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Abstract 

Human cytomegalovirus (HCMV) is widespread in the general population and can 

establish lifelong latency with expression of a limited subset of viral genes.  The 

UL111A gene is expressed during both lytic and latent infection, and at least two protein 

isoforms are produced.  During lytic infection, the full length transcript yields cmvIL-10, a 

potent immunosuppressive viral ortholog of human IL-10 (hIL-10).  Alternative splicing 

of the UL111A transcript yields a truncated protein, LAcmvIL-10, which is expressed 

during both lytic and latent infection but with a limited range of immunosuppressive 

functions.  The two viral cytokines, collectively termed viral IL-10 (vIL-10), are identical 

in amino acid sequence through C127, then divergent at the C-terminus.  A sensitive 

and specific ELISA was developed to detect both vIL-10 isoforms in supernatants from 

transfected and virus-infected cells.  Specimens from healthy blood donors were tested 

for HCMV serostatus and vIL-10 levels. Of the thirty seropositive donors, twenty had 

detectable plasma vIL-10 levels while ten had no detectable vIL-10 levels. The results 

suggest that the custom vIL-10 ELISA was effective in detecting plasma vIL-10 and that 

vIL-10 is produced at measurable levels in healthy adults. Ultimately, these findings 

may provide a snapshot of viral protein expression during latency and help characterize 

the interplay between the two isoforms of vIL-10 with respect to productive and latent 

infection. 
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Introduction 

Human cytomegalovirus (HCMV) is a member of the virus family Herpesviridae, 

subfamily Betaherpesvirinae. HCMV is highly prevalent in the population, affecting 

about 50-100% people worldwide and 50-85% of adults in the United States (1, 2).  The 

virus is transmitted through exchange of bodily secretions such as blood, saliva, cervical 

secretions, semen, and breast milk (3). Thus, common mechanisms of transmission of 

HCMV include breast-feeding, sexual exchange, and blood transfusions. After initial 

exposure to HCMV, there may be an incubation period of 4-12 weeks (4). In 

immunocompetent people, HCMV infection often goes unnoticed because it is 

asymptomatic and usually will not result in disease (5).  However, in 

immunocompromised patients, such as newborns, the elderly, acquired 

immunodeficiency syndrome (AIDS) patients, and organ transplants recipients, HCMV 

infection may cause clinical diseases that can be life-threatening (6-13).   

HCMV is the most common congenital infection with a live birth prevalence of 1% 

worldwide and 0.6-0.7% in developed countries (14, 15). Congenital CMV infection 

leads to many types of birth defects, such as brain damage, hearing loss, vision loss, 

and even death (2, 16). In the United States, approximately 40,000 babies are born with 

congenital CMV (17). Among these, about 400 cases of congenital CMV are fatal while 

approximately 8,000 develop permanent disabilities (17). In addition to the 60-80% of 

symptomatic babies that develop neurological sequelae, around 10-15% of 

asymptomatic children will also develop neurological conditions (18). 

Though HCMV infection is mostly asymptomatic, common HCMV-associated 

diseases in symptomatic adults include pneumonia, encephalitis, and atherosclerosis 
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(19-21). HCMV also continues to be a serious problem affecting organ transplant 

recipients. Lung transplant patients are especially at risk because the lung is a major 

site of HCMV latency and reactivation (22). 

Furthermore, HCMV is often speculated to be a cofactor for human 

immunodeficiency virus (HIV) infection and disease progression (23). There have been 

implications that those infected with HCMV have increased susceptibility to HIV and that 

HCMV infection is associated with enhanced progression of HIV disease (24-27). 

HCMV retinitis is a common complication that caused retinal detachment and blindness 

in about 50% of AIDS patients before therapy was available (7, 28).  These findings 

reveal the possibility that HCMV infection may lead to alterations of other diseases and 

stress the importance of understanding the composition of the virus as well as the 

mechanisms behind HCMV infection. 

HCMV is the largest human herpesvirus with a genome of about 230 kB and 

encodes about 200 gene products (29). The linear, double-stranded DNA genome is 

encased in an icosahedral capsid (Figure 1). The genome is separated into two sections 

known as the unique long (UL) and unique short (US) regions, which are flanked by 

inverted repeated sequences (30).  Outside the icosahedral capsid lies a layer of 

tegument proteins, such as pp65 and pp71 (31). The tegument proteins are important 

for transport of the viral genome into the cell nucleus upon viral entry. Glycoproteins, 

which allow for viral entry through membrane fusion, are studded throughout the viral 

lipid-envelope.  
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Figure 1. HCMV virus particle. The double-stranded DNA viral genome is enclosed in 

an icosahedral protein capsid. A tegument protein layer lies outside of the capsid but 

beneath the viral envelope. The lipid envelope is derived from the host cell and is 

studded with various glycoproteins that facilitate virus-entry. 
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Upon entry, HCMV exhibits two modes of infection, lytic and latent. Whether the 

virus enters into the lytic or latent infection cycles is dependent on expression of viral 

immediate-early (IE) genes (31). The lytic replication cycle progresses when IE genes 

are expressed, followed by early (E) and late (L) gene expression. Notable IE gene 

products include IE1 (UL123) and IE2 (UL122), which are regulated by the major 

immediate-early promoter (MIEP) and are the first and the most abundant proteins 

expressed in the immediate-early phase. The IE1 protein has been shown to 

transactivate the MIEP, thereby stimulating production of more IE genes (32). The IE2 

protein can also autoregulate the MIEP (33). IE2 can bind to itself, p75 (UL84) or other 

transcriptional factors such as CREB (33-35). Together, IE1 and IE2 play a major role in 

viral gene expression and infection progression. Other important IE proteins include the 

IE72 and IE86 gene products which work synergistically to activate viral early and late 

gene expression (1). HCMV early genes primarily encode proteins that play a role in 

viral replication (36). Some early genes are UL54, which encodes a viral DNA 

polymerase, and UL57, which encodes a single-stranded DNA binding protein (36). Late 

genes often encode structural protein for the virus. An example of an important late 

gene is UL75, which encodes glycoprotein H (gH), and UL99, which encodes pp28, a 

tegument protein (37, 38). 

Latency is characterized by expression of a limited set of viral genes and the 

ability to reactivate the virus when stimulated (39). To date, only a few latency-

associated viral genes have been identified. These genes include UL81-82, UL111A, 

UL138, UL144, and US28 (40-45). HCMV UL81-82 encodes latency unique natural 

antigen (LUNA), which is expressed during in vivo infection and is essential for HCMV 
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reactivation in latently infected primary CD14+ cells (46, 47). UL111A encodes an 

interleukin 10 ortholog (30, 40). UL138 is also required for the establishment and/or 

maintenance of HCMV latency and is speculated to be involved in the reactivation of the 

lytic cycle (2, 48). The UL144 gene encodes a homolog of the herpesvirus entry 

mediator (HVEM) (49). The US28 gene encodes a chemokine G-protein-coupled-

receptor (GPCR) that can bind to a variety of viral and host receptors (45). 

