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Abstract—Researchers using Electroencephalograms

(“EEGs”) to diagnose clinical outcomes often run into

computational complexity problems. In particular, extracting

complex, sometimes nonlinear, features from a large number

of time-series often require large amounts of processing time.

In this paper we describe a distributed system that leverages

modern cloud-based technologies and tools and demonstrate

that it can effectively, and efficiently, undertake clinical

research. Specifically we compare three types of clusters,

showing their relative costs (in both time and money) to

develop a distributed machine learning pipeline for predicting

gestation time based on features extracted from these EEGs.

Keywords-Electroencephalography, EEG, Distributed Pro-

cessing, Distributed Database, NoSQL, Cloud Computing, Ma-

chine Learning

I. INTRODUCTION AND BACKGROUND

Electroencephalograms (EEGs) are recorded using non-
invasive electrodes placed on the scalp of participants to
monitor the electrical activity of the brain. Historically,
EEGs have been used to diagnose a variety of different
neurological conditions, including hearing loss [1], seizure
disorders [2], and Tourette’s Syndrome [3]. This diagnostic
process is done by board-certified experts, such as neuro-
physiologists or neurologists, by visual inspection of the
EEG time series. With recent advances in machine learning
approaches to time-series analysis, these experts may be
augmented by automated expert systems to support clinical
decision-making.

EEGs are not currently used to screen for or diagnose
psychiatric or neurodevelopmental disorders. However, re-
cent research suggests that some conditions may exhibit
functional neural differences in EEG patterns that can be
detected. These include Autism Spectrum Disorder (ASD)
[4], depression [5], schizophrenia [6] and attention deficit
hyperactivity disorder (ADHD) [7]. Thus far, these differ-
ences have not proven reliable enough for use as clinical
tools for risk assessment or diagnosis. Most previous EEG
studies have relied on linear measures such as spectral
power density [8] for resting state analysis or amplitude
and latency changes for detecting event-related potentials
(ERPs) in response to stimuli such as images of faces
or incongruent sounds [9]. ERPs require more training
for administration and are time-consuming because they

require many trials with a stimulus to be averaged together.
Physiological signals may exhibit chaotic characteristics and
important information in the time series will not be detected
by linear measures [10]. Nonlinear measures may provide
additional information about the dynamics of neural activity.
This may be particularly useful for participants who are
not able to complete a task associated with ERPs, either
due to age or cognitive ability. Finally, nonlinear features
are promising as digital biomarkers that can be computed
from biological signals, and so are similarly promising when
examining EEGs [10]. Our work builds on the foundation of
linear EEG analysis, but expands on historical EEG analysis
with the inclusion of nonlinear features.

Researchers frequently run into issues since computing
features from an EEG time-series is computationally costly.
EEG data is acquired at sampling rates of 250-1000 Hz,
which produces a high volume of data for short recording
periods. Most EEG systems used in clinical or research
settings record from many sensors spaced evenly on the
scalp. Thus, a single EEG recording contains a multitude
of time series, one from each sensor, and each of these are
frequently decomposed into frequency bands. A single EEG
recording could easily contain hundreds of times series to
analyze, depending on the number of channels (up to 128)
and frequency bands (usually 5 - 12). Finally, algorithms
for computing nonlinear features are often computationally
intensive, further slowing down the research process. Our
study documents a system that takes in multiple time se-
ries contained within an EEG and processes them via a
distributed, cloud-based cluster to generate specific features
and then efficiently deploys a machine learning model using
the output features. We applied machine learning algorithms
to the extracted features in order to predict a clinical
characteristic of an infant.

