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Abstract 
Extreme drought, water scarcity and population growth is forcing California to seek out 

new water sources. Reclaimed water is considered one of the best alternatives to alleviate 

water shortages and help meet the water demand sustainably. However, the 

environmental impacts of reclaimed water have not been fully studied to ensure that the 

overall benefits of reclaimed water do indeed outweigh the environmental, social, and 

economic costs. In this study a life cycle assessment (LCA) for potable (direct and 

indirect) and nonpotable reuse will be conducted to identify and quantify major 

environmental, social, and economic problems that are attributed to reclaimed water.  

Additionally, recommendations will be made to achieve optimal benefits for California 

by suggesting the best type of reuse to help meet water needs of municipalities with 

minimal impacts. 
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1.0 Introduction 

Objective 

Water scarcity in California is threatening the state’s economy, environment and 

population. This water shortage is attributed to population growth, recent drought 

conditions and unpredictable climate change. Therefore, the need to increase water 

reliability and resiliency is essential to maintain the prosperity of the state in the years to 

come. Water managers have long recognized the importance of protecting water 

resources, and have long acknowledged that reclaimed water (RW) for potable and 

nonpotable reuse is necessary to prevent further degradation to water supplies. Reclaimed 

water is considered one of the best alternatives to help meet water demand sustainably. 

However, the environmental impacts of reclaimed water have not been fully studied to 

ensure that the overall benefits of reclaimed water do indeed outweigh the cost that 

reclaimed water has on the environment. Therefore, in this Masters Project a life cycle 

assessment (LCA) for potable and nonpotable reuse will be conducted to identify and 

quantify major environmental, social, and economic problems that are attributed to 

reclaimed water. Further, recommendations for best applicable reuse will be made reduce 

impacts for municipalities interested in reclaimed water. For purposes of this analysis, 

potable reuse will include both indirect and direct systems and nonpotable reuse will 

include agricultural/landscape irrigation. The common treatment process for each reuse 

will be analyzed. The assessment will begin at the point where wastewater effluent exits 

secondary treatment and end where water enters a water treatment plant or water is used 

for irrigation.  

California Water Use  

California uses approximately 38 billion gallons (BG) of water per day (USGS, 

2010). About 95% of the state’s water goes to irrigation, thermoelectric power generation 

and public supply. Irrigation uses about 23.2 BG per day or 60.7% of state’s water, 

thermoelectric power generation uses approximately 6.6 BG per day or 17.4% of the 

state’s water, and public supply utilizes 6.3 BG per day or 16.6% of the state’s water. 

Only a small portion of water used daily is reclaimed. According to the California 
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Department of Water Resources, in 2009, roughly 669,000 acre-feet of wastewater was 

reclaimed (CDWR, 2013), which is equivalent to 0.6 billion gallons per day. The 

majority of this water is used for landscape and agricultural irrigation and only a small 

portion of this is used for groundwater replenishment. Furthermore, in 2010 it was 

estimated that about 1.35 billion gallons of wastewater were treated daily (Hauser, 2010). 

The majority of the wastewater treated in California is discharged into the Pacific Ocean, 

losing its value, as this water is not situated for any beneficial use.  

Currently, California heavily relies on surface and groundwater supplies, which 

are under severe stress, resulting in numerous environmental, social and economic 

problems (Wyman, 2013). In times of drought, California’s groundwater reservoirs can 

supply the state with about 60% of its daily water demand (Croyle et al., 2014). 

Groundwater basins are overdrafted because there are no regulations that prevent the 

exploitation of this water supply. This abuse has caused for the water table in nearly all 

groundwater basins to drop, resulting in land subsidence (land sinking), seawater 

intrusion, stream depletion, and decrease water quality (Croyle et al., 2014). Furthermore, 

the use of electricity increases, as more energy is need for pumping. For instance, in the 

San Joaquin Valley, the groundwater table is 100 feet below historic levels (Croyle et al., 

2014) and land subsidence is occurring at a rate of one foot per year in some areas of the 

valley (Luhdorff and Scalmanini Consulting Engineers, 2014). In 2014, California 

approved the use of reclaimed water as a strategy to replenish and manage groundwater 

supplies so that land subsidence and soil issues can be resolved. 

In addition, California is on its way toward its fourth consecutive driest year. The 

year 2013-2014 was declared the driest year on record, having a 34% below average 

statewide rainfall (Swain et al., 2014). As water shortages continue to stress our water 

system, increasing reliability of water supplies is necessary if we are to reduce our 

economic and environmental risks. Reclaimed water will not only reduce the amount of 

water that needs to be transported but will also increase resiliency against extreme 

drought. Recent studies conducted by NASA have concluded that 30-year megadroughts 

have a 12-60% probability of occurring in this century if greenhouse gases (GHG) stop 

increasing by midcentury. If GHG are not reduced, then the probability of megadrought 



 3 

increases to 80% (Cole et al., 2015).  Therefore, the state has to be prepared so it can face 

these issues with minimal consequences to the economy and environment. 

 Not only is California facing an extreme drought, but also according to the 

California Department of Finance (CDF), the state population is expected to increase by 

3.8 million and 14 million by 2020 and 2060, respectively. This means that water demand 

for public supply will increase by 10% by 2020 and 40% by 2060 if the current water 

consumption per capita is maintained at 181 gallons per day. California is also one of the 

world’s major food producers; hence an increase in world population will result in an 

increase in water demand for the state. It is imperative for the state government to start 

managing water resources accordingly. In 2010, California used approximately 23.3 

billion gallons per day (BGD) for irrigation purposes, consuming about 74% of all 

withdrawn freshwater (USGS, 2010). Presently, California produces roughly 400 

different farm products, which in 2012 earned the state about $45 billion (Cooley et al., 

2014). Therefore, irrigation is important for the state’s economy. Historically, the state 

has reclaimed water for the agricultural sector in effort to reduce the demand of potable 

water. However, this effort seems to be failing as many farmers see reclaimed water as a 

cheap water supply to continue irrigating their crops and do nothing to conserve water, as 

that would be more economically expensive. California has established several 

regulations that specify how wastewater should be treated if it is going to be used in the 

agriculture sector. The state concluded that disinfected tertiary recycled water is the 

minimum treatment for edible crop irrigation. This means that effluent from wastewater 

needs to be filtered and disinfected before it is reused. 

On January 2014, Governor Edmund G. Brown Jr. declared the drought a state of 

emergency and has authorized several grants and loans to launch recycling water projects 

throughout California to minimize water use and manage water supplies more efficiently. 

The state has allocated about $200 million in grants and about $800 million in low 

interest loans for municipalities interested in reclaimed water (CSWRCB, 2014). 

Similarly, on October 2013, senate bill SB322 was passed into law. This law requires the 

State Department of Public Health to analyze the feasibility of developing a uniform 

standard for direct potable reuse by June 30, 2016. If this new study demonstrates that 

direct potable reuse (DPR) is safe, then reclaimed water for potable and nonpotable reuse 
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will be allowed in the state. However, before reclaimed water can be implemented in a 

statewide approach several factors need to be addressed to ensure this new water supply 

is placed to its best use in the short and long-term. This LCA will be implemented to 

quantify the environmental impacts and look for mitigation strategies; so reclaimed water 

can be incorporated into the state with minimal impacts. 

Reclaimed Water and It’s Benefits 

 According to the California Water Code 13050, reclaimed water or recycled water 

is wastewater that has been highly treated for suitable direct beneficial use or controlled 

use that otherwise would not occur. Reclaimed water (RW) is a valuable resource and is 

considered by many water managers to be one of the best alternatives to help meet water 

demand in a sustainable manner. Reclaimed water can help reduce demand of potable 

use, as RW can be recycled several times before losing its value. Hence, the potable 

water that was not used can be allocated to a more beneficial use, such as the 

environment. Many municipalities also see recycled water as a way to diversify their 

local water portfolios, so they can increase water reliability and resiliency. Reclaimed 

water reduces stress levels on local surface and groundwater supplies since it is used as 

an alternative water supply. Water transportation is expensive so reducing water volumes 

would decrease energy cost. Furthermore, it most cases water quality is improved 

because it dilutes contaminants. Advanced treated of reclaimed water yields a better 

water quality than most natural water supplies. In addition, reclaimed water is now used 

managing strategy for groundwater. Recycled water is used to recharge groundwater 

reservoirs and sustain the water tables at a certain level to prevent land subsidence. As 

drought conditions increase throughout the world, many water authorities now consider 

reclaimed water a viable new drinking water supply. Currently, two cities in Texas 

(Wichita Falls and New Spring) are reclaiming their wastewater for direct potable reuse.  