Because of its ability to establish latency, HCMV can persist in the host for life 

(50). In order to avoid immune clearance and, HCMV expresses genes that mimic host 

immune modulators (51). One of these is the UL111A gene that encodes the viral 

ortholog of human interleukin-10 (hIL-10).  Human IL-10 is a cellular cytokine that plays 

an important role in terminating an immune response by suppressing the activity of 

inflammatory cytokines and immune cells (52). These effects occur when hIL-10 forms 

dimers that bind to the cellular IL-10 receptor complex (IL-10R) on target cells and 

activates the Janus kinase/Signal Transducer and Activator of Transcription 

(JAK/STAT) signaling cascade (53) (Figure 2). The receptor complex consists of two 

subunits, IL-10R1 and IL-10R2, both of which are required for proper activity. Upon  

hIL-10 dimer binding to the IL-10R, the JAKs and TYKs (tyrosine kinases), which are 

constitutively associated with IL-10R1 and IL-10R2, respectively, are phosphorylated 

and activated (54, 55). The activated kinases then phosphorylate tyrosine residues 

located on the IL-10R1 and create docking sites for STAT3. STAT3 molecules bind to 

IL-10R1 and gets phosphorylated by JAK1. Once phosphorylated, STAT3 dimerizes 

and translocates to the nucleus where it binds to STAT-binding elements (SBE) in 

various promoters and causes transcription of the associated genes. Some examples 
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Figure 2. The IL-10 receptor complex (IL-10R). The IL-10R is comprised of two chains 

(IL-10R1 and IL-10R2), both of which are necessary for signaling from the receptor. JAK 

and TYK are constitutively associated with IL-10R1 and IL10-R2, respectively. 
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of IL-10-responsive genes that contain SBEs in the promoter region are cyclin D2, cyclin 

D3, c-jun, c-fos, and p27 (55, 56). 

The HCMV ortholog of hIL-10, which is known as cmvIL-10, is a 175-amino acid-

long protein expressed during lytic infection (30, 57, 58). The viral cytokine is secreted 

by infected cells and can cause downstream effects in uninfected cells (Figure 3). 

Although cmvIL-10 only has 27% amino acid identity to hIL-10 (30), the viral cytokine 

also binds to the cellular IL-10R, triggering many of the same immunosuppressive 

effects as hIL-10, such as inhibition of dendritic cell maturation (59), peripheral blood 

mononuclear cells (PBMCs) proliferation, and suppression of pro-inflammatory cytokine 

production (60).  

The UL111A gene is comprised of three exons, with splicing of the two introns 

giving rise to a transcript that yields cmvIL-10 protein (30).  During latency, a second 

variant is produced as a result of alternative splicing of the UL111A gene (Figure 4A). 

Though the gene product is known as latency-associated cmvIL-10, or LAcmvIL-10, it is 

expressed during both lytic and latent infection (40, 58). The amino acid sequence of 

LAcmvIL-10 is collinear with cmvIL-10 for the first 127 amino acids but diverges in the 

last 12 amino acids, resulting in a different C-terminus (Figure 4B). The two are known 

collectively as viral IL-10 (vIL-10). Although LAcmvIL-10 retains the ability to 

downregulate major histocompatibility complex (MHC) class II expression on latently 

infected granulocyte macrophage progenitor cells (GM-Ps) and monocytes, the 

truncated isoform has more limited immune suppressive function than cmvIL-10 and 

hIL-10 and does not signal through the IL-10R (61, 62). 
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Figure 3. HCMV-infected cells release cmvIL-10.  HCMV infected cells secrete viral 

cytokine, cmvIL-10 (green). The viral cytokine binds to the cellular IL-10R on uninfected 

cells triggering downstream signaling pathways. 
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A)

  
 

B) 

                              

 

Figure 4. The UL111A gene products. A) The alternative splicing of the UL111A gene, 

results in two separate products collectively known as vIL-10. The full-length transcript, 

cmvIL-10, is 175 amino acids long while the latency associated version, LAcmvIL-10, is 

139 amino acids long. The asterick indicates the premature stop codon at the intron 2 

sequence that results in the truncated LAcmvIL-10. B) The full amino acid sequence of 

cmvIL-10 is aligned with LAcmvIL-10 to show similarity (highlighted gray regions).  The 

diagram was generated using web-based alignment software from Uniprot.  The 

asterisk indicates a fully conserved residue whereas the colon and period indicates 

strongly similar and weakly similar residues, respectively. The box-enclosed sequence 

indicates the residues of cmvIL-10 and IL-10R contact points while the residues in red 

indicate cmvIL-10 dimerization contact points (63). 

 

LAcmvIL-10 
139 aa 

Exon 1 Exon 2 Exon 3 

cmvIL-10 

175 aa 

UL US 

UL111A 

* 

cmvIL-10 

LAcmvIL-10 



Young, Vivian 

10 
 

In addition to the numerous immunosuppressive functions exhibited by vIL-10, 

cmvIL-10 has been observed to stimulate B cell proliferation and autocrine production of 

hIL-10 (61). The extensive effects of vIL-10 suggest that vIL-10 may play a critical role 

in HCMV infection. Considering the importance of vIL-10 in infection, it is crucial to 

investigate vIL-10 expression in host body fluids. To date, it is not clear how much  

vIL-10 is produced during infection. Furthermore, when expressed, it is unclear as to 

whether or not vIL-10 can be detected in body fluids. This may be due to the lack of 

commercial assays available for detection of vIL-10. Therefore, to further examine these 

findings, an Enzyme-linked Immunosorbent Assay (ELISA) was developed to screen 

and evaluate vIL-10 levels in both cell culture and healthy donor blood samples. 

Ultimately, these findings may provide a snapshot of viral protein expression during 

latency and help characterize the interplay between the two viral cytokines with respect 

to productive and latent infection. 

Materials and Methods 

I. Cells, Viruses, and Reagents 

Newborn foreskin fibroblasts (NuFF-1) (GlobalStem, Gaithersburg, MD) were 

cultured in Dulbecco’s Modification of Eagle’s Media (Corning, Manassas, VA) 

supplemented with 10% fetal bovine serum, 1% non-essential amino acids, and 10 mM 

HEPES (Cellgro, Herndon, VA).  The cells were grown in a humidified 37°C incubator 

with 5% CO2 atmosphere.  Human embryonic kidney (HEK) 293 cells (ATCC) were 

grown in Minimum Essential Medium (Thermo Fisher Scientific, Waltham, MA) with 10% 
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FBS (Cellgro) in a humidified incubator at 37°C and 5% CO2 atmosphere.  The HCMV 

strain AD169 virus (ATCC, Manassas, VA) was propagated through fibroblasts cells. 