Our work builds on a previous study where nonlinear and
linear features were extracted from 188 infants, 99 of whom
were at high risk for autism and 89 who were low risk
controls. EEGs were collected for these infants at 3, 6, 9,
12, 18, and 24 months months of age. EEG measures, both
linear and nonlinear, were used to predict an ASD diagnosis
that was determined clinically when the participants reached
36 months of age, using support vector machines. The
resulting models could detect later development of ASD with
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sensitivity and specificity ranging from 82 - 100%. [4].
In this study we apply a similar method to analyzing EEG

data from premature infants born at different gestational
ages. A predictive model was built using linear and nonlinear
EEG features to determine preterm level from EEG alone.
Our data set consists of 47 EEG files, representing 34
infants. For each EEG, eight channels were recorded (Fp1,
Fp2, C3, C4, O1, O2, T7, T8) at a sampling frequency of
500 Hz. The EEG time-series had an average length of 8.12
minutes (minimum 2 seconds, maximum 14.2 minutes) and
were recorded at 6, 12 and 24 months post-birth.

After completing our data processing system we built a
series of machine learning models to validate its research
potential. We compare three classifiers (one-vs-all logistic
regression, decision trees, and random forests) to detect if an
infant, based on their EEG features, was extremely, very, or
moderately preterm. Since clinical data were not available at
the time of this exercise, preterm level serves as an important
proof of concept that our system works for processing EEGs
for machine learning classification. Importantly, the level of
prematurity may indicate later risk for negative cognitive
outcomes, including ASD or developmental delay [11], so
classifying this outcome validates our method for broader
risk assessments in future studies. We find that a random for-
est model achieves the highest prediction accuracy, though it
takes almost ten times as long to train as our fastest model,
the decision tree. The one-vs-all classifier had the lowest
accuracy as well as the largest training time.

The rest of this paper is organized as follows: Section
2 contains a system overview while Section 3 contains
specifics of different computing configurations that were
evaluated. Section 4 contains our machine learning results
and we end with a short discussion.

II. SYSTEM OVERVIEW

Our system is designed with clinicians and neuroscientists
in mind and breaks up simple operations (loading and
recording metadata) and more complex operations (feature
extraction) to facilitate ease of use. The system thus consists
of a front-end system which allows researchers to easily
upload EEG files as well as document metadata about the
participants from whom EEGs were recorded. Once the EEG
records are uploaded, our back-end systems process the files
in batch, extracting features and recording them for future
use. While this system has a number of parts, here we focus
on the back-end processes, as described in Figure 1.

A. Data Storage and Preprocessing
Once a user uploads an EEG data file and records the

metadata using the front-end interface (Python Flask web
application hosted on Amazon Web Service [12] Elastic
Compute Cloud (AWS EC2)) the files are validated (making
sure that they are readable) and placed in an Amazon Simple
Storage Service (S3) bucket. Amazon S3 offers secured,

Table I: Instance Specification for MongoDB
- All instances have 1 CPU.

Server Number Size Memory Cost (hourly)
Storage 3 t2.medium 4 GB .4176
Config 3 t2.micro 1 GB .0348
Routing 1 t2.micro 1 GB .0116

scalable and high-speed online object storage. Our system
currently permits EEG files recorded in the European Data
Format (“EDF”), though the system will be extended to
accept additional EEG file formats.

The server then detects new files in the S3 bucket and
downloads those files to another server which extracts the
raw data using the PyEDFlib package which can encode
and decode signals [13]. Each EDF file contains time-series
data from eight channels as well as metadata including
the sampling rate. At this stage the file undergoes error
checking and additional data validation to make sure that
it can be processed to extract features and build a machine
learning model. Upon completion of these checks, both the
metadata and time series data extracted from the EDF file
are transferred and stored in MongoDB [14]. The system
also creates a series of log files that include details of the
process.

MongoDB is a distributed schemaless database that stores
data in JSON document format. MongoDB divides and
stores data in multiple shards to provide high scalabilty.
For each shard, MongoDB maintains a primary node and
secondary nodes that have duplicated data from primary
nodes to enhance reliability in case the primary node fails.
Further, MongoDB is schemaless, which makes it especially
useful for storing data with different structures, such as EEG
time series (with different formats and lengths), metadata,
and computed features.