Direct potable reuse is not a new concept.  Windhoek the capital of Namibia in Africa has 

been reclaiming its wastewater for drinking purposes since 1968. Overall, reclaimed 

water is a viable supply that can help meet California’s future water demand, as 

population and water scarcity increases.  
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Regulations of Reclaimed Water  

California is one of the leaders in reclaimed water, yet only a small percentage of 

wastewater is reclaimed in the state each year. However, this is changing as the state 

establishes goals and regulations to increase water recycling for potable and nonpotable 

reuse. California has established several policies and regulations to encourage an increase 

in recycled water in order to help mitigate stressors resulting from drought and 

population growth. Existing policies and regulations are shown in Table 1. The 2013 

Recycled Water Policy (CSWRCB, 2013) sets specific goals to increase recycled water in 

target years 2020 and 2030 by one million acre feet (MAF) and two MAF (from 2002 

levels) per year, respectively. The state is also seeking to promote potable reuse to help 

increase the state’s water supply. Key agencies have been identified to regulate reclaimed 

water. The California State Water Resources Control Board (CSWRC), Regional Water 

Boards, California Department of Public Health (CDPH), and California Department of 

Water Resources (CDWR) have been selected to regulate reclaimed water projects. 

Another current ruling is Title 22 of Code of Regulations, which defines criteria for 

treatment and usage of reclaimed water for irrigation and groundwater recharge projects. 

On June 18, 2014 the state implemented rules to regulate indirect potable reuse by setting 

guidelines for groundwater replenishment projects. In addition, the CDPH is investigating 

the feasibility and safety of direct potable reuse, so it can be approved. Finally, Title 17 

protects drinking water supplies from contaminants and may possibly regulate potable 

reuse. All of these regulations seek to increase reclaimed water usage to help increase the 

resiliency and reliability of water.  

Table 1: California’s policies and regulations for reclaimed water. 

Regulations Description: 
 

Recycled Water 
Policy, 2013 

• Increase recycled water levels of 2002 by at least 
one MAF by 2020 and two by 2 MAF by 2030 

• Encourages potable reuse as way to meet state goals  
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Title 22 Code of 
Regulations, Division 
4, Chapter 3 

• Defines treatment and use criteria for recycled water 

• Regulates reclaimed water for irrigation and 
groundwater replenishment projects 

• Disinfected tertiary treatment is required for water 
that is for public use and irrigation of edible crops  

• Gives methods for testing and analysis 

Title 17 Codes of 
Regulations, Division 
1, Chapter 5, Group 4 

• Regulates drinking water supplies 

• Protection drinking water supplies from nonpotable 
reuse water with backflow preventers  
 

 

Types of Reclaimed Water 

Potable 

Reclaimed water can be used for potable or nonpotable purposes; treatment is 

chosen based on its intended use. Potable reuse is not as common due to public 

opposition, stricter regulations, and high costs (Dahl, 2014). Furthermore, there are two 

types of potable reuse, which are direct potable reuse (DPR) and indirect potable reuse 

(IPR). DPR is defined as recycled water that meets or exceeds drinking water standards 

and is directly injected into a potable distribution system or discharged immediately 

upstream of a water treatment plant (Tchobanogloues et al., 2011). Usually, the effluent 

from DPR is blended with local water supplies to reduce risk, improve water quality, and 

increase public acceptance (Tchobanogloues et al., 2011). DPR does not require a long 

retention time because it is assumed to be safe for consumption. Municipalities are now 

considering DPR systems, as a viable water supply to help meet increasing water 

demands, in part due to their superior water quality. In addition, cities that are trying to 

diversify their local water supply are pursuing reclaimed water. For instance, San Diego 

is currently working on a program to diversify its water supplies, so that the area can be 

resilient against drought, climate change or any political issue that might rise from water 

scarcity. 

Indirect potable reuse is more common, and it may be planned or unplanned. In a 

planned IPR system wastewater is treated to meet drinking water standards and is 

discharged into an environmental buffer, where it will be stored for a minimum of six 

months (CDPH, 2008). A residency time of six months is recommended to gain public 
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acceptance and continue to remove viral contaminants (Tchobanogloues et al., 2011). 

Also, it will allow for water to mix with other water, hence further reducing health risks, 

as bacteria would degrade contaminants. IPR treatment process is similar to DPR. 

However, aesthetics and taste is not a priority since water will not be used immediately. 

For example, Orange County has an IPR system that was designed to recharge three local 

basins and prevent seawater intrusion. Unplanned IPR, or de facto reuse, is treated 

wastewater that is released into natural water systems, which is later used unintentionally 

by other municipalities downstream of the natural system (NAP, 2012). Often this water 

only receives secondary treatment before it is discharged. Cities along the Mississippi 

River exemplify de facto IPR. Thus far, no human health problems are attributed to de 

facto water reuse (Gerrity et al., 2013). However, the water quality of the Mississippi 

River has declined as alga booms and anoxic conditions prevail due to the effluent that 

has been discharged into the river.  

Nonpotable 

Historically, wastewater has been used in the agricultural sector. However, due to 

sanitation and environmental problems, this method was discontinued as stricter 

regulations were adopted to protect public health. Treatment of reclaimed water for 

nonpotable reuse (NPR) has been practiced in California for about 100 years. In 1932, the 

city of San Francisco started reusing its wastewater to irrigate Golden Gate Park but 

discontinued it in 1978 when the plant was shut down because it did not meet new 

regulations (SFPUC, 2015). This was the first urban water reuse project. Regulations 

were adopted to encourage water reuse as water scarcity become apparent. Recently, the 

popularity of reclaimed water for agricultural irrigation has increased; drought conditions 

and incentives make this supply more appealing to farmers.  The treatment of NPR 

depends on its intended use. For irrigation of public areas and irrigation of edible crops, 

disinfected tertiary treatment is required. For other uses that do not necessarily come into 

contact with people, need less treatment.  
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Figure 1: Types of reclaimed water. Wastewater was evolved from wastewater to nonpotable reuse (NPR) to 
indirect potable reuse (IPR) to direct potable reuse (DPR).   

What is a Life Cycle Assessment? 

Life cycle assessments (LCAs) were developed to track the flow of resources and 

account for environmental impacts attributed to the production of goods. The 

International Organization for Standardization (ISO) is responsible for defining and 

specifying methods and procedures to conduct LCA (Horne et al., 2009). However, due 

to the complexity and diversity of projects, ISO does not describe specific techniques or 

methodologies for the individual phases of LCA (ISO 14040, 2006).  The validity of 

LCA studies depends on the scope established by the analyzer, by the data collected, and 

by the assumptions that were made. There are specific programs that analyze the life 

cycle of water. For example, LCAqua software was developed by KIWA Research and 

Consultancy and assesses the construction and decommissioning phases of potable water 

treatment plants (Vince et al., 2007).  

The implementation of this analysis can be expensive and long, as precise data is 

needed to account for resources and evaluate impacts. In addition, expensive software 

programs that have been specifically designed to conduct LCA’s are typically used. An 
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LCA is divided into four phases. Phase one, defines the goals and scope of the project. 

Phase two, life cycle inventory, is the collection of a detailed inventory to account for all 

resources used throughout the product’s life cycle. Phase three, life cycle impact 

assessment, quantifies impacts concerning health, environment, social, and economical 

issues. Finally, stage four, includes a life cycle improvement analysis and interpretation. 

Recently, this method has been expanded to incorporate and track GHG emissions. The 

life cycle assessment presented in this Masters Project will evaluate chemical and energy, 

materials, and land use and waste generated to help assess health and environmental risks 

and social and economical impacts. 

2.0 Methodology and Assumptions 

Assumptions and Boundaries 

In this Masters Project, it was assumed that the most common treatment process 

for potable reuse (direct and indirect) was microfiltration, reverse osmosis and advanced 

oxidation (MF/RO/H2O2-UV). For NPR, it was assumed that the common treatment of 

use is microfiltration and disinfection using chlorine (Cl2). This was determined by 

examining current treatment plants in the United States, specifically California. Data 

collected were from peer reviews and from future projects. The beginning of each 

progress was assumed to start once the effluent exists secondary treatment. The end was 

determined by its intended use. For potable reuse, the life cycle ends once water is 

delivered to a water treatment facility so it can be treated. For NPR, cycle ends when 

water is used for irrigation and water percolates soil.  Refer to Table 2 for a detailed 

description of the assumptions made for this LCA. 