Purified recombinant cmvIL-10 (117-VL-025), hIL-10 (1064-IL-01), ebvIL-10 (915-

VL-010), and IFN-γ (285-IF-100) cytokines, as well as antibodies directed against 

cmvIL-10 (AF117) and cmvIL-10 biotinylated (BAF117), were purchased from R&D 

Systems (Minneapolis, MN). Anti-MAPK antibody (9102S) was purchased from Cell 

Signaling Technology (Danvers, MA) while secondary antibodies, donkey-anti-goat-AP 

(sc-2022), goat-anti-rabbit-AP (sc-2007), goat-anti-mouse-HRP (sc-2005), and goat-

anti-human-HRP (sc-2454) were from Santa Cruz Biotechnology (Santa Cruz, CA). The 

non-commericial cmvIL-10 antibodies, Monoclonal A and Monoclonal B, were gifted 

from Lenore Pereira and Takako Yamamoto-Tabata (UCSF, San Francisco, CA) and 

Gavin Wilkinson (Cardiff University, Cardiff, United Kingdom), respectively. Monoclonal 

B was provided as culture supernatant with an estimated concentration of 20 µg/ml. 

Polyclonal antiserum directed against the unique C-terminal regions of cmvIL-10 

and LAcmvIL-10 were created. Rabbits were immunized with purified peptides 

consisting of amino acids 128-175 of cmvIL-10 (NH2- PLLGCGDKSVISRLSQ 

EAERKSDNGTRKGLSELDTLFSRLEEYLHSRK -COOH) (Abbiotech, San Diego, CA) or 

amino acids 127-139 of LAcmvIL-10 (NH2- CVSVSVAALSAQR -COOH) (Thermo 

Fisher). After a series of immunizations, serum was collected and purified to obtain 

polyclonal antiserum specific to each protein. This work was contracted and animal 

immunizations were done off site by Abbiotech and Thermo Fisher.  
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II. Virus Infection 

For HCMV infections, the three wells of NuFF-1 cells were seeded at 2 x 105 

cells/well and grown to 100% confluency in a 6-well dish. The AD169 viral stock-media 

solution was mixed in NuFF-1 media (for an MOI of 0.1 and total volume of 300 µl/well) 

before being added to each confluent well of cells and incubated for one hour at 37°C. 

After one hour, 1.7 ml of media was added to the wells for a total volume of 2 ml/well.  

Cell supernatants were harvested before infection and every 24 hours infection for 9 

days. The supernatants were stored at -20°C until use. 

III. Transient transfection 

HEK293 cells were seeded at a cell density of 2 x 105 cells/well in a 6-well dish. 

After 24 hours, a 9 µl: 3 µg ratio of Fugene (Promega, Madison, WI) to plasmid DNA 

was added into each well. The cells were transfected with either pcDNA-cmvIL-10, a 

plasmid containing the full-length cmvIL-10, or pcDNA-LAcmvIL-10, a plasmid 

containing LAcmvIL-10. The pcDNA plasmid enables expression of the protein with a C-

terminal myc and His epitope tag (Figure 5). Supernatants were collected every 24 

hours and stored at -20°C. The cells were harvested by trypsinization five days post 

transfection  After two cold PBS washes, the cell pellets were resuspended in 100 µl of 

Cell Lysis Buffer (150 mM NaCl, 20 mM HEPES, 0.5% Triton X-100, 1 mM NaOV4, 1 

mM EDTA, and 0.1% NaN3 dissolved in water).  The cells were then frozen overnight at 

-20°C. On the following day, the cells were thawed and centrifuged at 14,000 RPM for 

15 minutes at 4°C. Lysates were collected in new tubes and kept at -20°C for storage.   
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Figure 5. pcDNA3.1 vector map. The pcDNA3.1 vector contains a strong promoter for 

HCMV along with neomycin and ampicillin markers for selection. Transient transfection 

using the vector allows for expression of the specific protein with myc-His tag. The 

figure is adapted from Invitrogen (Grand Island, NY). 
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IV. Western blot 

Cell lysates were separated using SDS-PAGE and transferred onto a 

nitrocellulose membrane.  The membrane was blocked (5% milk in TBS-0.05%Tween) 

for an hour at room temperature and washed twice with TBS-0.05% Tween (TBS-T).  

The membrane was incubated overnight with 1:1000 of the goat anti-vIL-10 polyclonal 

antiserum (R&D Systems) or anti-MAPK antibody at 4°C, followed by washes and 

incubation with 1:1000 of the corresponding AP-conjugated secondary antibody for an 

hour at room temperature.  The membrane was developed in Western Blue stabilized 

AP substrate (ProMega) and scanned using Adobe Photoshop. 

V. Blood Preparation 

De-identified specimens of human whole blood were purchased in 6-ml EDTA 

tubes from the Blood Centers of the Pacific (San Francisco, CA) and the Stanford Blood 

Center (Menlo Park, CA). A 400 µl aliquot of the whole blood was used for extraction of 

genomic DNA (gDNA) using the ReliaPrep Blood gDNA Miniprep System (Promega, 

Madison, WI). The remaining whole blood was centrifuged at 1300 x g for 10 minutes at 

4°C to separate plasma from blood cells.  

VI. Enzyme-Linked Immunosorbent Assay (ELISA) 

i. Sandwich ELISA – vIL-10 protein detection 

 A 96-well microplate was coated overnight at 4⁰C with 50 µl/well of 2 ug/ml goat 

anti-vIL-10 polyclonal antiserum (R&D Systems) diluted in PBS.  The plate was washed 

three times with 150 µl/well (3 times volume of sample) of TBS-0.05% Tween (TBS-T) 

before the 50 µl/well of blocking buffer (1% BSA in PBS) was added and incubated for 
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an hour at room temperature. After another set of washes, 50 µl/well sample or 

standard was added and incubated at room temperature for 2 hours.  The plasma 

samples were tested at 10% in PBS. Purified vIL-10 protein standards were 2-fold serial 

dilutions (starting at 1000 pg/ml) of cmvIL-10 recombinant protein diluted in either 10% 

seronegative human plasma in PBS or 10% FBS in PBS. After three washes, a total 

volume of 50 µl/well of cmvIL-10 biotinylated antibody at 0.2 µg/ml was added and 

incubated for 2 hours at room temperature. After another set of washes, 50 µl /well of 

1:200 streptavidin-HRP (R&D Systems) was incubated for 20 minutes at room 

temperature in the dark (covered with foil). An addition of 50 µl/well of substrate reagent 

(R&D Systems) was used for detection after the plate was washed for another 3 times. 