To store our data, we launched 13 AWS EC2 instances
to build the MongoDB distributed data system (specifically,
the Amazon Linux 2 AMI (HVM) and MongoDB 4.0.3).
Instance details are shown in Table I. Horizontal sharding
was used to improve performance of our parallelized, down-
stream feature processors while providing redundancy that
protects the system in the event of node failures.

Once copied to MongoDB, the files are ready for feature
extraction and a feature-extraction-tracking log table is cre-
ated in the database. The purpose of this table is to keep track
of which features have been successfully extracted from the
EEG files. Infant data, such as gestational age, preterm level,
gender and clinical data are also parsed and stored within
the MongoDB database. The entire pre-processing and data
storage step takes around 5 seconds for an average-length
EEG file from this dataset. At this stage, the EDF file has
been broken down into time-series data from each channel
and is ready to be processed to extract features.



Figure 1: Data Processing Architecture

Table II: Feature Descriptions, with RQA features in bold.

Feature Name Description
Power Measure of the signal’s intensity
Sample Entropy Measure of self-similarity of the signal
Hurst Exponent Measure of the long statistical dependencies in the data
De-trended Fluctuation Analysis Measure of statistical self-affinity of the signal
Lyapunov Exponent Rate of separation of two infinitesimally close trajectories
Recurrence Rate Probability that the system state recurs in a finite time

B. Feature Extraction from Time Series

Features are computed on the second 30-second segment
of data from each time-series. The very beginning of an EEG
signal often has some noise as the electrodes are settling,
so the second 30 second segment should avoid this issue.
For time-series under 60 total seconds in length, the first
30 seconds were used so that these infants would not need
to be excluded. 30 second segments are sufficient to detect
the features we are interested in, in fact, often even shorter
segments have been used effectively [15]. That said, an area
of future research is to select the segment for analysis in a
more sophisticated manner, perhaps by finding the section
of the time-series with the highest signal to noise ratio.

We compute two types of features: Recurrence Quan-
tification Analysis (“RQA”) and non-RQA features. RQA
features are used to quantify repetition in highly nonlinear
and dynamical systems. Importantly for clinical researchers,
RQA features entail orders of magnitude more computa-
tional complexity than computing linear features and thus
can be computationally prohibitive to evaluate. Table II
includes the full list of features we compute and a short
explanation, with Recurrence Rate being the only RQA

feature computed for this exercise.
We use the PySpark API [16], which leverages the Apache

Spark architecture, to control operations across the EMR
cluster. Spark adopts MapReduce concepts to divide data
into smaller chunks across different nodes, and subsequently
maps and processes a task such as filtering and sorting, in
parallel. The output of a mapped task becomes the input of a
reduce operation, which performs a summary operation. This
highly-effective model allows users to design programs with
successive Map and Reduce operations, and is a popular and
powerful programming paradigm.

Spark runs 100 times faster in memory and 10 times faster
on disk than the original Hadoop MapReduce [17]. Spark
provides an efficient means of distributing complex compu-
tational tasks to worker nodes in a fault-tolerant framework
using a dependency graph of the planned computations. If a
worker nodes fails, Spark supports re-computation of the lost
partition from the original computations and thus recovers
any lost data. This is especially useful for generating features
out of EEG signals considering the number of features
to be computed and the difficulty of computation. The
incorporation of a tracking log in this algorithm allows for



real-time monitoring of the calculation process.
Feature extraction is parallelized by channel and by fre-

quency band using Spark [18]. By parallelizing the feature
extraction process by channels and frequency bands, the
system’s extraction time is significantly decreased. For each
EEG file there are approximately 72 time series from eight
channels by nine bands, which are processed in parallel.

The pseudo code in Algorithm 1 documents the specific
procedures within the feature extraction process. This algo-
rithm is developed in Spark and deployed via an AWS Elas-
tic MapReduce (“EMR”) cluster [12]. AWS EMR provides
a Hadoop framework supporting efficient parallel processing
of large data sets in a distributed environment across multiple
EC2 instances.