This study does not include the transportation of chemicals that were used during 

treatment and sludge generated (dewatered brine) to and out of the treatment plant or the 

energy required to make these chemicals. However, it accounts for the impacts associated 

with the amount of chemicals used. For the NPR system, it was also assumed that 

sprinkles are used during irrigation as a strategy by this sector to increase water 

conservation. This study will include waste generated, energy consumptions, materials 

and resources that were depleted by constructing these plants and their social and 
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economic impacts. Due to time constraints and lack of resources, this LCA does not have 

specific data nor does it use any LCA software. However, based on studies, and this 

analysis, environmental impacts are analyzed. Data will be quantified using existing 

methods and literature review.  

Table 2: Assumptions and boundaries of LCA. 

Systems Assumptions 

Potable reuse 

(IPR and DPR) 

1. Treatment: MF/RO/UV-H2O2 

2. Starts: effluents exits secondary treatment  

3.  Ends: reclaimed water enters a treatment plant 

4. Does not include the energy used to produce chemicals that 

are used, but it will account the impacts that are associated 

with their use 

5. Does not include the energy used to transport chemicals or 

sludge from or to treatment plant 

Nonpotable 

reuse (NPR) 

1. Treatment: MF/Cl2 

2. Starts: effluents exits secondary treatment 

3. Ends: reclaimed water percolates soil after it was used for 

irrigation 

4. It is assumed sprinkler irrigation was used in the agriculture 

sector as a strategy to conserve water 

5. Steps 4 and 5 are also applicable to nonpotable reuse 

 

Life Cycle of Potable Reuse  

The treatment process of reclaimed water depends upon its intended use. For 

potable reuse a multi-barrier treatment process is required to mitigate risk that can result 

from treatment failure. The removal of organic compounds, heavy metals, pathogens, 

viruses, total dissolved solids (TDS), and trace organic compounds is necessary to reduce 

health risk and to make water aesthetically pleasant. Currently, there are approximately 

20 different treatment trains (Gerrity et al., 2013) used worldwide; all such systems will 

remove most if not all of these contaminants. These multi-barriers systems are designed 

to be resilient, redundant, and robust to meet all regulatory standards (Gerrity et al., 
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2013). Multi-barrier treatment is preferred for potable reuse systems because reclaimed 

water is held to higher standards by the government and public. Therefore, DPR and IPR 

provide a higher level of protection against pathogens and other contaminants than 

natural water supplies. Most of the advanced treatment processes incorporate a variation 

of the following technologies: granular activated carbon, membrane filtration, biological 

activated carbon, ozonation, advanced oxidation (UV/H2O2), and stabilizations. 

Microfiltration, reverse osmosis, and advanced oxidation (MF/RO/UV-H2O2) is often 

considered the standard treatment process for potable reuse (Gerrity et al., 2013). 

However, this process is energy intensive and expensive. The life cycle of DPR and IPR 

using an MF/RO/UV-H2O2 treatment process will be analyzed, as it is representative of a 

standard potable reuse system. See Figure 2 for the life cycle diagram of an MF/RO/UV-

H2O2 treatment process for both a DPR and IPR system.  

The life cycle of both DPR and IPR starts once the effluent exits secondary 

treatment. Prior to microfiltration, a chemical, such as ferric chloride or alum are added 

to the effluent to coagulate TDS and increase MF efficiencies. In addition, chlorine is 

also added to kill any bacteria that might reproduce in the MF system. Water is then 

pumped through a microfiltration (MF) system, where particles greater than 0.1 microns 

are rejected (MF filter pores range form 0.1-2 microns, the size depends on the type of 

water and treatment required). After microfiltration, permeate is pumped and stored until 

it is fed into the reverse osmosis (RO) system. Before water is passed through RO, 

sulfuric acid, citric acid, or sodium tripolyphosphate (STTP) are added to help increase 

the performance of RO. Additionally, water is passed through a cartridge filter system 

prior to RO. After the RO process, the pH of the effluent is stabilized, since the 

accumulation of carbon dioxide (CO2) in water decreases pH. Acidic conditions can 

erode pipes and equipment if water is not balanced. Therefore, air stripping is needed to 

remove CO2 from water. Once water is readjusted, water is then disinfected using 

hydrogen peroxide and exposing it to high intensity UV light. This process oxidizes 

(breaks down) any pathogens or chemicals that might have passed through RO.  

This treatment system requires maintenance to keep membranes operating at 

maximum performance. Maintenance such as backwashing is necessary to maintain 

desired operating pressure, so costs can be minimized. A backwash system removes 
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accumulated solids from membrane by passing back filtrate water every 15 to 60 minutes 

or when high pressures are present. In this process, membranes are aerated for 30 seconds 

to 3 minutes (MRWA, No Date). In addition, the MF and RO filters go through a daily 

chemical cleaning where acids or chlorine are used to clean membranes. This cleaning 

process increases cleaning periods and prevents early fouling of membranes.  

As a final treatment step, water is stabilized and minerals are added to equilibrate 

filtrate. This is done to protect pipes by adding minerals to reduce the corrosiveness of 

water. During stabilization pH, alkalinity, and hardness is balanced for taste and to reduce 

reactiveness. After treatment, water is sent to its respective area of use. Environmental 

buffers and residency time are the main differences between DPR and IPR. For DPR, 

water is transported to a water reservoir so it can be treated for drinking purposes. 

Usually DPR, water is blended with local water supplies to reduce health risks and to 

improve the water quality of these supplies. The ratios vary with time and water 

availability. Some municipalities may only blend in 10% of reclaimed water, while other 

may blend up to 75% (Meehan et al., 2013). However, DPR water can also be sent 

directly to consumers, without further treatment. This is currently not implemented due to 

public opposition and concerns about health issues. For an IPR system, the effluent after 

advanced treatment is sent to an environmental buffer where water is blended and stored 

for a minimum of six months before it can be used for potable purposes. California is 

using groundwater recharge as a way to incorporate IPR in the state and to help meet its 

water reclamation goals. This process is also a strategy to help manage groundwater 

resources more sustainably. Groundwater recharge using reclaimed water takes longer, 

and it is more energy intensive as water is pumped into or naturally infiltrated to 

groundwater basins. Once residency time is over, water is pumped back out so it can be 

delivered to a water treatment plant, where it is treated to meet drinking water standards.  

The Orange County Water District (OCWD), in conjunction with the Orange 

County Sanitation District (OCSD), just completed expansion of its Groundwater 

Replenish System (GWRS) project. This project was designed to reclaim water for 

indirect potable reuse (IPR) to help recharge their local groundwater supplies and serve 

as seawater intrusion barrier. Approximately, 30 MGD are used as a seawater intrusion 

barrier in the Huntington Beach and Fountain Valley. The remaining 70 MGD are 
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transported about 13 miles northeast to three local basins (Kraemer, Miller, and 

Miraloma) where water is used to replenish these basins naturally.  This system serves 

about 600,000 resident daily. By the end of 2015, the project will have a capacity to 

reclaimed about 100 MGD (GWRS, No Date). 

 

Figure 2: Life cycle of an MF/RO/UV-H2O2 standard process. This treatment train is used or is prosed at the 
Orange County Groundwater Replenishment System, Wichita Falls and Big Spring Texas, San Diego 
Purification systems and Westside Reclamation plant (San Francisco). 

Life Cycle of Nonpotable Reuse 

Title 22 regulates nonpotable reuse (NPR) in California. Water for irrigation that 

comes into contact with the public or edible crops must receive disinfected tertiary 

treatment. The State Water Board has identified tertiary treatment as water that is filtered 

and disinfected. Reclaimed water for irrigation purposes has been used for several 

decades, since early 1960’s, in the state. There are several plants that receive tertiary 

treatment for agricultural purposes. For example, cities like Monterey Bay, Perris, Los 

Angeles, and Bakersfield have plants that use reclaimed water for agriculture. Usually, 

the treatment process is less energy intensive than potable reuse, since it does not 

required advanced treatment like reverse osmosis (RO). Historically, sand filter, activated 

carbon and cloth filters are commonly used. These technologies are less energy intensive 

than microfiltration (MF). However, as microfiltration becomes affordable, new and old 

treatment plants are now updating to MF. The pore size of membranes will differ 

depending on the water’s intended use. Pore sizes range between 0.1 and 10 micrometers 

(Fabris et al., 2006). The smaller the size, the more energy the system uses to pass the 
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wastewater through the membrane. Therefore, some municipalities will chose a larger 

pore size if cost is a priority. For the purpose of this analysis, microfiltration will be used 

as the preferred filtration process, since most plants are updating to this new filtration 

technology and it has becomes more economically feasible. Usually, NPR water is 

transported longer distances because this water has controlled purposes. Additionally, a 

separate distribution systems is needed to transport water so cross contamination is 

avoided.  