After 14 minutes of incubation with the substrate reagent (R&D systems), the plate was 

stopped with 50 µl/well of 1M H2SO4 and read at 450 nm using the Dynex Opsys MR 

Microplate Reader and Revelation Quicklink program (Dynex Technologies, Chantilly, 

VA). The concentration of the samples were interpolated from a standard curve with a 

R2 value of 0.99. Samples with values outside of the standard curve were retested at 

appropriate dilution. 

ii. Sandwich ELISA - Host cytokine detection 

The plasma hIL-10 (DY217B), IL-12 (DY1270), and TNF-α (DY210) levels were 

detected using commercial ELISA DuoSet kits (R&D Systems) according to 

manufacturer’s instructions. The plasma samples were diluted to 10% in PBS. The plate 

was stopped after 14 minutes of incubation with the substrate reagent. The plate was 

read at 450 nm and results were analyzed using the Dynex Opsys MR Microplate 

Reader and Revelation Quicklink software. 
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iii. Indirect ELISA – vIL-10 antibody detection 

 A 96-microplate was coated overnight at 4°C with either 50 µl/well of 1 µg/ml 

cmvIL-10 recombinant protein. After three washes with 150 µl/well of TBS-T, the plate 

was blocked with 1% BSA in PBS for 1 hour at room temperature. Plasma samples 

were diluted to 2% in PBS and incubated at room temperature for 2 hours. After another 

set of washes, the wells were incubated with 0.4 µg/ml of anti-human-HRP-conjugated 

secondary antibody (in PBS) for 1 hour, then washed again, and developed for 15 

minutes using substrate reagent. The plate was read at 450 nm and analyzed using the 

Dynex Opsys MR Microplate Reader and Revelation Quicklink software. 

iv. HCMV IgG and IgM – HCMV serostatus determination 

Human plasma samples were examined according to manufacturer’s instructions 

using HCMV IgG and IgM ELISA kits (Trinity Biotech USA, Jamestown, NY) to 

determine HCMV serostatus of human blood donors. The plasma samples were diluted 

1:21 for IgG and 1:81 for IgM detection in the kit diluents as per manufacter’s 

instructions. The plate was read using the Dynex Opsys MR Microplate Reader and 

Revelation Quicklink software.  The correction factor of the kit and mean OD value of 

the calibrator were used to determine the cutoff calibrator value. The immune status 

ratio (ISR) was calculated by dividing the OD of the sample by the cutoff calibrator 

value. Samples with an ISR value greater than 1.10 were deemed positive for HCMV 

IgG or IgM antibody detection, and thus HCMV seropositive. 
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VII. Polymerase Chain Reaction (PCR) 

Genomic DNA (gDNA) was extracted from whole blood using the ReliaPrep Blood 

gDNA Miniprep System (Promega) and analyzed using PCR for viral genes. The outer 

forward and reverse primers for IE1 were 5' - GGTCACTAGTGACGCTTGTATG 

ATGACCATGTACCGA - 3', 5' – GATAGTCGCGGGTACAGGGGACTCT - 3’. The inner 

forward and reverse primers for IE1 were 5’ – AAGTGAGTTCTGTCGGGTGCT – 3’ and 

5’ – GTGACACCAGAGAATCAGAGGA – 3’ as described in (64). The gene specific 

forward and reverse primers for β-actin were 5' – ATTAAGGAGAAGCTGTGCTACG - 3' 

and 5’ – TGTTGGCGTACAGGTCTTTG - 3'. For PCR reactions, each contained gDNA 

template (500 ng), primers, dNTP mix, Ex-Taq Buffer, and Ex-Taq polymerase 

(Clontech, Mountain View, CA) in a final volume of 50 µl.  The PCR reaction underwent 

the following protocol on a MyCycler Thermal Cycler (Bio-Rad, Hercules, CA): 94°C,  

5 min; 35 cycles: 94°C for 30 sec, 58°C for 30 sec, 72°C for 60 sec; 72°C for 5 min; 

4°C, infinity.  For amplifying the IE1 inner sequence (round 2), 2 µl from IE1 outer PCR 

products were used with a final volume of 25 µl.  The PCR reaction underwent the 

following protocol on a MyCycler Thermal Cycler (Bio-Rad): 94°C, 5 min;  

30 cycles: 94°C for 30 sec, 58°C for 30 sec, 72°C for 50 sec; 72°C, 5 min; 4°C, 

infinity.  The PCR products were visualized on a 2% agarose gel.  

Results 

I. vIL-10 ELISA development 

The UL111A gene product is one of a small subset of genes expressed during both 

lytic and latent HCMV infection; however the amount of vIL-10 protein produced in vivo 
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remains unknown. Currently, there are no commercial assays for the detection of  

vIL-10. Thus, in order to detect and quantify vIL-10 levels in human blood, it was first 

necessary to develop a screen for vIL-10 (Figure 6). In addition to the only commercially 

available goat anti-vIL-10 polyclonal antiserum (R&D Systems), two other monoclonal 

anti-cmvIL-10 antibodies were tested to determine the optimal conditions for the assay. 

The goat-polyclonal and Monoclonal A antibodies were tested at 2 µg/ml while 

Monoclonal B was tested at 1:10 (2 µg/ml) to determine their effectiveness as the 

capture antibody. A serial dilution of purified cmvIL-10 recombinant protein was used to 

create a standard curve for which the detection range and linear regression of the three 

test antibodies was analyzed at a wavelength of 450 nm. The goat polyclonal had the 

most effective detection range since it had the widest spread of optical density (OD) 

units for the standard curve (Figure 7). Also, the goat polyclonal antibody produced the 

standard curve with the best linear fit, with a R2 value of 0.9949. The OD spread and R2 

values were suboptimal for the monoclonal antibodies. Thus, the goat polyclonal 

antibody would be used as the capture antibody for the vIL-10 ELISA. The monoclonal 

antibodies were also tested as detection antibodies with the addition of an anti-mouse-

HRP since the monoclonal antibodies were not directly conjugated to a detection 

enzyme but this approach was less successful. The commercial cmvIL-10 biotinylated 

antibody proved to be the best detection antibody. The optimal vIL-10 ELISA consisted 

of the polyclonal cmvIL-10 as capture and the cmvIL-10 biotinylated antibody as 

detection. Various concentrations of the capture and detection antibodies were also 

optimized to achieve a sensitive and specific ELISA. 
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Figure 6. A schematic diagram of a Sandwich Enzyme-Linked Immunosorbent 

Assay (ELISA).  Anti-cmvIL-10 antibody (gray) is used to capture any vIL-10 (green) 

present in the sample. A biotinylated anti-cmvIL-10 antibody (blue) is used to further 

bind vIL-10 for detection.  Streptavidin-HRP (purple) binds to the biotin on the 

secondary antibody and addition of substrate (for the HRP enzyme) causes a visible 

and quantifiable color change. 

 

 

 

 



Young, Vivian 

20 
 

 

 

 

 

Figure 7. Optimization of vIL-10 ELISA capture antibody.  Three different antibodies 

were tested as capture for the vIL-10 ELISA development. Monoclonal A and Goat 

polyclonal antibodies were used to coat the plate at 2 µg/ml concentration while 1:10 

dilution of Monoclonal B was used. Purified cmvIL-10 recombinant protein was used to 

create a standard curve and 0.2 µg/ml of a biotinylated cmvIL-10 antibody was used for 

detection of cmvIL-10.  The results of the assay are reported as units of optical density 

(OD) at 450 nm and a R2 value demonstrating the linear regression of the standard 

curve. The goat polyclonal antibody had the widest spread of OD and best R2 value 

demonstrating that it would be the best choice for development of the vIL-10 ELISA. 

