity, and 

other undesirable aspects of conventional SI and CI engines.  

The homogeneous charge compression ignition (HCCI) engine is a low-temperature 

combustion engine that can be run on a wide-array of fuels and lean fuel blends so 

long as the compression ratio and inlet temperature can be controlled. In an HCCI 

engine, a homogenous composition of pre-mixed fuel and air is compressed until 

autoignition takes place across the combustion chamber. As the combustion process 

occurs at lower temperatures than those in SI engines, there is a notable reduction in 

NOx and PM emissions. Yang et al.34 reported better fuel consumption using HCCI 

engines relative to SI engines. Figure 1.4a displays the fundamental differences 

between SI, compression ignition (CI), and HCCI engines.  

It has been described that HCCI engines are governed by three temperatures: 

the autoignition temperature, a good combustion efficiency temperature (~1400 K), 

and the limit of 1800 K to prevent a substantial increase in NO formation.35 The 

temperature should be controlled so that the autoignition temperature of the fuel is 

reached at the end of the compression stroke to ensure ignition. The combustion 

efficiency temperature is somewhat dependent upon the mixture of the fuel. A rich 

mixture will increase the burn rate and lead to pressure increase and NOx formation at 
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higher temperatures. Analogously, if the composition is too lean the temperature 

increase from the combustion is low, resulting in incomplete combustion. 

 

Figure 1.4a: A diagram illustrating the fundamental differences between SI, CI, and 

HCCI engine. The SI and CI engines have single point ignitions while the HCCI has 

multiple ignition points.36 

In contrast to SI engines where the reaction time is signified by the spark 

ignition, the kinetics of the autoignition processes in HCCI engines are more 

complicated and need to be modeled accordingly. Specifically, H2O2 plays an integral 

role in autoignition, as it thermally decomposes into hydroxyl radicals (·OH) that react 

with the air-fuel blend, effectively becoming the “igniter” for HCCI engines.31 These 

radical-chain reactions consist of several steps: initiation, propagation, branching, and 

termination. Chain branching reactions do not always occur, however they lead to the 

formation of additional radicals. The reactions that take place between the radicals 

and the air-fuel blend are contingent upon the temperatures and the fuel components. 

Figure 1.4b shows the general radical-chain reactions that occur in each step. 
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Figure 1.4b: Basic Autooxidation Scheme (BAS)37 and generic reaction mechanisms 

of hydrocarbon autooxidation.38 

 

1.5 Biofuels: Pitfalls and Promises 

While one important aspect of reducing NOx emissions involves the engine 

mechanics, another important facet is the chemistry of the fuel blends themselves. 

Fossil fuels are currently the leading source of energy globally. As the dependence is 

high, the supply of fossil fuel reserves is a growing concern. It is difficult to predict how 

many years of fossil fuels are left for energy consumption, as new discoveries can be 

made and consumption is not constant. Colin Campbell,39 a petroleum geologist, 

predicted that the production of conventional fuel would increase while new 
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discoveries of sources would decrease. This underlines the importance of finding 

alternative sources to meet energy needs (Figure 1.5a).  

To offset the demand for fossil fuels, as well as the NOx emissions, attempts 

to improve the fuel itself have already been incorporated. Additives are often mixed 

with the fuel with the intention to mitigate some of the undesirable effects of fuels, 

namely those which arise from ignition delay. Specifically for diesel fuels, the 

combustion speed of the fuel blend is related to the engine performance and pollutant 

emissions. The longer the ignition delay, the greater the detrimental effects on the 

engine and environment. The speed of combustion of diesel fuels is represented by 

its cetane number (CN), where a higher number would correspond to a faster ignition 

of the engine after fuel injection. 

 

Figure 1.5a: It is expected that new discoveries of fossil fuel reserves will continue to 

decrease while demand remains high.39 
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Diesel fuels derived from biological sources are referred to as biofuels. Biofuel 

combustion is an environmentally-attractive, carbon-neutral alternative that would help 

reduce the global dependence on fossil fuels for energy.  Many similar chemical 

components found in oil-based fuels can also be generated from plant-based sources, 

which include sugar cane, corn, wheat, rape seed, palm oil, wood, as well as from 

industrial wastes. The process by which biofuels are created from oils and fats is 

known as transesterification and is an important mechanism in biofuel generation as 

shown in Figure 1.5b.  

 

Figure 1.5b: The biofuel cycle, where the production and combustion processes are 

considered to be carbon-neutral.40 

The concerns regarding biofuel production on a larger scale includes the 

realization that biofuel production from agricultural sources would cut into the food 

supply and increase prices as a result. In the early 2000s, for example, it was found 

that corn-derived ethanol contributed to 14-43% of US corn price increases.41 In many 
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regions, the supply of water may also not be adequate to support the agricultural 

biofuel production that is necessary to meet demand.  

These issues can somewhat be alleviated by diversification. Using various 

types of biofuels from various sources can reduce the strain on the production of food. 

Lignocellulosic biomass, for example, is derived from paper waste or non-edible plant 

matter and can be as an alternative to liquid fuels.42-44 In addition, research has been 

underway to find cost-effective methods of biofuel production, including genetic 

modification of plants for biofuel production.45, 46  

 

1.6 Purpose of this Work 

 Using the homogeneous compression ignition engine (HCCI) as the model 

engine for combustion, the autoignition mechanisms of various representative 

potential biofuels have been studied47-50 and many more are relatively unknown. In this 

work, the HO2- and OH-elimination pathways of small-chain methyl esters (methyl 

propanoate, methyl butanoate, and methyl valerate) are investigated to provide 

greater insight to the influence of the functional group on the combustion properties. 

In addition to the bimolecular combustion reactions, such as those between 

methyl ester radicals and oxygen described above, the study of unimolecular reactions 

are important in that they reveal bonding characteristics that can influence their 

combustion behavior. As such, the photodissociation of ethylenediamine (a fuel 

additive) was also examined via TPEPICO (threshold photoelectron photoion 

coincidence spectroscopy) to observe the dissociation dynamics. 
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Finally, the relatively unexplored field of aerosols in combustion was studied in 

Taiwan, where isoprene and gamma-valerolactone were atomized and photoionized 

in both neutral and acidic environments to determine any changes in electronic 

structure. While data was not compelling, it paves the way for future research 

endeavors at USF in aerosol investigations. 
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Chapter 2: Important Concepts 

 

2.1 The Potential Energy Surface 

A potential energy surface is a mathematical function where the geometry of 

the molecule corresponds to a specific single point energy, derived by computational 

methodologies. Computational approaches are described in a later section, however 

a brief overview of potential energy surfaces (PES) is provided here as they are 

widely used to help explain molecular behavior.  

Molecular mechanics has often compared molecules to balls held together by 

springs.1 When the bond lengths are stretched or angles distorted, the potential 

energy of the molecule increases. With additional energy, they can access higher 

vibrational levels and bonds can lengthen and angles can change. In quantum-

mechanics, only discrete energy values are possible and they are equally spaced as 

shown in Figure 2.1a. Molecules always possess some sort of energy as they 

constantly vibrate about an equilibrium conformation. The energy corresponding to 

vibrational quantum number of 0 is termed the zero-point energy.2 Therefore, while 

the equilibrium configuration is the lowest-energy point in the potential energy 

surface (often referred to as a minimum), molecules do not actually take on this 

exact structure. The molecule is in the ground vibrational state (Ψ’0) when it occupies 

the lowest possible vibrational level.  

The ground vibrational state on a PES is known as the global minimum. The 

potential energy surface for water along two coordinates is shown in Figure 2.1b. As 

the O-H bond stretches along one axis and the H-O-H bond angle is distorted along 
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the other, the potential energy increases in any direction and the local minimum is 

observed. The O-H bond stretching on the PES in Figure 2.1b seems to be simply 

“uphill” as there is no barrier to dissociation. In which case, a one-dimensional slice 

along the O-H bond length coordinate would look quite similar to the 1D PES 

provided in Figure 2.1a, where the amount of energy required to break the bond is 

known as the bond dissociation energy (BDE).  

 

Figure 2.1a: A 1D general schematic of a potential energy surface of molecule with 

a barrierless (“uphill”) dissociation pathway.3 

However, a single molecule can possess more than one local minimum. This 

is exemplified in Figure 2.1c, where the blue areas in the top image represent two 

conformations of the same molecule (i.e., cis vs. trans) and are both local minima on 

the molecule’s conformational PES. If all of the conformational surface (no bonds 

broken) of the molecule is well-explored, then a global minimum can be determined 
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as the deepest energy well. In Figure 2.1c this corresponds to the darkest blue area 

in the top image. The global minimum on the PES is the lowest-energy conformation 

and theoretically the most energetically preferable configuration. Thus, this geometry 

can be expected to be of greatest abundance in low-energy conditions.    

 

Figure 2.1b: The 2D potential energy surface of the water molecule and the two 1D 

potential energy surfaces specific to each conformation coordinate.1 

The top of Figure 2.1c shows a simple 2D potential energy surface along 

conformational and reaction (i.e., isomerization and bond breaking) coordinates, and 

the bottom shows the nomenclature of the associated counterparts. The higher 
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points on the PES are the saddle points, commonly referred to as transition states 

and activation barriers/complexes. Saddle points are also occasionally termed 

interconversion barriers in the case of isomerization processes. These points on the 

PES designate the minimum energy required for a molecule to transition from one 

molecular configuration (minimum) to another on the PES.  

 

Figure 2.1c: Top: A sample 2D potential energy surface, showing potential energy 

as a function of conformational change and isomerization or dissociation.4 Bottom 

image: The labeled pieces of a PES containing more than one local minimum.5 
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Figure 2.1d: A 1D PES displaying the potential energy necessary for vibrational 

excitation and crossing of a saddle point on a specific reaction coordinate to 

generate products.6 

In the event that there is a barrier to dissociation, Figure 2.1a can instead be 

represented by Figure 2.1d. In this case, the products are fragments resulting from 

dissociation. The bond dissociation energy (BDE) is equal to the energy, or the 

“height”, of the activation barrier. Note that the reaction coordinate as shown in 

Figure 2.1d is not limited to dissociation. Figure 2.1e shows a typical PES 

representative of conformational changes and isomerization that can result with an 

increase in energy.  

 

Figure 2.1e: Energy profile for methyl isonitrile isomerization.7 
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Here, methyl isonitrile isomerizes to acetonitrile over a specific saddle point, where 

the structure and energy are determined via computational analysis of the PES. 

 

2.2 Ionization 

 Mass spectrometry is useful for studying ions in the gas phase. Mass spectra 

obtained relate ion signals to the mass-to-charge ratio (m/z).1 These spectra enable 

the analysis of ion-neutral relationships and fragmentation pathways of ions, that 

continues to be valuable in environmental analysis, clinical applications, forensics, 

and more.8   

 The sample is typically diluted into a gas phase mixture and then ionized 

using one of a variety of methods. The ions are then separated by mass-to-charge 

ratio. Dependent upon the resolution capabilities and settings, each m/z in the 

spectra can be distinguished. 

 For ionization to occur, the neutral molecule in its ground state must absorb 

energy equal to, or in excess of, the amount required for electron removal. This is 

known as the ionization energy (IE).9 This concept is quite clear atomically, as the 

trends on the Periodic Table of Elements are well-known and described by the 

influences of effective nuclear charge and the number of electrons in outermost 

orbital. Ionization energies are more complex for molecules in that specific bonds 

possess different electronic characteristics. Sigma bonds, for example, are less 

favorable locations for electron ejection than pi bonds. For this reason, the ionization 

energies for diatomic molecules are higher than for molecules which can stabilize the 
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charge more easily.10 Molecules possessing a lone pair of electrons typically exhibit 

lower ionization energies than those without, as these sites are good locations for 

electron removal.  

 The methods of ionization can vary from bombarding molecules with a beam 

of electrons (electron ionization) or, alternatively, photons (photoionization).  

2.2.1 Electron Ionization 

Electron ionization (EI) involves bombarding the gaseous neutral molecules 

with high-energy electrons, which transfers some energy to the neutral.11 If the 

transferred energy is sufficient, the neutral (M) will ionize to form a molecular positive 

radical ion (M+·):  

M + e-  M+· + 2e-               (2.2.1) 

 The particles (M+·) are then accelerated into a magnetic field where their 

trajectories are bent. The degree to which they are bent is dependent upon the 

inertia of the molecular ion, which is directly contingent upon its mass (Figure 

2.2.1a).  

EI are most frequently obtained between 60 – 80 eV because ionization cross 

section vs. electron energy spectra typically plateau around 70 eV (Figure 2.2.1b). 

The ionization cross section describes the probability of ionization and is elaborated 

in section 2.2.3. 
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In the case of methane, results are most agreeable around 60 eV. The 

variations of the cross sections do not change substantially within this energy range 

or 60 – 80 eV. 

 

Figure 2.2.1a: The general schematic of an electron impact apparatus.12   

 

Figure 2.2.1b: The ionization cross sections of methane collected from electron 

impact (EI) experiments. Ionization cross sections are least affected by changes in 

electron energy within the range of 60 – 80 eV.1 
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2.2.2 Photoionization  

 The absorption of a photon can also eject an electron in a process known as 

photoionization:  

 M + hv  M+· + e-            (2.2.2a) 

In equation 2.2.2a, M is again the neutral species in a dilute gaseous mixture and M+· 

is the molecular cationic radical that results. Planck’s constant is represented by h 

and v is the frequency of the light. The Planck-Einstein relationship of equation 

2.2.2b simplifies hv as the energy, E, of the photon used for ionization: 

 E = hv              (2.2.2b) 

 If the energy of the photons is equal to the IE of the molecule, in theory 

ionization should take place as shown in equation 2.2.2a. However, at energies very 

close to the ionization energy of the molecule, the probability of ionization is low. This 

probability is described as the ionization cross section. 

2.2.3 Photoionization Cross Sections  

An electron is released by the absorption of one photon, in which case the 

probability that the electron will be ejected is directly proportional to the number of 

photons, which come into contact with the molecule. Equation 2.2.3a relates number 

of photons absorbed per unit time (power) to the incident flux from states i to j:  

𝜎 =  
𝑃

𝐼
=  

𝜋2𝑐2

𝑛𝜔𝜔𝑖
2

𝑗

𝑇𝑖𝑗             (2.2.3a) 
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where σ is the photoionization cross section, P is the power, I is the intensity, c is the 

speed of light, nω is the average number of photons in the beam, and ω describes 

the frequency interval.13, 14 The transition probability, Tif, can be determined using 

Fermi’s Golden Rule as:  

𝑇𝑖𝑗 =  
4𝜋2

ℎ
 |𝑀𝑖𝑗|

2
𝜌𝑗            (2.2.3b) 

and ρj is the density of final states, while Mij is the Matrix element of the electric 

dipole momentum. The Matrix element for continuous wave functions, Ψ, is 

represented by:  

 |𝑀𝑖𝑗|
2

=  ∑ ∑ |∫ 𝛹∗
𝑗 ∑ 𝛹∗

𝑖𝑑𝑣µ |𝑗𝑖
2
          (2.2.3c) 

The photoionization cross section as a function of the frequency, v, of the photon 

beam can be rewritten as 

 𝜎𝑣 =  
8𝜋𝑒2

3𝑐𝑔𝑖ℎ𝑣′ |𝑀𝑖𝑗|
2

             (2.2.3d) 

where hv’ represents the energy of photons above the ionization energy of the 

molecule, and gi is the statistical weight factor of the initial state.13, 15 Thus, the 

photoionization cross section is commonly referred to as the probability in which the 

molecule will ionize when in contact with a photon beam of particular frequency.  

 However, at energies close to the ionization energy of the molecule, the 

efficiency of the ionization is close to zero and very few neutral molecules are ionized 

at the ionization threshold. Wigner’s16 threshold law suggests that attractive Coulomb 

potentials create a “zone” just above the ionization threshold where the local 
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wavelength of the wavefunction’s oscillations is not dependent on hv’, and the 

Coulomb potential dominates over the kinetic energy of the electron.17 For electron 

impact ionization experiments where an electron is added to the system, Wannier’s18 

classical theory uses the attraction and repulsion of ions and electrons to explain that 

the electrons must depart in opposite directions from equal distances from the ion 

and with the same speeds.15 

Once the kinetic energy is enough to surpass the Coulombic zone, the 

ionization efficiency increases as energy is added in excess of the IE of the 

molecule. Each molecule behaves differently with respect to increasing photon 

energy, and thus the photoionization efficiencies are unique from compound to 

compound. If data is taken over a range of photon energies, then a spectrum of the 

detected ion intensity as a function of increasing energy can be generated to give the 

molecule’s unique photoionization efficiency curve (PIE). These curves are described 

in greater depth in section 2.2.5. The increasing efficiency of ionization is directly 

related to the area through which the electron must travel to interact with the neutral 

species, known as the photoionization cross section of the molecule.1 

The cross sections cannot easily be predicted accurately using ab initio or 

other computational techniques, though there are many studies that use different 

approximations to arrive at values for different molecules.19-22 Alternatively, many 

scientists are able to determine absolute photoionization cross sections 

experimentally. This requires the use of a standard where the photoionization cross 

sections are well-known and published, as shown in equation 2.2.3e:  
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 𝜎𝑇(E) =
𝑆𝑇(𝐸)𝜎𝑠(𝐸)𝛿𝑠𝐶𝑠

𝑆𝑠(𝐸)𝛿𝑇𝐶𝑇
            (2.2.3e) 

In the above equation, at each specific photon energy the signal of the standard ST 

and its known cross section σT can be used along with the signal of the sample SS, 

the mass discrimination factors (δT and δS), and the concentration of samples CT and 

CS) to arrive at the photoionization cross section for the sample σT. Photoionization 

cross sections are reported in units of 10-18 cm2, more commonly referred to as 

megabarns (Mb).  

The values for the photoionization cross sections of propene are available in 

literature23 and studies have utilized these values in the determination of cross 

sections of various molecules.24, 25 For those molecules where the ionization energy 

is lower than that for propene (approximately 9.7 eV26) and the photoionization cross-

sections are not available for use, an average scaling factor27 can be used, which 

can be found as the ratio of a known photoionization cross-section of propene to the 

experimental signal at a particular energy, σs(E)/Ss(E). These scaling factors can be 

taken across a range of energies and then averaged to be used in equation 2.2.3e. 

Typically, research done in Professor Meloni’s group at USF utilizes a calibration gas 

(“calgas”) mixture of ethane, propene, and butene when obtaining absolute 

photoionization spectra. 

2.2.4 Adiabatic vs. Vertical Ionizations  

 Of course, the structure of the molecule greatly influences the photoionization 

process. When a molecule is exposed to electromagnetic waves (visible light, for 
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example), oscillations can occur. The probability that these frequency-induced 

oscillations lead to a transition from one eigenstate Ψ’ to another eigenstate Ψ” is 

given by equation 2.2.3c, where Mij is the electric dipole moment operator: 

  𝑀𝑖𝑗 =  ∫ 𝛹𝑖 µ 𝛹𝑗𝑑𝜏           (2.2.4a) 

Throughout the transition, the Born-Oppenheimer approximation suggests that the 

nucleus and electrons possess equal momentum.28, 29 Since momentum is 

contingent upon both the mass and velocity of the object, the approximation uses the 

large mass of the nucleus to justify its inertia and negligible velocity. Alternatively, the 

velocity of the electron is very fast. Thus, the factorization of the wavefunction into 

electronic and nuclear (vibrational and rotational) components enables them to be 

solved independently: 

 Ψ𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =  Ψ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑥 Ψ𝑛𝑢𝑐𝑙𝑒𝑖         (2.2.4b) 

The Franck-Condon principle expands on the vibrational transition of the 

molecule from eigenstates Ψ’0 to Ψ”v, where Ψ’0 refers to the neutral molecule in its 

vibrational ground state and Ψ”v denotes the molecular radical cation in vibrational 

state v. The Franck-Condon principle makes the assumption that the nucleus 

remains stationary, as the electronic transitions occur much faster than nuclear 

movement. In this case, the bond lengths and angles within the molecule are 

sustained throughout the ionization process, and the vibrational transition from the 

neutral ground state Ψ’0 to cationic state Ψ”v is commonly described to be vertical 

(Figure 2.2.4a). If the nucleus is considered to be static, then the combination of 
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equations 2.2.4a and 2.2.4b leads to the transition moment integral with the 

electronic (first integral) and vibrational overlap (second integral) components:  

𝑀𝑖𝑗 =  ∫ 𝛹"∗
𝑒𝑙 µ𝑒𝑙 𝛹′𝑒𝑙𝑑𝜏𝑒𝑙 ∫

𝑆"∗
𝑣𝑖𝑏𝑆′𝑣𝑖𝑏

𝑅2 𝑅2𝑑𝑅             (2.2.4c) 

where S”vib and S’vib are the vibrational wave functions for the cation and neutral 

electronic states.15, 30 

The probability that a molecule will transition from the neutral ground state 

Ψ’0 to a vibrational level of the ion Ψ”v is defined as its Franck-Condon factor, which 

takes into account the vibrational overlap between the eigenstates, and is 

represented in equation 2.2.4b.1  

Franck-Condon Factor = |∫ 𝛹′𝑣𝛹"𝑣 𝑑𝑅|2          (2.2.4d) 

The FC factor is also the square of the vibrational overlap integral of equation 2.2.4c.  

Vertical ionization is accompanied by vibrational excitation as the geometry of 

the neutral is not a local minimum on the cationic potential energy surface (PES). 

The geometric variation between the local minimum on the cationic PES and the 

corresponding global minimum on the neutral PES is evident in the displacement of 

the nuclei, r. The greater the internuclear distance, r0 to r1, the poorer is the 

vibrational overlap between states, as shown in Figure 2.1.4a.  

In order for the vibrational transition to have a large contribution to the 

transition moment in equation 2.2.4c, the overlap of the orbitals must be very strong 

(i.e., the stabilized geometry of the cation must be similar to the geometry of the 

neutral). The stronger the overlap, the closer the molecule’s vertical ionization is to 
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an adiabatic ionization, which is defined as the energy difference between the cation 

and neutral where both are in their vibrational ground states (Figure 2.2.4b). 

 

Figure 2.1.4a: A general representation of the vertical and adiabatic ionizations as 

they relate to internuclear distance between the neutral (r0) and cationic (r1) nuclei.1 

The Ψ’0 to Ψ”0 transition is commonly denoted as 0  0 and the equation for 

the adiabatic ionization energy is shown in 2.2.4c: 

 AIE = E(Ψ”0) – E(Ψ’0)            (2.2.4c) 

 When a neutral sample is ionized by a source of light, the electrons can be 

detected and separated by their kinetic energy (eKE) using velocity map imaging 

(VMI), and the eKE is directly related to the binding energy (BE) of the electron (hv is 

the energy of the photons):  

eKE = hv – BE             (2.2.4d) 

The intensity of electrons detected as a function of their kinetic energy can be 

represented in a photoelectron spectrum (PE spectrum), as shown in the inset of 

Figure 2.2.4b. The vertical ionization of the hydrogen molecule (H2) is a 2  0 
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transition, and as a result the most intense band in the PE spectrum corresponds to 

the electronic kinetic energy of the Ψ”2 vibronic state. The initial onset of the PE 

spectrum represents the 0  0 transition, equal to the AIE, if the overlap of states 

(Franck-Condon Factor) is decent enough to witness the band experimentally.  

 

Figure 2.2.4b: Diagram showing the relationship between the Franck-Condon factor 

of H2 and its photoelectron spectrum (inset). The overlap of orbitals in cationic and 

neutral states are good enough to witness the peak corresponding to the adiabatic 

ionization energy (AIE) at Ψ”0. The most intense peak corresponds to the vertical 2 

 0 transition.31 

Thus, quite an extensive amount of information can be provided on the 

structure and bonding of the material studied, and several investigations have been 

conducted using photoelectron spectroscopy as a means to determine these 
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characteristics.32, 33 Negative ion spectroscopy uses the similar theory, but involves 

the ejection of the electrons from anionic species to generate neutrals. It has proven 

to be valuable in obtaining structural and bonding information of neutral species.34, 35 

2.2.5 Photoionization Efficiency Curves (PIEs)  

 The number of ions is dependent upon the molecule’s photoionization cross 

section at each particular energy (section 2.2.3). The intensity of the ions detected at 

each photon energy can be plotted as the molecule’s photoionization efficiency (PIE) 

curve. Thus, PIE curves are directly related to the photoionization cross sections.  

The PIE curve of a molecule is also related to its PE spectrum. Because a 

molecule’s PE spectrum shows the relative intensity of electrons detected at 

particular kinetic energies, and since the relation of photon energy to eKE is known 

(equation 2.2.4b), the PIE curve can be easily obtained from the PE spectrum 

through integration.  

Just as the photoelectron spectrum for each particular molecule is unique in 

that it accounts for Franck-Condon factors and adiabatic ionization energy, it falls to 

reason that PIE curves are also unique from one molecule to another. Figure 2.2.5a 

shows the absolute PIE curve (blue) obtained by Ng et al.36 used as a standard to 

match a suspected product of mesitylene phootoxidation (red circles) of m/z = 134. 

The onset (AIE) of both spectra matches agreeably, as well as the shape of the 

curve. Thus, it was proposed that the observed product was indeed 3,5-

dimethylbenzaldehyde (the pathway to formation was also shown to be energetically 

favorable in their investigation). 
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Figure 2.2.5a: The measured PIE curve of unknown product at m/z = 134 resulting 

from a photooxidation experiment (red circles) compared to the measured PIE curve 

of a 3,5-dimethylbenzaldehyde standard.36 

  While the case in Figure 2.2.5a seems simple, often times there may be 

isomers present with a particular m/z, as was found in the photooxidation reaction of 

tert-amyl methyl ether at m/z = 58 (Figure 2.2.5b).37  

In this scenario, the total signal of photoionization is due to the contribution of 

both isomers. Since the PIE curve for each isomer is directly related to its respective 

photoionization cross sections, then the fractional abundance (A) of each can be 

found if the photoionization cross sections are known.38 The following equations 

show the relationship: 

A1 + A2 + A3... = 1            (2.2.5a) 

σTotal = A1σ1 + A2σ2 + A3σ3...           (2.2.5b) 
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In these types of photooxidation reactions presented, it is typically rare to have three 

or more isomers. However, Figures 2.1.5a and 2.1.5b underscore the ability to 

identify ions detected from reactions based on their PIE curves.  

 

Figure 2.2.5b: Experimental PIE (red circles) of m/z = 58 product from tert-amyl 

methyl ether photooxidation37 matched with literature PIE from Cool et al.38 and 

Wang et al.39 

 

2.3 The Cationic Potential Energy Surface 

2.3.1 Isomerization and Unimolecular Dissociation Basics 

As described in section 2.2.4, when a molecule is excited by an 

electromagnetic wave, oscillations can be induced. If the frequency of the 

electromagnetic wave is greater than the energy required to remove an electron from 

the neutral, the molecule will be ionized and will exist in the cationic state as a radical 

if the cationic state is bound. Some species do not have a bound cationic ground 

state and dissociatively ionize at the threshold. 



37 
 

To expand on Figure 2.2.4a further, the geometry of the neutral plays a large 

role in the immediate structure of the cation close to the ionization threshold since 

the ionization process is very fast with respect to any nuclear or bond shifting. When 

a vertical transition occurs, the resultant cation can exist on the PES in a specific 

vibronic state that has a geometry very similar to the neutral. The associated local 

minimum may not necessarily be the global minimum on the cationic PES. On the 

cationic PES there may be rotational and isomerization barriers that are accessible 

with vibrational excitations as a result of increasing photon energy.  

In Figure 2.3.1a, for example, the PES shows the isomerization pathways of both cis 

and gauche conformations of cationic propanal, where the filled circles represent the 

Franck-Condon points with the respective neutral conformations.40 There is a small 

interconversion barrier between gauche and cis forms in the charged state, and 

propanal is able to restructure from one to another if the appropriate amount of 

excess energy is available. Interestingly, when enough energy is available for 

dissociation, Kim et al.40 have reported that the ultrafast dynamics of propanal in the 

excited state occur in the isolated regions on the potential energy surface, and thus 

the interconversion is not competitive with the dissociation process and conformer-

specific products are formed as a result. At these higher energies, propanal is also 

able to isomerize prior to unimolecular dissociation, as shown in Figure 2.3.1b.  

Isomers have been reported as intermediates in various ab initio and experimental 

photodissociation studies.41-43 
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Figure 2.3.1a: Two-dimensional diagram of the propanal cation pathways from the 

Franck-Condon point (solid circle for the cis and gauche conformer).40 

 

Figure 2.3.1b: Energy-level diagram for isomers and products of propanal cation 

dissociation (relative energy, E, to the cation ground state).40 
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Regardless, if photon energy increases and the ions possess sufficient 

internal energy, they can fragment in a process known as photodissociation.44  

AB + hv  AB+·  A+ + B·           (2.3.1a) 

AB + hv  AB+·  A+· + B           (2.3.1b) 

The first step of equation 2.3.1a and 2.3.1b is identical to the ionization equation 

2.2.2a, where the neutral molecule M is replaced with AB here for simplicity. The 

molecular radical ion AB+· is commonly referred to as the parent ion, while the 

detected cationic fragment A+ is known as the daughter ion. Note that the 

dissociation of a molecular cation radical will lead to one cationic fragment and one 

neutral. Either a neutral radical fragment (equation 2.1.6a) or a neutral molecular 

fragment (equation 2.3.1b) is released, depending on the dissociation dynamics. As 

mass spectrometers are only able to detect ionic species, the neutral fragment is 

never detected in mass spectroscopy.  