For NPR, the treatment starts when water leaves secondary treatment. Water is then 

coagulated so microfiltration can be facilitated. Coagulation allows for dissolved solids to 

be filtered as particles flocculate and makes it easier to settle. Ferric chloride or an 

aluminum base coagulants (alum) are frequently used as a pretreatment for filtration. The 

concentrations of these chemicals depend on the water treated. Water then is passed 

through an MF system, where particles greater than 0.1 microns are filtered out 

(depending on the pore size of the membrane). Larger pore sizes reduce operation costs. 

In NPR, a larger pore size is preferred since water is not used for drinking and regulations 

are not as stringent. Maintenance of an MF system also needs constant backwashing and 

chemicals to reduce irreversible fouling (Fabris et al., 2006). In addition, a clean in place 

system is needed to clean membranes every 30 to 60 days.  

The permeate is then sent to a storage tank where chlorine is added to disinfect water.  

The contact time with chlorines is a couple hours, so pathogens that were not filtered out 

are killed before water is conveyed to consumers, which can include farmers or 

commercial buildings. Moreover, water storage is necessary as flow is dependent on 

time. In the past, storage tanks were not built due to the unknown demand of reclaimed 

water. However, as reclaimed water becomes more popular, water storage will be needed. 

Water can be stored in storage tanks, ponds or lakes until it is needed.  

The distribution of NPR water requires a separate pipe systems so cross- 

contamination can be prevented. In the case of reclaimed water, purple pipes are installed 

in areas where reclaimed water is desired. These pipe systems can range in distance from 

several miles to hundreds of miles. In dense agricultural areas, reclaimed water 

transportation might be preferable because it requires less piping as a central pipe system 

can be installed to distribute water. In urban areas, piping system might be more difficult 
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because reclaimed water must be transported to different locations and the pipe system 

might compete with existing utilities. In addition, cross contamination is more likely to 

occur, thus needing more maintenance and operation. Personnel have to be trained to 

mitigate cross contamination of drinking water supplies. The energy used for crop 

irrigation was included in the LCA because the cycle of reclaimed water ends when water 

percolates soil and returns to the environment. Refer to Figure 3 for the life cycle of 

recycled water for nonpotable reuse. 

 
Figure 3: Life cycle of nonpotable reuse (NPR). It was assumed that NPR water is treated using microfiltration 
and chlorine to disinfect water. 

3.0 Life Cycle Inventory 

Chemical Inventory 

 Overall, similar chemicals are used for both potable and nonpotable reuse. It is 

estimated that potable reuse uses about eight times more chemicals than NPR 

(Scimmoller et al., 2013). The amount of chemicals used depends on the volume of water 

that is treated and on the type of treatment. Strong acids and bases are used to clean and 

maintain membranes. Strong oxidants, such as chlorine and hydroxyl radicals, are used to 

disinfect water. Detailed inventories of the chemicals used for potable and nonpotable 

treatment are provided in the following subsections. 

Potable Reuse 

Several chemicals are used to treat reclaimed water, and the amount of chemicals 

used is roughly proportional to the volume of water treated (Tong et al., 2013). 

Chemicals, such a ferric chloride (FeCl3), chlorine (Cl2), citric acid (C6H8O7), sulfuric 

acid (H2SO4), sodium hydroxide (caustic soda, NaOH), and sodium hypochlorite 

(NaClO), are typically used. See Table 3 for a full list of chemicals used during each 
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treatment process and Figure 4 for an illustration of where chemicals are used. These 

chemicals are used as a pre-treatment or as a cleaning solution to clean filtration 

membranes. Chemicals used daily to reduce fouling and clogging are called chemical 

enhanced backwash (CEB). Usually, these chemicals are added to prevent fouling (Fabris 

et al., 2006) of membranes and increase in-between cleaning periods. In an 

MF/RO/H2O2-UV system, before effluent enters an MF system, a coagulant is added to 

precipitate most of the dissolved solids, hence, facilitating the filtration process. Ferric 

chloride (FeCl3) or aluminum base coagulants, like alum, are used in wastewater 

treatment to coagulate particles and prevent clogging. Concentrations between 5-15 mg/L 

are used to coagulate water (Gaulinger, 2007). The amount of coagulant depends on the 

quality of water that is treated. Additionally, chlorine concentrations below 0.5 mg/L are 

added to the water prior to MF to form chloramines (MRWA, No Date). This byproduct 

acts as biocide, which prevents microorganisms from attaching and reproducing in the 

membranes. Moreover, chlorine is preferred due to its compatibility with RO and MF 

membranes (Bartels et al., 2004). After permeate exits MF additional chemicals, such as 

citric acid, sulfuric acid, sodium tripolyphosphate (STTP), and sodium salt of 

ethylamidiaretetraacetic acid are added to prevent fouling of RO membrane (Bartels et 

al., 2004 and Rukapan et al., 2015). The amount of these chemicals varies, based on the 

type of water that has to be treated. These concentrations are also determined based on 

their economical and chemical feasibility. Following RO, the pH is balanced using air to 

remove CO2 and on some occasions, minerals are added to the water to balance it and 

reduce corrosion hazards.  

Supplementary chemicals are used to clean membranes and remove buildup, so 

pressures can be decreased in the system. Generally, treatment plans have a clean-in-

place (CIP) system, where membranes are soaked in acidic solution to remove any 

buildup. This cleaning procedure is done every 30 to 60 days depending on the 

permeability of membrane. The chemicals that are typically used are citric acid, sulfuric 

acid, and sodium hydroxide (Bartels et al., 2004). Acidic conditions are favored to 

remove inorganic scaling in the membranes and basic conditions are used to remove 

organic scaling (Warsinger et al., 2015).  The waste generated from cleaning is first 
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neutralized and then discharged back into the wastewater treatment plant so it can be 

treated and be discharged.  

Chlorine, ozone (O3), and advance oxidation (H2O2-UV light) are frequently used 

for disinfection. However, advanced oxidation is preferred as it breaks down 

contaminants. Hydrogen peroxide is used as a radical to speed oxidation when water is 

exposed to UV light. Hydrogen peroxide concentrations of 10-30 mg/L are used to reduce 

the formation of trihalomethanes (THMs) (Molnar et al., 2015). The oxidation process 

breaks down contaminants, such as organic compounds and endocrine disruptors that can 

cause health problems. The breakdown of organic matter occurs when wavelengths 

between 200-300 nanometers (nm) are absorbed by DNA molecules, resulting in the 

deactivation of living cells (Schalk et al., 2006). Therefore, advance oxidation with 

hydrogen peroxide and UV light decreases natural organic matter (Molnar et al., 2015). 

The efficiency of the oxidation is affected by the turbidity of the water and presence of 

particulates because these parameters might block UV light from killing organic matter. 

Finally, in some cases essential minerals like carbonate and magnesium are added 

to balance water and minimize water “aggressiveness” and protect soil (Khan, 2013). The 

addition of minerals increases hardness and alkalinity. Additionally, these minerals are 

added for taste, as water free of ions (minerals) is said to have a metallic taste. Sodium 

hydroxide (NaOH) or lime (CaO) is added to adjust pH, alkalinity, hardness, and total 

dissolved solids (TDS). In some cases, municipalities do not use these chemicals; instead, 

they just blend reclaimed water with local supplies, as the hardness from these waters 

adds the necessary ions. This methods balances reclaimed water and improves water 

quality of natural water bodies. Overall, for both potable and nonpotable reuse, the 

treatment process uses all the chemicals. It is assumed that no other chemicals are added 

once treatment is completed. 
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Figure 4: Chemical use through the life cycle of IPR and DPR. 

Nonpotable Reuse 

 The amount of chemicals used for nonpotable reuses is about eight times smaller 

than potable reuse (Schimmoller et al., 2013), since less treatment is needed. Coagulants, 

disinfectants, and cleaning solutions will also be needed for this treatment. In NPR 

systems, water only needs to be filtered and disinfected. Therefore, wastewater needs to 

be coagulated using ferric chloride of an aluminum-based coagulant. Chlorine is used for 

both disinfection and maintenance of the MF system. Acidic solutions are also used to 

clean MF membrane to remove any scaling of the membrane and reduce fouling. The 

amount of chlorine used is larger, since this chemical is used for two purposes. A small 

concentration (<0.5 mg/L) of chlorine is added prior to MF, so fouling of the MF can be 

reduced. For disinfection, a chlorine concentration between 5-20 mg/L is used to kill 

pathogens and viruses (USEPA, 1999). Unspent chloride provides protection during 

conveyance (Wu et al., 2009). In industry, the usage of sodium hypochlorite and calcium 

hypochlorite is used for chlorination. Chlorination requires high dosages and long contact 

time to be effective. See Table 3 for a list of chemicals used. 
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Figure 5: Chemical use through the life cycle NPR. 