Error bars represent standard error. 
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II. Specificity to vIL-10 

To demonstrate the specificity of the vIL-10 ELISA, purified recombinant hIL-10, 

ebvIL-10, and IFN-γ protein were tested to confirm that the assay would only detect vIL-

10 and not other cytokines. The optical density readings for hIL-10, ebvIL-10, and IFN-γ 

proteins were similar to that of the PBS blank (Figure 8A), suggesting that only vIL-10 

could be detected. Results from the experiment validated the assay as even at a high 

concentration of cytokines (5 ng/ml), there was no detection of the non-specific proteins. 

III. vIL-10 detection during virus infection 

In order to verify that the vIL-10 ELISA was able to detect vIL-10 produced naturally 

during virus infection, NuFF-1 cells were infected at an MOI of 0.1 with the AD169 strain 

of HCMV. After nine days of infection, the supernatants from each day were analyzed 

using the vIL-10 ELISA. The supernatants were also evaluated using a commercial hIL-

10 ELISA kit to determine the levels of the normal cellular cytokine. As predicted, the 

levels of vIL-10 in supernatants were detectable using the ELISA and shown to increase 

as the infection progressed while hIL-10 was not detected in any of the supernatant 

samples (Figure 8B).  

To further confirm that vIL-10 and hIL-10 do no cross-react and to provide a positive 

control for hIL-10 detection, cells were stimulated to produce hIL-10 but not vIL-10 and 

analyzed using both ELISAs. Human monocytes (THP-1) were treated with 

lipopolysaccharide (LPS) for four days to induce cytokine production. Supernatants 

were collected after four days and analyzed using the vIL-10 and commercial hIL-10  
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A)        

                                       
 
 
B)  

    
 
Figure 8. Specific detection of purified vIL-10 protein and proteins during 

infection. A) Purified recombinant cytokines (R&D Systems) were used to test the 

assay for cross-reactivity.  In addition to the cellular cytokine hIL-10, a cytokine from a 

related herpesvirus Epstein-Barr virus, ebvIL-10, and an unrelated cytokine, IFN-γ, were 

also tested.  PBS served as a negative control.  B) Newborn human foreskin fibroblasts 

(NuFF-1) were infected at 0.1 MOI with HCMV AD169-strain for a period of 9 days. 

Supernatants were collected and analyzed daily using our vIL-10 ELISA and a 

commercial hIL-10 ELISA kit.  Day 4 supernatant from THP-1 cells stimulated with 5 

ug/ml LPS served as a positive control for hIL-10 detection. Error bars represent 

standard error.  These results are representative of 3 independent experiments.   
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ELISAs. As expected, hIL-10 was detectable from the supernatants while vIL-10 was 

not detected (Figure 8B). This served as the positive control for hIL-10 detection and 

confirmed that the custom vIL-10 ELISA did not cross-react with naturally produced  

hIL-10. 

IV. vIL-10 detection in transfected cells  

To determine whether the custom vIL-10 ELISA could detect both cmvIL-10 and 

LAcmvIL-10, HEK293 cells were transfected with plasmids encoding cDNA for one 

isoform or the other. Results from the vIL-10 ELISA showed that although both 

cytokines accumulated over time, supernatants of the cmvIL-10-transfected cells had 

higher vIL-10 levels than the LAcmvIL-10-transfected samples (Figure 9A, B). Western 

blotting was also employed to confirm that two isoforms were produced and at the 

predicted sizes. Lysates were collected, separated by SDS-PAGE, transferred to a 

nitrocellulose membrane and probed with goat anti-vIL-10 polyclonal antiserum (R&D 

Systems) and an antibody against MAPK, a cellular transcription factor that serves as a 

control. A band at 34 kilodaltons (kDa) was detected in the lysates of the cmvIL-10-

transfected cells while a 19 kDa band was detected in lysates of the LAcmvIL-10-

transfected cells (Figure 9C). The predicted size of the full-length cmvIL-10 is 17 kDa, 

suggesting that the large 34 kDa band may indicate a cmvIL-10 dimer. The 19 kDa 

LAcmvIL-10 band appears larger than the predicted 16 kDa size but is likely due to the 

3 kDa molecular weight of the myc-His tag. The bands indicate that levels of cmvIL-10 

and LAcmvIL-10 in the cell lysates seem comparable. Therefore, because the levels of 

LAcmvIL-10 were much lower than cmvIL-10 levels in the supernatant, it seems that the 

full-length cmvIL-10 is produced at higher levels and secreted more efficiently. 
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A)                                                                     B)                         

                      

 

C) 

 

 

 

 

 

 

 

 

Figure 9. Detection of both isoforms during transfection.   Human embryonic kidney 

(HEK)-293 cells were transfected with pcDNA-cmvIL-10 or pcDNA-LAcmvIL-10.  

Supernatants from pcDNA-cmvIL-10 (A) or pcDNA-LAcmvIL-10 transfections (B) were 

collected and analyzed via the vIL-10 ELISA.  Error bars represent standard error.  The 

results are representative of 3 independent experiments. C) Lysates from day 4 were 

separated and Western blotted with a commercial polyclonal anti-cmvIL-10 antibody 

(R&D) to visualize the two different isoforms. The bands at 34 kD and 19 kD, for cmvIL-

10 and LAcmvIL-10 respectively, indicate that the proteins are likely glycosylated. The 

lysates were also blotted with a commercial polyclonal MAPK antibody (Cell Signaling 

Technology) as control.   
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Attempts were made to quantify the levels of LAcmvIL-10 only by developing 

another ELISA using the custom antibody specific for the unique C-terminus of 

LAcmvIL-10. With this as capture antibody and the biotinylated anti-cmvIL-10 antibody 

for detection, it was expected that levels of the truncated viral cytokine should be 

quantifiable in transfection supernatants and lysates from the LAcmvIL-10-transfected 

cells and HCMV-infected cells. Mock, cmvIL-10-transfected, and LAcmvIL-10 were 

tested using this custom ELISA but background OD was incredibly high and there was 

no difference in detection between the transfected and the mock-transfected cell lysates 

(Figure 10). The cell lysates from transfection and HCMV-infection were also blotted 

using the anti-LAcmvIL-10 polyclonal antiserum (1:1000). There was no detection of any 

bands in the Western blot (data not shown) suggesting the attempt was unsuccessful. 

Optimization of the custom LAcmvIL-10 ELISA and western blot experiments are in 

future plans.  