If there is no barrier to dissociation, as shown in Figure 2.3.1b, the energy 

required to form the fragment products is known as the bond dissociation energy 

(BDE) and can be calculated using the following relationship:  

 BDE = Efragments - Eparent           (2.3.1c) 

In this case, the pathway is “uphill” and the energy at which the first detection of 

daughter ions occurs is simply equal to the BDE above the molecule’s AIE:  

 AE = BDE + AIE            (2.3.1d) 

AE is the appearance energy of the cationic fragment, also often denoted as E0.44, 45 



40 
 

 

Figure 2.3.1b: Top: Diagram showing appearance energy determination with and 

without reverse barriers using terms described in this thesis. The figure was 

recreated based on information compiled from various sources.1, 44-46 Bottom: Energy 

diagram for F-loss from C2H3F+· without reverse barrier (left) and HF-loss from 

C2H3F+· with a reverse barrier (right).45 E0 is 0 K appearance energy and Erb 

represents the energy of the reverse barrier.  
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2.3.2 Photodissociation and Thermodynamics 

Thermodynamics can be coupled with the experimentally-derived AEs to provide 

useful thermochemical information regarding either of the fragments or the neutral 

molecule itself.47, 48 The total enthalpy of the dissociation reaction is effectively equal 

to the AE and can be represented by:  

∆ H0K = ∆fH◦
0K(A+) + ∆fH◦

0K(B·) - ∆fH◦
0K(AB)         (2.3.2a) 

If heats of formation of two of the three species involved in photodissociation are 

well-known, the third can be determined as a result.47 Equation 2.3.2b represents the 

relationship between the appearance energy (effectively the heat of the reaction) and 

heats of formation of species involved when there is no barrier to dissociation:  

∆fH◦
0K(A+) = AE - ∆fH◦

0K(B·) + ∆fH◦
0K(AB)         (2.3.2b) 

Many vacuum ultraviolet photoelectron spectroscopy (VUVPES) experiments and 

photoelectron photoionization coincidence spectroscopy (PEPICO) experiments 

measure appearance energies at 0 K, while literature values are typically reported at 

298 K. Thus, the conversion between 0 K and 298 K enthalpies is necessary: 

 ∆fH◦
0K = ∆fH◦

298K + Σ(H◦
298K - H◦

0K)elements – (H◦
298K - H◦

0K)molecule       (2.3.2c) 

In equation 2.3.2c, the H◦
298K - H◦

0K values are known for the elements49 and the heat 

content functions corresponding to small molecules can be calculated theoretically 

using statistical thermodynamic expressions. The calculations are elaborated in-

depth in a following section.  
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 If the dissociation channel possesses a barrier, then the AE of the cation is 

determined by:  

 AE = BDE + AIE + reverse barrier          (2.3.2d) 

The reverse barrier is effectively the energy difference between the sum of the 

product fragments and the transition state (TS) that leads to dissociation. More 

formally, the reverse barrier is described as the activation energy of the reverse 

reaction.1 The AE can be simplified in equation 2.3.2e where E(A -- B)+·‡ is the 

energy of the activation complex and E(AB) is that of the neutral species. This results 

in the relative energy, or height, of the dissociation barrier to the neutral species, 

which is the total energy necessary in order for the fragment to form (or, 

experimentally “appear”). 

 AE = E(A – B)+· ‡  - E(AB)           (2.3.2e) 

2.3.3 Detecting and Visualizing Fragments  

 In photoionization mass spectrometry, the fragment ion intensities are 

detected as a function of photon energy. The PIE curve of the parent ion is 

measured and the adiabatic ionization energy, as well as the appearance energy of 

each daughter ion, can be determined using an exponential function 1-ebE as 

described by Ruscic and Berkowitz.50 The relative difference between the AIE of the 

parent molecule and the AE of the daughter ion provides insight to the energy 

required for photodissociation, as described in the previous section by equation 

2.3.2d. Depending upon the calculated energies of the fragments, it is possible to 

predict if a dissociation channel possesses a barrier or not.  
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Figure 2.3.3a: The parent ion, C2H4O4
+·, and the three daughter ions that result from 

photodissociation via H-loss, CO-loss, and HO2-loss channels.51 

Studies have used synchrotron photoionization mass spectrometry as a 

method to observe and identify fragments, as well as report possible mechanisms for  

molecular photodissociation.24, 52 Figure 2.3.3a is a representation of the 

photoionization of dimethyl ether (red boxes) and the three daughter ions that are 

detected.51 The approximate AEs were determined and fragments were assigned.  

Breakdown diagrams are considered to be more useful, and are therefore 

more prevalent in the analysis of photodissociation processes. These diagrams, 

much like one shown in Figure 2.3.3b, are plots of the fractional abundance of each 

ion detected as a function of photon energy. Theoretically, these can be generated 

by photoionization mass spectrometry, but it is much more powerful in PEPICO 

(photoelectron photoion coincidence) spectroscopy experiments. In these 



44 
 

experiments, both the ions and the ejected photoelectrons are detected in 

coincidence. The electron and ion signals serve as the “start” and “stop” parameters 

for the ion time-of-flight distributions, which provide useful kinetic information.  

 

Figure 2.3.3b: Breakdown diagrams generated from PEPICO experiments of 

CH2COCH3
+· (black) and CD2COCD3

+· (red) photodissociation.53  

 

Sophisticated computational software, such as MiniPEPICO,54 calculate 

necessary density and number of states functions, as well as internal energy 

distributions to yield a breakdown diagram that can be modeled with the 

experimental data.  
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Figure 2.3.3c: A block diagram showing the parameters taken into account to model 

unimolecular reactions.55  

The process by which MiniPEPICO obtains accurate bond dissociation 

energies is shown in Figure 2.3.3c. MiniPEPICO enables the experimental 

dissociation rates to be extracted using Rice, Ramsperger, Kassel, and Marcus’s 

RRKM theory56-58, as well as the variational transition state theory (VST),59 and 
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simplified statistical adiabatic channel model (SSACM).60 The RRKM rate constant 

as a function of internal energy (E) is given by  

𝑘(𝐸) =
σ𝑁‡(𝐸−𝐸o)

ℎ𝜌(𝐸)
             (2.3.3) 

where N‡(E – E0) is the number of states of the TS at excess energy above the 

dissociation barrier E0, ρ(E) is the density of states of the molecule, h is Planck’s 

constant and σ corresponds to the reaction degeneracy.55 The statistical approach to 

this theory has been described in great detail.60, 61 

 

2.4 Computational Approaches and Applications 

 The potential energy surfaces (PES) described in section 2.1 describe 

changes in energy as a result of molecular orientation. The Born-Oppenheimer 

approximation suggests that the electronically adiabatic energy (E) is determined by  

𝐸 = 𝑇𝑅 +  𝑉𝑁𝑅(𝑅) + 𝐸𝛾
(𝑒𝑙)(𝑅)              (2.4a) 

where R is the 3N – 6 independent coordinate set, TR is the nuclear kinetic energy, 

and VNR(R) and Eγ
(el)(R) are the nuclear Coulombic repulsion energy and electronic 

energy.62 When the molecule is in the electronic ground state, the quantum number 

(γ) is equal to 1. In this case, the potential energy for nuclear motion is:  

 𝑉(𝑅) =  𝑉𝑁𝑅(𝑅) + 𝐸1
𝑒𝑙(𝑅)              (2.4b) 

Since Eγ
(el) is an eigenvalue of the electronic Hamiltonian, the PES can be obtained 

by theoretical electronic structure calculations.62 
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When computations terminate successfully, the input structures are 

“optimized” to fall to a local minimum on the PES. It should be noted that all 

minimization algorithms are able to find local minima based on input geometry, 

however there is never a guarantee a specific optimized structure is the global 

minimum. This is especially true for larger molecules, which possess substantially 

more degrees of freedom. 

There are many computational approaches available to solve the Schrodinger 

equation and find minima on the PES. Ab initio calculations, for example, are solely 

based on theoretical principles and exclude any experimental influence.62 Hartree-

Fock (HF) theory is a well-known ab initio method, but is considered to be inaccurate 

in that it neglects electronic correlation. Zador et al.63 explains simply that the “best 

strategy to increase the accuracy of electronic structure calculations is to balance the 

level of electron correlation and basis set” as described in Figure 2.4.  

 

Figure 2.4: Diagram explaining the best computational approaches for determining 

accurate electronic structure calculations (right) and theoretical kinetics (left).63 
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   Molecular geometries of all structures involved in the work presented in this 

thesis are completed using the CBS-QB3 composite method64-66 in the Gaussian 09 

software suite.67 These energy calculations are computationally inexpensive and 

have quite high accuracy with a mean absolute deviation (MAD) of 1 kcal mol-1 (or 

0.05 eV).68, 69 CBS methods are able to obtain highly accurate geometries and 

energies in that they extrapolate an infinitely large basis set by using a linear 

combination of atomic orbitals (LCAO-MO) approximations.  CBS-QB3 calculations 

have been used to determine low-energy structures of novel superalkali monomers 

and clusters, for example, which may pave way for future use in an extensive 

number of real-world applications.70, 71 

Although it is never known if a structure is the global minimum, it is possible 

to scan the PES for other local minima in search for lower-energy conformations. If 

another minimum is observed on the PES with a lower total energy, the original 

conformation is certainly not that of the global minimum. Throughout the work 

presented in this thesis, pertinent PES were scanned as functions of bond lengths 

and bond angles at the B3LYP/6-31G(d) level/basis set — both to verify as best as 

possible that the lowest-energy conformation was used, as well as to determine the 

dynamics of unimolecular or bimolecular reaction pathways.  

With respect to transition state calculations, the non-real (negative) frequency 

corresponds to the motion over the saddle point on the potential energy surface. The 

approximate barriers can be found by scanning the PES along a reaction coordinate, 

or by using the Synchronous Transit-Guided Quasi-Newton (STQN) method 
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involving either QST2 or QST3 inputs.72 73 The energetic determination of the 

structure can be calculated in a similar way for maxima as they can for minima using 

CBS-QB3, however using the keyword opt=TS in the Gaussian input script. The 

imaginary frequency can be inspected using GaussView74 and intrinsic reaction 

coordinate (IRC) calculations to verify direct relationships between reactant and 

product(s).75, 76  

As computations are able to optimize structures in the neutral state, as well 

as charged states, the overlap of eigenstates can be witnessed. In which case, the 

optimized geometries resulting from calculations of the anion and neutral can be 

compared to experimental results from negative ion photoelectron spectroscopy. 

Analogously, the optimized structures of the neutral and cationic species can be 

used to simulate a photoelectron spectrum, where the Franck-Condon factor can be 

roughly assessed. The simulated PE spectrum can be superimposed onto an 

experimental spectrum to validate the identity of a species if there is a match. This is 

also true for photoionization efficiency curves, which can be obtained as the 

integration of the photoelectron spectrum (total ion signal as a function of energy), or 

directly from experimentation. Figure 2.4 shows an experimentally-obtained PIE 

curve with multiple photoelectron spectrum simulations superimposed onto the 

image to help determine its identity. The CH2OO (Criegee) intermediate, highly 

important in combustion processes, was verified via the computational PE spectrum 

simulation in that the onsets and shapes of the curves were very agreeable. 
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Figure 2.4: The experimental photoionization efficiency spectrum of the m/z = 46 

product of CH2I with O2 (black lines with open circles) compared to simulated spectra 

of CH2OO, dioxirane, and formic acid (solid blue line, dashed red line, and red 

circles, respectively).77 The calculated spectra were generated using CCSD(T)/CBS 

calculations.  

Thermochemical calculations are especially useful in the analysis of 

unimolecular photodissociation reactions without reverser barriers. As described in 

sections 2.3.2 and 2.3.3, PEPICO experiments provide precise appearance energies 

of fragments resulting from photodissociation. Most PEPICO experiments are 

conducted at 0 K, and thus the AE is effectively the enthalpy of the reaction at 0 K 
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(equation 2.3.2b). Using equation 2.3.2c to convert to 298 K for comparison with 

literature values or to report new experimental findings, the heat content functions 

can be calculated for small molecules: 

H◦
298K – H◦

0K = Hcorr – εZPE              (2.4c) 

In the above equation, the enthalpy correction for the molecule (aka heat content 

function) is the difference between the thermal correction to enthalpy and the zero 

point energy, both of which are provided in the output file of the successfully 

terminated computation. Since the CBS-QB3 (0K) energy is ZPE-corrected, and the 

CBS-QB3 enthalpy includes the Hcorr value, these two numbers can also be used and 

the result is comparable to equation 2.4c.78 This is useful in that the 0 K appearance 

energy can be used to determine an unknown heat of formation if the heats of 

formation of two of the three species in equation 2.3.2b are well-known. 

 However, if the heats of formation are unknown, computational analysis 

provides a powerful alternative. The CBS-QB3 enthalpy = X line in the Gaussian 

output file corresponds to a relative energy used in the determination of a heat of a 

reaction at 298 K:  

∆ H298K
(calc.)

 = ∆fH◦
298K(A+)(calc.)

  + ∆fH◦
298K(B·)(calc.)

  - ∆fH◦
298K(AB)(calc.)         (2.4d) 

Since the calculated enthalpy of reaction can be directly compared to literature using 

reported heats of formations of all species involved, it is also possible to combine 

both literature heats of formations and calculated heat of reaction to solve for an 

unknown value, labeled accordingly above each term:  
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 ∆ H298K
(calc.) = ∆fH◦

298K(A+)(unknown)
  + ∆fH◦

298K(B·)(lit.)
  - ∆fH◦

298K(AB)(lit.)         (2.4e) 

In this hypothetical case, the ∆fH◦
298K(A+) is not well-known in literature and is of 

interest to determine.  

 It is notable that this is only possible when the number and types of bonds 

are equal on both sides of the equation. It is best when a network of reactions is 

used to determine an average heat of formation for the species of interest. These 

types of calculations are known as isodesmic reaction calculations. A number of 

studies have been completed using isodesmic reaction networks, either to predict or 

validate experimentally measured heats of formations.79, 80 
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Chapter 3: Experimentation 

3.1 Photooxidation Reactions at Lawrence Berkeley National Lab 

 Cl-initiated photooxidation experiments of small-chain methyl esters 

presented in Chapter 4 of this thesis were carried out at the Chemical Dynamics 

Beamline 9.0.2 using a multiplexed photoionization mass spectrometer (MPIMS) at 

the Lawrence Berkeley National Lab (LBNL). The intent behind these experiments 

was to characterize autoignition combustion behavior of methyl esters as a function 

of the length of the main aliphatic chain. As described in section 1.4 of this thesis, the 

autoignition characteristics of particular biofuels and biofuel blends can greatly 

influence the performance of homogenous charge compression ignition (HCCI) 

engines, which can have a profound impact on redirecting the current ecological and 

atmospheric climate crisis. 

3.1.1 Excimer Laser and Cl· Production 

In actual HCCI engines, H2O2 thermally decomposes to provide the OH 

radical “igniters” for the reaction — previously presented as the initiation step of 

Figure 1.4b in the autoignition scheme. Either ·OH or Cl· can be used in the initiation 

step to abstract a hydrogen from the hydrocarbon (RH) to generate the initial radicals 

(R·) that will react with O2. In the investigation of methyl esters presented in Chapter 

4 of this thesis, Cl· were used to initiate the reaction.  

The chlorine radicals can be generated via photolysis of Cl2 using an 

unfocused excimer laser. In general, many excimer lasers generate ultraviolet light 
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by supplying electric current through a mixture containing a noble and a halogen gas, 

although some simply use a pure noble gas. Common noble gases used include Kr, 

Ar, and Xe, and their mixtures are made using F2, Br2, or Cl2. While noble gas 

molecules are unbound in the ground state, the appropriate combination of electric 

current and pressure generates excited dimers, or “excimers”. This term has now 

been generalized to include all molecular ions that are bound in the excited state, 

while unbound in their ground state. Due to the instability of these excimers, their 

lifetime lasts on the order of nanoseconds as they quickly decay. Photons are 

released in the form of ultraviolet light upon relaxation to the ground state.1 Because 

the ground state is highly unstable and not bound, it dissociates on the order of 

picoseconds.  

The wavelength of UV light produced is dependent upon the mixture that is 

excited and the laser band gap between states, as shown in Figure 3.1.1.  

 

Figure 3.1.1a: Potential energy diagram of the ground (unbound) and excited 

(bound) state of either KrF or XeF to yield a laser band with wavelength of 248 nm or 

351 nm, respectively.2, 3  
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For example, the relaxation of excited and unbound xenon fluoride ions produces 

photons at wavelength of 351 nm. This mixture is often used at the ALS, as it is 

sufficient for the photolysis of molecular chlorine to form the respective radicals. 

A general schematic of an excimer laser and its parts is shown in Figure 

3.1.1b. The laser cavity consists of the gas mixture used (such as Xe and F2), as well 

as any additional buffer gas, such as He or Ne. An electric current from one 

electrode to another passes through the gas, enabling the electrons to excite the 

molecules. If the energy is sufficient, the noble gas and halogen molecules are 

ionized and rearranged into bound excimer species. The release of photons as these 

excimers decay is shown as output in Figure 3.1.1b, the energy of which can be 

determined by a wavelength meter. 

 

Figure 3.1.1b: A general schematic of an excimer laser.4  

Excimer molecules can relax to the ground state via two different processes, 

spontaneous emission or stimulated emission. In spontaneous emission, the bound 

excimer molecules automatically decay through photon loss as described above. 
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However, it is possible that a photon emitted from the relaxation of one excimer can 

interact with another excimer and induce relaxation. In this case, the two photons 

travel in the same direction with the same energy and the photon beam will be 

amplified. In addition, if stimulated emission is substantial, it is possible that more of 

the gas molecules will exist in the excited state as opposed to the ground state. This 

is known as population inversion.5, 6 A population inversion is beneficial in the sense 

that the laser efficiency (lasing action) is increased, as more molecules are excited 

with the same electric current supplied.   

The excimer laser at the Chemical Dynamics Beamline 9.0.2 at the Advanced 

Light Source is operated at 4 Hz with a fluence of 10-60 mJ cm-2 and pulse-width of 

20 ns. These specifications, along with the total flow rate of the gas at 400 cm s-1, 

allows for the analysis of temporal behavior for up to 150 ms. 

3.1.2 Sample Preparation, Bubbler 

 The hydrocarbons of interest are commercially obtained, most commonly 

from Sigma-Aldrich, in liquid form. The samples are first purified via the freeze-pump-

thaw method using a bubbler, as shown in Figure 3.1.2a. The bubbler is connected 

to a vacuum pump through a steel line with an Ultratorr connector and Swageloks. 

The sample is first frozen using a vat of liquid nitrogen, and then the valve to the 

vacuum is opened to remove any dissolved gas in the sample, as well as air in the 

bubbler. Once the solid begins to melt, the vacuum valve is shut and time is provided 

for thawing. This process usually is repeated two more times to ensure the vapor is 

purely that of the sample.  
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Figure 3.1.2a: Photo taken on April 25, 2014 in the chemical sample preparation 

room at the LBNL. The bubbler is sealed shut and connected to vacuum and 

contains the liquid hydrocarbon that is frozen in the liquid nitrogen vat (blue).  

 The steel line shown in Figure 3.2.1b is connected to MKS transducers and 

Baratron® digital readers, one for high pressure up to 10,000 Torr (left, top) and 

another for low pressure between 1 – 10 Torr (left, bottom). Cylinders on the right 

side of Figure 3.2.1b have been “flushed” with up to ~2500 – 3000 Torr of helium 

several times to remove any “sticky” gas molecules from previous experiments. 

Then, they have been vacuum pumped for a period of time until the pressure 

stabilizes around ~0.001 – 0.004 Torr. These vacuum-pumped cylinders are 

connected to the setup with closed valves. When the freeze-pump-thaw method is 

finished, the valves to the clean cylinders can all be opened slowly, in which case the 

liquid sample is able to bubble and the vapor is effused into the cylinders. The vapor 
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pressure of the sample in the cylinder should be documented. The cylinder is closed, 

the lines are vacuumed to remove extra molecules. 

 

Figure 3.2.1b: The fume hood in the chemical sample preparation room at the 

LBNL. Empty cylinders (right) are connected to a vacuum pump system and two 

MKS pressure transducers and Baratron® digital pressure readers. The top digital 

reader is connected to high-pressure MKS transducer, up to 10,000 Torr. The bottom 

is connected to low-pressure MKS transducer, which precisely reads pressures from 

1 – 10 Torr. 

A high-pressure cylinder of helium is connected to the main line with the 

pressure gauges and valves. Helium can be dispensed into the gas cylinder 

containing the sample to reach a 1% sample partial pressure. Since the flow rate of 

the gas should be constant, and the experiments can last up to several hours 

depending on the measurements desired, the pressure of the tank should be 

sufficient for the need. If the vapor pressure of the sample is too low, adding helium 

to reach a 1% concentration may result in a total pressure too low to sustain the 
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tank’s life for experimentation. In these cases, a greater amount of helium is required 

to ensure the total pressure meets the needs of the experiment. Usually, between 

2,000 and 2,400 Torr is sufficient. The cylinders are then brought to the beamline for 

experimentation. 

3.1.3 The Schematic/Apparatus 

 Calculations and literature research should be conducted prior to conducting 

experiments in that the approximate adiabatic ionization energy (AIE) is used to 

decide the range in photon energy for photoionization. Typically, it is also good 

practice to take “shots” at a few different energies to determine if the signal is 

sufficient for analysis. Absolute PIE scans are taken without the photolysis laser, i.e., 

no reaction is occuring. They are used to obtain the absolute photoionization 

efficiency curve of the parent molecular ion and any fragment ions that may result. 

This is done when calibration gas (a known concentration of ethane, propene, and 1-

butene) is flowed along with the sample and ionized at the end to determine relative 

photoionization cross sections.  

A cross section view of the MPIMS is displayed in Figure 3.1.3.7 For the 

bimolecular reactions, the hydrocarbon sample of interest is flowed with oxygen, 

chlorine, and helium buffer gas into a heatable, 62 cm long slow flow quartz tube with 

a 1.05 cm internal diameter.8-10 The flow rate of all gases are measured and can be 

controlled with calibrated mass flow controllers (MFCs). Using the measured flow 

rate of the reactants, the concentration can be determined by  
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𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = (3.24 × 1016)(𝑃) (
𝐹𝑅

𝐹𝑇
) (

𝑇

298.15
)

−1

        (3.1.3) 

where FR is the flow rate of the reactant, FT is the total flow rate, and T is the 

temperature of the reactor. The concentration can be determined in units of 

molecules cm-3.  

 

Figure 3.1.3:  The multiplexed chemical kinetics orthogonal time-of-flight mass 

spectrometer.11 

The mixture flows into the reactor tube where a 351 nm excimer laser can 

generate Cl· from Cl2. There, newly-generated hydrocarbon radicals are formed via 

H-abstraction and can react with O2. The tube is insulated by 18 µm thick Nichrome 

tape for thermal insulation and temperature uniformity. The temperature of the 

reactor can be set and measured using a closed-loop circuit.10 The pressure is also 

maintained by a capacitive manometer and controlled with closed-loop feedback 
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valve in conjunction with the Roots pump, which is a 3200 L s-1 oil-free 

turbomolecular pump.7 The pressure is maintained typically at either 4 Torr or 8 Torr. 

The continuous gas flow of 400 cm s-1 and the 4 Hz repetition of the excimer laser 

ensure that a fresh sample is introduced into the reactor tube for reaction and 

detection. 

 The opening approximately halfway down the quartz reactor tube is 

approximately 650 µm in size (Figure 3.1.3). A small portion of the gaseous mixture 

flows through the pinhole, forming an effusive molecular beam at a slight angle. As 

such, a 0.15 cm diameter skimmer is placed 0.2 – 0.3 cm downstream from the 

location of the pinhole to direct the molecular beam to the differentially pumped 

ionization chamber.7  

 Once in the ionization chamber, the molecular beam of excess reactants and 

photoxidation products are ionized with synchrotron radiation and are subsequently 

detected. Typically, there are 150 – 250 laser shots at each particular photon energy 

and the energy is scanned in step-sizes of 0.025 eV. Two additional vacuum pump 

systems of 1600 s-1 and 700 L s-1 are used for the ionization and detection regions.  

3.1.4 Vacuum Pumps 

Vacuum pumps are essential to ensure that the regions of the apparatus 

remain contaminant-free. Three turbomolecular pumps are used in the experimental 

setup. The largest vacuum pump, a 3200 L s-1 turbomolecular vacuum coupled with a 

Roots pump and backing scroll pump, is located at the end of the slow flow reactor 
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tube. A 1600 L s-1 pump is placed in the ionization region and a 600 L s-1 is in the 

detector region. 

Turbomolecular pumps are systems of moving and stationary blades, termed 

“rotors” and “stators,” respectively. These are arranged in levels.12 As the gas 

molecules enter the vacuum, the blades hit the molecules and provide momentum 

toward a stator due to the angle of the blades (Figure 3.1.4a). The stator directs 

them to the next rotor, thereby moving them further along in a single direction toward 

higher pressure. These pumps aim to compress the molecules to atmospheric 

pressure. The efficiency of the turbopumps can be expressed in equations 3.1.4a 

and 3.1.4b, in terms of the compression ratio, K: 

𝐾 =  
𝑃𝑜𝑢𝑡𝑙𝑒𝑡

𝑃𝑖𝑛𝑡𝑎𝑘𝑒
                   (3.1.4a) 

𝐾𝑚𝑎𝑥 =  {𝑒𝑥𝑝 [
√𝑣𝐵𝑀

√2𝐾𝐵𝑁𝐴𝑇
] 𝑓𝜙}

𝑛

           (3.1.4b) 

where P is the pressure at the outlet and inlet, M is the molar mass of the gas, vB is 

the average tangential velocity of the blades, T is the temperature, NA is Avogadro’s 

number, KB is Boltzmann’s constant, f(ϕ) is a function of the blade angle, and n is the 

number of the blades in the pump.13, 14 From Equation 3.1.4b it can be understood 

that the compression ratio is low for molecules with low molecular weight. The 

pumping efficiency, however, can be increased with higher rotational speeds (vB).  

 The turbomolecular pumps are backed by dry scroll pumps, which use 

interleaved spiral-shaped scrolls to pump the gas molecules. The two scrolls are 

aligned on top of one another. One of them stays fixed while the other one oscillates 
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over it in a circular motion, but the scroll itself does not rotate. Figure 3.1.4b 

visualizes this movement. Once the inlet connection is closed, the trapped gas is 

compressed by the “orbiting” of the scroll until it reaches a high pressure. The gas is 

able to escape at the center of the spiral, shortly after which the inlet is opened to 

allow the next sample to be exhausted. Because the scroll pumps are oil-free, the 

contamination to the system is significantly minimized. These pumps have a speed 

from 20 – 50 m3 h-1 with an operational range of 1000 – 10-2 mbar.10 

 

Figure 3.1.4a: The gas molecules are forced from the inlet toward the outlet in one 

direction.15  

 

Figure 3.1.4b: The movement of a scroll pump (left) and the external view (right).16 
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Essentially, the Roots pump that is used with the 3200 L s-1 turbomolecular 

pump contains two rotors in the shape of an “8”. These pieces rotate in oppose 

directions, but are separated enough from one another that they never gain contact. 

They are labeled as (4) in Figure 3.1.4c.  

 

Figure 3.1.4c: The labeled components of a Roots pump.17  

The gas is moved from the inlet port (3) to the outlet port (2) as the rotors 

rotate through the phases shown in Figure 3.1.4d.17 In Phase 1 the rotors take in a 

small volume of gas, and in Phase 5 the gas is expelled to the exhaust. If they rotate 

with a very high velocity, high volumes of gas can be evacuated. In fact, the Roots 

pump system has a range of 75 to 30,000 m3 h-1 with operating range from 10 to 10-3 

mbar total pressure.3 
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Figure 3.1.4b: The phases of a Roots pump.17 

3.1.5 Photoionization Source  

The Advanced Light Source at the Lawrence Berkeley National Lab is a third-

generation synchrotron.  Electrons are initially generated by the electron gun, where 

electrons are made at the cathode by thermionic emission from heated barium 

aluminate.3 The electron gun is one component of the linear accelerator (Linac). 

Through a series of electric fields, the speed of the electrons is increased, and they 

are subsequently lead into the booster ring where they are further accelerated to 

nearly the speed of light (Figure 3.1.5a). Finally, the electron beam is directed to the 

1.9 GeV electron storage ring, where the electrons continue to travel circularly with 

the aid of undulators.  