Table 3: List of chemicals used in reclaimed water. Exact chemical amount will depend on the water quality and 
volume of water treated. However, potable reuse uses about eight times more chemicals than NPR (Schimmoller 
et al., 2013).  Data were collected from peer reviews and conceptual engineering reports of San Diego, 2013.   

Chemical  Type Concentration Nonpota
ble 

Potable 

Coagulants 
(pre-treatment) 

Ferric Chloride 5-15 mg/L 
  

MF MF 

Aluminum based 
Coagulant (Alum) 

 Chemical 
Enhance 

Backwash (Pre-
treatment) 

Chlorine (3ppm) <0.5 mg/L MF MF and RO 

Sulfuric Acid pH: 2-3 

Citric Acid  

Sodium Hypochlorite 

Clean in Place 
(CIP) 

Citric Acid  pH: 2-3 MF MF and RO 

Sulfuric Acid 

Sodium Hydroxide pH: 10-11 

Disinfectant Hydrogen Peroxide  10-30 mg/L No Yes 

UV light 0.5 moles of UV 
photons/ mole -

OH  

No Yes 

Chlorine 5-20 mg/L Yes No 

Stabilization Sodium Hydroxide 
(NaOH) 

 No Yes 

Lime (CaO)  

Total     9   11 

 

Waste Generation 

 The waste generated depends on the size of the treatment plant. Potable reuse will 

yield more waste, as more brine is produced (about 25% more) during treatment. 

Additionally, more equipment needs to be disposed off, like membranes and lamps bulbs 

that are used, hence, creating more waste. Quantities were not calculated because no real 

data were obtained. However, assumptions based on the efficiencies of the membrane 

filtration systems were used to estimate brine volume.  

19



 20

Potable Reuse 

 The main waste generated in water recycling is sludge, brine, chemicals from 

backwash, and filtration membranes (MF and RO), and mercury lamps from the UV 

system. MF systems generally have an efficiency of about 95%. This means that about 

5% of the wastewater is rejected and becomes brine. Similarly, an RO system has a 75% 

recovery rate. Therefore, 25% of the permeate from the MF becomes brine. Therefore, 

approximately 30% of the wastewater becomes brine in potable reuse. Brine contains 

high concentration of TDS, organic and inorganics compounds, and pharmaceuticals. 

Currently, there are no regulations on how to properly dispose of brine. Some utilities 

chose to discharge their brine without treatment if they have access to the ocean to reduce 

cost. Additionally, contaminants of emerging concern are not regulated. Hence, health 

and environmental issues can arise with the disposal of brine. If the brine is not 

discharged after wastewater treatment, then brine is dewatered. In this process, water is 

evaporated either mechanically or naturally by evaporation, and the sludge is sent to a 

landfill. These processes requires chemicals and energy. In addition, water that was used 

to clean membranes needs to be neutralized before disposal (USDIBR, 2010).  

Filter membranes have to be replaced once permeability cannot be restored by 

CIP process. The life expectancy of a membrane is estimated to be five years (Pinnau, 

2008). Once the membrane surpasses its lifespan, waste is generated. Membranes are 

made of different materials; the most popular membranes are made of polymer, metals, or 

ceramics (Reif, 2006). Currently, there are no proper disposal methods or recycling 

procedures to properly dispose of these technologies. Therefore, most of these 

membranes end up in landfills or are incinerated (Netravali et al., 2003). This waste has 

the potential to stay in the environment for hundreds of years, as degradation is slow. 

Finally, the low-pressure mercury lamps that radiate UV light are a hazardous waste, 

since mercury is used in the light bulb. The state has regulations stating the proper 

disposal of these lamps. The manufacture lifespan of these lamps is estimated to be about 

8,800 hours or one year (USEPA, 1999). Currently, there are proper ways to recycle 

mercury from lamps, so the environmental impacts can be mitigated. However, the 

energy used to recycle lamps increases emissions and costs. Waste is also generated from 
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the installation of a pipe network. However, this will not be considered since most waste 

would be generated every 20-50 years.  

 

Figure 6: Waste generated during potable reuse for both DPR and IPR. 

Nonpotable Reuse 

The waste generated from this treatment is sludge, brine, backwash, and 

microfiltration membranes. The total amount of waste depends on the size of the 

treatment plant. The higher the capacity of the plant, the more chemical waste and brine 

generated. The waste disposal is similar to the disposal of potable reuse waste. However, 

less waste is generated as fewer materials are used for treatment. Similarly, less 

backwash effluent is generated since backwashing is only done to MF and not RO. 

Consequently, effluent from backwash is cut down by about half. Sludge production is 

estimated to be about the same since most of it is produced during coagulation (pre-

treatment).  

Less brine is produce since only about 5% of water treated is rejected in the 

microfiltration step. The amount of brines is smaller, which makes it easier to dispose of. 

There are several ways in which brine can be discharged. One way is by discharging it 

into the ocean. The second is to dispose of brine by mechanically evaporating excess 

water. The third method is to evaporate brine by using evaporation ponds. The difference 

between these disposal processes is the amount of energy, chemicals, and costs that are 

invested to discharge of brine. Moreover, it is more expensive to install evaporation 

ponds than to install a mechanical system. However, the most energy intensive and 



 22

environmentally harmful is mechanical evaporation. The least expensive method would 

be to discharge brine into the ocean. However, this disposal method does not include the 

environmental impacts that result as a consequence of discharging into our aquatic 

systems. 

 
Figure 7: Waste generated during NPR 

Energy Consumption 

California uses about 30% of its natural gas, 19% of its electricity, and about 88 

billion gallons of diesel fuel every year to transport, pump, treat, distribute, and dispose 

of water that is used by Californians (Copeland, 2013). For most municipalities about 30-

40% of their electricity bill is attributed to treatment of both water and wastewater 

(Copeland, 2013). In addition, during dry years less energy is generated, yet more energy 

is needed to pump groundwater. For example, in 2004 it was estimated that about 4.4 

billion kWh of electricity were used for groundwater pumping (Cohen et al., 2004). The 

State Water Project (SWP), which transports water from the San Francisco-Delta to 

Southern California, uses about 2 to 3% of the state’s electricity.  

Energy use for potable and nonpotable reuse is difficult to calculate because it 

depends on the treatment process and on the distance and altitude to where water is 

transported. The implementation of reclaimed water will increase the energy-water, as 

more energy is used to recycle water. For instance, irrigation systems significantly 

increase energy usage for nonpotable reuse. For the purpose of this LAC, only direct 

energy use will be considered. The energy used to transport chemicals from and to the 

treatment plant will not be accounted for, as will the energy used to dispose of waste 

outside the facility.  
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Potable Reuse:  

Because potable reuse uses energy for treatment and distribution, energy 

consumption is a big part of operating pumps, aeration systems, CIP cleaning systems, 

monitoring, and groundwater injection. A preliminary study by the City of San Diego 

estimated that to power a 15 MGD reclamation plant, it would cost the city about $4.3 

million annually. This cost estimate excludes the cost of conveyance. A high quantity of 

energy is required to pump water through the small pores of the MF and RO membranes. 

High pressures are needed so water can be passed through membranes, which increases 

energy usage. All treatment processes use different amounts of energy. For example, 

reverse osmosis requires about twice the amount of energy than microfiltration and 

cartridge filtration, using about 0.0011 to 0.05 kWh per cubic meter (kWh/m3) (Bahman, 

2015 (Tchobanoglous et al., 2014)). During disinfection, the low-pressure mercury lamps 

use about 0.3 to 0.5 watts per square centimeter (W/cm2) or about 0.021 to 0.066 kWh/m3 

of treated water. See Table 4 for a list of the energy usage in kWh per meter cube of 

treated water. Calculating the energy use for conveyance will vary from place to place 

since it depends on the distance and change in head (elevation). For example, in some 

areas of California it takes about 2.4 kWh/m3 to pump water in a tunnel for 16 kilometers 

and elevate water 600 meters (Matos et al., 2014 and COA, 2010).  In potable reuse, 

water will need to be transported to the designated groundwater basins or to temporary 

water storage reservoirs.  