V. vIL-10 levels in human blood 

The ultimate goal was to develop an assay that could quantify vIL-10 in human 

blood, therefore it was necessary to confirm that human serum proteins would not 

interfere with detection of vIL-10 in human blood samples. Serial dilutions of cmvIL-10 

recombinant protein were prepared in PBS with 10% seronegative human serum and 

analyzed via the vIL-10 ELISA. The results of the vIL-10 ELISA demonstrated that even 

in the presence of the serum proteins, the assay could detect vIL-10 (Figure 11). The R2 

value demonstrates linearity between the concentration of cytokine and the optical 

density (OD) reading. 
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Figure 10. Initial LAcmvIL-10 ELISA development. Cell lysates from mock, cmvIL-10, 

and LAcmvIL-10 transfections were tested in an initial version of a specific LAcmvIL-10 

ELISA. The OD readings were comparable for the three types of lysate samples 

suggesting non-specific detection. Further optimization is necessary before the assay 

can be used. 
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Figure 11. Serum levels of vIL-10 can be measured. A standard curve was created 

using 10% serum in PBS as a diluent to show that serum proteins did not interfere with 

the sensitivity and specificity of the assay. Error bars represent standard error. These 

results are representative of 3 independent experiments. 
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VI. vIL-10 levels in blood donors  

To determine whether vIL-10 was produced in sufficient levels in blood, the vIL-10 

ELISA was used to detect vIL-10 in the blood of healthy, HCMV seropositive donors. 

Thirty de-identified human whole blood samples were obtained in EDTA tubes. Donor 

information provided from the blood banks and vIL-10 levels are summarized in Table 1.  

Though the blood banks provide serostatus information, the samples were retested for 

HCMV serostatus using the IgG ELISA and the IgG (ISR) values were also represented 

in Table 1. Plasma samples were diluted to 10% in PBS and evaluated using the vIL-10 

ELISA to determine serum vIL-10 levels. A wide-range of vIL-10 was detected in the 

seropositive donors. Of the 30 seropositive samples, 10 had no detectable vIL-10, 10 

had detectable levels of vIL-10 within the limits of the assay, and 10 had detectable 

levels of vIL-10 beyond the upper limit of the assay (Figure 12A). The upper limit of the 

assay is 1000 pg/ml or 10 ng/ml when the vIL-10 levels of the 10% samples are 

normalized to 100%. To further confirm that the 10 seropositive donors truly had no 

detectable levels of vIL-10, a subset of the samples (7/10) were tested at 100%. Of the 

7 that were retested, 4 had low but detectable vIL-10 levels when tested at 100% while 

3 remained undetectable (Figure 12B). Additionally, because 10 of the samples had vIL-

10 levels at the upper limit, interpolation of vIL-10 levels was not possible. To resolve 

this issue, a subset of those donors (5/10) were tested at a lower concentration, 0.2% 

plasma for donor R20841 and 2% plasma for the other four. The vIL-10 levels from 

these tests were within the assay detection range and thus, no extrapolation was 

necessary. The results using the lower concentrations were normalized to 100% plasma 

sample and are depicted in Figure 12C. This suggests that while 10% plasma sample  
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Table 1. Summary of donor information. Gender, age, and ethnicity information was 

provided by the blood banks. The test results from the HCMV IgG ELISA (ISR value), 

vIL-10 concentration per 10% plasma (pg/ml), and anti-vIL-10 antibody (OD) are also 

shown. N/T denotes not tested. The asterisk indicates levels outside of the upper 

detection limit (1000 pg/ml); these values are set to 1000 pg/ml for data analyses. 

ID# Gender Age Ethnicity HCMV 
IgG (ISR) 

vIL-10 Conc. at 
10% (pg/ml) 

α-vIL-10 
antibody (OD) 

R08629 M 66 Unknown 2.884 0 0.160 

R08631 F 50 Filipino 0.814 546.519 0.260 

R08632 M 47 Filipino 2.884 1089.948* 0.236 

R18186 M 35 Asian 2.952 337.872 1.056 

R18187 M 42 White 2.952 275.987 1.507 

R18188 M 55 White 2.648 140.933 0.534 

R18189 M 61 White 2.952 2601.316* 1.190 

R18190 M 27 Mexican 2.952 43.354 0.335 

R18191 M 66 White 2.952 27.805 0.759 

R23770 M 62 White 3.510 5086.793* 0.723 

R23771 M 63 White 2.806 2697.182* 2.413 

R23772 M 72 White 3.510 0 0.369 

R23773 F 42 Unknown 2.814 10842.681* 0.754 

R23774 M 45 White 3.510 0 0.806 

R23775 F 70 Chinese 3.113 0 0.788 

R20840 F 36 White 1.936 170.968 1.693 

R20841 M 23 Mexican 2.023 18950* 2.497 

R20842 M 25 White 3.846 1137.534* 1.873 

R20843 M 48 American Indian 3.846 0 0.484 

S01 M 68 Hispanic 2.302 49.0155 0.642 

S03 M 56 White 1.777 91.2865 1.795 

S08 M 54 White 3.185 31.972 1.690 

S13 M 52 American 
Indian/White 

4.001 0 1.099 

S14 M 59 Chinese 1.039 1982.633* 2.180 

S15 M 62 White 2.043 0 0.717 

S16 M 38 Indian 3.672 1881.459* 1.228 

R16244 F 27 American 
Indian/Alaska 

2.000 0 2.837 

R16245 F 57 Filipino 2.000 3044.147* 3.305 

R16246 F 32 Unknown 2.000 0 0.517 

R16247 F 55 White 2.000 0 0.716 



Young, Vivian 

30 
 

A) 

 

B)                C) 

           

Figure 12. Detection of vIL-10 in human plasma. Plasma was harvested from human 

whole blood for quantification of viral cytokine levels using the vIL-10 ELISA. A) The 

vIL-10 levels of all 30 seropositive donors are shown after being normalized to 100% 

sample. The dashed line depicts the upper detection limit of the assay. B) Seven of the 

ten donors that had no detectable levels of vIL-10 were retested neat. C) Five of the ten 

donors that had vIL-10 levels at the upper detection limit of the assay were retested at a 

lower concentration and are represented after being normalized to 100% sample. 
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may work for majority of the donors, some samples benefit from testing at a different 

dilution. 

Trends based on donor information and vIL-10 levels were then investigated. 

Results were separated based on gender to determine gender differences (Figure 13A). 

Though males seem to have slightly higher plasma vIL-10 levels than females, 4.090 

and 3.397 respectively, the levels seem comparable. Because more male donors were 

present in the pool of samples, more female donors will be recruited to better represent 

the population. Plasma vIL-10 levels were also represented by major ethnic groups 

(Figure 13B). From our donor population, Asians have the highest plasma vIL-10 levels. 

The results were also plotted against donor age to examine the trend of plasma vIL-10 

and donor age (Figure 13C). There seemed to be a slight negative correlation, 

implicating that as age increases, vIL-10 levels decrease. This negative trend was seen 

in males but a positive correlation was seen in the female donors. 