The shape of the ring is not exactly circular. In fact, it is dodecagonal, and to 

keep the electrons from colliding with the wall there are insertion devices known as 

undulators. These are bending magnets with alternating poles that are able to 

change the direction of the electrons. Synchrotron radiation is emitted with each 

change in electron trajectory (Figure 3.1.5b).   
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Figure 3.1.5a: General schematic of electron generation, storage, and light 

production at the Lawrence Berkeley National Lab.  

        

Figure 3.1.5b: Left: the bending of an electron beam due to the effect of undulators, 

such as those used at LNBL. Right: At each turn of electron beam, radiation is 

emitted 
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Each of the beamlines at the ALS are positioned at the undulators, and the 

radiation can be harvested from the storage ring. To determine the amount of photon 

energy released from an undulator, equation 2.2.2b is reintroduced here as 3.1.5a 

for clarity:  

E = hv              (3.1.5a) 

E is the photon energy, h is Plank’s constant and v is the frequency of the photon. 

Note that frequency is also the inverse of wavelength, λ:  

 𝑣 =  
1

𝜆
             (3.1.5b) 

The wavelength (λx) of synchrotron radiation obtained from the undulator can be 

written as 

 𝜆𝑥 =  
𝜆𝑢

2𝛾2 (1 +  
𝐾2

2 
+ 𝛾2𝜃2)           (3.1.5c) 

where λu is the wavelength of the magnetic field alternating along the undulator 

based on spacing between the magnets, γ is the energy of the beam, θ is the 

direction of radiation emission, and K is the undulator strength parameter.18 Figure 

3.1.5c presents a schematic relating the variables, as provided by the Advanced 

Light Source.19 K can be defined by: 

𝐾 =  
𝑒𝐵0𝜆𝑢

2𝜋𝑚0𝑐
             (3.1.5d) 

In the above equation, e is the charge of the electron, m0 is the mass of an electron 

at rest, c is the speed of light, and B0 is the strength of the magnetic field.  
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Figure 3.1.5c: Synchrotron radiation generated at the ALS as a result of bend-

magnets and undulators.19 

Equations 3.1.5c can be combined with equations 3.1.5a and 3.1.5b to yield 

the following equation provided by Margaritondo3, 20: 

𝐸 = (
2ℎ𝛾2

𝜆𝑢
)(

1

1+ 
1

2
𝐾2+ 𝜃𝑢

2𝛾2
)           (3.1.5e) 

The period of the undulators at the Advanced Light Source is 10 cm, which 

provides a flux of 1016 photons s-1 (Figure 3.1.5a).7 The beamline utilized for our 

studies is the Chemical Dynamics Beamline (9.0.2), which has a windowless gas 

filter of 30 Torr of either Ar or Kr to remove higher-order harmonic photons from the 

undulator.21 Other noble gases are available at the ALS for use upon request, 
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including helium, neon, and xenon.22 The extent of suppression of the higher-order 

harmonic photons is calculated by Beer’s Law:  

𝐼

𝐼0
= 𝑒−𝜎𝐼𝑁              (3.1.5f) 

I is the transmitted photon intensity, I0 is the incident photon intensity, l is the length 

of the gas cell, N is the density of the gas and σ is the photoabsorption cross section 

of the noble gas.22, 23 

The light then reaches a 3 m off-plane Eagle monochromator. Figure 3.1.5d 

shows the off-plane Eagle monochormator used at the ACO (Anneau de Collisions 

d’Orsay) light source in France and is comparable to the one used at the ALS in 

Berkeley.24   

A monochromator is an optical system that enables the selection of a narrow 

band of wavelengths from a much wider range at the input. While the undulator is 

able to roughly extract a selected energy of radiation by reducing the spacing 

between the magnets (λu), the monochromator enables the synchrotron light to be 

focused to specific, monochromatic beams with a desired wavelength corresponding 

to an energy in the range of 7.2 – 25.4 eV. 

In Figure 3.1.5d, the synchrotron radiation generated from the undulator is 

directed to a set of diffraction gratings through a gas filter with the aid of toroidal 

mirrors. These mirrors simply help to focus the light through the gas filter and 

entrance slit.  
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Diffraction gratings are a series of parallel and closely spaced grooves carved 

into a reflective surface, such as glass or mirror, and a general schematic is 

represented by Figure 3.1.4e. 

 

Figure 3.1.5d: The schematic of an Eagle off-plane beamline Optical Layout24 

 

Figure 3.1.5e: Mathematical interpretation of reflective diffraction of polychromatic 

light. Graph courtesy of International Light, Inc.25    
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The equation used to separate polychromatic radiation into specific 

wavelengths is written as  

 nλ = d (sinα ± sinβn)             (3.1.5g) 

where n is the order number of diffraction, λ is the diffracted wavelength 

corresponding to the photon energy desired, d is the distance between the grooves, 

α is the incidence angle measured from the grating normal, and βn is the angle of 

diffraction of the nth order (also measured from the grating normal).26 Thus, the 

diffraction grating can be rotated to diffract monochromatic light at a specific 

wavelength. At the ALS, specifically, the Eagle monochromator can achieve a 

narrower spectral bandwidth (10 – 50 meV) at the expense of photon flux (~ 1013 – 

1014 photons -1).7 Once the radiation has passed through the exit slits of the 

monochromator, the photon beam then intersects the molecular beam inside the 

ionization region. 

3.1.6 Detection: TOF Mass Spectrometer and Channeltron Plates 

 A McLaren time of flight mass spectrometer enables continuous detection of 

reactants and products simultaneously over a range of masses. When the molecular 

beam is crossed with the synchrotron radiation generated by the undulator, the 

molecules will be ionized only if the energy of the light is greater than the ionization 

energy of the species.  

 From Figure 3.1.3, it should be noted that the cations pass through a series 

of DC electric fields to focus the beam towards the end of the flight tube, where they 
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are met by a “puller” and a “pusher”, which are negative and positive electric fields of 

~150 V, respectively, to direct the trajectory of the electrons toward the channeltron 

plates for detection. Because the force imposed on the cations is uniform, and the 

length of the tube remains unchained, then the kinetic energy (KE) obtained is equal 

for each ion. As the inertia of the molecule is dependent upon its mass, then the final 

velocity of each ion is inversely proportional to the square root of its mass-to-charge 

ratio (m/z).27 The kinetic energy of the ion can be determined by equation 3.1.6a: 

 𝐾𝐸 =  
𝑚𝑣2

2
= 𝑧𝑉            (3.1.6a) 

where m is the mass of the ion, v is the velocity, z is the charge of the ion, and V is 

the voltage applied for the electric field.28 Typically, z is equal to 1, as the energy 

used to ionize is not substantial enough for double ionization. The time of flight (Tf) 

required for the ion to travel through the length of the flight tube (L) is: 

 𝑇
𝑓= 

𝐿

𝑣

              (3.1.6b) 

The relationship between the mass and time of flight is visualized in Figure 3.1.6b. 

If multiple ions with known masses are detected at a specific TOFs, then a 

calibration equation can be generated to solve for the intercept and slope. The 

equation for the linear relationship is created by combining equations 3.1.6a and 

3.1.6b together:  

𝑇𝑓 =  𝛼 +  𝛽√𝑚/𝑧             (3.1.6c) 
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In the above linear relationship relating the mass of the ion to its time of flight, α is 

the y-intercept and β is the slope. Once the linear relationship is generated, it is 

possible to detect TOFs of ions of unknown mass, and as long as pertinent 

parameters of the equipment remain constant the m/z of the ion can be determined.  

 

Figure 3.1.6b: A diagram recreated from other sources, showing that as time 

passes, the ions are separated.29  

 Ions with m/z = 14 – 155 are able to be detected at the end of the drift tube 

by a time- and position-sensitive Chevron style microchannel plate (MCP) detector 

with a delay-line anode.7, 30 A side view of the detector is provided in Figure 3.1.6c.  

MCPs are comprised of several channel electron multipliers (CEM) and have 

the function of transferring and intensifying the ionic image. The schematic of how 

MCPs and CEMs work is shown in Figure 3.1.6d. Because CEM tubes are usually 

each a micrometer in diameter and are placed into an array very closely together, as 

well as at an angle with respect to the incoming ion beam, there is a high probability 
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that the ions will hit one of the inside surfaces of a CEM.31 In addition, the surfaces of 

the CEM are made of semiconductor material, and when the ions hit the CEM with a 

substantial velocity, secondary electrons are generated. The greater the velocity of 

the incoming ion beam, the larger the ion cloud that is generated as a result.  

 

Figure 3.1.6c: The components of the TOF mass spectrometer: (D) delay, (A) fast 

analog amplifier, (CFD) constant fraction discriminator, (TDC) time to digital 

converter, (TS) time stamping board, and (DMA) dynamic memory access data 

acquisition card.7  

Another MCP can be lined up close to the output end of the first MCP to 

amplify the electron signal from the first MCP. In that the electrons from the first 
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should hit the wall of the second CEM, a “chevron” orientation (v-shaped) is the 

preferred orientation. If three or more MCPs are “stacked” in the type of alternating, 

zig-zag orientation shown in Figure 3.1.6e, then the electron gain is approximately 

108.32 

 

Figure 3.1.6d: Top left: Image of the microchannel plate (MCP) with the channel 

electron multipliers (CEM). Top right: view of the MCP from above. Bottom right: a 

side view of the CEM showing input ions, the generation of electrons and secondary 

electrons. Note cations can be used for input, as well.33 

 As presented in Figure 3.1.6e, the electron cloud is eventually directed 

through constant fraction discriminators and enter a “start” and “stop” inputs of time 

to a digital converter (TDC).7 The time delays are converted to 14-bit digital numbers, 

and if valid start and stop pulses are received, then a 20 MHz oscillator on a 
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homemade time stamping (TS) board creates a 32-bit number corresponding to the 

time of arrive of a specific ion. The position and time with respect to the laser are 

recorded for each ion onto the computer’s hard drive. The cycle begins 20 ms before 

the laser pulse and lasts 150 ms. 

 

Figure 3.1.6e: Left: one MCP with an array of CEMs. Middle: a chevron-plate 

orientation with two MCPs. Right: a “z stack” orientation of three or more MCPs.3 

3.1.7 Data Analysis 

 A three-dimensional data set is obtained from reactions using the MPIMS, as 

shown in Figure 3.1.7. For each particular TOF of an ion, the m/z can be determined 

using the calibrated linear equation (3.1.6c). As such, a mass spectrum can be 

obtained, with the total ion signal (s) at each photon energy (E). Also, the reaction 

time (t) has been recorded using the “start” and “stop” constant fraction 

discriminators and TDC described in section 3.1.6.  
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Figure 3.1.7: The three-dimensional dataset obtained from photooxidation reactions 

using MPIMS at the Chemical Dynamics Beamline 9.0.2 at the ALS in Berkeley, CA.7 



83 
 

 The analysis begins with IGOR Pro by Wavemetrics.34 The procedure file is a 

custom-made ALS kinetics file that enables higher-level computation to compile the 

data with greater ease. The pre-laser shot (before 20 ms) background can be 

subtracted. A calibrated vacuum ultraviolet sensitive photodiode provides a 

measured photocurrent, enabling the ion signal to be normalized at each photon 

energy.  

The three-dimensional data block is difficult to analyze. However, 2-

dimensional slices of the data can be taken while holding the last variable constant. 

In this way, mass spectra can be visualized. These are the colored spectra in Figure 

3.1.7, with the setting in IGOR pro at “BlueHot256” to show intensity differences. 

Furthermore, vertical slices of the 2D data sets can be taken to arrive at 1D graphs. 

The most useful slices are photoionization efficiency curves (PIE curves), as 

described in the previous chapter of this thesis, and time-traces.  

PIE curves examine the ion signal intensity (S) as a function of photon energy 

(E) at a particular m/z. In this case, the observation of a PIE is independent of time. 

These PIE curves are represented top left image in Figure 3.1.7. As discussed in 

Chapter 2, these curves are highly useful in identifying the ion in that the onset of the 

curve corresponds to the adiabatic ionization energy of the species. In addition, the 

shape of the experimental curve should match the photoionization cross section of 

the molecule. Note that the vertical slices obtained from reactions can possess 

contributions from more than one ion. Equations 2.2.5a and 2.2.5b presented in the 

previous chapter become useful in this scenario. 
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Time-traces, or kinetic traces, show the ion signal intensity (S) as a function 

of time (t). A fraction of the reactants deplete at the time of laser firing, t0, as a 

portion of the initial concentration of starting material is consumed by the H-

abstraction by chlorine radicals. Primary products of interest to combustion 

processes should be detected with an inverse slope equal to the depletion of the 

parent molecule. If the timescale of a product formation is much later, it likely is due 

to secondary reactions (i.e., further reactions with chlorine, self-reactions, etc.). 

Radicals, which are substantially more reactive and short-lived than product 

molecules, possess very sharp kinetic traces, where there is a detection in formation 

followed a sudden depletion. The dotted line in the top right 1D spectrum of Figure 

3.1.6 is symptomatic of radical instability and is a general representation of the short 

lives of these species.  

 

3.2 Aerosol Photoelectron Spectroscopy  

 Research was conducted at the National Synchrotron Radiation Research 

Center in Hsinchu City, Taiwan in the Spring of 2015. The focus of the experiment 

was to determine an effect of an acidic environment on the electronic behavior of 

isoprene and gamma-valerolactone. As aerosol research is a fairly new and 

emerging field of interest, there have been a limited number of studies conducted in 

the fashion reported in this thesis. The aerosol work reported here was inspired by, 

and in collaboration with, Dr. Chia Wang of National Sun Yat-sen University in 

Kaohsiung, Taiwan.35 
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3.2.1 Sample Preparation 

 The samples can be prepared in the chemical instrumentation room along the 

main circumference of the beamline floor. In order to be able to witness any changes 

in photoelectron spectrum as a result of pH, many dilute solutions (sample + H2O + 

HCl) of known concentration (anywhere from 0.01M to 0.25M) are prepared. In some 

cases, alternative solvents such as dimethyl sulfoxide (DMSO) can be used. The pH 

of each solution is measured using a Suntex SP-701 pH meter, as shown in Figure 

3.2.1. 

 

Figure 3.2.1: The preparation of 0.1M isoprene + HCl solution. Photo taken in March 

of 2015 at the NSRRC. 
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3.2.2 The Apparatus and Overall Reaction 

 The overall apparatus is pictured in Figure 3.2.2a, including an aerosol 

source region, a differential pumping region, and the ionization region.  

 

Figure 3.2.2a: The view of the aerosol VUV photoelectron spectroscopy apparatus 

at the BL21B2 beamline at the NSRRC in Hscinchu City, Taiwan.35 

The overall reaction begins with a beam of neon gas flowing from a cylinder 

into the Model 9306 atomizer36 where the pressure is managed by a regulator and 

gauge on the atomizer. The aerosol is generated as the liquid sample is forced 

through small nozzles and the particles are suspended in the carrier inert gas 

through the output nozzle (Figure 3.2.2b). It enters the aerosol source chamber, 

where it proceeds through the adjusted aerodynamic lens (AADL) system for the 

purpose of better size-selection, as well as the formation of a highly collimated beam. 

The average droplet size of the particles is ~100 nm. The aerosol source region is 
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pumped by a turbomolecular pump of 2000 L s-1 and the pressure in the aerosol 

source chamber is maintained at ~10-3 Torr. 

 

Figure 3.2.2b: The atomizer is attached to a pressurized neon cylinder and the 

output it connected to the aerosol source chamber. Photon taken in March of 2015.  

After passing through the aerosol source region, the collimated aerosol beam 

continues through the differential pumping region with a 400 L s-1 turbomolecular 

pump. It enters the ionization region where it crosses with the VUV synchrotron light 

of a particular energy, as defined by the parameters of the monochromator. The 

beam was manually directed using a set of adjustable flanges and visually inspected 

to determine the overlap with the photon beam. In addition, the photoelectron signals 

provided insight to how well the beams intersected. The ionization region is pumped 

with a 1000 L s-1 turbomolecular pump.  



88 
 

Electrons are released upon intersection of the photon and aerosol beams if 

the energy is sufficient for photoionization. A R3000 model (Scienta Omicron)37 

hemispherical electron energy analyzer is installed at 54.7◦ with respect to the 

direction of the photon beam and is used to detect the kinetic energy distribution of 

the ejected photoelectrons.35 The acceptance angle of the analyzer is 10◦. A general 

idea of the direction of the photon beam, aerosol beam, and ejected electron 

trajectory are shown in Figure 3.2.2c. 

 

Figure 3.2.2c: The intersection of the photon and aerosol beams to generate the 

photoelectron beam. The hemispherical electron energy analyzer used at the 

NSRRC is analogous to that drawn in this image. 

If the photon energy of the VUV beam is known (hv), and the kinetic energy 

of the electron is measured, then the electron binding energy can be determined. 

Information on the electronic characteristics of the molecule in question can be 

ascertained as described in the section on photoelectron spectroscopy previously 
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discussed in this thesis (section 2.2.4), and equation 2.2.4d is written again here as 

equation 3.2.2 for clarity:  

eKE = hv – BE               (3.2.2) 

3.2.3 Aerosol Generation and Sizing 

  The prepared samples with specific pHs were added into a TSI Inc. Model 

9305 six-jet atomizer36 (Figure 3.2.3a). This model atomizer has a built-in pressure 

regulator and gauge, and any combination of the six particle-generating atomizer jets 

can be selected at a time. Each of the jets can produce particle concentrations 

greater than 107 particles cm-3 at 6.5 L/min. The particle number concentration and 

total particle output are able to be manipulated, as well.36 The liquid sample can be 

added to the atomizer on the top towards the left and monitored with a window to 

observe the liquid level. The inert gas inlet is located on the right side of the atomizer 

through the pressure regulator and to the atomizer. The outlet nozzle is located at 

the top, from where the aerosol can be transported to the aerosol source region.  

The atomizer is able to use the pressure of the inlet carrier gas to force the 

liquid through small nozzles on any of the six small jets. As it does so, the liquid 

particles are separated into much smaller particles that are able to suspend into the 

carrier gas. To determine the size distribution and number density of the aerosol 

particles, a scanning mobility particle sizer (Model 3936, TSI Inc.) was used along 

with a condensation particle counter (CDC), as well as a differential mobility analyzer 

(DMA). Figure 3.2.3b shows the size distribution among the detected particles 

measured by Su et al. in a recent measurement using cysteine.35 
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Figure 3.2.3a: The six-jet TSI Inc. Model 9306 atomizer used in the photoelectron 

spectroscopic studies at the NSRRC.  

  

Figure 3.2.3b: Size distribution of 0.25 M Cysteine aqueous aerosols, measured by 

the scanning mobility particle sizer. The geometric mean size is 99.5 nm.35  
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 The polydisperse size distribution underscores the need to select the size for 

more precise aerosol investigation. In which case, the output of the atomizer is 

attached to an adjustable aerodynamic lens (AADL).  

Liu et al.38, 39 described the formation of a particle beam by expanding an 

aerosol through a nozzle into an evacuated chamber. The narrowness of the particle 

beam can be improved by utilizing axisymmetric flow contractions and enlargements 

upstream of the nozzle. These contractions and enlargements of aerosol particles 

are known as “aerodynamic lenses.”  

The overall aim of the aerodynamic lenses is to focus intermediate-sized 

particles. The small particles follow gas streamlines and are not focused, while the 

large particles are defocused by the lens. A general schematic with the labeled parts 

is provided in Figure 3.2.3c.  

 

Figure 3.2.3c: Diagram of an aerodynamic lens system.40  
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Consider a steady flow of particles in a carrier gas with radial streamline ro(-

∞) in Figure 3.2.2d. The particle radical position rp(-∞) will typically separate from the 

carrier streamline radial position due to inertial effects. The degree to which this 

occurs is known as the particle stream contraction factor (n), calculated as 

𝑛 =  
𝑟𝑝(∞)

𝑟0(∞)
             (3.2.3a) 

  

Figure 3.2.3d: A closer look at the inside of an AADL. Particle with carrier gas flow 

begins at the left, shown as r0(-∞).38  

In figure 3.2.3d, the fluid or mixture passes through a tube that has an inner 

diameter of D. There is a cylindrical constriction (the lens) with an inner diameter of 

df and a length of Lf. Spacers are the separation distances between lenses. These 

distances should be long enough for allowing the converging and diverging patterns 

of the beams, although there is currently no guideline on the spacer length.40  
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The degree to which the trajectory deviates is mostly due to the Stokes 

number (S). The Stokes number is the ratio of the particle stopping distance at the 

average orifice velocity (u) to the orifice diameter (df).40   It is determined by  

𝑆 =  
𝜏𝑢

𝑑𝑓
=  

2𝜌𝑝𝑑2
𝑝𝐶𝑐𝑚

9𝜋𝜌1µ𝑑3
𝑓

            (3.2.3b) 

where τ is the particle relaxation time, df is diameter of the lens aperture, dp is the 

diameter of the particle, ρp is the particle material density, ρ1 is the carrier gas 

density, µ is the carrier gas viscosity, Cc is the Cunningham slip correction factor, 

and m is the mass flowrate.40 The Cunningham slip correction factor is determined 

using the Knudsen number (Kn) in the following two equations: 

𝐶𝑐 = 1 + 𝐾𝑛𝑝(1.257 + 0.4𝑒
−1.1

𝐾𝑛𝑝)          (3.2.3c) 

 𝐾𝑛𝑝 =
2𝜆1

𝑑𝑝
             (3.2.3d) 

The relationship between the Stokes number (S) and the particle stream contraction 

factor (n) is easily visualized by Figure 3.2.2e. It can be observed that a multi-lens 

system with similar lenses is effective for focusing particles with sizes close to the 

desired size. The spacing, size, and locations of the lenses enable the selection of a 

particle size of interest for use in experimentation, and the Aerodynamic Lens 

Calculator41 can be used in the determination of these parameters.  

The accelerating nozzle is located at the exit of the tube AADL system and is 

depicted at the far right of the schematic shown Figure 3.2.3c. The nozzle is 

important for the regulation of particle beam shape, which is contingent upon the 
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shape of the nozzle itself. The nozzle geometry is cylindrical, and as a result the 

particle is accelerated to an inward direction to form a narrow, low divergence 

beam.38 

The AADL at the NSRRC beamline BL21B2 has an internal diameter of 10 

mm. The inlet nozzle of the AADL is 300 µm, while the four orifices are equal to 5.0, 

4.5, 4.0, and 3.5 mm in diameter with a spacing of 50 mm. The accelerating nozzle is 

3.0 mm. The series of decreasing orifices (by size) enables the bulk of particle-free 

gas to be stripped away, enabling only aerosol particle-containing beams to be 

channeled to a collimated beam. The average size of the aerosol particles in the 

beam is ~ 100 nm.  

 

Figure 3.2.3e: The motion of particles in a three-lens AADL system.38 
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3.2.4 The Photoionization Source 

 The general schematic of the photoionization source at the gas phase 

spectroscopy beamline (BL21B2) at NSRRC is similar to that previously described 

for the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. At the 

synchrotron, electrons are emitted from an injector, which is composed of an electron 

gun and a 50-MeV linear accelerator (Linac), shown on the right side of Figure 

3.2.4a. The beam of electrons enter a booster ring of 72 meter circumference and 

reach 99.999995% the speed of light and are then injected into a storage ring 

through a transport line of 70 m. The storage ring at the NSRRC is hexagonal, as 

opposed to the dodecagonal shape at the ALS. The circumference of the storage 

ring is 120m.  

 

Figure 3.2.4a: A layout of the synchrotron and electron path. Synchrotron radiation 

is emitted in the form of photon beams (blue lines) that extend to the beamlines via 

undulator ports.42 
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The beamlines have different undulators available, depending on the need of 

the experiment. A 3.9 m U9 hybrid model undulator is used at the BL21B2 beamline 

to generate radiation when the electron beams travel through and are bent. The U9 

undulator has a period of 9 cm with a total of 48 periods, the flux at 1012 photons s-1, 

and the photon energy generated can range from 5 to 100 eV.43  

Analogous to the beamline at the ALS, the multi-harmonic synchrotron 

radiation generated by the U9 undulator and magnetic fields should be filtered. Since 

only the first harmonic photons are desirable, a gas cell containing noble gas is used 

to absorb light above the ionization energy of the gas. An image of the light 

absorption cell is provided in Figure 3.2.4b, courtesy of the NSRRC.  

 

Figure 3.2.4b: Schematic of the gas filter that suppresses higher-order harmonic 

light from the undulator before progressing through the entrance slits of the 

monochromator.15  
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The 6 m cylindrical grating monochromator (6-M CGM) provides two energy 

branches that use separate entrance slits, where the low energy branch includes a 

grating angle of 150◦ to provide photon energies from 5 to 30 eV (Figure 3.2.4c). The 

high energy branch includes a grating angle of 130◦ to provide photon energies from 

15 to 100 eV. 

The bandwidth (BW) of a photon beam refers to the range of wavelengths 

(∆λ) about a specific wavelength (λ), and as the light produced by undulators is 

relatively monochromatic the bandwidths are written in units of 1/1000 or 0.1% BW:  

0.1% 𝐵𝑊 =  
∆𝜆

𝜆
                  3.2.4 

 The flux of 1012 photons s-1 generated by the U0 undulator signifies the 

number of photons per second per 0.1% BW, while the brightness of the beam takes 

into account the direction of all photons.44 If photons diverge, the brightness of the 

light is diminished. Alternatively, if photons travel parallel and in the same direction 

then the brightness is much more intense. The brilliance demonstrates the intensity 

of photons able to be focused onto a small area, which is determined by the cross-

section area of the undulator. The smaller the area of the photon source, holding 

divergence and flux constant, the greater the brilliance of the light. The U9 undulator 

produces a brilliance of light on the order of 1016 to 1017 

photons/sec/mm2/mrad2/0.1%BW/200mA, where 200 mA is the ring current. 
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Figure 3.2.4c: The two energy branches of the U9-CGM (cylindrical grading 

monochrometer).Top: lower-energy branch up to 30 eV of photon energy. Bottom: 

higher-energy branch up to 100 eV of photon energy. The radiation source is 

represented by S, HFM is the horizontal pre-focusing mirror, VFM is the vertical 

prefocusing mirror, S1H and S1L are the entrance slits. PMH and PML are the plane 

mirrors, G are the gratings, VRFM is the vertical refocusing mirror, HRFM1 and 

HRFM2 are the horizontal refocusing mirrors, and D1 and D2 are the sample 

positions.45 

3.2.5 Analysis  

 The ejected electrons from the photoionization of the aerosol beam are 

passed through a set of microchannel plates (MCP), and are then detected with a 

hemispherical energy analyzer (R3000)37 with an acceptance angle of 10◦ and 

resolution of approximately 3 meV at 50 eV.46 The pulse counting mode can be used 

to measure photoelectron signal.  
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  The electron signals are recorded onto the hard drive of the computer and 

can be visualized as shown in Figure 3.2.5a, with the integrated counts in arbitrary 

units (a.u.) on the y-axis and the kinetic energy (eKE) on the x-axis in eV.  

 

Figure 3.2.5a: The visualization of the PE spectrum of an aerosol measured at the 

NSRRC in March 2015.  

 Water can be used to calibrate the energy scale of the spectra by obtaining 

the photoelectron spectra of atomized water and matching known bands. Su et al.’s35 

work on aerosols at the BL21B2 beamline demonstrates the resulting PE spectrum, 

shown in Figure 3.2.5b. Using pure water in the atomizer, the contribution of both the 

gas phase and condensed phase (water particles of ~100 nm) are visually 

observable. It was found that the ionization energy of the condensed droplets was 

1.79 ± 0.05 eV less than that of the gaseous water molecules. The vibrationally-
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resolved bands of gas-phase water (0,0,0) and (1,0,0) are used to calibrate the 

energy scale.  

 

Figure 3.2.5b: The VUV photoelectron spectra of pure water aerosols at 25 eV. The 

gas-phase water molecules have a higher ionization energy (~12.52 eV) than the 

condensed phase (10.83 eV ± 0.05 eV). As such, the gas-phase spectrum is toward 

the left of the graph and the condensed phase is toward the right, also magnified in 

the inset of the image.35 

The solvent utilized to make the sample solution must be atomized and its 

photoelectron spectrum obtained at the same photon energy for reference. Literature 

PE spectra of gas-phase molecules of interest are also highly useful as guides in 

examining the resultant experimental photoelectron spectrum.  

Once the photoelectron spectra have been deconvoluted and the spectrum of 

sample aerosol isolated at each pH value, it can be observed if the there is a change 

in molecular orbital character as a function of pH. If so, the distinct band shapes in 
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the photoelectron spectra can be explained using Gaussian47 calculations that can 

help determine the structural form of the molecule.48  

 

3.3 TPEPICO at University of the Pacific, Stockton 

 Threshold Photoelectron Photoionization (TPEPICO) spectroscopy studies 

the unimolecular photodissociation dynamics of a molecule of interest. It is a 

combination of photoionization mass spectrometry and photoelectron spectroscopy, 

both presented earlier in this thesis in sections 3.1 and 3.2, respectively.   