Typically, wastewater treatment plants are built in locations near sea level and 

near aquatic systems, like streams or oceans. Low altitudes are desired to facilitate 

wastewater collection and reduce energy use, since water can flow to these facilities via 

gravity. Municipalities also save money by building these plants near aquatic systems 

because disposal cost are reduced, as the effluent can be discharged into nearby aquatic 

systems. Reclaimed water requires for the filtrate to be transported to areas of use. As a 

result, energy usage and cost will increase with transportation. The distance that the water 

needs to be transported will depend both on the location of the treatment plant and the 

designated storage place. It is estimated that pumping and collecting water consumes 

about 0.003 to 0.04 kWh/m3 (Matos et al., 2014). This cost might be higher for certain 

areas of the state. For instance, a study in 2005 conducted by the California Energy 
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Commission showed that supply and conveyance of water in northern and southern 

California varied drastically. Northern California uses about 150 kWh per million gallons 

for conveyance, while Southern California uses approximately 8,900 kWh per million 

gallons (CEC, 2005). Therefore, Southern California would benefit the most from 

reclaimed water for potable reuse than Northern California, because it would be more 

cost effective.  

The energy use for indirect potable reuse is slightly higher than direct potable 

reuse. This is because water needs to be transported to groundwater basin where water is 

stored for at least six months and then it is extracted and transported to water treatment 

facilities. Groundwater pumping is energy intensive. The Environmental Protection 

Agency (USEPA) estimates that a municipality that uses groundwater as a water supply 

uses about 1800 kWh per million gallons of water or about 0.4755 kWh/m3.  Of this 

energy, approximately 90-99 percent is used for groundwater pumping (USEPA, 2013). 

Assuming that 90% of this energy is used for groundwater pumping, it is estimated that 

an IPR systems uses about 0.43 kWh/m3 more than direct potable reuse. In groundwater 

pumping the energy use depends on the efficiency of the pumps; the vertical elevation 

that water needs to be lift and the volume of water that is extracted. Surveys indicate that 

groundwater pumping for industrial and domestic uses cost about $0.07 per cubic meter 

(Zhu et al., 2007). Groundwater basin are not being replenished at the rate at which water 

is extracted, thus the price of pumping has increased during the past few years, as the 

water table is lowered.  

 

Figure 8: Energy used throughout DPR and IPR. The pumps indicate the energy used to pumped water through 
each process and transportation. 
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Nonpotable Reuse 

Energy usage in the treatment of nonpotable reuse is lower because reverse 

osmosis is not used. Energy is still consumed for pumping, cleaning, monitoring, and 

transporting water to its designated areas.  The treatment technologies that are used in 

this process are less energy intensive. For instance, the overall treatment of nonpotable 

reuse consumes about 0.2 to 0.37 kWh/m3 (Bahman, 2015 (Tchobanoglous et al., 2014)), 

while IPR uses between 0.73 and 1.1 kWh/m3. The main expenditure of energy in the life 

cycle is irrigation; irrigating landscapes and crops with sprinklers can use between 0.6 

and 1.3 kWh/m3. The energy used for irrigation is included in this study, since it was 

assumed they are use to improve water conservation strategies in the agricultural sector. 

Throughout the life cycle of nonpotable reuse, about 0.2 kWh/m3 more energy is used in 

NPR than in both potable reuses. The demand of NPR in urban areas is more spread out, 

and less quantity is needed. Therefore, pipe networks are smaller in urban areas than in 

agricultural areas. Networks in urban areas might require more energy because demand is 

more spread out. This increases the cost of transportation for NPR. See  

 

Figure 9: Energy use during NPR. 

Table 4: Energy use for potable (IPR and DPR) and nonpotable reuse of water. Data were collected from peer 
reviews (Matos et al., 2014 and (Bahman, 2015 (Tchobanoglous et al., 2014)). 

    Nonpotable Potable 

    Agriculture/Landscape 

(kwh/m3) 

IPR 

(kwh/m3) 

DPR 

(kwh/m3) 

Wastewater 
Treatment 

        

  Microfiltrati
on 

0.2-0.3 0.2-0.3 0.2-0.3 

  Cartridge 

filtration 

 -- 0.011-
0.05 

0.011-
0.05 

  Reverse 
Osmosis 

 -- 0.5-0.61 0.5-0.61 
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  Advanced 
Oxidation 

(UV/H2O2) 

--  .021-.066 .021-.066 

  UV-B light 

or 

chlorination 

0-0.066  -- - - 

 Stabilization
  

 -- 0.0016-
0.0032 

0.0016-
0.0032 

Subtotal   0.2-0.37 0.73-1.1 0.73-1.1  

Transportation   0.002-0.007 0.002-
0.007 

0.002-
0.007 

Irrigation 
Sprinklers 

  0.6-1.3  -- --  

Pumping and 
collection 

  0.003-0.04 0.003-
0.47 

0.003-
0.04 

Total   0.805-1.71 0.74-1.51 0.74-1.08 

 

Total Cost 

Reclaimed water has direct and indirect cost (externalities). The direct cost of 

reclaimed water includes capital cost and annual operation and maintenance (O&M) cost, 

energy (power) and chemical cost. Externalities include both environmental and social 

costs. These externalities are difficult to quantify since it is hard to monetize social and 

environmental issues such air emissions and resource depletion.  

Direct Cost of Potable and Nonpotable Reuse 

The capital cost of a reclamation plants is dependent on the capacity to which the 

plant is designed and the technologies that are used. Operation and maintenance (O&M) 

depends on the average operational rate at which water is treated. These costs can be in 

the millions. For example, a preliminary cost estimate of an IPR system in San Diego 

valued the construction costs of an 18 million gallon per day (MGD) purification plant to 

be about $369 million with an annual O&M cost of $15.5 million if the plant is operated 

at 15 MGD (San Diego, 2013). The capital cost of an NPR plant is about 2.5 less than an 

IPR facility (Schimmoller et al., 2013).  In potable reuse, the capital cost is expected to 

increase depending on brine disposal system, as new infrastructure is needed. 

Approximately, $52 million is added to the capital cost if a mechanical system is used to 
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evaporate brine and about $180 million is added if evaporations ponds are used for 

concentrate in a 20 MGD facility (Schimmoller et al., 2013).    

The majority of the O&M cost is attributed to power usage for RO and pumping. 

Staffing cost, power cost, chemical cost, and equipment replacement cost are the major 

components of the annual expenses. Chemical cost increases with the amount of water 

that is treated. Potable reuse uses about eight times more chemicals than NPR 

(Schimmoller et al., 2013). Therefore, the cost will be 8 times higher. The San Diego 

Water Purification Demonstration Project estimated that the annual chemical cost of a 15 

MGD plant is $1.3 million (San Diego, 2013).  Based on this estimate, it is assumed that 

on average a potable reclamation plant will spend about $243 on chemicals per million 

gallons of water treated. Therefore it is assumed that a NPR plant will spend about $30 

per MG for treatment chemicals.  

The cost of powering these systems is also a major O&M cost. The energy cost 

was estimated by taking the average of the total energy used throughout the life cycle 

(see Table 4). The average was then multiplied by the volume of water treated times the 

cost of electricity per kilowatt-hour. According to the US Energy Information 

Administration, the average retail price of electricity in California is 13.50 cents per kWh 

(EIA, 2014). Based on these assumptions, it was calculated that for a plant operating at 

20 MGD NPR plant about $4.7 million are spent on annual electric costs, while IPR and 

DPR spends about $4.2 and $3.4 million, respectively (see Appendix). During treatment, 

potable reuse utilizes about seven times more power than NPR. However, throughout the 

life cycle, NPR consumes more energy because irrigation is very energy intensive. For 

the purpose of this analysis it was assumed that irrigation with sprinklers was used in the 

agriculture sector as a strategy to improve water conservation. Overall, through the LCA 

an IPR system is about $0.5 million cheaper than NPR. New infrastructure would be 

needed to transport water to its desired destination. For nonpotable reuse, higher O&M is 

necessary, since more personnel are needed to check systems and prevent cross 

contamination. Additionally, monitoring systems would be required to minimize 

contamination issues. See Table 5 for direct cost estimates for reclaimed water.  
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Table 5: Direct financial cost for a 20 MGD. These numbers were estimated for NPR and potable reuse. 
Numbers were calculated from preliminary cost estimates from San Diego, 2013 and Scimmoller et al., 2013 
study. 