VII. Host cytokine levels in blood donors 

Since investigation of plasma vIL-10 levels was being performed, it was also 

important to measure the plasma levels of host cytokines, such as hIL-10, IL-12, and 

TNF-α in the donors since they often correlate with disease states. Plasma samples 

were diluted to 10% in PBS and tested individually for host cytokine levels and the 

results are summarized in Table 2. A wide-range of host cytokines were detected in 

some of the seropositive donors but many of the seropositive donors had no detectable 

levels of host cytokines (Figure 14A). Because this seemed to be a similar trend with 

vIL-10 levels, the correlation of vIL-10 and host cytokine levels was examined (Figure  
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A)                                                                           B)     

           

 
C)  

     

 

Figure 13. vIL-10 levels based on categories. Each circle represents a single donor 

while the bars represent the mean of that group.  A) Plasma vIL-10 levels are shown as 

a comparison between genders. B) Plasma vIL-10 levels are represented by the major 

ethnic groups of the donor population. C) Plasma vIL-10 levels for the donors are 

plotted against their age. The plasma vIL-10 and age plots were further separated by 

gender to analyze the differences between the two groups. The R2 value represents the 

linear fit. 
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Table 2. Summary of plasma cytokine levels. Viral IL-10 levels and the three host 

cytokines, hIL-10, IL-12, and TNF-α, are listed as concentrations based on tests at 10% 

plasma concentration. The asterisk indicates levels outside of the upper detection limit 

(1000 pg/ml); these values are set to 1000 pg/ml for data analyses. 

ID# vIL-10 conc. at 
10% (pg/ml) 

hIL-10 conc. at 
10% (pg/ml) 

IL-12 conc. at 
10% (pg/ml) 

TNF-α conc. at 
10% (pg/ml) 

R08629 0 7.173 0 0 

R08631 546.519 5.900 0 0 

R08632 1089.948* 0 0 0 

R18186 337.872 32.7285 15.837 205.250 

R18187 275.987 21.647 0 3.702 

R18188 140.933 8.608 0 2.175 

R18189 2601.316* 497.361 1455.859* 1052.240* 

R18190 43.354 0 0 0 

R18191 27.805 0 0 0 

R23770 5086.793* 665.893 1267.130* 1324.930* 

R23771 2697.182* 221.523 196.726 533.494 

R23772 0 0 0 0 

R23773 10842.681* 374.490 174.597 639.445 

R23774 0 0 0 0 

R23775 0 0 0 0 

R20840 170.968 9.382 3.348 30.898 

R20841 18950* 1571.450* 1050.076* 1189.004* 

R20842 1137.535* 212.792 98.265 333.165 

R20843 0 0 0 0 

S01 49.0155 0 0 0 

S03 91.287 44.447 10.499 102.375 

S08 31.972 4.546 7.427 35.072 

S13 0 0 0 0 

S14 1982.633* 1359.603* 951.218 1752.913* 

S15 0 26.784 0 0 

S16 1881.459* 648.267 437.205 868.166 

R16244 0 0 0 0 

R16245 3044.147* 316.389 219.354 235.562 

R16246 0 0 6.007 0 

R16247 0 0 11.693 0 
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Figure 14. Host cytokine plasma levels and correlations. A) Host cytokine levels 

were detected from the plasma samples of the seropositive donors by commercial hIL-

10, IL-12, and TNF-α ELISAs. Each circle represents a single donor while the bars 

represent the average of that group. B) Plasma levels of the host cytokines show 

correlation with plasma vIL-10 levels in the seropositive donors. The R2 value 

represents the linear fit. 
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14B). There seemed to be a strong correlation between vIL-10 and hIL-10 levels in the 

plasma, with a R2 value of 0.5723. This is not surprisingly since vIL-10 has been shown 

to stimulate hIL-10 production (61). There was a slightly lower correlation between vIL-

10 and IL-12 while there was a stronger correlation with TNF- α, with R2 values of 

0.4745 and 0.6516, respectively. Since IL-12 is produced in response to antigen 

stimulation and TNF-α is responsible for inflammation and virus infection, this 

correlation with  

vIL-10 should not be alarming. 

VIII. Anti-vIL-10 antibodies in blood donors 

Since the viral cytokine was detected in human blood, the possibility that the 

presence of antibodies directed against vIL-10 was also investigated. An indirect ELISA 

in which recombinant cmvIL-10 protein was used as antigen was employed to evaluate 

donor plasma. Antibody levels were measured and expressed as the OD value and 

compared to the IgG (OD) levels (Figure 15A) and plasma vIL-10 levels in the donors 

(Figure 15B). Surprisingly, there was a slight negative correlation with IgG OD and 

plasma anti-vIL-10 antibody levels. The reason is unclear and further investigation and 

data analyses must be done to understand this relationship. There was a slight 

correlation with of plasma vIL-10 and anti-vIL-10 antibody suggesting that some but not 

all donors are producing antibodies to vIL-10. 

IX. HCMV DNA detection 

One interesting observation was that vIL-10 was detected in donors that appeared 

to be seronegative. Of the 26 seronegative donors, 18 had detectable levels of vIL-10  
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Figure 15. Correlations with antibodies against vIL-10. A) The OD values of anti-vIL-

10 antibodies and IgG (from the Trinity IgG ELISA) from the seropositive donors are 

plotted against each other to show the relationship between the antibody levels. B) 

Plasma vIL-10 and antibody levels are plotted against each other but show low 

correlation, as depicted by the low R2 value. 
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while 8 had no detectable levels (Figure 16). These samples were tested using the 

HCMV IgM ELISA to see if the donors had been newly infected but all 26 seronegative 

samples tested IgM negative (data not shown). To determine whether viral DNA could 

be detected in these donor samples, PCR was performed on genomic DNA extracted 

from the whole blood samples. Detection of the viral IE1 gene would indicate HCMV 

presence in the samples. Only a subset of the donors were tested for viral DNA. The 

PCR was performed on samples from eight donors, four seropositive donors and four 

seronegative donors, by Carolyn Tu (University of San Francisco, San Francisco, CA). 

A plasmid containing the IE1 gene served as a positive control while water served as 

the negative control. β-actin also served as a positive control. The IE1 gene was 

detected in all four seropositive donors and two of the seronegative donors (Figure 17). 

When arranged with the vIL-10 levels from the vIL-10 ELISA, there was a clear 

correlation of IE1 detection and vIL-10 detection despite serostatus. These surprising 

results makes this an area for future investigation. 