 The apparatus is currently housed at the University of the Pacific with 

Professor Bálint Sztáray. It was originally built at the University of North Carolina, 

Chapel Hill with support from the U.S. Department of Energy (DOE).    

3.3.1 The Experiment and Apparatus 

A block diagram for the apparatus is represented in Figure 3.3.1a.  

 

Figure 3.3.1a: A block diagram of the TPEPICO apparatus at the University of the 

Pacific, Stockton.49 
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Photons are generated via a hydrogen discharge lamp that operates at 

approximately 1 – 1.5 Torr H2. Generally speaking, a hydrogen discharge lamp 

contains a pair of electrodes inside a glass tube. The glass tube has a small section 

containing quartz or silica through which the generated photon beam is able to be 

transmitted. The photons are generated when an electric current is passed through 

the electrodes and a high voltage is reached. At this point the hydrogen molecules 

are excited to higher level orbitals, and when they relax there is an emission of 

radiation in the form of light. The hydrogen lamp is on the right side of Figure 3.2.1b 

labeled “Danger High Voltage”. 

 

Figure 3.3.1b: View from the end of the ionization chamber. The hydrogen lamp is 

covered and labeled with “Danger High Voltage”. Image taken at the University of the 

Pacific, Stockton in June 2015.  
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 The wavelength corresponding to a particular photon energy can be selected 

with a 1 m normal incidence monochromator, where the entrance and exit slits are 

set to 100 µm. The photon energy can be varied from 6 to 14.5 eV, and the 1 Å 

wavelength resolution of the monochromator corresponds to 8 meV at 10 eV.50 The 

photon energy was calibrated using Lyman-α and Lyman-β emission lines at 1216 Å 

and 1026 Å, respectively. The monochromator (green) can be visualized in Figure 

3.3.1c. 

 

Figure 3.3.1c: The TPEPICO apparatus at the University of the Pacific, Stockton. 

The vapor sample inlet is attached to the ionization chamber (right), where the 

molecular beam is orthogonally intercepted by VUV photons coming from the 

hydrogen lamp (behind the ionization chamber) through the monochromator (green). 

Photo taken in October 2015. 
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 The pressure in the ionization chamber before adding the sample is typically 

~3 x 10-7 Torr. The vapor of the liquid sample is effusively introduced into the 

ionization chamber via a needle valve. The pressure can be monitored throughout 

the experiment to ensure there is no change. The molecular beam of the sample is 

orthogonally intercepted by the VUV photon beam. If the energy of the photon beam 

is greater than the ionization energy of the molecule, then it will ionize. The ions 

resulting from this process travel in one direction toward the linear time-of-flight 

(LinTOF) mass spectrometer, while the ejected photoelectrons travel in the other 

direction to the electron analyzer (Figures 3.3.1d and 3.3.1e). 

 The ions are directed with Wiley-McLaren51 space-focusing geometry and 

accelerated to 100 eV in a long acceleration region of 5 cm. After the first region, 

they are quickly accelerated to 260 eV in a short acceleration region of 5 mm. In this 

case, the force on the ions is constant and the kinetic energy of each molecule is 

equal. As described previously in section 3.1.6 and represented by equations 3.1.6a-

c, the velocity of the ion is inversely proportional to its mass and the time of flight is 

inversely proportional to the square root of the mass of the ion. Once they have 

surpassed the acceleration regions, they enter a 34 cm field-free drift region and 

encounter a set of Chevron-style Burle (now Photonis) microchannel plates 

(MCPs).52 

 The photoelectrons are extracted through a 6.75 mm long field of 20 V cm–1 

and are accelerated into a 13 cm drift tube set to 77 V. A mask at the end of the drift 

region contains a 1.4 mm aperture for the Channeltron detector (center) and 2 x 8  
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Figure 3.3.1d: Top: the inside of the ionization chamber. Bottom: A zoomed-in 

photograph with  

 

Figure 3.3.1e: A labeled schematic of the image shown at the bottom of Figure 

3.3.2d. 
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mm opening for the hot electron detector. The velocity map imagining technique 

(VMI) was first introduced to the TPEPICO apparatus by the Baer group,53 and 

enables the photoelectrons to be focused onto rings depending on their velocity 

perpendicular to ejection.53 Zero kinetic energy threshold electrons are detected at 

the center. While some hot electrons are still able to be detected by the center, the 

hot electron detector provides a well-defined fraction of energetic electrons that have 

contaminated the center. Hot electrons can be subtracted from the signal of the 

central detector.49, 54 

 The ejection of an electron and the corresponding ion are detected in 

coincidence, meaning that they result from the photoionization of the same type of 

molecule. First, the near-weightless electron is detected (on either the “center” or the 

“ring”), signaling the “start” time that is logged into a time-to-pulse-height converter 

(TPHC). When the corresponding ion is detected, another TPHC logs the “stop” time 

and the information is sent to Ortec multichannel analyzer (MCA) cards. These MCA 

cards assess a stream of voltage pulses and organize the points into a histogram of 

counts vs. pulse-height.55 Each histogram can be displayed as the time of flight 

spectra at each particular photon energy.  

The reaction can be “tested” at a particular temperature, pressure and photon 

energy. Holding the pressure and temperature constant, more tests can be 

conducted. If the signals are agreeable, the monochromator is configured to scan a 

photon energy range designated by the user. In this particular apparatus, the H2 

photon flux is not constant from one energy to another, and to obtain the threshold 
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photoelectron spectrum (TPES), theoretically the signals at each energy can be 

normalized by time and pressure. However, in terms of breakdown diagram 

generation, the TOF signals are normalized as fractional abundance at each specific 

photon energy, where flux variance between measurements do not affect the 

analysis of dissociation dynamics. 

A TOF spectrum is generated at each photon energy. The parameters of the 

“run” are input as a script to the TPEPICO control computer by defining the starting 

photon energy for the experiment, as well as the step-size, number of steps, and 

length of time for each photon energy. The amount of time at each photon energy 

increases the number of counts detected, providing a larger sample size and greater 

precision in measurement.  

3.3.2 Programs and Analysis 

 The data obtained from the Ortec MCA cards are written to the hard drive in 

.tdat file format. These files can be opened using Notepad, Wordpad, or most other 

text-based processes. The TPHC enables the coincidence counts from both the 

center detector, as well as the ring detector, to be listed in a series of numbers. The 

total number of points depends on the number of active channels in the multi-

channel analyzer (MCAS number). This can be controlled by the TPEPICO input 

script, as it is the range of the TOF divided by the TOF resolution.  

The points can be visualized by plotting the point number (1,2,3…) on the x-

axis and the output signal on the y-axis using IGOR Pro 634. The first half of the 

numbers correspond to the detection of electrons on the center, while the second 
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half of the numbers relate to the detection of hot electrons on the ring. For example, 

if the signal is recorded in a series of 10,000 data points, the first 5,000 points of the 

.tdat text file correspond to hits on the center detector and the second 5,000 are hits 

on the ring detector. This is useful to visualize the signal, but is also useful in the 

deconvolution of adjacent peaks and adjusting for isotopologues, which will be 

described in greater depth later in this section. 

A custom-made TPEPICO Data Processing program (version 1) provided by 

the Sztáray group at the University of the Pacific automatically converts the 

multichannel analyzer number (MCAS) to the appropriate TOF in µs. In addition, the 

center counts and the ring counts are overlapped for easy visualization. Figure 

3.3.2a shows a TOF spectrum of ethylenediamine (EN) and its dissociative 

fragments at a photon energy of 9.501 eV. The red peaks are hot electrons from the 

ring and the blue are threshold electrons from the center.  

A weighted factor can be used to determine the count of zero kinetic energy 

electrons. This factor can be experimentally found by using spectra obtained at 

various energies above the dissociation limit of the parent ion, where the parent ion 

should no longer exist. The average ratio between the parent ion intensities at both 

the center and the ring can be obtained, and this factor can be multiplied by the hot-

electron count on the ring and then subtracted from the count at the center.49 

The white text box at the very top of the TPEPICO Data Processing program 

(Figure 3.3.2a) is used for script input for the integration of time of flight peaks. Since 

the time of flight of an ion is inversely proportional to the square root of its mass 
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(3.1.6c), each TOF peak corresponds to a particular m/z. For fast dissociations 

where the TOF peaks are Gaussian-shaped, the peaks can be integrated from the 

tail of one end of the curve to that of the other to determine the total intensity of ions 

formed at each m/z. The integration ranges, in units of µs, can be typed as a script 

and executed in the TPEPICO Data Processing program.  

 

Figure 3.3.2a: A TOF spectrum of 0 K ethylenediamine (EN) photodissociation at 

9.501. EN+· and its isotopologue peak are shown on the right. The ring signal (red) is 
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multiplied by a weighted factor and subtracted from the center detector signal (blue) 

to arrive at the count of zero kinetic energy electrons. 

Slow dissociations occur when the parent ion does not dissociate 

immediately, but rather while traveling through the drift tube. Slow dissociations are 

manifested in asymmetric TOF peaks, an example of which is shown in Figure 

3.3.2b. However, when the parent ion possesses greater internal energies in excess 

of the dissociation limit, the dissociation becomes faster and the peak resolves itself 

to a more normal distribution (Figure 3.3.2c).56, 57 

 

Figure 3.3.2b: An asymmetric TOF peak is detected in 0 K ethylenediamine 

photodissociation at 9.125 eV using TPEPICO. Data taken at University of the Pacific 

on May 31, 2015. The signal from the center detector is blue, the signal from the ring 

detector is red, and the corrected center signal using a factor of 0.22 is shown in 

green. These non-Gaussian peak shapes are representative of slow dissociation 

reactions.  

If there are no adjacent TOF peaks, the asymmetric TOF peak can be 

integrated in the same way as fast dissociation peaks to determine the intensity of 

the cationic fragment. However, if nearby peaks are detected it is important to adjust 
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the integration range in the script, as the right tail end of the curve shifts with an 

increase in energy to become more Gaussian. 

 

 

Figure 3.3.2c: A PEPICO study of the naphthalene radical cation dissociation. As 

the photon energy increases, it can be seen that the TOF peak grows increasingly 

more Gaussian. The dots are experimental TOF counts while the solid lines are 

modeled using theoretical techniques.57 

 The deconvolution of adjacent peaks can be tedious in that there is an 

overlap of the signals. A custom-made program by Krisztian Torma of the Sztaray 

group at University of the Pacific aims to deconvolute peaks and can be useful in 

specific instances. In addition, the multi-peak fitting tool in Igor Pro34 has several 

mathematical curve-fitting features that enable the user to distinguish the contribution 

of each curve to the overlap between them. The images in Figure 3.3.2d, for 

instance, were generated by plotting the counts of threshold electrons vs 
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multichannel number (MCAS) in the ethylenediamine TPEPICO photodissociation 

experiment presented in Chapter 6. Here, ethylenediamine and its 13C isotopologue 

were visualized at a photon energy between its ionization energy and its first 

dissociation limit. A mathematical equation was fit to each curve and the area 

underneath was calculated. The isotopic ratio of 13C to 12C was verified in this way 

(~2.2%). In addition, the contribution of each isotopologue to the overlap can be 

assessed by subtracting the area of the mathematical fit of one curve from the total 

area underneath both curves. 

 

Figure 3.3.2d: The IGOR multi-peak fitting in the deconvolution and determination of 

isotopologue contributions to adjacent peaks. Shown above is parent ion m/z = 60 

and the ~ 2.3% 13C and 15N isotopologue contribution at 8.8 eV. 

  Average background noise is determined by integrating flat areas in the TOF 

spectrum, both on the left side of the detected peaks as well as the right. The 

integrated values of all of the TOF and noise peaks are printed by the TPEPICO 

Data Processing program.  

The intensity of each m/z at the respective photon energy is input into an 

Excel spreadsheet, and the background intensity and isotopologue signal can be 

accounted for through appropriate subtraction and addition where necessary. 
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 The breakdown diagram can be generated as the fractional abundance of the 

parent and daughter ions at each photon energy via the Excel spreadsheet. All 

intensities are normalized by dividing the signal of each m/z by the total number of 

counts at each photon energy.  

 The breakdown diagram can then be imported into MiniPEPICO58 

computational software for analysis. Quantum mechanical calculations using 

Gaussian 0947 suite can be completed as described in section 2.4 of this thesis. The 

rotational constants and frequencies of the neutral species, as well as the 

frequencies of the parent cationic radical, are required for input into MiniPEPICO.58 

From these optimized Gaussian structures, the calculated adiabatic ionization energy 

(2.2.4c) is determined and entered into the software, as well. This energy serves as 

the baseline (0) for all relative barrier energies used in the program.  

 Transition states are visually inspected using GaussView59 to ensure it is the 

saddle point on the potential energy surface for the correct transition. The real 

frequencies for each state, along with the calculated dissociation barrier are entered 

into the program. The lowest frequencies of calculated transition states are scaled to 

match experimental data.49 MiniPEPICO58 is then able to calculate all necessary 

density and number of states functions, internal energy distributions, and dissociation 

rates to model a theoretical breakdown diagram for direct comparison with the 

experimental. In the case of slow dissociations, modeled TOF spectra also need to 

match the experimental results, as shown in Figure 3.3.2e. The optimized, modeled 
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breakdown diagram from MiniPEPICO provides the experimentally-extracted 

photoionization onset (appearance energy) of each fragment.  

With appropriate data analysis, the reaction rates for each dissociation 

channel can be obtained with MiniPEPICO58 through statistical modeling. Three 

unimolecular rate theories are included in the software program: the RRKM 

Theory,60-62 the variational transition state theory (VTST)63, and the simplified 

statistical adiabatic channel model (SSACM).64 The reaction rates are printed into a 

.rat file that can also be opened using Notepad, Wordpad, or other text-based 

programs. 

 

Figure 3.3.2e: A slow TOF distribution is modeled using MiniPEPICO; the green 

dots are experimental, the solid red line is the modeled curve.58 
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4.1 Abstract 

Cl-initiated oxidation reactions of three small-chain methyl esters, methyl 

propanoate (CH3CH2COOCH3; MP), methyl butanoate (CH3CH2CH2COOCH3; MB) 

and methyl valerate (CH3CH2CH2CH2COOCH3; MV) are studied at 1 or 8 Torr and 

550 and 650 K. Products are monitored as a function of mass, time, and 

photoionization energy using multiplexed photoionization mass spectrometry coupled 

to tunable synchrotron photoionization radiation. Pulsed-photolysis of molecular 

chlorine is the source of Cl radicals, which remove an H atom from the ester, forming 

a free radical. In each case, after addition of O2 to the initial radicals, chain-

terminating HO2-elimination reactions are observed to be important. Branching ratios 

among competing HO2-elimination channels are determined via absolute 

photoionization spectra of the unsaturated methyl ester coproducts. At 550 K, HO2-

elimination is observed to be selective, resulting in nearly exclusive production of the 

conjugated methyl ester coproducts, methyl propenoate, methyl-2-butenoate, and 
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methyl-2-pentenoate, respectively. However, in MV, upon raising the temperature to 

650 K, other HO2-elimination pathways are observed that yield methyl-3-pentenoate 

and methyl-4-pentenoate. In each methyl ester oxidation reaction, a peak is 

observed at a mass consistent with cyclic ether formation, indicating chain-

propagating OH loss/ring formation pathways via QOOH intermediates. Evidence is 

observed for the participation of resonance-stabilized QOOH in the most prominent 

cyclic ether pathways. Stationary point energies for HO2-elimination pathways and 

select cyclic ether formation channels are calculated at the CBS-QB3 level of theory 

and assist in the assignment of reaction pathways and final products. 

 

Keywords: Biodiesel, Biofuels, Esters, Fatty Acid Methyl Esters, Methyl Butanoate, 

Oxidation, Combustion 

*Corresponding Authors email: cataatj@sandia.gov; gmeloni@usfca.edu 

 

4.2  Introduction 

  Liquid fuels are a significant generator of CO2 emissions in the United States, 

with combustion of transportation fuels accounting for 26% of U.S. greenhouse gas 

emissions in 2013.1-2 Finding, characterizing, and developing carbon neutral sources 

of liquid fuels will be essential in a broader strategy to reduce the global warming 

impact of transportation.  

 Biodiesel derived from biomass is a potentially carbon-neutral energy source 

that could be scaled to much greater levels of production if more economical means 

of conversion are developed. Current biodiesel fuel typically consists of a mixture of 

long-chain hydrocarbons, predominantly fatty acid methyl esters (FAMEs), in which a 

mailto:cataatj@sandia.gov
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methyl ester functional group is attached to a hydrocarbon chain.3 FAMEs are 

currently the leading biofuel in the European Union and are most often derived from 

industrial transesterification processes of vegetable oils or animal fats.4 FAMEs are 

easily blended with petroleum fuels, enabling mixtures that can improve efficiency 

and help reduce dependence on traditional fossil fuel resources.5-7  

In addition to increasingly stringent efficiency regulations, much effort has 

been devoted to measuring and comparing CO, NO, and particulate matter 

emissions from both petroleum and biodiesel blend combustion.8 The nitrogen oxide 

species, NOx, are the primary precursors for the generation of photochemical smog, 

which is known to pose serious health risks. Carbon monoxide emissions and 

particulate matter from fuel combustion are also harmful pollutants.9 Combustion 

experiments consistently show that biodiesels often yield higher thermal efficiencies, 

less CO and reduced soot emissions compared to traditional petroleum fuels. 

However, biodiesel combustion also results in greater NO emissions than its 

petroleum counterparts.10-14  

Because each biofuel source and blend is unique, the combustion of a 

particular fuel yields a distinct product mix. Thus, a number of recent studies are 

devoted to characterizing the combustion of oils derived from soybeans, canola, 

rapeseed, sunflower, palm, and Mahua, as well as their mixtures.15-22 Regardless of 

the organic source of biodiesel, incomplete combustion of FAMEs in engines, 

causing release of unburned esters, which undergo subsequent atmospheric 

oxidation, is of major concern. As a result, these reactions and the resulting products 

need to be analyzed in order to ascertain the environmental effects that use of ester 
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fuels has on atmospheric chemistry. 

Though a great deal of research is still needed to characterize ester 

combustion, oxidation and the associated atmospheric effects, concerted effort has 

been devoted to investigating combustion of C6 - C10 methyl esters, encompassing a 

relatively wide range in the number of carbons on the aliphatic main chain.23-26 

Dayma et al.27 studied the oxidation of methyl hexanoate and reported a distinct 

negative temperature coefficient (NTC) zone, while Herbinet et al.28 combined kinetic 

models of methyl decanoate, methyl-9-decanoate, and n-heptane in order to obtain a 

blended surrogate mechanism intended to approximate the combustion of biodiesel 

fuels derived from rapeseed oil. Models indicate that longer hydrocarbon chains in 

FAMEs yield more pronounced NTC behavior, which highlights the importance of the 

hydrocarbon chain in directing the low temperature oxidation chemistry.  

Smaller saturated esters in fact do not exhibit an NTC region29, and these 

compounds provide a means to isolate the oxidation chemistry specific to the ester 

moiety.30-33 In particular, in an effort to minimize complexity and inform biofuel 

combustion models a great deal of attention has been devoted to the C4 methyl 

ester, methyl butanoate (MB).34-36 The MB oxidation mechanism mechanism posed 

by Fisher et. al37 is often credited for sparking interest in MB as a potentially novel 

biofuel and studies have focused on its ignition properties over the last fifteen 

years.38-40 Lin et al.41 aimed to isolate the effect of the methyl ester moiety on 

combustion properties via kinetic modeling investigations of MB compared to n-

butane. Because n-butane combustion displays NTC behavior while MB does not, it 

appears that the methyl ester functional group has a large influence on the oxidation 
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of smaller chain FAMEs.  

Here we present a study of the initial reactions expected for low temperature 

autoignition of a series of short chain esters, methyl propanoate (CH3CH2COOCH3; 

MP), methyl butanoate (CH3CH2CH2COOCH3; MB) and methyl valerate 

(CH3CH2CH2CH2COOCH3; MV) (Scheme 4.2) at 1 or 8 Torr and 550K and 650K. The 

results presented here are expected to provide insight into the gas phase oxidation 

chemistry for both short chain FAMEs as well as carbon-centered radicals formed 

relatively close to the ester moiety of longer chain esters. These results should also 

serve as a valuable validation tool for the development of FAME kinetic models. 

 

Scheme 4.2: The methyl ester reactants studied in these experiments with the main 

carbon chain labeled with Greek letters and the ester methyl group designated with 

an ‘m.’ This convention will be used throughout the text. 

 

4.2.1 Fundamental Low Temperature Oxidation Chemistry of Oxygenates 

Several recent studies of the low temperature oxidation chemistry of complex 

oxygenates demonstrate that while the conventional R + O2 pathways remain 

important, the oxygenated functional groups can introduce new pathways and drive 

the outcome of RO2 decomposition.42-44 For a typical hydrocarbon peroxy radical 

(RO2), a number of well-defined decomposition pathways are available. Concerted 

elimination of HO2 yields an unsaturated coproduct. These reactions are effectively 

chain-terminating below ~1000 K due to the unreactive nature of the HO2 radical 
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carrier. Alternatively, RO2 can undergo isomerization via intramolecular H abstraction 

reactions that yield hydroperoxyalkyl radicals (QOOH) in which the radical center has 

shifted from the terminal peroxy oxygen to a carbon. These QOOH can undergo a 

second O2 addition followed by a series of reactions leading to chain branching.45 Of 

greater significance to this work, the QOOH can also undergo unimolecular 

decomposition reactions that yield OH and a stable cyclic ether coproduct. The OH is 

a reactive chain carrier and these reactions are thus deemed chain propagating. For 

an extensive discussion of the fundamental chemistry that governs hydrocarbon 

ignition, including chain-terminating HO2-elimination channels, as well as chain-

propagating and chain-branching pathways involving QOOH, we refer the reader to 

the work of Zádor, Taatjes and coworkers.43-46 

In recent studies of ketone oxidation under similar low temperature, low 

pressure conditions, resonance-stabilized QOOH formation pathways were shown to 

greatly enhance chain propagation channels. In particular, channels that yield 5-

membered ring cyclic ethers via low-strain 5-membered ring transition states were 

especially prominent44, 47 The short MB hydrocarbon chain does not permit the 

production of 5-membered cyclic ether rings. However, radical formation at the 

terminal methyl group of the saturated 5-carbon chain of MV makes possible the 

formation of a resonance-stabilized QOOH and the subsequent 5-membered ring 

cyclic ether. Here we investigate the low temperature oxidation reactions of MP, MB 

and MV (Scheme 4.2) with the goal of identifying product formation channels and 

investigating differences in low-temperature oxidation chemistry as a function of 

chain length. 
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4.3 Experiment 

The chlorination and oxidation reactions of MP, MB, and MV were studied at 

the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. The 

details of these experiments have been presented in prior work44, 48-49 and will only 

be briefly outlined here. 

 A mixture of reactants and He buffer gas is introduced into a heated 1.05 cm 

i.d. quartz flow tube via calibrated mass flow controllers. Pressure inside the tube is 

maintained at 8 Torr for the MB and MV experiments and at 1 Torr for the MP 

experiments. A pinhole approximately 650 µm in diameter is located along the side of 

the reactor. Effluent is continually sampled through a 1.5 mm diameter skimmer, 

creating a molecular beam that is directed into a differentially pumped ionization 

chamber. The molecular beam is orthogonally intersected by quasi-continuous, 

tunable ionizing vacuum ultraviolet radiation generated by the ALS synchrotron and 

the resulting ions are accelerated into a linear time-of-flight mass spectrometer. 

Products are observed as a function of time, mass, and photoionization energy, 

resulting in a three-dimensional dataset that can be sliced and integrated to attain 

the photoionization spectra and time profiles for each species.48, 50 

An unfocused 351 nm excimer laser pulsed at 4 Hz provides the initial source 

of Cl· via photolysis of Cl2. Approximately 1.5% of molecular Cl2 is converted to 

Cl·.51 The average pre-photolysis background signal is subtracted yielding mass 

spectra with positive signals for post-photolysis products. Signals are dependent on 

ionization energy and are normalized to the synchrotron photon current measured 

by a calibrated photodiode. 
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All reactant concentrations are provided in Table 1. MP, MB, and MV were 

commercially available with labeled purities of 99%. Methyl 2-propenoate, methyl 2-

butenoate and methyl 3-butenoate were obtained commercially with noted purities 

of 99%, 98%, and 97%, respectively. Methyl 2-pentenoate and methyl 4-pentenoate 

were each obtained at 95% and trans-methyl 3-pentenoate at >90% purity. The 

absolute photoionization energy curves are generated as a result of flowing sample 

gas with a mixture of ethene, propene, and butene (calibration gases), compounds 

with known concentration for which the absolute photoionization cross sections are 

well-known. Absolute photoionization cross sections are determined as in Welz et 

al.52 Each sample was freeze-pump-thawed to remove any dissolved gases before 

they were prepared to use in the experiment.  

Table 4.3: Initial reactant concentrations (cm-3) used in the oxidation experiments. 

Helium was added to provide a total pressure of 8 Torr in all experiments, aside from 

methyl propanoate (MP) where the total pressure was 1 Torr. 

 

  Temp (K) [Precursor]0 [O2] [Cl2] [Cl·]0 

MP 550 5.1 x 1012 7.8 x 1014 9.3 x 1012 9.7 x 1010 

MP 650 4.3 x 1012 7.8 x 1014 7.8 x 1012 8.2 x 1010 

MB 550 7.0 x 1013 2.0 x 1016 6.7 x 1013 7.0 x 1011 

MB 650 5.9 x 1013 1.7 x 1016 5.7 x 1013 6.0 x 1011 

MV 550 6.9 x 1013 2.0 x 1016 6.7 x 1013 7.0 x 1011 

MV 650 4.4 x 1013 1.7 x 1016 5.7 x 1013 6.0 x 1011 

 
All geometry optimizations and energies have been calculated at the CBS-QB3 

level of theory53-55 with the Gaussian 09 suite.56 Transition states, with one negative 

imaginary frequency, were determined by using the Synchronous Transit-Guided 

Quasi-Newton (STQN) method57 at the B3LYP/6-31G(d) level/basis set with CBS-

QB3 optimizations. Transition states were visually inspected using Gaussview.58 
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CBS-QB3 calculations have a mean absolute deviation (MAD) of ± 1.1 kcal mol-1 

compared to experimental dataof the G2/97 test set55, 59-60 

 

4.4  Results and Discussion 

4.4.1 Computational Results 

 Bond dissociation energies have been calculated for each C-H bond in MP 

with results given in Scheme 4.4.1a. The Cγ-H bond is calculated to be the strongest 

at 100.9 kcal mol-1. Given the BDE0K of HCl (102.3 ± 0.05 kcal mol-1), all hydrogen 

removals are exothermic.61 

 

Scheme 4.4.1a: Adiabatic bond dissociation energies (BDE0K) of methyl propanoate 

calculated at the CBS-QB3 level. 

 

Thus each hydrogen represents an energetically accessible radical site. The weakest 

bond by more than 6 kcal mol-1 is Cβ-H due to the resonance stabilization of the 

resulting radical, as shown in Scheme 4.4.1b. Production of this radical is calculated 

to be exothermic by 9.8 kcal mol-1. The large concentration of parent ester (Table 1) 

relative to initial Cl· concentration ensures that Cl· reacts primarily with parent ester 
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as opposed to the initial ester radials or subsequent products. The ratio of O2 to initial 

Cl· is also kept large ([O2]/[Cl·] ~ 50) to promote immediate consumption of the ester 

radicals by the desired O2-addition reaction, while minimizing secondary chlorine 

chemistry.44  

 

Scheme 4.4.1b: Resonance structures of the initial radical (R) at the β -carbon site. 

  

Figure 4.4.1a shows the CBS-QB3 stationary points calculated on the 

surfaces for the Rβ + O2 reactions of the three esters. Because these reactions yield 

conjugated coproducts, they are expected to be the lowest energy decomposition 

pathways for the RβO2 radicals.42, 44, 47 In each case, the RO2 well resulting from O2 

addition to the resonance-stabilized initial radical is shallow (23 – 26 kcal mol-1). As a 

result, barriers for RβO2 back dissociation to Rβ + O2 reactants are calculated to be 

close to or below those for the further unimolecular RO2 chemistry discussed above. 

Consequently, despite the high O2 concentration, the initial Rβ are susceptible to 

secondary chemistry including reactions with Cl· and Cl2 as well as self-reaction, 

reaction with other radicals (OH, HO2, etc.) and possible reaction with the reactor 

walls. Indeed chlorinated products resulting from addition of Cl· to Rβ (Scheme 

4.4.1c) are observed and are discussed further below.  
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Scheme 4.4.1c: Resonance stabilization leads to long-lived initial radicals 

susceptible to secondary reactions, including addition of Cl∙. 

 

 

 
Figure 4.4.1a: Potential energy surface for the reaction of the initial methyl 

propanoate, methyl butanoate and methyl valerate radicals Rβ with O2 followed by 

HO2-elimination. Energies at 0 K are at the CBS-QB3 level. Cyclic ether formation 

channels are not expected to be favored and are thus not included (see text). 