Reuse Capital 
Cost 

(million) 

Annual O 
& M Cost 
(million) 

Power Cost 
(million) 

Chemical 
Cost 

Total (million) 

NPR 47 2.8  $4.7   $0.22   $55  

IPR  120 5.9  $4.2   $1.8   $132  

DPR 120 5.9  $3.4   $1.8   $131  

 

Indirect Costs of Potable and Nopotable Reuse 

Indirect costs are difficult to quantified. However, Schimmoller et al. estimated 

that the annual environmental cost of a 20 MGD NPR plant is roughly $0.2 million, while 

the environmental cost of a similar size potable reuse system would range from $1.6 to 

$6.3 million. The cost estimates for social and environmental impacts are not going to be 

measured in this analysis due to the lack of data and expertise.  Nevertheless, the social 

and environmental impacts are going to be noted and analyzed. Refer to sections in 

Social Cost for more information. 

Land Use 

Potable and Nonpotable  

Since no data was collected, the land used is not estimated for reclaimed water, 

but it important to note that reclaimed water has a land impact. Land use depends on the 

size and capacity of the plant, and to some extend on the type of technology used. Land is 

used for the construction of the facility, storage tanks, pumping stations, and distribution 

systems. Normally, reclamation plants are built near existing wastewater treatment 

facilities. The land use for these facilities is relatively small, since MF and RO are 

compact technologies and do not occupy large spaces. The footprint is relatively small 

because most of the land is used for the construction of the facility. However, as the 

capacity (size) of the reclamation plant increase then more land will be disrupted so 

larger storage tanks can be constructed.  

Lager storage tanks are necessary since reclaimed water collects most of its water 

during the day when water demand is high, but the product is not ready for distribution 

until later when the water demand is low. Therefore, storage tanks are needed. An 

example is the Harding Park Recycled Water Project in Daly City. This plant treats about 
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2.8 million gallons per day (MGD) and has an underground storage tank of 700,000 

gallons (about 45x45x45) (SFPUC, 2015). Additionally, the brine disposal also has a 

high potential of land use, since evaporation ponds require land use.  

Furthermore, pumping stations are needed to transport water. These stations 

depend on the amount of water that is transported. Usually, these stations are relatively 

small. Distribution systems are necessary to convey the water to its destination. In urban 

areas, pipe systems will disrupt less land as these distribution systems can be installed in 

extant areas of use. However, if the water is for nonpotable reuse, then new pipe systems 

can potentially disrupt new areas. In some cases, CEQA studies might be required before 

the installation of the pipeline systems. Reclaimed water has a land disturbance, as 

infrastructure is built to implement water reuse.  

Material and Resource Depletion 

Potable and Nonpotable reuse 

 Reclamation projects often require new infrastructure to build facilities, storage 

tanks, pipeline networks, and pumping stations. This infrastructure requires the usage of 

material and resources. Materials included plastics (filtration membranes), concrete, 

chemicals, metals, and water. Some of these materials are energy intensive and have 

significant environmental impacts. Due to the time constrain, a detailed inventory of 

these materials was not compiled. However, major materials used in reclaimed water 

were identified and analyzed to determine the impacts that these materials have on the 

environment. Refer to  

 

Table 6 for a list of materials/resources used in reclaimed water for potable and 

nonpotable reuse. In this study it is assumed that the same amount of concrete and metals 

are used to build the same size reclamation facility for both potable and nonpotable reuse. 

The amount of chemicals varies by size and treatment process. Ergo, it is assumed that 

potable reuse uses about eight time the amount of chemicals than NPR. The amount of 

membranes is also assumed to be twice as high for potable reuse, since both MF and RO 

are used. Water was included in this list because it differs in each use, and has different 

impacts. Thus, both reuses use the same volume of water but have different outputs.  
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Table 6: Materials and resources used for reclaimed water. 

Material Quantity Potable Quantity NPR 

Chemicals  Potable reuse uses about eight times 
(8x) more chemicals than NPR 

NPR uses about 1/8th 
the amount of 
chemicals 

Metals  Same Same 

Concrete  Same (depends on the size of facilities) Same 

Plastics (filtration 

membranes) 

 Potable reuse uses about twice the 
amount of membranes 

½ less the amount of 
membranes 

Water  Same Same 

 

4.0 Life Cycle assessment 

Health Risks 

Studies suggest that reclaimed water does not pose a significant threat to human 

health (Rodrigues-Mozaz et al., 2014 and NAP, 2012), due to its stricter regulations and 

advanced treatment. The water quality of recycled water is superior, as it contains less 

nutrients, pathogens, and suspended solids than wastewater effluent and most surface and 

groundwater supplies. However, these speculations are uncertain, as no long-term risk 

studies have been conducted to evaluate the health risks of continuous exposure to 

potable and nonpotable reuse. Additionally, the health impacts associated with the 

chemicals used during treatment are unknown, as no research has been conducted to 

assess their impacts on the environment and living organisms. Furthermore, not all 

contaminants found in reclaimed water have been identified. In recent years, new 

emerging contaminants from cosmetics, contraceptives and industry are causing concern, 

as relatively high concentrations of pollutants from these sources have been found in 

reclaimed water. Thus, emerging contaminants increase uncertainty and health risk 

because these pollutants can have adverse health effects even at small dosages (Huang et 

al., 2012). Presently, the state requires reclamation plants to test for 144 target 

contaminants (OCWD, 2015), as a strategy to reduce health risks. However, this 

compliance is unreliable, as new emerging contaminants are not monitored properly due 

to a lack of knowledge or technology.  

The likelihood of biological and chemical contamination and formation of 

harmful byproducts throughout the life cycle of each reuse will be analyzed to determine 
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which reuse has a greater health risk. The risk level is the possibility of an event 

occurring. If an event is likely or has a chance of occurring, then the risk level will 

increase. Risk levels are divided into six categories; extremely low risk, low risk, 

moderate risk, high risk, very high risk, and extreme risk. Extremely low risk is given to 

events that are unlikely to occur.  

Potable reuse 

Health Risks from Water Quality  

A multi-barrier treatment framework (Gerrity et al., 2013) is used to design 

potable reuse systems to increase and provide a higher level of protection against 

mechanical failures, and microbiological and chemical impurities. Ingesting reclaimed 

water that has been treated for potable reuses has a risk of people being exposured to low 

concentrations of chemicals and bacteriological pollutants. The water quality of potable 

reuse is superior to existing drinking water supplies, as advanced treatment kills viruses, 

pathogens, and bacteria, and breaks down endocrine disrupting compounds that pass 

through RO membranes. For example, it has been demonstrated that advanced treatment 

eliminates (below limits) the risk of salmonella and cryptosporidium. Additionally, the 

relative risk of norovirus and adenovirus is reduced from one to one in a million when 

wastewater receives advanced treatment (NAP, 2012). Therefore, advanced treatment 

decreases the likelihood of exposure to viruses and bacteria when reclaimed water is 

ingested. Since DPR is used almost immediately after treatment, it is safe to assume that 

DPR has an extremely low risk of bacteriological and viral exposure, since these 

pathogens are removed during treatment.  

In IPR systems, water is injected into groundwater basins or discharged into 

environmental buffers. This process can facilitate microorganisms found in the soil to 

degrade endocrine disruptors and other organic matter (Drewes et al., 2003), but studies 

also show that water injection can degrade the quality of the purified water, as it is 

exposed to environmental contaminants (Leverenz et al., 2011). Thus, IPR has a 

moderate risk, as users have a higher exposure to viruses and bacteria. Finally, it is 

important to note that DPR and IPR are safer than de facto reuse because the risk of 

bacteriological infections is lower.  
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The presence of organic matter (OM) can also increase health risk, as OM can 

react with oxidants to form harmful byproducts. For example, in advanced oxidation, 

when chlorine is exposed to organic matter and UV light, trihalomethanes (THM) and 

haloacetic acids (HAA) are formed (Kommineni et al., 2000). This are considered 

carcinogenic and are regulated by the USEPA. These byproducts can also cause 

spontaneous abortion in women (Swan et al., 1992). Experiments indicate that RO 

membranes only remove about 40-50% of total organic carbon (Drewes et al., 2003), so 

about 60-40% of OM is passed through membrane. Nevertheless, studies show that if 

chlorine concentrations are lower than 5 mg/L, then the formation of these compounds is 

negligible (Kommineni et al., 2000). Since the concentrations of chlorine used in potable 

reuse is lower than 5 mg/L, then it is assumed that the formation of these byproducts is 

minimal and thereby represent extremely low risk. Similar results are assumed for IPR, 

since similar chlorine concentrations are used during treatment.  