Discussion 

Cellular cytokines, a vital part of the immune system, have been previously been 

assessed in human blood. Various studies have shown that elevated levels of serum 

cytokines, such as IL-6, IL-8, TNF-α, and IFN-γ are associated with HCMV infection and 

disease (65-67). Even though vIL-10 has been studied extensively, there have not yet 

been any studies on these viral cytokines in human blood. In a recent study, anti- 

cmvIL-10 antibodies were detected in 28% of HCMV seropositive adults, suggesting 

that vIL-10 is produced in sufficient quantities to induce an immune response (68).  
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Figure 16. vIL-10 levels in seropositive and seronegative donors. Not only was  

vIL-10 detected in seropositive donors but plasma vIL-10 was also detected in many 

HCMV seronegative donors despite serostatus. 
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Figure 17. vIL-10 protein and HCMV DNA is detected in some seronegative 

donors.  Nested PCR for exon 4 of the immediate early 1 (IE1) gene was performed on 

genomic DNA isolated from whole blood. Two sets of primers were used for the PCR, 

as previously described (64).  β-actin served as a positive control. The PCR results are 

arranged with the vIL-10 ELISA results from the same donors to show the correlation 

between detection of IE1 by PCR and detection of vIL-10 by ELISA in both seropositive 

and seronegative donors. 
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Since vIL-10 has been implicated to play an important role in infection and may be 

present in significant quantities in the host, it is crucial to confirm the presence of vIL-10 

and investigate whether it can be detected in body fluids, such as blood. Because of the 

variety of immunosuppressive functions previously reported for vIL-10, detection of  

vIL-10 in blood and evaluating the levels may also provide information on HCMV 

infection, HCMV-associated clinical diseases, and other imbalances in the body. 

 In order to quantify vIL-10 levels in blood, an ELISA was first developed and 

optimized in the lab. Various antibodies were tested as capture and detection antibodies 

(Figure 7). After the optimal antibody pair was chosen, concentrations of the antibodies 

were optimized before the optimal vIL-10 detection assay was achieved. The assay was 

tested for specificity for both purified and natural, infection-produced vIL-10 cytokines 

and showed no cross-reactivity with other cytokines (Figure 8A, B). 

Another important finding from this project is that both isoforms of vIL-10 can be 

detected using the vIL-10 ELISA (Figure 9A, B). Since the plasma samples were 

obtained from healthy blood donors, it was originally assumed that LAcmvIL-10 should 

be present but not cmvIL-10. However, one limitation of the current ELISA is that it 

cannot differentiate between the two isoforms. Future experiments using the two custom 

antibodies directed against the unique C-terminus regions of cmvIL-10 and LAcmvIL-10 

will help reveal whether one or both isoforms are presence in healthy donors. Also, if 

cmvIL-10 is present, it would be important to examine whether cmvIL-10 is expressed 

during latency or if it is present because many people undergo periodic reactivation.  
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After confirming that serum protein would not interfere with the detection of  

vIL-10 in the serum (Figure 11), donor samples were tested for the presence of vIL-10. 

From our initial testing of 30 seropositive donors at a 10% plasma dilution, 10 of the 

donors had no detectable level of vIL-10, 10 had detectable vIL-10 levels within the 

assay detection range, while 10 had detectable vIL-10 levels at the upper detection limit 

of the vIL-10 ELISA (Figure 12A). Seven of the ten donors with no detectable vIL-10 

levels were retested at 100% (neat), and from this test, four had low but detectable 

levels of vIL-10 (Figure 12B). Five of those at the upper detection limit were retested at 

a lower concentration (0.2% or 2% plasma) and this enabled interpolation of plasma 

vIL-10 levels for these donors (Figure 12C). This confirmed that the custom vIL-10 

ELISA was effective in detecting plasma vIL-10 donors. Also, the current conditions of 

the assay allow for useful initial testing of all samples since it either provides a value 

within the detection range or indicates a better sample dilution direction for retesting.  

 As mentioned earlier, many host cytokines are often found to be elevated in 

serum of HCMV seropositive donors and are associated with HCMV infection and 

diseases. Similar results were seen in our project in which vIL-10 levels had a slight 

correlation with hIL-10, IL-12, and TNF-α levels (Figure 14B). This was unexpected 

because since vIL-10 is highly immunosuppressive, it was expected that there would be 

reduced production of inflammatory cytokines as seen in previously reported in vitro 

work (59, 60). However, in contrast, previous studies have reported that HCMV infection 

leads to activation of inflammatory cytokines (69). A possible explanation for these two 

opposing findings is that HCMV must create some balance of viral and host cytokines to 

prevent detection and clearance by the host. Depending on the infection state, there 
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may be some host cytokines that are elevated while the activity of others are inhibited. 

The manipulation of the cytokine balance, both cellular and viral cytokines, in the host 

by HCMV may be a mechanism for its ability to persist in the host and perhaps even for 

latency. 

One interesting finding in this project was that vIL-10 was detected in some 

seronegative donors. This was an unexpected result since it was presumed that 

seronegative donors, or those who are not expressing HCMV IgG or IgM antibodies, 

would also not produce vIL-10. However, further investigation with PCR revealed that in 

addition to the seropositive donors, some seronegative donors had detectable HCMV 

DNA (Figure 13). Additionally, this finding is supported by literature. Previous studies 

have reported that seronegative donors are often found HCMV DNA positive by PCR 

(20, 40, 70-72). This is not surprisingly since PCR is a more sensitive technique than 

ELISA. Though the PCR results have been previously reported, the detection of vIL-10 

in both seropositive and seronegative donors is novel. Further investigation as to why 

vIL-10 and HCMV DNA is present in seronegative donors will be a very important next 

step. 

 With a developed vIL-10 ELISA and data on plasma vIL-10 levels, the detection 

of vIL-10 levels in other body fluids, such as urine or saliva, should be possible and 

would be a fascinating future project. Also, more analyses regarding the current data 

collected can be performed and may reveal other interesting discoveries that may lead 

to future studies of vIL-10. For instance, examining possible correlations between vIL-10 

and age, ethnicity, and gender may reveal more population-specific information and will 
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provide a better understanding for studying HCMV infection and diseases in those 

groups.  

One particular future project in our lab, the Avon Study, includes studying healthy 

women and women who have been diagnosed with breast cancer. For this project, we 

plan to quantify and compare plasma vIL-10 levels between the two groups. Recently, 

cmvIL-10 has been demonstrated to enhance tumorigenesis and the invasive potential 

of breast cancer cells in vitro (73). Thus, it is possible that there may be elevated levels 

of cmvIL-10 in the blood of breast cancer patients. This hypothesis is further supported 

by multiple works that have revealed an increased detection of HCMV antigens, DNA, 

and IgG antibodies in the tissue of breast cancer patients (74, 75). Moreover, some 

studies have shown elevated human IL-10 serum levels in various cancers, including 

breast cancer (76). With numerous works now demonstrating the correlation between 

HCMV and breast cancer as well as elevated hIL-10 levels and cancer, there could 

potentially be a specific relationship between vIL-10 and breast cancer.  

In conclusion by developing an assay and quantifying vIL-10 levels in healthy, 

asymptomatic blood donors, the groundwork for studying vIL-10 levels in diseased 

patients has been done. We expect our work to help understand viral latency and 

reactivation and its role in progression to disease. 
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