Several β-scission channels are also possible but for clarity are not included. 

 
Figures 4.4.1b – 4.4.1d show the potential energy surfaces calculated for the 

reaction of O2 with the other initial radicals of MP (Figure 4.4.1b), MB (Figure 4.4.1c), 
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and MV (Figure 4.4.1d). In comparison to RβO2, O2-addition to radicals generated 

elsewhere along the chain have significantly deeper wells relative to back 

dissociation (32 – 40 kcal mol-1). In each case, peroxy radicals originating at the γ 

carbon have a low energy HO2-elimination pathway (through a 5-member ring 

transition state) that yields a conjugated unsaturated ester coproduct. Peroxy 

radicals generated elsewhere along the main aliphatic chain have thermodynamically 

competitive channels to both HO2-elimination yielding non-conjugated unsaturated 

esters and isomerization to QOOH followed by ejection of OH upon cyclic ether 

formation. No concerted HO2-elimination channel is available for radicals at the 

terminal ester methyl group. In these cases, cyclic ether + OH channels are 

energetically plausible and β-scission pathways may also become important. Several 

cyclic ether formation pathways are considered unfavorable due to energetic or 

entropic considerations and were not calculated. Cyclic ether channels were only 

investigated for 6-membered or smaller rings due to the high entropy in the reactions 

yielding larger rings. Oxetane formation pathways typically have very high QOOH → 

Cyclic Ether + OH barriers. Thus the only oxetane channels anticipated to be 

energetically competitive are those that proceed via a resonance-stabilized QOOH44 

and other oxetane channels were not calculated. Due to high RO2 → QOOH barriers, 

3-membered ring cyclic ether (oxirane) channels are not expected to be competitive 

with HO2-elimination and were also not calculated. The remaining HO2-elimination 

and cyclic ether formation channels are the focus of the following sections. 
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Figure 4.4.1b. Potential energy surface for the reaction of the initial methyl 

propanoate radicals Rγ (top) and Rm with O2. Energies at 0 K are at the CBS-QB3 

level. Certain cyclic ether formation channels are not expected to be favored and are 

thus not included (see text). Several β-scission channels are also possible but for 

clarity are not included. 
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Figure 4.4.1c:  Potential energy surface for the reaction of the initial methyl 

butanoate radicals, Rγ (top), Rδ (middle) and Rm (bottom) with O2 with O2. Energies 

at 0 K are at the CBS-QB3 level. Certain cyclic ether formation channels are not 

expected to be favored and are thus not included (see text). Several β-scission 

channels are also possible but for clarity are not included. 
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Figure 4.4.1d: Potential energy surface for the reaction of the initial methyl valerate 

radicals Rγ (top), Rδ (top middle), Rε (bottom middle) and Rm (bottom) with O2. 

Energies at 0 K are at the CBS-QB3 level. Certain cyclic ether formation channels 

are not expected to be favored and are thus not included (see text). Several β-

scission channels are also possible but for clarity are not included. 

 

4.4.2. HO2-Elimination Channels and Branching 

 All three ester compounds contain a terminating methyl group bound to the 

ester oxygen. With no neighboring C-H bonds, concerted HO2-elimination channels 

from these radical sites (Rm) are not expected. A variety of HO2-elimination channels 
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centered on the hydrocarbon chains are available (Scheme 4.4.2) and are the focus 

of this section. Figures 1 - 2 and Scheme 4.4.2 show that HO2-elimination channels 

originating from both Rβ or Rγ of MP yield methyl propenoate. The m/z = 86 product 

signal from MP oxidation is small and the associated photoionization spectrum is 

somewhat noisy (Figure 4.4.2a). However, Figure 4.4.2a shows that the m/z = 86 

product spectrum is consistent with that of a methyl propenoate standard at both 550 

and 650 K. The adiabatic ionization energy (AIE) of methyl propenoate is calculated 

to be 10.1 eV62 and determined experimentally to be 9.9 eV, in good agreement with 

that observed for the m/z = 86 MP oxidation product. Corroborating this assignment 

is the observation of strong fragment ion signals from methyl propenoate at m/z = 58 

and m/z = 85 that closely match the corresponding signals in the MP oxidation 

(Supplementary Figure 4.7a). With no other concerted HO2-elimination reactions 

expected from MP radicals, this result is not surprising. 

 

 

 

 

 

 

 



135 

 

 

 

 

 

Scheme 4.4.2: Possible HO2-elimination channels for A.) MP, B.) MB and C.) MV. 
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Figure 4.4.2a: Photoionization spectra for the m/z = 86 peak observed in Cl-initiated 
oxidation of methyl propanoate at 550 and 650 K compared to a methyl propenoate 
standard.  
 

 

Figure 4.4.2b: Photoionization spectra for the m/z = 100 peak observed in Cl-
initiated oxidation of methyl butenoate at 550 and 650 K compared to methyl-2-
butenoate and methyl-3-butenoate standards. The line of best fit (solid purple) 
results from a least squared regression and indicates a 100% contribution from the 
conjugated methyl-2-butenoate. 
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 Analogous to Rβ in MP, HO2-elimination from the resonance-stabilized MB 

radical can only yield methyl-2-butenoate. However, multiple HO2-elimination 

channels are available via the secondary Rγ and both methyl-2-butenoate and 

methyl-3-butenoate (Scheme 4.4.2B) are possible. Finally, HO2-elimination from the 

primary MB carbon radical (Rδ) can only yield methyl-3-butenoate.  

The photoionization spectrum of the m/z = 100 product of MB oxidation at 

550 K matches that of methyl-2-butenoate nearly exactly (Figure 4.4.2b). Taking the 

methyl-2-butenoate and methyl-3-butenoate spectra as basis functions in a least-

squares fit of the m/z = 100 product results in a 100% contribution of methyl-2-

butenoate to the best fit, which is shown as the purple curve in Figure 4.4.2b. The 

maximum contribution of methyl-3-butenoate is calculated to be less than 10% at a 

2σ error tolerance. Figure 4.4.2b shows that when the temperature is raised to 650 

K, the nearly perfect match to methyl-2-butenoate remains. The signals observed at 

m/z = 69 and 85 in MB oxidation are consistent with daughter ions observed in pure 

methyl-2-butenoate photoionization. (Supplementary Figure 4.7b). Results of 

stationary point calculations shown in Fig. 4.4.1c indicate that formation of methyl-2-

butenoate is the lowest energy RγO2-decomposition channel. This is expected due to 

the stability of the conjugated π-system of the methyl-2-butenoate product. The 

barrier to formation of the non-conjugated methyl-3-butenoate is calculated to be 4.3 

kcal mol-1 higher. In contrast to the reactions available from RγO2, the middle panel of 

Figure 4.4.1c shows that the barrier for QOOH formation from RδO2 is significantly 

less than that for concerted HO2-elimination. The energy of the subsequent transition 

state to form a cyclic ether product is still below the saddle point along the path from 
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RδO2 to HO2 + methyl-3-butenoate. It is therefore probable that QOOH chemistry is 

favored from RδO2. These considerations explain the conjugated methyl-2-butenoate 

as the exclusive HO2-elimination coproduct.  

Methyl valerate presents yet a more complex system. Scheme 4.4.2C shows 

the three radicals on the hydrocarbon chain can yield three different unsaturated 

products via HO2-elimination. Each of these compounds (methyl-2-pentenoate, 

trans-methyl-3-pentenoate and methyl-4-pentenoate) is commercially available and 

absolute photoionization spectra were obtained for each. Cis-methyl-3-pentenoate 

was not available for purchase and no attempt to synthesize it was undertaken. Our 

CBS-QB3 calculations indicate the trans isomer is more stable by 1.3 kcal mol-1 The 

top panel of Figure 4.4.2c shows the photoionization spectrum of the m/z = 114 

product signal from MV oxidation at 550 K alongside the standard spectra. The high 

energy portion of the product signal is reproduced well by that of the conjugated 

methyl-2-pentenoate, a result consistent with those of MP and MB oxidation. 

However, the low energy portion of the product curve is not well reproduced by the 

methyl-2-pentenoate spectrum, indicating a contribution from the other possible 

isomers, which have earlier photoionization onsets (Figure 4.4.2c). A best fit analysis 

reveals a 90% contribution from methyl-2-pentenoate, a 10% contribution from 

methyl-3-pentenoate and no contribution from methyl-4-pentenoate. Figure 4.4.1d 

shows that formation of methyl-3-pentenoate is energetically more favorable from 

RδO2 than methyl-4-pentenoate. As discussed below, the lowest energy pathway for 

RεO2 decomposition is cyclic ether formation. Therefore, a large contribution from 

methyl-4-pentenoate is not expected. 
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Figure 4.4.2c. Top: Photoionization spectra for the m/z = 114 peak observed in Cl-

initiated oxidation of methyl valerate at 550 K compared to methyl-2-pentenoate, 

methyl-3-pentenoate and methyl-4-pentenoate standards. The line of best fit (solid 

purple) results from a least squared regression and indicates a 90% contribution 

from the conjugated methyl-2-pentenoate. Bottom: The same for 650 K. The least 

squares fit indicates contributions from each isomer.  
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In contrast to MB oxidation, when the temperature is increased to 650 K, a 

dramatic change in the HO2-elimination product curve is observed (bottom panel of 

Figure 4.4.2c). The earlier onset of the m/z = 114 product photoionization spectrum 

at 650 K can be explained only by a greater contribution from methyl-3-pentenoate, 

which displays the earliest ionization onset of the three methyl-pentenoate isomers at 

9.1 eV, matching that observed for the m/z = 114 product at 650 K. The best fit 

analysis indicates formation of all three isomers (57% methyl-2-pentenoate, 35% 

methyl-3-pentenoate and 9% methyl-4-pentenoate). The conjugated product is still 

the primary contributor, but at a significantly reduced level. Methyl-2-pentenoate 

displays fragment ions at m/z = 82 and m/z = 83 while methyl-3-pentenoate and 

methyl-4-pentenoate each produce fragment ions at m/z = 54 and m/z = 72. All of 

these fragment ions are consistent with signals observed in the oxidation of MV 

(Supplementary Figures 4.7c and 4.7d). 

4.4.3. Cyclic Ether Formation 

Integrated product mass spectra for all three esters studied here (Figures 

4.4.3a – 4.4.3c) display a peak at a mass of parent + 14, consistent with formation of 

cyclic ethers + OH via QOOH intermediates. Scheme 4.4.3 shows the expected 

cyclic ether products along with their calculated AIEs. The oxiranes and the oxetanes 

produced via non-resonance-stabilized QOOH were excluded from consideration 

because of the high barriers expected to their formation. None of the cyclic ethers 

anticipated from MP or MB oxidation were available commercially and no attempt 

was made to synthesize them. Both cyclic ether products likely from MP oxidation 

have calculated AIEs of 10.1 eV. Unfortunately, the signal for m/z = 102 in MP is too 
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weak to yield a reasonable photoionization spectrum. In contrast, the photoionization 

spectrum of m/z = 116 in MB displays a clear onset at 9.6 eV, in agreement with the 

lowest value calculated for the three expected cyclic ether products shown in 

Scheme 4.4.3. Formation of this oxetane product occurs via a resonance stabilized 

QOOH and is in direct competition with methyl-3-butenoate formation via HO2 

elimination from RδO2. As discussed above, no methyl-3-butenoate was observed, 

lending support to the conclusion that RδO2 decomposition proceeds primarily via 

QOOH. Figure 4.4.1c shows that the barrier to formation of the resonance-stabilized 

QOOH from RδO2 (20.3 kcal mol-1) is much lower than that for concerted HO2-

elimination (30.4 kcal mol-1) while the subsequent barrier to form methyl oxetane-2-

carboxylate is calculated to be 21.7 kcal mol-1. The 6-membered ring cyclic ether has 

a calculated AIE of 10.0 eV, but its formation from RγO2 is not expected due to the 

associated QOOH → Cyclic Ether + OH barrier lying above the Rγ + O2 entrance 

channel. A contribution from the 5- and 6- membered ring cyclic ethers originating 

from RmO2 cannot be excluded based on the calculated AIEs or the stationary point 

calculations presented in the lower panel of Figure 4.4.1c.  
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Figure 4.4.3a: Difference mass spectra of Cl-initiated oxidation of methyl propanoate 

at 550 K (bottom) and 650 K (top) normalized to photocurrent resulting from 

integrating the ion signal for the 32 ms timeframe immediately following photolysis 

and over ionizing photon energies from 9.0 –11.0 eV. Averaged background signal 

before photolysis has been subtracted, and negative signal arising from consumption 

of MP is omitted for clarity. 
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Figure 4.4.3b: Difference mass spectra of Cl-initiated oxidation of methyl butanoate 

at 550 K (bottom) and 650 K (top) normalized to photocurrent resulting from 

integrating the ion signal for the 32 ms timeframe immediately following photolysis 

and over ionizing photon energies from 9.0 –11.0 eV. Averaged background signal 

before photolysis has been subtracted, and negative signal arising from consumption 

of MB is omitted for clarity. 
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Figure 4.4.3c: Difference mass spectra of Cl-initiated oxidation of methyl valerate at 

550 K (bottom) and 650 K (top) normalized to photocurrent resulting from integrating 

the ion signal for the 32 ms timeframe immediately following photolysis and over 

ionizing photon energies from 9.0 –11.0 eV. Averaged background signal before 

photolysis has been subtracted, and negative signal arising from consumption of MV 

is omitted for clarity. 
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Scheme 4.4.3: The calculated adiabatic ionization energies of select cyclic ether 

products for the respective methyl esters. 

 

For MV RO2 radicals, the only cyclic ether channel with a calculated highest 

barrier lying below the competing HO2-elimination barrier is formation of the 5-

membered ring, methyl-tetrahydrofuran-2-carboxylate (Me-THF-2-carboxylate) 

originating from RεO2. This channel benefits from low ring strain in the 7-membered 

RO2 → QOOH transition state as well as the 5-membered QOOH → cyclic ether + 

OH transition state. Furthermore, the QOOH radical is resonance-stabilized, which is 

expected to yield a longer-lived radical that may drive reaction flux to the cyclic ether 

product.44, 63 As discussed above, a similar channel has been shown to be dominant 

in open-chain ketones.44, 47 Neither MP nor MB have an analogous channel available. 

The photoionization spectrum of Me-THF-2-carboxylate was obtained as described 



146 

 

above. The parent cation showed an extremely weak signal, but strong signals from 

multiple fragment ions (m/z = 102 and m/z = 71) were observed. Both of these 

masses are seen in MV oxidation (Figure 4.4.3c bottom panel) and the 

corresponding photoionization spectra are in good agreement with the fragment ions 

of the Me-THF-2-carboxylate standard from 9.0 – 10.0 eV, before also displaying 

contributions from other sources (Figure 4.4.3d). The peak at m/z = 130 indicates an 

additional contribution from other cyclic ether channels, as would be expected from 

the observation of cyclic ether products in both MP and MB oxidation, where 

analogous channels to 5-membered ring products are not available. The onset of the 

m/z = 130 product of MV oxidation is observed near 9.5 eV, in good agreement with 

methyl 4-methyloxetane-2-carboxylate. This product would be expected by analogy 

to the oxetane channel from RδO2 via a resonance-stabilized QOOH observed in MB 

oxidation. Disproportionation reactions64 involving RO2 are possible and would 

produce a bicarbonyl at an m/z of parent + 14 with an identical formula to the cyclic 

ether. However the lack of corresponding peaks due to an alcohol coproduct at an 

m/z of parent + 16, fails to corroborate this alternative.  
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Figure 4.4.3d: Photoionization spectra for the m/z = 130 (bottom), m/z = 102 

(middle) and m/z = 71 (top) peaks observed in Cl-initiated oxidation of methyl 

valerate at 550 K. The signals are compared to those from a methyl-tetrahydrofuran-

2-carboxylate standard. The parent Me-THF-2-carboxylate displays only a very weak 

signal. However, the strong daughter ion signals agree with the respective oxidation 

peaks below 10.0 eV before other contributions at these values of m/z become 

apparent. 

 

4.4.4. Other Products and Fragment Ions 

In the Cl-initiated oxidation of MB, Figure 4.4.3b displays strong signals at 

m/z = 116, 108, 101, 100, 88, 85, 69, 59, 44 and 30 (not shown). The signals at m/z 
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= 116 and 100 have already been identified as cyclic ether products and the 

coproduct of HO2-elimination, respectively. Similarly, the peak at m/z = 85 has been 

assigned as a fragment ion of the HO2-elimination coproduct methyl-2-butenoate 

(Figure 4.7b). Similarly, Figure 4.7b shows the peak at m/z = 69 is partially due to a 

fragment ion of methyl-2-butenoate. The peak at m/z = 101 corresponds both to the 

initial MB radicals and fragment ions of the associated MB peroxy (RO2) radicals. 

The kinetic time trace (Supplementary Figure 4.7g) of the m/z = 101 signal shows a 

sharp rise, consistent with the initial radical formation via H-abstraction reactions with 

Cl·, followed by a relatively constant signal that likely results from RO2 formation and 

fragmentation via: [RO2]+ → [R]+ + O2. The signal at m/z = 108 is also observed in 

the absence of O2 (Supplementary Information Figure 4.7k), displays a sharp rise 

consistent with chlorinated product formation, and is paired with a peak at m/z = 110, 

which, relative to the m/z = 108 signal, is observed in the natural abundance of the 

37Cl:35Cl isotope ratio. These peaks likely result from Cl· addition to the long-lived 

resonance-stabilized Rβ to form RβCl followed by fragmentation via: 

[CH3CH2CHClCOOCH3]+ → [CHClCOOCH3]+ + CH3CH2. The peak at m/z = 88 is 

consistent with fragment ion formation via loss of neutral CO from the cyclic ether 

cation. Such a reaction has been observed in the low temperature oxidation a 

number of ketones44, 47, 51 and again here in the photoionization of methyl-

tetrahydrofuran-2-carboxylate. The peak at m/z = 59 is only observed in the 

presence of O2 and has a time profile showing a fast rise followed by partial decay. 

The origins of this peak are not immediately obvious, but the time profile indicates 

that it is due, at least in part, to a fragment ion. Finally, peaks at m/z = 30 and 44 are 
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only observed in the presence of O2. Their photoionization spectra align with the 

well-known spectra of formaldehyde (CH2O) and acetaldehyde (CH3CHO), 

respectively. These small molecule products may originate from numerous 

bimolecular channels and we do not attempt to identify specific pathways here. A 

number of analogous peaks are observed in MP and MV oxidation and for brevity we 

omit similar detailed explanations. Product time profiles and photoionization spectra 

are included in the Supplementary Information section 4.7 as Figures 4.7e – 4.7j for 

the 550 K Cl-initiated oxidation experiments of the three esters studied here. 

 

4.5  Conclusions 

The Cl-initiated oxidation reactions of C3-C5 methyl esters have been studied 

with multiplexed photoionization mass spectrometry utilizing tunable synchrotron 

ionization radiation. The β-carbon radical, Rβ, formed from H-abstraction is 

resonance-stabilized and thus addition of O2 results in a shallow RβO2 well. As a 

consequence, traditional RO2 exit channels lie near or above the Rβ + O2 entrance 

channel. Despite the low energy conjugated coproduct, in the conditions studied here 

other secondary pathways are expected to compete with HO2-elimination. In 

contrast, other initial radicals form more strongly bound peroxy radicals, and the 

products of both chain-terminating HO2-elimination and chain-propagating cyclic 

ether formation pathways are observed. Though a number of reactions are possible 

from decomposition of RγO2, HO2-elimination to form the conjugated methyl-2-

propenoate, methyl-2-butenoate, and methyl-2-pentenoate are observed to be 

dominant at 550 K. Interestingly, as the temperature is raised to 650 K, selectivity is 
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lost in the HO2-elimination pathways of MV and a mix of methyl-2- 3- and 4-

pentenoate are observed. At 550 K, cyclic ether formation channels via QOOH 

radicals are observed to be competitive. In MB and MV, formation of oxetane cyclic 

ethers appears to be important via resonance-stabilized QOOH, with the radical site 

at the β carbon. Due to the longer hydrocarbon chain, a favorable pathway exists to 

form a 5-membered ring cyclic ether, methyl-tetrahydrofuran-2-carboxylate (Me-THF-

2-carboxylate), via low ring strain transition states in both the RO2 → QOOH and 

QOOH → cyclic ether + OH reactions. Though photoionization results in a very short 

lived Me-THF-2-carboxylate cation, its fragment ions are observed in the oxidation of 

MV, confirming the presence of this channel. 
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4.7 Supplementary Information 
 

 
 
Figure 4.7a: Photoionization spectra for the m/z = 85 (bottom) and m/z = 69 (top) 

peaks observed in Cl-initiated oxidation of methyl butanoate at 550 K. The signals 

are compared to those from daughter ions originating from a methyl-2-butenoate 

standard. 
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Figure 4.7b: Photoionization spectra for the m/z = 85 (bottom) and m/z = 69 (top) 

peaks observed in Cl-initiated oxidation of methyl butanoate at 550 K. The signals 

are compared to those from daughter ions originating from a methyl-2-butenoate 

standard. 

 
 
Figure 4.7c: Photoionization spectra for the m/z = 83 (bottom) and m/z = 82 (top) 

peaks observed in Cl-initiated oxidation of methyl valerate at 650 K. The signals are 

compared to those from daughter ions originating from a methyl-2-pentenoate 

standard. 
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Figure 4.7d: Photoionization spectra for the m/z = 72 (bottom) and m/z = 54 (top) 

peaks observed in Cl-initiated oxidation of methyl valerate at 650 K. The signals are 

compared to those from daughter ions originating from a methyl-3-pentenoate and 

methyl-4-pentenoate standards. 

 

 
 
Figure 4.7e:  Time traces for products observed in the Cl-initiated oxidation of 

methyl pentanoate at 550 K and 1 Torr. The photolysis laser fires at 20 ms.  
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Figure 4.7f: Photoionization spectra for products observed in the Cl-initiated 

oxidation of methyl pentanoate at 550 K and 1 Torr.  

 
 
Figure 4.7g: Time traces for products observed in the Cl-initiated oxidation of methyl 

butanoate at 550 K and 8 Torr. The photolysis laser fires at 20 ms.  
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Figure 4.7h: Photoionization spectra for products observed in the Cl-initiated 

oxidation of methyl butanoate at 550 K and 8 Torr.  

 
Figure 4.7i: Time traces for products observed in the Cl-initiated oxidation of methyl 

valerate at 550 K and 8 Torr. The photolysis laser fires at 20 ms.  
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Figure 4.7j: Photoionization spectra for products observed in the Cl-initiated 

oxidation of methyl valerate at 550 K and 8 Torr.  

 

Figure 4.7k: Difference mass spectra of Cl-initiated oxidation of methyl butanoate at 

550 K, 8 Torr and 11.0 eV. The bottom spectrum was recorded with no O2 flow. 

Averaged background signal before photolysis has been subtracted, and negative 

signal arising from consumption of MB is omitted for clarity. 
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Chapter 5: Aerosol Photoelectron Spectroscopy 

  

5.1 Abstract 

 Preliminary aerosol photoelectron spectra were obtained at the National 

Synchrotron Radiation Research Center (NSRRC) in Hsinchu City, Taiwan. PE 

spectra for isoprene in environments of varying levels of acidity (pH of 1, 7, and 12), 

as well as spectra for gamma-valerolactone with differing levels of aerosol 

concentrations (5%, 20%, 30%, and pure) are presented and discussed.  

5.2 Introduction 

 Fossil fuels have been the primary source of energy for transportation. The 

depleting reserves and growing concern over combustion emissions underline the 

need to focus on alternative fuels. Biofuel is a potentially carbon-neutral source of 

energy, as necessary ingredients can be extracted from both plants and animals. 

Various types of molecules are used as biofuel components, or studied as biofuel 

candidates ― including ethers, alcohols, esters, furans, saturated hydrocarbons, and 

lactones.1-4 

 The structure of these types of molecules can influence the combustion 

behavior, as evidenced by the role of the functional group in small-chain methyl ester 

oxidation described in Chapter 4. Photoelectron (PE) spectroscopy is a valuable 

method frequently employed to elucidate the electronic structures of molecules, and 

while there is a range of literature available for PE spectroscopy of structures in the 

solid,5, 6 liquid,7-9 and gaseous states,7, 10, 11 only recently has aerosol photoelectron 

spectroscopy emerged.12, 13 In addition, information regarding PE spectroscopy of 

biofuel-related aerosols is very scarce.  
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 Aerosol particles (0.01 – 10  µm in diameter) are a subset of particulate 

matter (PM), which is a class of small-sized pollutants that contribute to global 

warming by scattering solar radiation.14, 15 Biofuels, and fuels in general, are closely 

related to the formation of aerosol particles, either through the reaction of NOx with 

organic atmospheric particles or directly emitted as small-sized carbonaceous 

aggregates such as soot.16-18 When volatile organic compounds (VOCs) come into 

contact with ozone, for example, a specific type of aerosol is formed and is 

designated as secondary organic aerosols (SOAs).19, 20 These reactions are complex 

and many studies have been conducted in an effort to ascertain the ozonolysis 

process and kinetics of aerosol formation.21, 22 

 Recently, Su et. al.13 experimented with cysteine in the aqueous aerosol 

phase through a biological perspective. Cysteine, an amino acid, regulates biological 

function of proteins,23 and while ab initio studies have been conducted on the 

electronic structure of cysteine in the gas-phase,24 it was of interest to study the 

compound under physiologically relevant conditions ― particularly in an aqueous 

environment.  The activity of cysteine had been interpreted by its nucleophilicity,25 

although clear evidence was not available in literature. The valence electronic 

structure of cysteine in the aqueous aerosol phase was obtained and the results 

showed distinct band shapes at varying pH conditions through photoelectron 

spectroscopy.13 

 The aerosol photoelectron spectroscopy of cysteine inspired the current 

investigation of two particular biofuels in the aerosol phase, isoprene and gamma-

valerolactone. Isoprene is used to produce liquid aviation fuels,26 and is naturally 

released into the atmosphere by many plants.27, 28 For the reason that it has been 
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classified as one of the most dominant biogenic VOCs, emission algorithms such as 

MEGAN (Model of Emissions of Gases and Aerosols from Nature) model regional 

and global levels of isoprene.29 In addition, the oxidation of isoprene (2-methyl-1,3-

butadiene, C5H8) is known to lead to SOAs, which have been described to greatly 

influence the climate due to contribution toward cloud condensation and 

nucleation.30, 31 The impact of surrounding NOx conditions and relative humidity 

levels (RH) in the atmosphere have also been investigated in the role of isoprene 

SOA formation.32, 33  

 The influence of an acidic environment on isoprene has been explored, 

showing polymerization capabilities on acidic sulfate aerosols using aerosol mass 

spectrometry.34, 35 Lewandowski et al.36 sought to understand the impact of acidity-

influenced oxidation chemistry on SOA yields of isoprene, finding a direct 

relationship between aerosol acidity and increasing SOA formation from 

photooxidation of isoprene. In this investigation, photoelectron spectra of isoprene 

aerosols, with varying degrees of acidic environments, are obtained and analyzed. 

 In addition to isoprene, gamma-valerolactone (dihydro-5-methyl-2(3H)-

Furanone, C5H8O2) is a biofuel of interest in the present work. It can be produced by 

dehydration/hydrogenation of C6-sugars or levulinic acid with the use of ruthenium 

catalysts.37, 38 Gamma-valerolactone (GVL) is used as a high-quality fuel-additive, 

and can be converted to liquid alkenes for use as transportation fuels.39, 40 As GVL 

can be used in new generation engines, such as homogenous compression ignition 

(HCCI), the relevant autoignition and combustion processes were investigated via 

·OH-initiated photooxidation reactions at the Advanced Light Source by Giovanni 

Meloni’s research group at University of San Francisco.41 The absolute 
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photoionization cross-sections of GVL have also been reported by Czekner et al.42 at 

USF. In continuation of this line of research, the photoelectron spectra of GVL in the 

aerosol phase are obtained as function of molecular beam concentration to 

determine changes in electronic structure.  

 

5.3 Experiment  

Photoelectron spectroscopy was conducted at the beamline BL21B2 at the 

National Synchrotron Radiation Research Center in Hsinchu City, Taiwan. In-depth 

details of the aerosol photoelectron spectroscopy apparatus are provided in section 

3.2 of this thesis and a brief overview is provided here.  

Prior to conducting the experiments, PE spectra of atomized water are taken 

to identify the vibrational bands. These are essentially used as “background” spectra, 

although depending upon the ionization energies of the aerosol species investigated, 

the subtraction of water may or may not be required to witness shifts in bands 

between experiments. When water is atomized, there are two specific contributions 

to the PE spectrum: condensed-phase water (onset ~10.75, eV binding energy) and 

gas phase water (onset ~12.50 eV, binding energy). 