Algorithm 1 Feature Extraction
Data: Raw Data (Channel Level), Tracking Log
Result: Extracted RQA and Non-RQA Features
while (log shows new or failed channels (attempts <5)) do

update each channel’s status in log to ”processing”
for (channel in channels) do

if (channel duration <60 seconds) then

select first 30 seconds of time series
else

select 30-60 seconds of the time series
end

extract frequency bands and labels for selected data
for each band do

compute RQA and Non-RQA Features
end

end

Update log for failed and successful channels
Write features for successful channels
Partial write for failed channels

end

III. FEATURE EXTRACTION CLUSTER EXPERIMENTS

While the previous section documented how we interacted
with our cluster, this section details how we determined our
optimal cluster configuration. The primary constraint that
we identified when experimenting with cluster configuration
was caused by the nonlinear RQA features, which were
nearly un-computable on a personal computer without a
GPU instance. In particular, computing the RQA features
for the full dataset of 47 EEGs (3,384 time series) required
425 minutes and 35 seconds using a c4.xlarge machine and
only 5 minutes 20 seconds using a GPU enabled p2.xlarge.
Given that the GPU enabled box was 80 times faster but
only 5 times costlier, we elected to use the GPU enabled
box when computing RQA features.

For the non-RQA features, we tested three different sized
clusters to determine the optimal configuration; Table III de-
tails the results. All three clusters consisted of five instances
and the total cost of running the job was between almost

$4 dollars and $2.66. Given our particular requirements and
estimates of the number of EEG files that we expect to
process, we decided to use the c4.xlarge because, while it
was not the fastest, it struck a good balance between speed
and cost.

As an example, consider the paper [19]. In this paper
the authors used 3,016 EEGs from the Temple University
Hospital EEG Corpus of over 12,000 EEGs [20]. Running
3,016 EEGs on the c4.2xlarge instance would take 96 hours
and $241 using our processing system. On the c4.xlarge it
would take 128 hours and $160. Though this is a long period
of time, we estimate that on a home computer the 3,016
EEGs would take weeks to run. We believe that allowing
large EEG datasets to be processed in a more timely and
efficient manner will encourage their use. Large datasets
will produce findings that are more robust and reflect subtler
effects.

IV. MACHINE LEARNING ALGORITHM

While we showed that the system we described was able
to process the EEG files and generate features, we also
wanted to demonstrate its usefulness for clinical research
purposes. To that end we took our sample of EEG files,
which contained information on infants, extracted features
from those files using this system, and trained a series
of classifiers on those resulting features to estimate the
gestational age of the infant, according to the following
buckets:

1) Extremely Preterm (<28 weeks)
2) Very Preterm (28 to 32 weeks)
3) Moderate / Late Preterm (32 to 37 weeks)

Eleven of the forty-seven infants had multiple EEG record-
ings. For these eleven we took the latest EEG that was more
than sixty seconds in length. Additionally, we removed ten
infants before beginning modeling. Specifically, we removed
two infants who had no specified gestational age and eight
with erroneous output values.

Gestational age is not necessarily a useful clinical out-
come to estimate, since the physician will know when the
infant was born. However, given that clinical data were not
available at the time of processing, this analysis serves as a
proof of concept for our system. Preterm birth is associated
with higher risk for poor clinical outcomes [11], so many
of the features that are important in these machine learning
models will also be important in a more clinically oriented
model, which could assess risk for development of ASD or
other conditions.