Three identical isoprene solutions were prepared by dissolving 0.14 mL into 

200 mL of water to form 0.01 M solutions. HCl or NaOH was added to each solution 

and the pH was monitored with a Suntex SP-701 pH meter to form three isoprene 

solutions of pH 1, 7, and 12. Following a similar procedure, a 0.5 M solution of GVL 

was prepared by dissolving 10 mL into 200 mL of water.  
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For each experiment, the respective sample was placed into a Model 930643 

atomizer where the pressure was controlled by a regulator. The liquid solution was 

forced through small nozzles via pressure generated by inert neon gas flow into the 

atomizer. This neon flow generated aerosol droplets on the order of 100 nm in 

diameter and carried the aerosol mixture to the aerosol source chamber, where it 

entered an adjusted aerodynamic lens (AADL) system for additional size-selection. 

Once entering the ionization region, the beam intersected VUV synchrotron radiation 

of 25 eV photon energy. The ejected electrons were collected with a R3000 model 

(Scienta Omicron)44 hemispherical electron energy analyzer with an acceptance 

angle of 10◦. The kinetic energy of the photoelectrons were recorded and 

subsequently converted to binding energy, and then compared with literature values 

and PE spectra where available. In addition, geometric optimizations, adiabatic 

ionization energies, and simulated PE spectra were achieved using Gaussian 0945 

suite at the CBS-QB346-48 level of theory with a mean average deviation of 0.05 eV. 

 

5.4 Results and Discussion 

5.4.1 Isoprene 

The photoelectron spectra of isoprene solutions of pH 1, 7, and 12 are 

represented in Figure 5.4.1 for simplicity.  

Literature reference for the valence shell electronic spectroscopy of isoprene 

in the gas phase is provided by Martins et al.,49 where the first onset is reported at 

8.842 eV, assigned to the ionization from the π(3a”) orbital. The CBS-QB3 calculated 

adiabatic ionization energy of 8.86 ± 0.05 eV is in excellent agreement with 
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experimental value obtained by their investigation. However, perhaps due to the 

dilute mixture of the sample, as well as the low solubility of isoprene in water, 

isoprene is undetectable in the PE spectrum obtained from our experimentation.  

The results are not optimal for analysis in that the condensed phase band of 

water typically appears ~10.83 eV, while it is shifted upward in the spectrum 

pertaining to pH 12 at ~11.3 eV. The relative intensity of the condensed phase water 

band is also substantially more prominent for the pH 12 aerosol compared to the 

more acidic environments. 

 

Figure 5.4.1: Photoelectron spectra generated at 25 eV for atomized solutions of 

isoprene + H2O at pH of 1, 7, and 12.  

   

5.4.2 Gamma-Valerolactone 

 Photoelectron spectra of gamma-valerolactone in four different molecular-

beam concentrations are shown in Figure 5.4.2a.  
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Figure 5.4.2a: Top: Photoelectron spectra of GVL “pure”, 5%, 20%, and 30% 

aerosol beam concentrations in the range of 9.0 to 14.5 eV binding energy. Bottom: 

A closer image of the PE spectra, with binding energy from 9.0 to 12.5 eV. 
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Although the photoelectron spectrum of GVL is not currently available in 

literature, the CBS-QB3 calculated adiabatic ionization energy of 9.98 ± 0.05 eV by 

Czekner et al.42 is in good agreement with the measured onset of GVL shown in 

Figure 5.4.2a. The lowest-energy structure optimized at the CBS-QB3 level of both 

neutral and cationic GVL are shown in Figure 5.4.2b, and the simulated PE spectrum 

is visualized in Figure 5.4.2c.  

The results of GVL aerosol photoelectron spectroscopy resulting from varying 

aerosol concentrations are not compelling, as the bands do not seem to shift. 

However, a potentially interesting investigation for future study would involve the shift 

in relative peak intensities from the gas-phase to the aerosol phase. In the simulated 

gas phase PE spectrum shown in Figure 5.4.2c, the third peak vibrational band is the 

most intense at approximately 10.3 eV (binding energy). However, in the pure 

aerosol PE spectrum shown in Figure 5.4.2a, the second band at approximately 10.1 

eV is the most intense vibrational transition. Additional measurements, both in the 

gas phase as well as aqueous aerosol phase, would need to be conducted in order 

to understand the shift. 

  

Figure 5.4.2b: Left: The neutral species of GVL. Right: The cationic GVL species. 

Both geometries optimized at the CBS-QB3 level of theory. 
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Figure 5.4.2c: The Gaussian-simulated gas phase photoelectron spectrum of 

gamma-valerolactone calculated at the CBS-QB3 level of theory. 

   

5.5 Conclusion:  

 This preliminary investigation to aerosol photoelectron spectroscopy for 

biofuels serves as a foundation for future experimentation. While these results do not 

present persuasive evidence to support changes in electronic structure in the two 

experiments, there are changes that can be made that may improve our 

understanding of behavior in the aerosol state. Namely, it would be of interest to 

study an experiment involving two source regions, i.e., one for pure isoprene aerosol 

and another for acidic aqueous aerosol. In this way, solubility and liquid-phase 

chemistry processes are eliminated and perhaps this will closer emulate natural 

atmospheric interaction. In addition, particle sizers and counters would be of use to 

differentiate changes in photoelectron spectra based on the aerosol particle size. 
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6.1 Abstract 

The unimolecular dissociation of energy-selected ethylenediamine cations 

was studied by threshold photoelectron photoion coincidence spectroscopy 

(TPEPICO) in the photon energy range of 8.60–12.50 eV using a custom-made 

instrument housed at the University of the Pacific in Stockton, CA. A breakdown 

diagram and time-of-flight distributions were used to determine 0 K appearance 

energies for eight channels modeled with RRKM theory: NH2CHCH2
+· at 9.120 ± 

0.010 eV, CH3C(NH2)2
+ at 9.200 ± 0.012 eV, NH2CHCH3

+ at 9.34 ± 0.08 eV, 

CH2NH2
+ at 9.449 ± 0.025 eV, CH2NH3

+ at 9.8 ± 0.1 eV, c-C2H4NH2
+ at 10.1 ± 0.1 eV, 

CH3NHCHCH2
+ at 10.2 ± 0.1 eV, and the reappearance of CH2NH2

+ at 10.2 ± 0.1 eV. 

The CBS-QB3-calculated pathways highlighted the influence of intramolecular 

hydrogen attractions on the photodissociation processes, presenting novel isomers 

and low-energy van der Waals intermediates that lead to dissociative fragments in 

good agreement with experimental results. While most of the dissociation channels 

take place through reverse barriers, the 0 K heat of formation of ·CH2NH2 was 

determined to be 160.6 ± 2.7 kJ mol–1, in excellent agreement with literature, and the 

0 K heat of formation of CH2NH3
+ at 860 ± 10 kJ mol–1 is the first definitive 

experimentally measured value available and is in good agreement with theory. 

mailto:gmeloni@usfca.edu
mailto:bsztaray@pacific.edu
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6.2 Introduction  

The effects of climate change are widely observed and greenhouse gases 

are a large contributing component. As of 2013, CO2 emissions in the US resulting 

from liquid fuel combustion for transportation generated 26% of all greenhouse 

gases.1, 2 Recent initiatives have focused on reducing emissions by researching 

novel technologies and alternative energy sources such as electric, hybrid, and 

biodiesel combustion. Biodiesel has the potential to be a carbon-neutral source of 

energy, contingent upon both the blend of the fuel and its impact upon the engine in 

which it is burned.  

Many small amine-containing compounds, such as hydrazine and its methyl 

derivatives, are used extensively in various industrial arenas, including rocket fuel 

combustion processes.3, 4 Ethylenediamine, the smallest polyethylene amine, 

possesses two terminal amino groups that enable the compound to readily form 

imidazolidines, succinimides, chelates, and polyamides. This versatility accounts for 

its many uses, ranging from the production of fungicides to biofuels.  

The potential roles of ethylenediamine (EN) in fuel combustion are extensive. 

Tang et al.5 studied the catalytic activity of EN in the transesterification process of 

rapeseed oil to generate biofuels, while fuel corporations have been incorporating 

EN to improve the cetane number in diesel fuels for internal combustion engines.6 

EN has recently been shown to enhance motor performance when coupled with 

borane to form innovative lubricant and fuel additives.7 In general, many biodiesel 

blends with low cetane numbers present longer ignition delays and accelerate the 

formation of oil sludge. These engine deposits lead to greater release of smoke and 

exhaust, underlining the importance of effective fuel dispersant-detergents. In an 
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effort to better understand the combustion processes pertaining to EN polyamides 

and chelated complexes, it is necessary to realize precise thermochemical data of 

neutral ethylenediamine and its ionic species in the gas phase.  

Threshold photoelectron photoion coincidence spectroscopy (TPEPICO) is an 

effective technique in determining highly accurate dissociative photoionization 

onsets, and to explore dissociation dynamics, branching ratios and energy 

partitioning among the product channels of internal energy-selected cations. 

Accurate thermochemical parameters of the neutral and ionic species, which are 

important in combustion and atmospheric models, can be ascertained using the data 

gathered from TPEPICO measurements.8-15 

Previous experiments and theoretical computations of EN in the neutral state 

provide insight to understanding unimolecular dissociation on the cationic potential 

energy surface. Radom et al.16 investigated the internal rotation in 1,2-disubstituted 

C-C bonds, reporting low-energy conformations that are stabilized by intramolecular 

hydrogen bonding involving the amine moieties. Two gauche rotational isomers 

(rotamers) were presented and the lowest-energy arrangement aligned with previous 

electron diffraction studies by Yokozeki et al.,17, 18 which was calculated to be more 

than 95% abundance of EN. Over two decades later, Kazerouni et al.19 conducted an 

ab initio investigation into the various conformations of ethylenediamine at the HF/6-

31G* level using GAUSSIAN 90.20 Three low-energy configurations were presented, 

including an anti form of EN with C1 symmetry — still less stable than the two gauche 

forms. The lowest-energy gauche form was stabilized with hydrogen bonding, while 

in the other gauche structure the nitrogen pairs were opposite one another. Alsenoy 

et al.21 calculated ten conformations of EN using the FORCE method with the 4-21G 
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basis set, and Lee et al.22 used molecular orbital theory to explain the structure and 

conformational energies. Krest’yaninov et al.,23 guided by Weinhold’s24 view of 

hydrogen bonding as charge transfer between orbitals, determined the most stable 

gauche form to have weak intramolecular hydrogen bonding characteristics.  

The cationic state of EN is relatively unexplored, however a VUV 

photoionization experiment was conducted by Wei et al.,25 where computational 

analysis at the G3 level was also presented in an attempt to explain the formations of 

the observed fragments. The experimental and computational results are in rough to 

good agreement, while some are not. This served as a motivation to revisit the 

dissociation of the ethylenediamine ion through TPEPICO, using the analysis by Wei 

et al.25 as a starting point for the current investigation. With TPEPICO we further 

characterize the rotation, H-migration, and functional group migration processes 

involved in EN photodissociation, as these behaviors are of interest to the scientific 

community26-29 and can be applied, for example, to combustion diagnostics.15  

 

6.3 Experimental 

The time-of-flight mass spectra of energy-selected EN cations were collected 

on the custom-built TPEPICO spectrometer located at the University of the Pacific.  

The apparatus has been described in details and only a brief overview is given 

here.14, 30-33 Ethylenediamine was purchased from Sigma Aldrich (≥ 99% purity) and 

its vapor was effusively introduced into the ionization chamber.  The molecules were 

ionized with vacuum ultraviolet light generated from a hydrogen discharge lamp 

operating at approximately 1–1.5 Torr H2 pressure and dispersed by a 1 m normal 

incidence monochromator. The photon energy scale was calibrated using the 
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hydrogen Lyman-α and Lyman-β resonance lines and the resolution was 8 meV at 

10 eV. The photoelectrons were extracted through a 6.75 mm long field of 20 V cm–1 

and were accelerated into a 13 cm drift tube set to 77 V. A mask at the end of the 

drift region contained a 1.4 mm aperture for the Channeltron detector (center) and 2 

x 8 mm opening for the hot electron detector. The velocity map imaging (VMI), first 

introduced by the Baer group for TPEPICO,34 allows electrons to be focused onto 

small rings contingent upon their velocity perpendicular to extraction. Thus, the hot 

electrons were eliminated by multiplying the hot electron signal (outer ring) by a well-

defined weighted fraction and subtracting from the zero perpendicular velocity signal 

at the center.32 

 In the linear time-of-flight (LinTOF) setup, the ions were directed with Wiley-

McLaren35 space-focusing geometry and accelerated to 100 eV in the first 5 cm long 

acceleration region, then rapidly accelerated to 260 eV in a short second 

acceleration region. Thereafter, ions drifted across a 34 cm field-free region where 

they were detected. The velocity of the ion is indirectly proportional to its mass and 

its time-of-flight directly proportional to the square root of the mass of the ion.  

Electron detection served as the start signal and its corresponding ion hit 

served as the stop signal for two time-to-pulse height converters (TPHC); the data 

acquisition schemes, including accounting for false coincidences, have been 

previously described.36 This information was sent to the Ortec multichannel analyzer 

cards to create TOF spectra that can be used to extract meaningful thermochemical 

data via computational analysis and modeling. 

A weighted factor of 0.1832, 37 was used to subtract the hot electrons on the 

ring from the zero-velocity perpendicular electrons in the center to yield TOF spectra 
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representative of the dissociation reactions. In addition, the TOF spectra is integrated 

in multiple areas where no peaks are present to establish an effective baseline for 

noise that is then averaged and subtracted.  

The low, 20 V cm–1 extraction field is essential to obtain rate information, 

which is manifested in asymmetric TOF peak shapes. As a side effect, the 

instrumental peak widths are too wide for baseline separation of fragments with 1 

m/z difference. In the case of fast dissociations where the peaks are Gaussian-

shaped, the deconvolution was achieved using the IGOR38 multi-peak fitting tools 

and the center of each peak. Slow dissociations are more complicated due to 

asymmetric peaks, however if the contribution of one of the ions (either x or x+1) to 

the total integrated signal is known, it can be subtracted to obtain the other. This 

process was used once adjacent peaks could be differentiated precisely and one of 

the peaks was known to be Gaussian-shaped. Relative ion signal was fixed to 

account for the 13C and 15N isotopologues (Figure 6.9).  

Asymmetric TOF peaks are symptomatic of slow dissociation processes, 

where cationic parent molecules with excess energy above the dissociation barrier 

do not immediately dissociate, leading to a so-called kinetic shift.39, 40 These non-

Gaussian TOF peak shapes are representative of the dissociation rate constants. 

Therefore, to extract accurate 0 K onset energies and unimolecular dissociation 

rates, the TOF peak shapes were also modeled by MiniPEPICO37 using RRKM 

theory in case of slow processes. Quantum mechanical calculations were conducted 

at the CBS-QB3 level of theory41-43 for use in PEPICO analysis with the 

Gaussian0944 suite, and in some cases the Gaussian-3 (G3)45 method was used to 

compare with previous experimental results. Transition states with one negative 
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imaginary frequency were visually inspected using GaussView46 and intrinsic 

reaction coordinate (IRC)47, 48 calculations were performed at B3LYP/6-31G(d) level 

of theory to verify direct relationships between reactants and products. The 

transitional frequencies were scaled to fit the experimental data in the modeling 

process.37  

 

6.4 Theory 

PEPICO is widely used in the determination of accurate photoionization 

onsets, which can then be applied to arrive at valuable thermochemical and kinetic 

information. The MiniPEPICO program, described in detail by Sztáray, Bodi, and 

Baer,37 calculates necessary density and number of states functions, and internal 

energy distributions to yield a breakdown diagram representing the fractional ion 

abundances as the function of the photon energy. Breakdown diagrams can be 

directly compared to the experimental fractional abundances and serve as helpful 

guides in the determination of parallel and consecutive dissociation pathways. In 

addition, the MiniPEPICO37 program enables the experimental dissociation rates to 

be extracted using Rice, Ramsperger, Kassel, and Marcus’s RRKM theory,49-51 as 

well as the variational transition state theory (VST)52 and simplified statistical 

adiabatic channel model (SSACM).53 The RRKM rate constant as a function of 

internal energy (E) is given by  

𝑘(𝐸) =
σ𝑁‡(𝐸−𝐸o)

ℎ𝜌(𝐸)
,                 (6.4) 

where N‡(E – E0) is the number of states of the TS at excess energy above the 

dissociation barrier E0, ρ(E) is the density of states of the molecule, h is Planck’s 

constant and σ corresponds to the symmetry number of the TS.  
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Cationic parent species do not always dissociate within the timescale of the 

experiment, i.e., slowly, and can yield asymmetric daughter ion peaks that are 

reflective of their dissociation rates.  An additional term is utilized by MiniPEPICO37 

to compensate for this process, in which the ion energy distribution function is 

multiplied by the probability that the ion does not dissociate within the first 

acceleration region. The rate curves of slow dissociations require the vibrational 

frequencies of TS modes to be fitted with the appearance energies and the 

reproduction of the asymmetric TOF distributions as needed to account for kinetic 

shifts. 

Quantum mechanical calculations are invaluable in the PEPICO analysis, as 

pertinent information is entered into the modeling program to calculate the thermal 

energy distribution of the neutral and daughter ions, such as rotational constants and 

frequencies of neutral and cationic ethylenediamine. Estimated transition state 

structures, with one imaginary frequency each, are determined by constrained 

optimizations in which either a bond length or a bond angle is scanned, or by using 

the Synchronous Transit-Guided Quasi-Newton (STQN) method54, 55 at the B3LYP/6-

31G(d) level/basis set and energies with CBS-QB3 optimizations. CBS-QB3 

energetic calculations are accompanied by a mean absolute deviation (MAD) from 

experiments of ± 0.05 eV.43, 56-58  

 The experimental appearance energies (AE) of the fragments are obtained 

once the best fit is reached between the experimental and modeled breakdown. In 

the case of slow dissociations, the TOF spectra are also matched. Combining these 

appearance energies with known heats of formation of the neutral parents and 
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fragments, it is possible to arrive at the heats of formation of the daughter ions for 

those channels, which proceed without reverse activation barriers.  

 

6.5 The Resultant Dissociative Photoionization Processes of EN 

Time-of-flight spectra of energy-selected ethylenediamine ions were collected 

in the photon energy range of 8.60–12.50 eV at room temperature. The breakdown 

diagram (Figure 6.5a) represents the observed fragments at m/z = 30, 31, 43, 44, 

and 59 as well as their TPEPICO-extracted appearance energies. Raw TOF spectra 

revealed all peaks to be symmetric, synonymous with fast dissociation processes, 

aside from that of m/z = 43 (Figure 6.5b). TOF peaks corresponding to m/z = 30, 44, 

and 59 reappear at higher energies, resulting in a total of eight traceable parallel 

dissociation channels. Each dissociation pathway is outlined below in chronological 

order with respect to its appearance, along with the experimental reaction rates in 

Figure 6.5c (for structures of the ions, intermediates and TSs see Figure 6.6.4b). 

 

1.) m/z = 43, NH2CHNH2
+·. The m/z = 43 fragment is the first to appear and does 

so with a slow dissociation. The asymmetric TOF peak mirrors the 

dissociation rate and thus the time-of-flight mass spectra needed to be 

modeled along with the corresponding breakdown diagram as shown in 

Figure 6.5c.  Reaction 1 (R1) leads to the resonance-stabilized ethenamine 

ion [11], resulting from NH3-loss from an H-migration parent ion isomer ([10]): 

NH2CH2CH2NH2
+·   NH2CHCH2

+· + NH3            (R1) 
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Figure 6.5a: Breakdown diagram of internal energy-selected ethylenediamine 

cations. Experimental data represented by dots and solid lines correspond to the 

best fit of the RRKM modeling of the data.  

 

 

Figure 6.5b: Time-of-flight (TOF) mass spectra of ethylenediamine 

(NH2CH2CH2NH2
+·) and the CH3C(NH2)2

+, NH2CHCH3
+, and NH2CHCH2

+· fragment 

ions (m/z = 60, 59, 44, and 43 respectively). 



 

 

185 
 

2.) m/z = 59, CH3C(NH2)2
+. The first hydrogen-loss pathway (R2) proceeds via H 

and NH2-group migration to isomerize and subsequently form the 1-

aminoethaniminium ion [18]. In this case the parent and the daughter ion 

peak shapes are not baseline separated, due to the low field and long 

extraction region, which are essential to obtain unimolecular rate information. 

However, the kinetic information hidden by the m/z = 60 peak, could be 

extracted from another parallel channel, namely, the formation of the m/z = 

43, since the first order dissociation rate belongs to the fragmentation of the 

parent ion. 

NH2CH2CH2NH2
+·    CH3C(NH2)2

+ + ·H            (R2) 

3.) m/z = 44, NH2CHCH3
+. The ethylidenimmonium ion, [19], is the proposed 

cationic structure formed along with the neutral ·NH2, from a van der Waals 

product complex [14]:  

NH2CH2CH2NH2
+·    NH2CHCH3

+ + ·NH2            (R3) 

4.) m/z = 30, CH2NH2
+. The C-C bond cleavage leading to the 

methylenimmonium ion [20] is the dominant pathway in EN ion unimolecular 

dissociation and involves no migration processes: 

NH2CH2CH2NH2
+·    CH2NH2

+
 + ·CH2NH2                 (R4) 

5.) m/z = 31, CH2NH3
+·. The appearance of this cationic fragment is observable 

at slightly higher energies than that of m/z = 30 in R4. The 

methyleneammonium ion, structure [23], is projected to be the primary 

contributor through CH2NH-loss and the overall channel is represented by 

reaction 5:  

NH2CH2CH2NH2
+·    CH2NH3

+·
 + CH2NH            (R5) 
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No appearance energy of this ion has been previously reported from EN 

dissociation. 

6.) m/z = 44, c-C2H4NH2
+. The reappearance of the m/z = 44 corresponds to the 

formation of cyclic aziridinium ion [28] from NH2-migration and ultimate NH2-

loss:  

NH2CH2CH2NH2
+·    c-C2H4NH2

+ + ·NH2            (R6) 

7.) m/z = 59, CH3NHCHCH2
+. The reappearance of m/z = 59 [36] as shown in 

the breakdown diagram occurs above 10.2 eV photon energy:  

NH2CH2CH2NH2
+·    CH3NHCHCH2

+
 + ·H            (R7) 

8.) m/z = 30, CH2NH2
+.  The methylenimmonium ion [37] is formed again as in 

R2, however with a higher energy neutral fragment:  

NH2CH2CH2NH2
+·    CH2NH2

+
 + CH3NH·            (R8) 

 

Figure 6.5c: RRKM rate constants plotted as a function of EN ion internal energy as 

determined by modeling of TPEPICO data (for structures of the ions, intermediates 

and TSs see Figure 6.6.4b). 
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6.6 Computational Analysis and Discussion 

6.6.1 Neutral EN 

Intramolecular hydrogen bonding and stereoelectric effects are known to 

contribute to the various rotamers of ethylenediamine in the neutral ground state.16, 23 

The lowest-energy neutral conformation was needed to determine accurate relative 

energies for use in the current TPEPICO analysis, as well as the rotational constants 

and frequencies necessary for modeling. Potential energy surfaces have been 

scanned using B3LYP/6-31G(d) where the NH2 moiety rotates around the central 

carbon bond from cis to trans orientations. Small barriers distinguish multiple 

configurations. At each minimum observed, the structure was optimized using CBS-

QB3 and a following potential energy surface was scanned where the NH2 group 

rotates on a fixed bond, with the aim to observe the effect of nitrogen-hydrogen 

positioning in the cis form. The lowest-energy conformation found is geometrically 

similar to that presented in the previous photodissociation study of ethylenediamine 

by Wei et al.25 using G3, however the C-C and C-N bonds are slightly elongated in 

the current structure. For direct comparison, the current structure found using CBS-

QB3 was subsequently optimized with G3, confirming a marginally lower-energy 

structure of molecular EN than had previously been reported (Figure 6.6.1). The 

conformation is stabilized by intramolecular hydrogen bonding in the gauche state, in 

agreement with previous studies.16-18  
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Figure 6.6.1: The lowest-energy conformation of neutral ethylenediamine and 

energy in Hartrees as calculated by CBS-QB3 (left) and G3 (right). The CBS-QB3 

neutral total energy is used to determine the relative energies of all stationary points 

on the potential energy surface and the G3 value can be directly compared with the 

previous G3 optimization calculations.25 

 

6.6.2 Cationic EN 

Bond lengths, angles, and rotations were scanned in the search for rotamers 

in the cationic state and minima were again observed with small rotational barriers. 

Three rotamers play a large role in dissociation processes and are shown as 

structures [1], [3], and [5] in Figure 6.6.2. Structure [1] was found to be the highest 

energy cationic rotamer and the orientation is in best agreement with the neutral. The 

ionization energy (IE) from the neutral structure to cation [1] is calculated at 8.57 eV 

using CBS-QB3 (8.55 with G3), while the relative energies for conformers [3] and [5] 

are 8.20 and 8.18 eV, respectively. The calculated ionization energy of EN using 

rotamer [1] is also in good agreement with 8.54 eV calculated by Wei et al.25 using 

G3 and 8.6 eV determined by Kimura et al.59 through He I photoelectron 

spectroscopy. Thus, the neutral structure discussed above and the cation [1] served 

as the molecular EN and corresponding parent ion in the TPEPICO analysis. 
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Figure 6.6.2: CBS-QB3 calculated geometries of the three cationic ethylenediamine 

conformers involved in the photodissociative processes. 

 

6.6.3 Rotation and Isomerization 

As the photon energy increases, if the direct dissociation limit requires great 

amounts of energy, then rotational and isomerization pathways become more 

competitive. Previous photodissociation studies have described isomerization 

pathways prior to dissociation,28, 29 which was found to be the case for the 

dissociation of the EN ion, as well.   

Figure 6.6.2 represents the potential energy surface of the rotamers and 

isomers most directly responsible for the fragments we model in our TPEPICO 

experiment. The first rotational barrier [2]‡ from the lowest-energy cationic 

configuration [1] is 0.02 eV and leads to rotamer [3] at 0.37 eV lower in energy than 

the original parent conformation. Rotational barrier [4]‡ lies 0.14 eV above [3] and is 

the transition to the anti-configuration of EN [5], 0.39 eV lower in energy than the 

original parent ion. When the EN ion possesses sufficient internal energy to 

overcome the initial rotational barriers, it can also access H-migration and functional 

group migration channels leading to lower-energy dissociation pathways than direct 

abstraction from the original parent molecular ion.   
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Specifically, the 1,3-hydrogen migration barrier [6]‡ is calculated at 9.13 eV 

and leads to a low-energy van der Waals product complex [7] that is involved in the 

R1-R3 unimolecular reactions.  

 

 

Figure 6.6.3: The CBS-QB3 calculated potential energy surface diagram at 0 K of 

the initial rotations and H-migrations of ethylenediamine ion that yield the parent 

conformations more directly responsible for dissociation processes. The low-energy 

configuration [7] leads to the generation of the first three fragments.  

 

6.6.4 Dissociation Channels 

In the current study, ten dissociation channels are investigated by quantum chemical 

calculations of which eight channels were traceable and modeled. The computed 

reaction coordinates are displayed in Figure 6.6.4a with all structures outlined in 

Figure 6.6.4b along with their energies. The ninth and tenth channels will be outlined 

in limited detail following the descriptions of the modeled pathways.  
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Figure 6.6.4a: CBS-QB3 calculated potential energy surfaces for the 

photodissociation channels R1–R8 of the ethylenediamine cation with the relative 

energies at 0 K for the stationary points. 

 

The 1,3-hydrogen migration barrier [6]‡ calculated at 9.13 eV is responsible 

for the isomerization to lower-energy complex [7]. This intermediate leads to three 

distinct dissociation pathways (m/z = 43, 59, and 44), where the subsequent barriers 

are all less than the initial 9.13 eV CBS-QB3 barrier. In addition, the relative energies 

of the products are also lower in energy than the original 9.13 eV CBS-QB3 barrier 

(8.41 eV, 8.21 eV, and 8.98 eV, respectively). Thus, this transition is the highest-

energy saddle point in these unimolecular reactions and has an influential role in the 

appearance energies of the fragments. 
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[1] 

 

-189.849513 

[2]‡ 

 

-189.848718 

[3] 

 

-189.863091 

[4] ‡ 

 

-189.857991 

[5] 

 

-189.863825 

[6] ‡ 

 

-189.828841 

[7] 

 

-189.873607 

[8] ‡ 

 

-189.871216 

[9] 

 

-189.873965 

[10] 

 

 

-189.889117 

[11] 

 

+ NH3  

-133.395330 / -56.460185 

 

 

 

 

[12] ‡ 

 

-189.831115 
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[13] 

 

-189.846509 

[14] 

  

-189.861845 

[15]  

 

-189.850212 

[16] ‡ 

 

-189.842500 

[17] 

 

-189.864917 

[18] 

 

+ ·H 

-189.362926 / -0.499818 

[19] 

 

+ ·NH2 

-134.043361 / -

55.791194 

[20] 

 

+    

    

-94.793759 / -95.022133 

[21] ‡ 

 

 

 

-189.844050 
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[22] 

 

 

 

-189.848278 

[23] 

 

+ 

  

-95.337078 / -94.465271 

 

[24] ‡ 

 

 

 

-189.793238 

[25] 

 

-189.814095 

[26] ‡ 

 

-89.813774 

[27] 

 

-189.829306 

 

[28] 

 

+ ·NH2  

 

-134.009964 /  -

55.791194 

[29] ‡ 

 

-189.833513 

[30] 

 

-189.839696 
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[31] ‡ 

 

-189.838413 

[32] 

 

-189.844059 

[33] ‡ 

 

-189.788605 

[34] 

 

-189.855912 

[35] 

 

-189.829040 

[36] 

 

+ ·H 

-189.345759 / -0.49982 

[37] 

    

 + 

  

-94.793759 / -

95.011545 

  

Figure 6.6.4b: CBS-QB3 calculated geometries and energies at 0 K of stationary 

points used in this study. 
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1.) m/z = 43, NH2CHNH2
+.  The low-energy, resonance-stabilized ethenamine 

cation and neutral ammonia are formed via a series of NH3-migrations, where the 

functional group “walks” the molecule prior to dissociation as a result of H-

interactions with nitrogen. The functional group migration process [7-10] occurs in a 

low-energy realm relative to the other two processes (R2 and R3) originating from 

[7]. Overall, this dissociation pathway is the most energetically favorable of channels 

and is thus the first to occur and the most dominant within the low-energy photon 

range (Figure 6.5a). This channel is identical to that proposed by Wei et al.25 and the 

extracted 0 K appearance energy of 9.120 ± 0.010 eV matches both CBS-QB3 (9.13 

eV) and G3 (9.16 eV)25 theoretical expectations well.  

2.) m/z = 59, CH3C(NH2)2
+. There are two parallel channels corresponding to 

this TOF, evidenced by the increasing fractional abundance, disappearance, and 

subsequent reappearance at higher energy as shown in the breakdown diagram 

(Figure 6.5a.). This section outlines the first m/z = 59 appearance as it is described 

by R2.  

This is the second fragment to form via intermediate [7] and consists of a 

hydrogen loss after a multi-step process of H and NH2-migrations. The NH3 group in 

configuration [7] is able to return the hydrogen back to the chain and undergo NH2 

functional group migration, [12] – [17]. Structures [13] and [15] are all-real frequency 

complexes with insignificant barriers calculated to be less than 0.01 eV energy 

difference and as such, the transition states to and from [14] are not indicated in the 

potential energy surface diagram. There is very scarce thermochemical data for the 

EN isomer, 1,1-ethandiamine ion [17], or the hydrogen-loss product 1-
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aminoethaniminium (CH3C(NH2)2
+, [18]), in which case current results cannot be 

compared. 

The 1,2-hydrogen migration transition of [12] is calculated at 9.07 eV, greater 

than the product sum energy of R1 (8.41 eV), and for this reason m/z = 59 and 44 

are less competitive with m/z = 43 at the dissociation limit energy of 9.13 eV and 

appear at slightly higher energies. In addition, transition state [16]‡ at relative energy 

8.76 eV is higher in energy still than any stationary point involved in the R1 process 

to form m/z = 43. It follows, then, that the PEPICO photoionization onset of structure 

[18] at 9.200 ± 0.012 eV is in good agreement with the highest barrier of 9.13 eV 

calculated using CBS-QB3 and the higher-energy, multistep process helps explain 

why this fragment appears at energies greater than R1.  

This dissociation channel differs from the original m/z = 59 formation outlined 

by Wei et al.,25 where the experimental onset of m/z = 59 was reported at 9.06 eV 

and the G3 barrier for H-loss from a central carbon was calculated at 0.99 eV above 

their IE of 8.54 eV. Tunneling was suggested to play a role in their early detection of 

this fragment. To be thorough, our CBS-QB3 calculations for the same process 

yielded a barrier at 9.56 eV, in good agreement with Wei et al.’s computational 

results, however not in experimental agreement with either study. Since the N-H 

bond is generally known to have greater strength than the C-H bond, it is therefore 

reasonable that m/z = 59 formation from H-loss at the amine site is calculated to 

require far greater energy regardless of the resulting cationic conformer. It is 

determined that the R2 dissociation pathway must involve isomerization and does 

not arrive from direct H-loss from any of the initial EN ion conformers. 
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3.) m/z = 44, NH2CHCH3
+. The formation of a low-energy fragment ion as a 

result of NH2-loss begins with H-migration to form complex [7], just as in R1 and R2 

to form m/z = 44 and 59. The H-migration transition [12]‡ at relative energy 9.07 eV is 

shared with R2. Unlike in the R2 channel where the NH2 migrates and then bonds to 

form [17], the NH2 group dissociates from the complex to form products with energy 

sum of 8.98 eV, which is higher than the significant energies involved in both the R1 

and R2 channels (8.41 eV and 8.76 eV, respectively). This may provide one 

explanation as to why this fragment is the third to appear in the current study. The 

TPEPICO experimental appearance energy for this molecular dissociation pathway 

is found to be 9.34 ± 0.08 eV, as compared to the previous photodissociation study 

on EN, reporting the AE at 8.90 ± 0.03 eV25 for the same channel. 

Through our study it is also found that methane-loss to form formamidine 

(NHCHNH2
+) is theoretically energetically possible, however it is 0.36 eV higher in 

energy than structure [19] and would involve a multistep process of NH2-group and 

CH4-group migrations. In addition, the breakdown modeling of the NH2-loss pathway 

matches more agreeably. It is therefore less likely this fragment forms via CH4-loss 

and is not included in the potential energy surface diagram.  

4.) m/z = 30, CH2NH2
+. The breakdown diagram in Figure 6.5a shows R4 is 

the most dominant channel in EN dissociation within the 8.60–12.50 eV photon 

energy range, forming the methylenimmonium ion (CH2NH2
+) and the neutral 

methylamine fragment (·CH2NH2), shown together as structure [20]. These fragments 

are generated by the bisection of the lowest-energy conformer of the EN ion [5]. 

Potential energy surfaces involving the C-C stretching of the higher-energy initial 

conformers [1] and [3] yield small rotational barriers to structure [5] prior to 
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dissociation. In addition, m/z = 30 can also form via C-C bond cleavage of [7] 

through a roaming process, whereby the CH2NH3
+ and CHNH2 fragments separate 

and then rotate to return the H from CH2NH3
+

 prior to molecular dissociation. Though 

roaming is a relatively new phenomenon in unimolecular dissociation and has been a 

topic of recent investigation,27, 60-62 it is not expected to play a role in ethylenediamine 

dissociation in that the product sum energy (calculated at 9.49 eV) is certainly 

greater than the barriers witnessed in the various bond-stretching scans.  

 Using the direct CH2NH2-loss from EN conformer [5], the experimental 0 K 

appearance energy of 9.449 ± 0.025 eV is in excellent agreement with CBS-QB3 

energy of 9.49 eV. The AE reported by Wei et al.25 is 9.30 ± 0.03 eV.  

5.) m/z = 31, CH2NH3
+. Various pathways are investigated for the formation of 

m/z = 31, while only one is believed to be the primary contributor to R5. The 

corresponding neutral ligand of mass 29 from the dissociation of EN can take one of 

four forms: methylnitrene (CH3N), a zwitterion (+NH2CH-), an aminocarbene 

(NH2CH), or methylenimine (NHCH2). The singlet CH3N is known to be higher in 

energy,63 the zwitterion is calculated with CBS-QB3 to be 1.55 eV higher in energy 

than NHCH2, and the computational studies of NH2CH place it at 35–39 kcal mol–1 

(1.5–1.6 eV) higher in energy than NHCH2.63-65 The neutral ·N2H structure was also 

considered, however, the energy is high and the mechanism to form cationic 

CH3CH4
+ at m/z = 31 was found to be unlikely. Thus, regardless of the configuration 

of m/z = 31, R5 must produce the NHCH2 fragment to have energetic agreement with 

what is observed in the TPEPICO experiment. The pathway leading to the formation 

of CH2NH3
+, and NHCH2 [23] is enabled by hydrogen-nitrogen interactions and yields 
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a relatively low-energy van der Waals complex, [22], as a result of CH2NH2 group 

rotation and C-C bond breaking. 

Past experiments have contradicted theory66 to show the distonic 

methyleneammonium ion (CH2NH3
+) to be less stable than its conventional isomer, 

methanimine (CH3NH2)+. However, additional high-level calculations67, 68 show that 

the former to be as much as 8 kJ mol–1 (0.08 eV) more stable. In this exploration 

using CBS-QB3, an intermediate complex involving C-H-N interactions leading to the 

formation of CH3NH2
+

 is calculated to be 0.09 eV higher in energy than structure [22]. 

In addition, the resulting energy of CH3NH2
+ is also nearly 0.04 eV higher in energy 

than the CH2NH3
+, consistent with previous theoretical results obtained.69, 70 

Therefore, through EN ion dissociation, the CH2NH3
+ is preferable to CH3NH2

+. 

Consecutive dissociation is not likely as it would require substantially more energy. 

The RRKM model of CH2NH3
+ ion from EN is in good agreement with experimental 

results and the photoionization onset is reported here at 9.8 ± 0.1 eV.  

6.) m/z = 44, c-C2H4NH2
+. Direct NH2-loss from EN+· rotamer [5] results in a 

higher-energy cyclic isomer of m/z = 44 and is responsible for the reappearance at 

higher energies (R6). The CBS-QB3 dissociation limit is calculated to be 10.10 eV 

[24] and forms a van der Waals product complex [25] that undergoes NH2-migration 

to arrive at a lower-energy product complex [27]. This intermediate is strengthened 

by intramolecular hydrogen bonding between the two amino groups. The second 

TPEPICO appearance of m/z = 44 at 10.1 ± 0.1 eV is in excellent agreement with the 

CBS-QB3 calculated barrier. The percent abundance of m/z = 44 is low at a 

maximum of 2.5%, due to competition from the two subsequent channels at slightly 
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higher energies.  The appearance energy of this fragment has not been previously 

reported from EN dissociation.  

7.) m/z = 59, CH3NHCHCH2
+. The second m/z = 59 appearance (R7) involves 

relatively low energy rotational barriers and rotamers, [29]‡ – [32]. A 1,2-hydrogen 

shift from a terminal NH2-group to an adjacent carbon is calculated at 10.10 eV 

relative energy [33]‡ to yield the EN+· isomer, methyl-methanediamine ion [34]. This 

ion in particular is responsible for R7 and R8 dissociations. Hydrogen-loss from the 

central carbon overcomes a small barrier at 9.13 eV to form a resonance-stabilized 

cationic fragment of m/z = 59. The experimental 0 K appearance energy of this 

channel is 10.2 ± 0.1 eV, again in great accord with the CBS-QB3 calculated barrier 

at 10.23 eV.  

The loss of a hydrogen at any other site of [34] would require additional 

energy as it would not lead to a resonance-stabilized product or would break 

stronger N-H interactions. Indeed, a direct hydrogen abstraction from at the amino 

site of [32] revealed a CBS-QB3 calculated barrier of 10.31 eV and a product sum 

energy of 9.69 eV, which are the same fragments that would form from the loss of 

hydrogen at the terminal carbon site of [34]. In addition, the direct loss of a hydrogen 

from a carbon of either minima [30] or [32] would proceed backward to [5] and yield a 

CBS-QB3 barrier of 9.56 eV, which was much too high in energy to explain the 

formation of the first m/z = 59 and much too low to be agreeable with the second. 

8.) m/z = 30, CH2NH2
+. The bulk of the pathway leading to the second 

appearance of m/z = 30 (R8) is shared with R7. Rotamers [30] and [32] face low-

energy barriers to formation and the hydrogen-transfer barrier at 10.23 eV forms the 

EN+· isomer, methyl-methanediamine, at [34]. The bisection of this isomer is uphill 
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and does not possess a barrier to dissociation, once again forming the CH2NH2
+ as 

in R4, but with a higher-energy neutral fragment radical (CH3NH·) at [37]. Though 

activation energies and product sum energies do not always accurately predict the 

relative intensities of ions or their appearance order, it is not surprising in the case of 

EN+· dissociation that R8 channel ion appears at slightly higher energy than R7. The 

barrier to formation [35] and the total product energy [36] in R7 (9.13 and 8.68 eV, 

respectively) are lower than the total product energy [37] of R8 (9.77 eV), which 

offers a potential explanation for the later appearance of m/z = 30 despite sharing 

the same high-energy barrier [33] at 10.23 eV. It is understandable, then, that the 

TPEPICO appearance energy is reported at 10.2 ± 0.1 eV as compared to the CBS-

QB3 barrier of 10.23 eV.  

Interestingly, CH2NH2
+, ·CH2NH2, and CH3NH· are linked in the context of 

methylamine as a known interstellar molecule.71 Studies on the photodissociation of 

methylamine (CH3NH2) describe CH2NH2
+ formation and its importance in Titan’s 

ionosphere.72, 73 It has also been proposed elsewhere74 that upon exposure to 

cosmic rays, methylamine can form both ·CH2NH2 and CH3NH· fragments, which are 

presented in the EN photodissociation channels R4 and R8, respectively, to form 

CH2NH2
+. The interconversion barrier between the two isomers was calculated by 

Knowles et al.74, 75 at 1.83 eV (from ·CH2NH2) to ascertain the stability of these 

radicals as they relate to possible amino acid precursors in space. This 1,2-hydrogen 

transition loosely resembles the 1,2-hydrogen shift from structure [32] to the EN+· 

isomer [34], suggesting potential future interest in EN and [34] in astrophysical 

research.  
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9 and 10) m/z = 43 and 30, c-CHCH2NH2
+· and CH2NH2

+. Due to the low 

abundance and technical limitations of the MiniPEPICO program these higher-

energy channels were excluded from the modeling. 

The ninth channel, involving the reformation of m/z = 43, was observed with a 

fractional ion abundance of less than 1% and appeared above 10.3 eV. Two 

pathways of nearly equivalent energetics (10.33 and 10.34 eV) were uncovered 

using CBS-QB3 leading to the formation of cyclic isomers of m/z = 43, in which it 

would be difficult to identify and quantify the formation of the isomer(s). However, in 

theory, the more likely pathway of lower energy and fewer steps involves a 1,2-

hydrogen transition from a central carbon to a terminal nitrogen in [5], then losing 

NH3 molecule to form c-C2H4NH2
+.  

The tenth dissociation channel appears above 12.2 eV in the breakdown 

diagram, where a discrepancy in the modeling exists as the abundance of m/z = 30 

increases and m/z = 59 decreases. Wei et al.25 presented a mechanism showing the 

first consecutive dissociation pathway of an isomer of m/z = 59 to form CH2NH2
+, the 

zwitterion +NH2CH–, and ·H without barrier. The relative CBS-QB3 energy of the 

formation of these products is calculated to be 12.58 eV.  However, as their findings 

show that calculations for the initial formation of m/z = 59 were in disagreement with 

the experimental (as was also found with TPEPICO) it is unlikely that the third 

appearance of m/z = 30 arrives via their proposed isomer.  

Alternatively, calculations at the CBS-QB3 level show that at 12.21 eV, 

structure [34] possesses sufficient internal energy to undergo a 1,3-hydrogen shift to 

yield a higher-energy m/z = 59 isomer that freely dissociates to CH2NH2
+ and NHCH2 

without barrier. This value is then the highest-energy saddle point in the potential 
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energy surface for the pathway leading to the third m/z = 30 appearance. The 12.21 

eV barrier is in agreement with the approximate experimental appearance of 

CH2NH2
+ at 12.2 eV and the disappearance of m/z = 59 within the same photon 

energy range. 

The intramolecular nitrogen-hydrogen attractions play a profound role on the 

dissociation dynamics of the EN ion. Stable van der Waals complex intermediates 

are involved in five of the eight modeled channels, and the low energies of these 

structures incentivize their formations ([10], [14], [22], and [27]). In most cases, these 

structures dissociate to product fragments without any further barriers, with the 

exception of R2 where additional steps are required for H-loss. The functional group 

migration processes in NH2- and NH3-loss channels are the most emblematic of the 

influence of hydrogen attractions in EN photodissociation.  

6.6.5 Thermochemistry 

Auxiliary thermochemical data and the results of this work are summarized in 

Table 6.6.5. The enthalpy of formation of liquid EN was reported in 1900 by 

Berthelot76 at –5.82 kcal mol–1 (–24.35 kJ mol–1). Using the heat of vaporization now 

averaged from several sources to be 46 kJ mol–1, the enthalpy of formation of gas-

phase EN using Berthelot’s result can be calculated at 21.25 kJ mol–1. Seventy 

years later, however, Good and Moore77 determined the heat of formation of 

condensed-phase EN at –15.06 ± 0.13 kcal mol–1 (–63.01 ± 0.54 kJ mol–1) through 

oxygen-bomb combustion calorimetry and used enthalpies of vaporization to 

determine the gas-phase standard enthalpy at –17.03 ± 0.59 kJ mol–1. Burkey et 

al.’s78 study on the heats of formation of α-aminoalkyl radicals utilized the calculated 
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heat of formation of EN at –18.0 kJ mol–1 as prescribed by Benson et al.’s79 group 

additivity contributions, however no error bar was provided.  

An isodesmic reaction network14, 72, 80 was used to obtain greater insight to 

the heat of formation of neutral ethylenediamine, where the heats of formation of 

ethylene glycol, ammonia, water, methane, and butane are experimentally well-

known and shown in Table 6.9a. 

HOCH2CH2OH + 2 NH3  NH2CH2CH2NH2 + 2 H2O       (6.6.5a) 

∆fHo
298K [NH2CH2CH2NH2] = –16.0 ± 1.6 kJ mol–1 

CH3CH2CH2CH3 + 2 NH3  NH2CH2CH2NH2 + 2 CH4       (6.6.5b) 

∆fHo
298K [NH2CH2CH2NH2] = –17.5 ± 0.8 kJ mol–1 

Using this method the average ∆fHo
298 [NH2CH2CH2NH2] = –16.8 kJ mol–1 with a 

standard deviation of ± 1.0 kJ mol–1 was calculated to be in agreement with the 

experimental value provided by Good and Moore,77 which was used in conjunction 

with TPEPICO to determine the heats of formation of photodissociative fragments.  

The R4 channel yields the methylenimmonium ion fragment [20], CH2NH2
+, 

and the neutral methylamine radical, ·CH2NH2. Previous experiments have been 

published elsewhere on methylamine (CH3NH2)72, 73 and ethylamine cation81 

photoionization, where the CH2NH2
+ ion fragment is formed via H-loss and CH3-loss, 

respectively. Many high-level theoretical and experimental values for the heat of 

formation of this ion are available in literature40, 68, 80, 82-85 and a select few are listed in 

Table 6.6.5. Bodi et al.72 conducted TPEPICO experiments on primary amines and 

determined the heat of formation of the CH2NH2
+ ion to be 750.3 ± 1 kJ mol–1, which 

was used in the determination of the neutral methylamine radical fragment.  

 



 

 

206 
 

Table 6.6.5: Auxiliary and derived thermochemical data 

Species AE / eV 
∆fHo

0K 

(kJ mol–1) 

∆fHo
298K (kJ mol–1) 

Ho
298K – Ho

0K 

(kJ mol–1) 

NH2CH2CH2NH2
  11.19  –17.03 

-16.8 

± 0.59a 

± 1.0e 

16.42d 

NH2CHCH2
+· 9.120 ± 0.010b 

8.85c 

9.13 ± 0.05d 

    

CH3C(NH2)2
+ 

 

9.200 ± 0.012b 

9.06c 

9.13 ± 0.05d 

    

NH2CHCH3
+ 9.34 ± 0.08b 

8.90c 

9.13 ± 0.05d 

683.8 

 

665.1 

657h 

 

± 1.4g 

± 9h 

13.148d 

CH2NH2
+ 9.449 ± 0.025b 

9.30c 

9.49d 

10.2 ± 0.1b 

10.23 ± 0.05d 

762.3 

764.0 

 

750.3 

752.1 

± 1i 

± 1.8j 

 

 

10.324d 

CH2NH3
+ 9.8 ± 0.1b 

9.85 ± 0.05d 

860 

 

847 

847.9 

855l 

832.6x 

± 10b 

± 1.5e 

12.813d 
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aGood and Moore.77 bThis work. cWei et al.25 dCBS-QB3 calculated thermochemical 

values, eIsodemic reaction networks. fSolka et al.86 gTraeger et al.87, hLossing et al.82, 

iBodi et al.80 jActive Thermochemical Tables (ATcT)88-90 kOliveira et al.83 lSana at al.68 

mChase, M. W.91 nBouma et al.70  

 

The 298 K heat of formation of the ·CH2NH2 fragment is provided in the Active 

Thermochemical Tables (ATcT)88 at 148.74 ± 1.01 kJ mol–1. Aside from this, current 

thermochemical data of ·CH2NH2 is believed to be limited to Burkey et al.’s78 

calculated ∆fHo
298K at 151 kJ mol–1 using available experimental values. An isodesmic 

reaction network is used to calculate the heat of formation of ·CH2NH2 using 

theoretical calculations and experimental values referenced in Table 6.6.5. The 

average ∆fHo
298K [·CH2NH2] from the isodesmic reactions was calculated to be 149.3 

c-C2H4NH2
+ 10.1 ± 0.1b 

10.10 ± 0.05d 

743 724 

 

± 9f 11.203d 

 

CH3NHCHCH2
+ 10.2 ± 0.1b 

10.23 ± 0.05d 

    

NH3  -38.565 –45.558 ± 0.030j 10.045m 

H  216.034 217.99 ± 0.000j 6.197m 

·NH2  188.94 186.05 ± 0.15j 9.929m 

·CH2NH2  160.6 

  

159.63 

149.7 

149.3 

148.74 

± 2.7b 

± 2.5e 

± 1.01j 

11.450d 

NHCH2  96.64 

 

88.701 

86.4 

± 2.09k 

± 2.9e 

10.142d 
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± 2.5 kJ mol–1 and the TPEPICO experimental ∆fHo
298K [·CH2NH2] = 149.7 ± 2.7 kJ 

mol-1. 

 ·CH3 + CH3NH2  CH4 + ·CH2NH2          (6.6.5c) 

∆fHo
298K [·CH2NH2] = 150.1 ± 2.4 kJ mol–1 

 NH2 + NH2CH3  NH3 + ·CH2NH2           (6.6.5d) 

∆fHo
298K [·CH2NH2] = 151.3 ± 4.0 kJ mol–1 

NH3 + ·CH2CH3  CH4 + ·CH2NH2            (6.6.5e) 

∆fHo
298K [·CH2NH2] = 146.4  ± 3.6 kJ mol–1 

The excellent agreement between the isodesmic, experimental and literature values 

serves as a good calibration for the experimental heat of formation of CH2NH3
+. 

 The R5 channel produces the CH2NH3
+· ion and the neutral CH2NH fragment. 

A wide range of values are reported in literature92, 93 for the heat of formation of the 

neutral fragment, from 69 kJ mol–1 by Peerboom et al.94 to 110.46 kJ mol–1 by 

DeFrees et al.95 In 2001, Oliveria et al.83 aimed to reduce the uncertainty by using 

the W2 thermochemical method, reporting the theoretical standard enthalpy at 21.1 

± 0.5 kcal mol–1 (88.7 ± 2.1 kJ mol–1).  This is the most recent thermochemical value 

published on CH2NH to-date.  

An isodesmic reaction network was explored to determine a CBS-QB3, 

theoretical-experimental hybrid heat of formation of CH2NH, where the known 

literature values for pertinent species are provided in Table 6.9a:  

 HNO + CH2CH2  CH2NH + CH2O                      (6.6.5f) 

∆fHo
298K [CH2NH] = 85.7 ± 4.5 kJ mol–1 

 CH2CH2 + HNNH  2 CH2NH                     (6.6.5g) 

∆fHo
298K [CH2NH] = 87.6 ± 3.9 kJ mol–1 
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 HNNH + CH2O  CH2NH + NHO                     (6.6.5h) 

∆fHo
298K [CH2NH] = 89.5 ± 1.4 kJ mol–1 

 NH3 + CH2O  CH2NH + H2O                      (6.6.5i) 

∆fHo
298K [CH2NH] = 91.5 ± 4.0 kJ mol–1 

The average heat of formation from the network was found to be 88.6 kJ mol–1 with a 

standard deviation of 2.5 kJ mol–1. This is in good agreement with the W2-calculated 

value by Oliveria et al.83  

Thermochemical data regarding the CH2NH3
+ ion is much less available in 

literature than that of the CH2NH neutral. In 1983, Bouma et al.70 revealed results of 

ab initio calculations that placed the heat of formation of CH2NH3
+· at 199 kcal mol–1 

(832.6 kJ mol–1). Holmes et al.66 measured the heat of formation of CH2NH3
+· 

through collisional ionization mass spectrometry and determined the total m/z = 31 

signal to be the 13C and 15N isotopologue of m/z = 30 until 10.9 eV, concluding the 

heat of formation must be higher than 229 kcal mol–1 (958 kJ mol–1), though no 

specific value was reported. The most recently provided gas-phase enthalpy of 

formation (855 kJ mol–1)68 was determined using MO methods at the MP4/6-

31+G(2df,p) level.96  

 An isodesmic reaction network was created to establish another baseline for 

comparison of the enthalpy of formation of CH2NH3
+ ion, using literature 

thermochemical data available in Table 6.9a. 

 CH2CH2 + NH3 + H+  CH2NH3
+ + CH3                  (6.6.5j) 

∆fHo
298K [CH2NH3

+] = 848.9 ± 1.5 kJ mol–1 

 NH2NH2 + CH3 + H+  CH2NH3
+ + NH3         (6.6.5k) 

∆fHo
298K [CH2NH3

+] = 846.8 ± 1.6 kJ mol–1 
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The resulting ∆fHo
298K [CH2NH3

+] were averaged and determined to be 847.9 ± 1.5 kJ 

mol–1, falling between the two previously reported theoretical values.  

 The experimental activation energy of 9.8 ± 0.1 eV from the current TPEPICO 

was used along with literature values for the EN parent and the W2-calculated value 

provided by Oliveira et al.83 to arrive at the enthalpy of formation of the CH2NH3
+ ion. 

We report the experimental ∆fHo
298K [CH2NH3

+] at 847 ± 10 kJ mol–1 from 

ethylenediamine photodissociation.  

 Appearance energies are equivalent to the enthalpy of the unimolecular 

dissociation reaction at 0 K only in the absence of a reverse barrier. Available gas-

phase heats of formation of fragments are presented in Table 6.6.5 and literature 

∆fHo
298K were used, along with that of the parent ethylenediamine, to determine the 

∆rHo
298K for each channel. This value was then converted to ∆rHo

0K using thermal 

enthalpy values provided in literature97 or CBS-QB3 calculated values (thermal 

correction to enthalpy and the zero-point corrections). While thermochemical data is 

scarce for several fragments, the heats of formation for both m/z = 44 (NH2CHCH3
+ 

and c-C2H4NH2
+) are available in literature. The reverse barriers for R3 and R6 

channels were calculated as the difference between the 0 K appearance energies 

involving barriers and the ∆rHo
0K using experimental ∆fHo

298K and are reported as 

0.41 eV and 0.55 eV (40 and 53 kJ mol-1), respectively.  

 

6.7 Conclusions 

Threshold photoelectron photoion coincidence spectroscopy experiments 

were conducted on ethylenediamine in the 8.60–12.50 eV photon energy range, 

where eight dissociation channels were modeled: NH3-loss, H-loss, NH2-loss, 
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CH2NH2-loss, CH2NH-loss, a reappearing NH2-loss, a second H-loss, and CH3NH-

loss. Two additional pathways were observed: a second NH3-loss and a consecutive 

dissociation involving H-loss followed by CH2NH-loss. The ninth and tenth 

dissociations were not modeled due to low fractional ion abundance. All channels 

involved initial rotational barriers leading to the low-energy anti-conformation of the 

EN cationic state. The NH2- and NH3-loss pathways involved functional group 

migrations due to intramolecular hydrogen attractions, highlighting the influence of 

these interactions on the photodissociation processes. The H-loss pathways involve 

several rearrangements, including H-migrations and functional group migrations 

prior to dissociation. CH2NH2
+ is the dominant product of EN dissociation within the 

scanned photon energy range and forms neutral ·CH2NH2 via C-C bond cleavage at 

lower energy, while the ion is again formed at higher energy after H-migration to 

form the CH3NH neutral radical fragment. The CH2NH-loss pathway yields the 

CH2NH3
+ ion, where the ·CH2NH2 fragment rotates to form a hydrogen-bonding 

stabilized van der Waals complex that facilitates the transfer of an H to form the 

proposed products. Several of these fragments had not been detected in 

ethylenediamine dissociation. 