We compared three algorithms from the PySpark Machine
Learning library, MLlib: logistic regression, decision trees,
and random forests. Our baseline model is a logistic regres-
sion one-vs-all model. This technique works by estimating a
binary logistic regression classification for each type. In our
case this generates three logistic regression models. From
these three models we predict a data point by calculating



Table III: Running times, non-RQA features, by cluster type

Type CPU Memory Time Per Hour Total
c4.xlarge 4 7.5 GB 2 hr 7 min $1.255 $2.656
c4.2xlarge 8 15 GB 1 hr 35 min $2.515 $3.982
m4.xlarge 4 16 GB 2 hr 25 min $1.300 $3.141

the estimated inclusion likelihood from all three models and
choosing the one with the highest score.

Our second model, a decision tree, performs recursive
binary partitioning of the feature space and makes the same
prediction for each bottom partition [21]. It has a tree-like
structure: each leaf node stands for a decision rule and each
branch represents the decision made in the previous node.

Finally, a random forest works by creating decision trees
based off of a bootstrapped set of samples and features [22].
The random forest algorithm takes this ensemble of decision
trees and then aggregates them, via a voting rule, in order
to predict the type of an observation. The random forest
model generally shows improved performance versus the
single decision tree model [22].

For all models, we estimated the model using a randomly
selected “hold out” or “test” set and only training our model
on 80% of the data. All model fit numbers, found in the next
section, are computed on this hold-out set because it did not
influence the initial model training.

While classification problems of these types tend to use
cross-validation, our sample size was too small to do this
meaningfully and thus we used the Spark MLlib default
hyper-parameters rather than completing hyper-parameter
tuning. The next section details our results.

A. Model Results

Figure 2a demonstrates the results of our models. In this
table accuracy is calculated on our 20% hold out set while
the reported times are measured based on how long it took
to train each particular model 2b.

An important caveat to the above results is that our model
is not binary, but instead requires correctly identifying one of
three labels for a data set. In other words, the 33% accuracy
is not worse than a coin flip because we are trying to predict
one of three outcomes.

The random forest model out-performed the other two,
only taking 106 seconds to train. The features of highest
importance from the random forest were: Lyapunov Expo-
nent, Sample Entropy and Power across various bands.

V. DISCUSSION

In this research, we designed and developed a system
for automatically extracting features from EEG recordings
to detect an infant’s gestational age for clinical research
purposes. We first demonstrate that this system processes
features much more rapidly than a desktop based system

(a) Accuracy of different machine learning algorithms

(b) Execution time of different machine learning algorithms

Figure 2: Accuracy and execution time of applied machine
learning algorithms

while remaining affordable. Particularly for the computation-
ally intensive RQA features using our cloud based system
could make a researcher’s computation time 80 times faster.

We secondly demonstrate that this system can provide
an end-to-end solution, starting with a raw EEG file and
developing a machine learning based classification. While
the accuracy of our models was lower than illustrated
in the previous paper predicting ASD, we note that we
were working with a small sample size (37 infants divided
into 3 groups). The fact that we achieved 67% accuracy,
while preliminary, is encouraging for future work on larger
samples.

For clinical neuroscience researchers, the presented sys-
tem is incredibly useful due to the computational com-
plexities around processing EEG files. First, many clini-
cal researchers lack access to the computational power to
process these high frequency multi-channel data in a rapid,
efficient manner. Second, some clinical researchers do not
have exposure to nonlinear features from EEG, nor do they



have the time or skill to compute these features from EEG,
despite their promise as diagnostic or screening measures.
Indeed, in our best-performing machine learning model, the
random forest, the two most important features (Lyapunov
Exponent and Sample Entropy) were both nonlinear features.
By creating a system which uses off-the-shelf software
components and cloud-based tools, we hope that we are
encouraging researchers in this field to look beyond single-
node desktop based tools in order to increase their efficiency
and lower their costs.

Finally, this system allows for processing large volumes
of high frequency data. Many EEG studies currently have
relatively small sample sizes, and these small sample sizes
may result in the study failing to detect real, but small
effects. Additionally, smaller sample sizes may reduce the
generalizability of the results. We hope by providing a means
to process large volumes of data, larger studies will be more
feasible for EEG researchers.
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