Isodesmic reaction networks were used to calculate the heats of formation of 

ethylenediamine, ·CH2NH2, CH2NH3
+·, and CH2NH to validate the use of literature 

thermochemical data as anchors in the determination of TPEPICO-derived heats of 

formation of ·CH2NH2 and CH2NH3
+. The 0 K and 298 K heats of formation are 

reported in addition to the reverse barriers for both NH2-loss channels.  
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6.9 Supplementary Information  

 

Figure 6.9: The IGOR multi-peak fitting in the determination of isotopologue 

contributions to adjacent peaks. Shown above is parent ion m/z = 60 and the ~ 2.3% 

13C and 15N isotopologue contribution at 8.8 eV. 
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Table 6.9a: Table of Thermochemical Values Used for Isodesmic Reactions  

Species ∆fHo
298 / (kJ mol–1)88 

H+ 1530.047  ± 0.000 

CH3 146.49  ± 0.081 

H2O –241.822  ± 0.027 

CH4 –74.534  ± 0.057 

CH2CH2 52.56  ± 0.15 

CH2O –109.16  ± 0.11 

CH3CH2 119.93  ± 0.37 

CH3NH2 20.91  ± 0.53 

HOCH2CH2OH –389.42  ± 0.49 

HNO 106.92  ± 0.11 

HNNH (trans) 200.22  ± 0.56 

 

Table 6.9b: Geometries for neutral EN and neutral fragments 

corresponding to stationary points calculated in this work. All calculations 

were conducted at the CBS-QB3 level. 

Neutral EN  N                 -1.41260800   -0.59613000    0.13611600 

 H                 -2.24400000   -0.73360600   -0.42780700 

 H                 -1.72345500   -0.49105600    1.09742300 

 C                 -0.68186300    0.60531300   -0.29660600 

 H                 -0.60044300    0.57313200   -1.38665400 

 H                 -1.18004900    1.54906400   -0.02585400 

 C                  0.73030700    0.59120800    0.28335900 

 H                  0.65427900    0.61517900    1.38638800 

 H                  1.24681100    1.50952900   -0.01689900 

 N                  1.45942200   -0.56411600   -0.24036600 

 H                  0.89151300   -1.39002700   -0.07046000 

 H                  2.33699100   -0.68962100    0.25308900 
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Stationary Point  

11  N                 -0.62432100    0.44152500    0.00000500 

 H                 -0.23819600   -0.49800400   -0.00000200 

 H                 -0.23817800    0.91128800    0.81365300 

 H                 -0.23820700    0.91128800   -0.81365600 

  

18, 36 H                  2.53787000   -0.53254400    0.00000000 

  

19, 28  N                 -1.82120100    0.53353200   -0.05669500 

 H                 -1.44720600   -0.42547500    0.00037600 

 H                 -1.44718900    0.96360400    0.80236100 

  

20  N                 -2.85008700    3.15200300   -0.05304800 

 H                 -3.25382500    3.66908200    0.71640100 

 H                 -2.30138600    3.75904800   -0.64705900 

 C                 -2.22752800    1.95251200    0.30268900 

 H                 -2.74029900    1.34620500    1.03892800 

 H                 -1.67828000    1.44651400   -0.48145600 

  

23  C                 -1.53727800    1.21845600    0.19787500 

 H                 -1.08095000    1.95107000    0.86709200 

 H                 -2.55118300    1.45320100   -0.14965000 

 N                 -0.87680100    0.18455500   -0.11468200 

 H                 -1.42048900   -0.41280900   -0.74347900 
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37  C                  0.62793900   -0.01192300    0.00000000 

 H                  1.12680800    0.95943700   -0.00000100 

 H                  0.97219500   -0.58171000   -0.87883500 

 N                 -0.80505200    0.15291500    0.00000000 

 H                 -1.20346700   -0.79488900    0.00000000 

 H                  0.97219500   -0.58170800    0.87883600 

 

Table 6.9c: Geometries for cationic species corresponding to stationary 

points calculated for this work. All calculations were conducted at the 

CBS-QB3 level. 

Stationary Point  

1  N                  1.14904400   -0.65461800   -0.13466200 

 H                  1.84627700   -1.12086900    0.43736800 

 H                  1.20917200   -0.89528700   -1.11871900 

 C                  0.73160800    0.71505800    0.21019900 

 H                  0.83417400    0.83191200    1.29026900 

 H                  1.34946900    1.47613000   -0.27472600 

 C                 -0.73159800    0.71507200   -0.21015800 

 H                 -0.83403200    0.83194500   -1.29024200 

 H                 -1.34950800    1.47614800    0.27469500 

 N                 -1.14903800   -0.65463800    0.13460900 

 H                 -1.20900500   -0.89534500    1.11867100 

 H                 -1.84665000   -1.12061700   -0.43719500 
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2  N                 -1.23036000   -0.71346100   -0.08509500 

 H                 -1.68909400   -0.96558800   -0.95339400 

 H                 -1.87877500   -0.89713000    0.67235900 

 C                 -0.74301000    0.67003800   -0.08660400 

 H                 -0.98651600    1.17663200   -1.02054100 

 H                 -1.19003100    1.25015100    0.72069700 

 C                  0.81404000    0.67342500    0.09520900 

 H                  1.15260800    1.23862400    0.98511700 

 H                  1.35457300    1.17516500   -0.73037300 

 N                  1.27458300   -0.65203000    0.19914800 

 H                  0.46266000   -1.33166600    0.13322000 

 H                  2.25395500   -0.90496600    0.31986600 

 

3  N                  1.64159000   -0.48367700    0.10521800 

 H                  1.68956300   -1.37431000   -0.36855600 

 H                  2.16546300   -0.39902100    0.96502400 

 C                  0.84967000    0.52752300   -0.34774100 

 H                  1.15800200    1.51198000   -0.00053800 

 H                  0.63876800    0.48171400   -1.41269400 

 C                 -0.84965200    0.52753900    0.34772800 

 H                 -1.15786600    1.51203200    0.00049500 

 H                 -0.63885900    0.48171900    1.41269800 

 N                 -1.64168600   -0.48360300   -0.10515800 

 H                 -1.68975300   -1.37417500    0.36872400 

 H                 -2.16475600   -0.39934700   -0.96549700 
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4  N                 -1.60428800    0.61103900   -0.28734500 

 H                 -1.65147700    1.10149500   -1.16895700 

 H                 -1.95456200    1.10191200    0.52281600 

 C                 -1.08806000   -0.61687400   -0.19454400 

 H                 -1.30981800   -1.17300700    0.70731500 

 H                 -0.98283800   -1.17348300   -1.11699600 

 C                  1.08805800   -0.61682900    0.19468600 

 H                  1.30981600   -1.17317200   -0.70704400 

 H                  0.98283500   -1.17322300    1.11726700 

 N                  1.60428700    0.61110600    0.28720000 

 H                  1.95456100    1.10178900   -0.52307500 

 H                  1.65147600    1.10176600    1.16869700 

 

5  N                 -1.90226900    0.12267300    0.00034600 

 H                 -2.32332900    0.44795300    0.85972000 

 H                 -2.32270200    0.45153600   -0.85796900 

 C                 -0.72807400   -0.56819400   -0.00064300 

 H                 -0.54815100   -1.13193800    0.91047800 

 H                 -0.54836400   -1.13022200   -0.91290200 

 C                  0.72790500    0.56787500   -0.00013500 

 H                  0.54763400    1.13067900    0.91150800 

 H                  0.54816800    1.13081300   -0.91182400 

 N                  1.90261800   -0.12214500    0.00031400 

 H                  2.32238800   -0.45013000    0.85931400 

 H                  2.32292300   -0.45048000   -0.85827700 
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6  N                  1.83021400   -0.07425200   -0.15677500 

 H                  1.89852100    0.15997400   -1.13860900 

 H                  2.64374300   -0.51116700    0.25673000 

 C                  0.63850900   -0.07551000    0.49798400 

 H                 -0.21982700   -1.13498000    0.30549100 

 H                  0.72564500   -0.09922900    1.58517100 

 C                 -0.57034600    0.65843700   -0.07535800 

 H                 -0.40532100    1.03298800   -1.08580700 

 H                 -0.94424200    1.47128700    0.54509400 

 N                 -1.49976300   -0.51823000   -0.09796000 

 H                 -2.23168500   -0.51822000    0.60833200 

 H                 -1.87735400   -0.77268200   -1.00724500 

 

7  N                 -1.76755300   -0.52548700    0.13341800 

 H                 -1.71921100   -0.81011500    1.10352900 

 H                 -2.54966700   -0.87211900   -0.40505300 

 C                 -0.90351800    0.34113300   -0.38932300 

 H                 -1.07637400    0.60725600   -1.42630300 

 C                  0.18219500    0.87634200    0.29984300 

 H                  0.28371400    0.72999700    1.36746800 

 H                  0.71477700    1.70669900   -0.13813000 

 N                  2.01877500   -0.44419000   -0.07397600 

 H                  2.25122300   -0.43983900   -1.06319600 

 H                  1.87605400   -1.40241800    0.23229900 

 H                  2.78887100   -0.03657000    0.45017000 
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8  N                 -1.56736800   -0.98658000    0.30934800 

 H                 -2.36544300   -0.64641200    0.83680600 

 H                 -1.48163600   -1.99184600    0.21008300 

 C                 -0.67743100   -0.17269800   -0.21941500 

 H                  0.18501400   -0.61002400   -0.70906700 

 C                 -0.77361300    1.22150400   -0.13192300 

 H                 -1.61225600    1.71095900    0.35135100 

 H                  0.00556000    1.82936600   -0.56919000 

 N                  2.33732700   -0.02915200    0.01918200 

 H                  2.56640400    0.51575800    0.84668000 

 H                  2.84582100    0.39146400   -0.75528700 

 H                  2.74523100   -0.95029600    0.16160800 

 

9  N                  1.16233500    1.16618400    0.00003000 

 H                  2.16703700    1.31992300    0.00031300 

 H                  0.57404900    1.99320400   -0.00005000 

 C                  0.62638500   -0.03539200   -0.00019100 

 H                 -0.48078700   -0.07922100   -0.00044100 

 C                  1.41533400   -1.19735700   -0.00002200 

 H                  2.49996000   -1.15775200    0.00045100 

 H                  0.93706200   -2.16801300    0.00008900 

 N                 -2.48971500   -0.05988600    0.00004300 

 H                 -2.85403100   -0.56801800   -0.80328100 

 H                 -2.94650200    0.84945600   -0.01775700 

 H                 -2.85544000   -0.53717400    0.82144000 
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10  N                 -0.07605400    0.53483800   -0.00026200 

 H                 -0.32947900    1.52013600    0.00001100 

 H                  0.98495500    0.26826400   -0.00042800 

 C                 -1.02444700   -0.37107200   -0.00014400 

 H                 -0.69564900   -1.40640700   -0.00027900 

 C                 -2.39287000   -0.07419800    0.00018300 

 H                 -2.74894000    0.95027900    0.00037900 

 H                 -3.12278400   -0.87284100    0.00019500 

 N                  2.58049900   -0.12864800    0.00017100 

 H                  2.84347700   -0.75378900   -0.75970300 

 H                  2.88003100   -0.57951600    0.86296700 

 H                  3.16117500    0.70216200   -0.10274100 

 

11  C                 -2.14684600    2.15290200   -0.23206100 

 H                 -1.68160600    2.94321000   -0.80695400 

 H                 -3.22308000    2.17436600   -0.09639500 

 C                 -1.35665900    1.13410600    0.31592600 

 H                 -0.28114100    1.13002800    0.16910900 

 N                 -1.85423700    0.14347900    1.02467300 

 H                 -2.84999100    0.06246400    1.21534800 

 H                 -1.25558400   -0.58156100    1.40961700 

 

 

 

 

 

 

 

 



 

 

221 
 

12  N                  1.80670500   -0.33865100   -0.54389000 

 H                  1.71983600   -0.05664900   -1.51452700 

 H                  2.58906900   -0.93879900   -0.31141800 

 C                  0.95971100    0.05860200    0.36564200 

 H                  1.16345200   -0.29148300    1.37470200 

 C                 -0.21445100    0.82606700    0.11227400 

 H                 -0.24429000    1.36101700   -0.83584000 

 H                 -0.54098100    1.42329300    0.96007100 

 N                 -2.30960200   -0.76415900   -0.12931100 

 H                 -2.88758700   -0.67014100    0.71393000 

 H                 -1.12610500   -0.08821200    0.00009800 

 H                 -2.87325900   -0.39456300   -0.90353900 

 

13  N                  2.01987600   -0.54358500   -0.19906500 

 H                  2.17509800   -0.36128400   -1.18711300 

 H                  2.65081400   -1.20097700    0.24880100 

 C                  1.06473800    0.03311200    0.45064500 

 H                  0.98635400   -0.22508700    1.50498300 

 C                  0.09532800    0.94656200   -0.13514300 

 H                  0.32710000    1.23440500   -1.16083400 

 H                 -0.01296000    1.82979400    0.50301100 

 N                 -2.78941200   -0.38481000   -0.03013000 

 H                 -3.27101100   -0.94212200   -0.74684600 

 H                 -3.52783700   -0.15477200    0.64677000 

 H                 -0.90120300    0.44076600   -0.09741500 

 

 

 

 



 

 

222 
 

14  C                 -0.85118700   -0.34728800    0.00133500 

 H                 -0.49983500   -1.37808800    0.00490700 

 N                  2.77159900   -0.14401700    0.00017700 

 H                  3.37983900   -0.25965600    0.81828900 

 H                  3.37260900   -0.28276200   -0.81969100 

 C                 -2.30180800   -0.08832800   -0.00010800 

 H                 -2.75069800   -0.57302900    0.87464100 

 H                 -2.54960200    0.97321400   -0.00258500 

 H                 -2.74914600   -0.57661700   -0.87369600 

 N                  0.05970400    0.55353100   -0.00095100 

 H                 -0.19659300    1.53828000   -0.00394800 

 H                  1.09227400    0.30575100    0.00013700 

 

15  C                 -0.54821400   -0.07289500   -0.41522000 

 H                 -0.02183200   -0.16902200   -1.35645300 

 N                  2.11314800   -0.05110900    0.06966700 

 H                  2.88700800    0.19422700   -0.56148800 

 H                  2.58020300   -0.29572300    0.95231600 

 C                 -0.84653200    1.26530000    0.12193100 

 H                 -1.52618800    1.76738400   -0.57890400 

 H                 -1.30450800    1.23811200    1.11103700 

 H                  0.07108800    1.85569300    0.14678500 

 N                 -0.97628000   -1.16493600    0.12195400 

 H                 -1.48646300   -1.16207600    1.00013500 

 H                 -0.78890600   -2.07070700   -0.29503600 

 

 

 

 



 

 

223 
 

16  C                 -0.24207600   -0.22618400   -0.41208300 

 H                  0.00885100   -0.16852800   -1.46475100 

 N                  1.42585100    0.81350100    0.06885400 

 H                  2.29823100    0.76916200   -0.47070300 

 H                  1.65195900    1.01358400    1.05011200 

 C                 -1.29240100    0.69740400    0.10544500 

 H                 -2.25606200    0.35529900   -0.28839400 

 H                 -1.34698800    0.68847600    1.19599800 

 H                 -1.12384300    1.71416400   -0.24474700 

 N                 -0.06220500   -1.41145700    0.14807200 

 H                 -0.40931900   -1.61137600    1.07787500 

 H                  0.47088400   -2.14027500   -0.30736800 

 

17  C                  0.04819400   -0.00069200    0.41042100 

 H                 -0.00814700   -0.00071700    1.49802300 

 N                 -0.72855000    1.11786800   -0.10002700 

 H                 -1.59519400    1.38893900    0.35401000 

 H                 -0.64393300    1.37318700   -1.07967000 

 C                  1.47925300    0.00021000   -0.08336100 

 H                  1.99713900   -0.88556900    0.28647700 

 H                  1.52481800    0.00033800   -1.17669000 

 H                  1.99546900    0.88718300    0.28630200 

 N                 -0.72833800   -1.11735700   -0.10078300 

 H                 -0.64380200   -1.37237000   -1.08037600 

 H                 -1.59281000   -1.39167000    0.35523700 

 

 

 

 



 

 

224 
 

18  C                 -0.05838900    0.00012100   -0.01098500 

 N                 -0.70476300   -1.15099900   -0.00161300 

 H                 -1.71416000   -1.21457200    0.02446400 

 H                 -0.19406200   -2.02203700   -0.01143300 

 C                  1.43735100    0.00239700    0.00176800 

 H                  1.83224400    0.89665300   -0.47982900 

 H                  1.78412700   -0.01436600    1.03977600 

 H                  1.83393800   -0.87550400   -0.50814000 

 N                 -0.70892300    1.14880400   -0.00165300 

 H                 -1.71857600    1.20838000    0.02430900 

 H                 -0.20147600    2.02170000   -0.01098100 

  

19  N                 -2.94837800    1.38083000   -0.14826100 

 H                 -2.52138500    2.23040700    0.21539000 

 H                 -3.94928800    1.41434900   -0.32489900 

 C                 -2.25698700    0.31933700   -0.37277900 

 H                 -2.80500800   -0.53717100   -0.76146300 

 C                 -0.81233300    0.20662800   -0.13931100 

 H                 -0.63319700   -0.62766300    0.55075300 

 H                 -0.32720100   -0.08344600   -1.07996200 

 H                 -0.35973000    1.11841200    0.24990900 

  

20  N                 -2.68021900    3.16314000    0.06552200 

 H                 -3.31716500    3.63221800    0.70959700 

 H                 -2.33284900    3.72130500   -0.71444900 

 C                 -2.33705100    1.94579100    0.22656700 

 H                 -2.72751600    1.38299100    1.06926600 

 H                 -1.65660500    1.47991700   -0.48004700 

  



 

 

225 
 

21  N                  1.41994800   -0.62138900    0.01884500 

 H                  2.03208400   -1.28731900    0.48210600 

 H                  0.44208700   -0.91016200   -0.19928200 

 C                  1.74436200    0.61784600   -0.08349400 

 H                  2.69113000    0.97193600    0.31028900 

 H                  1.05765000    1.30143400   -0.56691200 

 C                 -1.57670000    0.75268100    0.12581500 

 H                 -1.75046000    1.39419400   -0.72504200 

 H                 -1.64155600    1.12564100    1.13635200 

 N                 -1.45274100   -0.61673000   -0.07976100 

 H                 -1.83818400   -0.95526700   -0.95655400 

 H                 -1.76917600   -1.19679300    0.69152900 

  

22  N                  1.36678200   -0.56062000    0.00008100 

 H                  1.95622600   -1.39141300   -0.00076200 

 H                  0.28495300   -0.68479400    0.00064600 

 C                  1.89791900    0.59503000   -0.00000800 

 H                  2.97780800    0.71560300   -0.00094600 

 H                  1.24953600    1.46653800    0.00081500 

 C                 -1.72799900    0.74577300   -0.00015900 

 H                 -1.94355300    1.22309200   -0.94343500 

 H                 -1.94143200    1.22373300    0.94328300 

 N                 -1.38730700   -0.63257800    0.00010000 

 H                 -1.72949900   -1.12265600   -0.82380700 

 H                 -1.72988300   -1.12253500    0.82394200 

  

 

 

 



 

 

226 
 

23  C                  0.01086500   -0.82670300    0.00000000 

 H                 -0.08714600   -1.30953800    0.95960600 

 N                  0.01086500    0.64286800    0.00000000 

 H                  0.48832500    1.02092300   -0.82774800 

 H                 -0.08714600   -1.30953800   -0.95960600 

 H                 -0.94359800    1.03737500    0.00000000 

 H                  0.48832500    1.02092300    0.82774800 

  

24  N                  2.18080800    0.00772400   -0.00140400 

 H                  2.76848000    0.13920000   -0.83225400 

 H                  2.75406100    0.18853700    0.83023800 

 C                  0.13694000   -0.50486200   -0.00327200 

 H                  0.26286700   -1.04013400   -0.93186000 

 H                  0.26463800   -1.05170700    0.91835600 

 C                 -0.65794200    0.73647400    0.00520700 

 H                 -0.61723500    1.35159300   -0.88920000 

 H                 -0.61656500    1.33956400    0.90775000 

 N                 -1.74413600   -0.24333300   -0.00065600 

 H                 -2.27590600   -0.36866700    0.85006500 

 H                 -2.27574600   -0.35823400   -0.85294600 

  

 

 

 

 

 

 

 

 



 

 

227 
 

25  N                 -2.59057400   -0.02376900    0.00009300 

 H                 -3.22587900    0.05819000    0.80502200 

 H                 -3.22605700    0.05783900   -0.80473100 

 C                  0.25130700   -0.49714800    0.00000100 

 H                 -0.13272900   -0.91976100    0.91617000 

 H                 -0.13273200   -0.91989200   -0.91610700 

 C                  0.80713300    0.86101900   -0.00010100 

 H                  0.82321900    1.43398100    0.91767800 

 H                  0.82321200    1.43384300   -0.91796500 

 N                  1.75788100   -0.30639800   -0.00001700 

 H                  2.27458800   -0.50819200   -0.85123900 

 H                  2.27458800   -0.50806800    0.85123500 

  

26  N                  2.36058200    0.83576300   -0.97173400 

 H                  3.24088400    0.67747200   -0.46396200 

 H                  2.65687000    1.39592200   -1.78208700 

 C                 -0.50937700   -0.42256500    1.12606500 

 H                 -0.01137300   -1.35242900    1.36770500 

 H                 -0.70599900    0.24182600    1.95741800 

 C                 -0.41732100    0.11749300   -0.23884600 

 H                  0.15884000   -0.40831100   -0.98461600 

 H                 -0.54852100    1.17731500   -0.40533800 

 N                 -1.68209200   -0.58927000    0.19918800 

 H                 -2.51648100   -0.03575100    0.37229200 

 H                 -1.87337300   -1.51412600   -0.17564600 

  

 

 

 



 

 

228 
 

27  N                 -2.39445300   -0.00003500   -0.10084100 

 H                 -3.00080800    0.81858200   -0.22321400 

 H                 -3.00006800   -0.81893500   -0.22496900 

 C                  1.25962200   -0.73854200   -0.28062600 

 H                  0.77171500   -1.27129600   -1.08621700 

 H                  2.04535700   -1.27184200    0.23781500 

 C                  1.25980900    0.73817500   -0.28135500 

 H                  0.77206400    1.27027600   -1.08747400 

 H                  2.04568500    1.27175500    0.23658700 

 N                  0.31537200    0.00038000    0.60909600 

 H                  0.51772000    0.00086000    1.60448000 

 H                 -0.71468000    0.00038500    0.35709300 

  

28  N                 -2.41224000    1.26502100   -0.05162100 

 H                 -2.56803900    1.77457400    0.81483200 

 H                 -2.75776700    1.74720500   -0.87791700 

 C                 -2.47525500   -0.23612300   -0.02029400 

 H                 -2.75859400   -0.63976100    0.94312500 

 H                 -2.96335900   -0.66927600   -0.88372500 

 C                 -1.16867200    0.43071400   -0.17751700 

 H                 -0.50253600    0.51166500    0.67165300 

 H                 -0.70728500    0.48213600   -1.15519700 

  

 

 

 

 

 

 



 

 

229 
 

29  N                 -2.43096800    0.09773500   -0.00173500 

 H                 -2.94944800    0.20700200   -0.86335800 

 H                 -2.95372700    0.20710300    0.85728800 

 C                 -1.14192000   -0.16929900    0.00150400 

 H                 -0.63939600   -0.33747300   -0.93641800 

 H                 -0.64430300   -0.33700700    0.94221500 

 C                  2.00594800   -0.64206800   -0.00076000 

 H                  2.16736600   -1.14648000   -0.94172800 

 H                  2.16896000   -1.14850300    0.93884100 

 N                  1.62250500    0.63491100    0.00095300 

 H                  1.63605300    1.17700800   -0.85243100 

 H                  1.63777600    1.17521700    0.85544500 

  

30  N                 -2.08571900   -0.17094100    0.00060500 

 H                 -2.52016300   -0.47672300    0.86123800 

 H                 -2.52118800   -0.47832600   -0.85893900 

 C                 -1.01109200    0.59160300   -0.00074200 

 H                 -0.69018100    1.03344100   -0.93277600 

 H                 -0.68905700    1.03521000    0.93006000 

 C                  2.15286500    0.24072700    0.00062300 

 H                  2.53693300    0.59943700    0.94328400 

 H                  2.53806700    0.60048600   -0.94117300 

 N                  1.04530900   -0.55700700   -0.00048600 

 H                  0.88941800   -1.10543600   -0.83995700 

 H                  0.88840800   -1.10643400    0.83814500 

  

 

 

 



 

 

230 
 

31  N                  1.92880100   -0.39261500   -0.13568700 

 H                  2.52110500   -0.05844900   -0.88433300 

 H                  1.99831000   -1.37548100    0.09264300 

 C                  1.10986600    0.40951900    0.51234500 

 H                  0.62799000    0.04535700    1.40755000 

 H                  1.19063300    1.47412100    0.34032200 

 C                 -2.01148700   -0.44937900    0.12648900 

 H                 -2.58725800   -0.13021300    0.98177600 

 H                 -2.03988200   -1.46936800   -0.22524100 

 N                 -1.10273400    0.41066200   -0.41429600 

 H                 -0.80067000    0.20664400   -1.36143300 

 H                 -1.29284800    1.39883000   -0.28144800 

  

32  N                  1.38346800    0.63255900   -0.00009200 

 H                  1.50171500    1.15741700    0.85568500 

 H                  1.49962800    1.15724100   -0.85625400 

 C                  1.43073200   -0.69163700    0.00000400 

 H                  1.49726600   -1.22028700   -0.93910300 

 H                  1.50029900   -1.22008600    0.93901400 

 C                 -1.43126400    0.69162500    0.00013300 

 H                 -1.49954600    1.22011800   -0.93893500 

 H                 -1.49997900    1.21994200    0.93927100 

 N                 -1.38307900   -0.63248600    0.00003500 

 H                 -1.49977000   -1.15746300    0.85594100 

 H                 -1.49913700   -1.15732000   -0.85604400 

  

 

 

 



 

 

231 
 

33  N                  0.74622500   -0.57723100    0.09815400 

 H                  1.27290100   -1.44569800    0.00022900 

 H                  1.14888400    0.05807100    1.09481700 

 C                  1.51059900    0.64488100   -0.03948800 

 H                  0.92297600    1.53721100   -0.19587600 

 H                  2.55903100    0.54736200   -0.28400900 

 C                 -0.77810400   -0.63602500   -0.17933200 

 H                 -1.13619800   -1.44717600    0.45434300 

 H                 -0.83404600   -0.93597900   -1.22890900 

 N                 -1.37449200    0.61116300    0.07180000 

 H                 -1.77824800    1.07497100   -0.72875100 

 H                 -1.98306500    0.65560000    0.87661500 

  

34  N                 -1.34997100   -0.65172000   -0.00545900 

 H                 -1.66314400   -1.00016100    0.88994000 

 C                 -0.79872800    0.64264400   -0.00697400 

 H                 -1.07944300    1.23487600   -0.88874600 

 H                 -1.06371400    1.26097900    0.86834600 

 C                  1.49814700   -0.55201100   -0.02888100 

 H                  0.90547800   -1.38332300   -0.40920200 

 H                  1.82494500   -0.80046100    0.99638500 

 N                  0.68535700    0.62453200    0.00436200 

 H                  2.40099000   -0.35156400   -0.61254900 

 H                 -2.01966200   -0.84100200   -0.73683800 

 H                  1.15033000    1.52717000    0.11547300 

 

 

 

 



 

 

232 
 

35 N                 -1.38421300   -0.61852000    0.05532600 

H                 -0.93308300   -1.49761800   -0.15471500 

C                 -0.72600100    0.54360500    0.05766300 

H                 -0.94085800    1.09876500   -1.55223900 

H                 -1.28999100    1.42532700    0.34875000 

C                  1.51994900   -0.49891900   -0.04680600 

H                  1.45766400   -0.90504200   -1.06101300 

H                  1.29525700   -1.28025200    0.68354600 

N                  0.60202200    0.62780300    0.12297400 

H                  2.53372400   -0.14623000    0.12622400 

H                 -2.39348500   -0.62007000    0.08628500 

H                  0.99357200    1.55788000    0.19035500 

 

36      N                 -1.42537600   -0.54131900   -0.00001200 

     H                 -2.43508400   -0.51025100   -0.00000400 

     C                 -0.73252900    0.57853400    0.00000100 

     H                 -1.28935300    1.50930900    0.00007000 

     H                  1.33477100   -1.10659700   -0.89729900 

     C                  1.48594900   -0.50227100   -0.00000600 

     H                  2.50771000   -0.13144600    0.00105800 

     H                  1.33342100   -1.10771500    0.89629500 

     N                  0.57429600    0.65087900    0.00000800 

     H                  0.97894700    1.57775200   -0.00008700 

     H                 -0.99337100   -1.45555700    0.00003100 

 

 

 

 

 



 

 

233 
 

37      N                 -2.68021900    3.16314000    0.06552200 

     H                 -3.31716500    3.63221800    0.70959700 

     H                 -2.33284900    3.72130500   -0.71444900 

     C                 -2.33705100    1.94579100    0.22656700 

     H                 -2.72751600    1.38299100    1.06926600 

     H                 -1.65660500    1.47991700   -0.48004700 
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