Chemical exposures from recycled water are a major obstacle that needs to be 

resolved, so potable reuse can be accepted and implemented in the state. Chemicals like 

pesticides, pharmaceuticals, endocrine disrupters, and chemical byproducts have the 

potential to cause severe health problems if they are not removed from water. Currently, 

not many studies have been conducted to investigate the long-term effects of ingestion 

that these contaminants have on people even in small dosages. Furthermore, we lack the 

knowledge and technology to monitor emerging containments that are found in 

wastewater. For instance, it was recently discovered that endocrine disruptors increases 

the probabilities of developing cancer (Lintelmann et al., 2003) and lowers fertility in 

men (Beck et al., 2006). Other studies suggest that small continuous dosages of endocrine 

disruptors can result in severe health problems (Huang et al., 2012). Generally, advanced 

oxidation is used to break down contaminants, like endocrine disrupters, to form less 

toxic compounds, as they are oxidized with hydroxyl radicals and UV light. Ideally, all 

endocrine disrupters should be broken down so the feminization of fishes and other 

aquatic organisms can be prevented, but this does not always occurs. A recent study also 

suggests that the byproducts generated during treatment can also increase health risk, as 

some of the byproducts produced are more toxic (Plahuta et al., 2014). In advanced 

treatment (MF/RO) processes about 98-99% of pesticides, organic compounds, and 



 

pharmaceuticals are removed

pharmaceuticals, such as acetaminophen, and pesticides like diazinon and diuron 

always eliminated. Nevertheless, the concentrations of these contaminants

low as they were found in the low range of nanograms per liter. RO membranes are 

capable of removing molecules larger than 200 grams per molecule (g/mol) 

Mozaz et al., 2014 and Drewes et al., 2003)

are smaller and thereby prese

systems. See Figure 10 for a risk comparison between

analysis it seems that DPR poses a lesser risk than IPR, as water is less likely 

into contact with pollution. 

 

Figure 10: Risk assessment of potable and nonpotable
observations and likelihood of occurrence. 
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removed (Rodrigues-Mozaz et al., 2014). However, some 

pharmaceuticals, such as acetaminophen, and pesticides like diazinon and diuron 

always eliminated. Nevertheless, the concentrations of these contaminants were relatively

were found in the low range of nanograms per liter. RO membranes are 

capable of removing molecules larger than 200 grams per molecule (g/mol) (Rodriguez

Mozaz et al., 2014 and Drewes et al., 2003), yet many of the pollutants discussed above 

are smaller and thereby present a high risk to human health in both DPR and IPR 

for a risk comparison between DPR, IPR, and NPR. Based on this 

poses a lesser risk than IPR, as water is less likely 

potable and nonpotable reuse. Risk level was determined based on peer review 
of occurrence.  

Risk Assesment of Reclaimed Water
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Nonpotable Reuse 

Health Risks from Water Quality 

The health concerns regarding nonpotable reuse are higher since treatment does 

not remove all contaminants from wastewater. Therefore, traces of organic matter, 

antibiotics, pesticides, organophosphates, analgesics and anti-inflammatory are present at 

low concentrations (Rodriguez-Mozaz, 2014). Microfiltration and disinfection is capable 

of lessening bacteriological and viral contamination (NAP, 2012). It was discovered that 

MF removes 99.99% of biological growth (Sadr Ghayeni et al., 1996), but it did not 

completely remove bacteria, as it only damaged the bacteria thereby preventing growth 

(Sadr Ghayeni et al., 1999). Hence, the risk of bacteriological infection from NPR is 

extremely low. Microfiltration process is also not capable of removing all natural organic 

matter (Fabris et al., 2006), which react with chlorine to form known carcinogenic 

byproducts like THM and HAAs (Wu et al., 2009 and USEPA 1999). High chlorine 

concentrations equate to high concentrations of THMs and HAAs (USEPA, 1999). 

Typically, NPR treatment utilizes chlorine concentrations of up to 20mg/L, which is four 

times above the recommended concentrations. Therefore, the risk of forming byproducts 

is very high.  

Chemical contamination from chlorine residuals is also highly likely. Chlorine 

residuals may also damage crops, and consumers of these crops may be indirectly 

exposed to the disinfection byproducts (DBPs) through the food chain (Wu et al., 2009). 

It is estimated the there are hundred of DBPs that result from chlorination, but only a few 

have been identified (Wu, et. al, 2009). Furthermore, contaminants can accumulate in the 

soil and can cause unknown consequences. For example, endocrine disruptors can cause 

the feminization of aquatic organisms. Consequently, chemical contamination from NPR 

is very high. Finally, the water quality of NPR is poorer than potable reuse because 

treatment is less efficient at removing contaminants. The risk attributed to NPR is higher, 

just because treatment does not remove contaminants of emerging concern and is more 

likely to form byproducts. 
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Health Risks from Cross Contamination  

 NPR systems have a higher health risk than potable reuses because cross 

contamination is more likely to occur, especially in urban areas. Normally, nonpotable 

distribution systems are connected to potable sources. This cross connection can provide 

a pathway for backflow of nonpotable water into the potable supply, hence contaminating 

drinking water supplies. Backflows occur because there is a change in pressure. These 

pressure changes are attributed to breaks, flushing, pumping failure, or emergency 

firefighting (USEPA, 2001). According to the US Centers of Disease Control and 

Prevention, cross contamination was responsible for 57 waterborne diseases outbreaks 

between 1981 and 1998, which resulted in 9,734 illnesses. Of these cases, about 6,330 

illnesses were related to microbiological contamination and 680 were caused by chemical 

contamination. The remaining 2,700 cases were a result of unreported contaminants  

(USEPA, 2001). Illnesses from microbiological activity were higher than chemical 

contamination, but, since regulations for NPR have gotten stricter, the risk of 

contamination will be less as biological risk has decreased to extremely low levels. To 

mitigate this issue, systems capable of alerting authorities about cross contamination are 

necessary. Studies conducted by the Australian government have looked into several 

technologies to minimize contamination. However, such systems will depend on the 

degree of assurance needed. Additionally, these technologies are expensive.  

Health Risks from Waste Generation (Potable and Nonpotable)  

Sludge and brine generation has an extremely high health risk if people come in 

contact with this waste. This is because sludge is highly concentrated with biological and 

chemical contaminants, so it is highly toxic if it comes into contact with human 

personnel. Brine also contains high concentrations of contaminants that have been 

removed from water, such as heavy metals, pesticides, carcinogenic compounds, 

endocrine disruptors etc. Typically, brine is discharged into oceans, or it can be evaporate 

mechanically or with evaporation ponds. Evaporation ponds can increase the likelihood 

of exposure to animals and humans. Thus, sludge and brine needs to be disposed of 

correctly so these pollutants do not enter our water systems or leak into surrounding 

ecosystems.  
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Economic Costs 

True Value (Levelized Cost) of Reclaimed Water 

Currently, the price of reclaimed water is not reflective of its true cost. This is 

because reclaimed water is sold at lower rates to increase demand. Therefore, the 

levelized cost of the three types of water reuses will be performed to determine their true 

values. Levelized cost is used in the energy sector as a comparison analysis to determine 

the net present value in per-kilowatt-hour cost (EIA, 2014). This analysis takes into 

consideration the cost of building and operating the plant throughout its lifespan. Thus, a 

similar approach is performed to calculate the levelized cost of reclaimed water 

(LCORW), to compare each reuse and determine which system is more expensive per 

million gallons (MG) of water and acre-feet treated. LCORW is calculated by dividing 

the total cost in present value of the plant through its lifespan and then divided by the 

total amount of water “generated” (recycled) during its service life. For this analysis, it 

was assumed that each treatment facility has a lifespan (n) of 50 years, and a rate of 

return (r) of 3% (WHO, 2014). For the purpose of this analysis it was also assumed that 

the capacity of the plant is 20 MGD and it operates at 15 MGD. Therefore, the capital 

cost is estimated for a 20 MGD plant, and the power, chemical and operation and 

maintenance (O&M) costs were derived from a 15 MGD treatment plant. The present 

value of annuity for power, chemical, and O&M were calculated by using the equation, 

�� � ���� �
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�
. These present values were added to the capital cost to find the 

total present value (PV). The total cost was then divided by the amount of reclaimed 

water that would be generated in a 15 MGD plant throughout its lifetime. The water 

quantity was converted to present value, to follow the convectional approximation 

methodology of levelized cost. Using the same equation that was stated above, the water 

quantity was calculated. However, the Cost was replaced by the amount of water recycled 

annually (15MG per day*365 day/year). Based on these calculations, it was noted that 

nonpotable reuse is about $410/AF cheaper than IPR and DPR is about $40/AF cheaper 

than IPR. Overall, IPR is the most expensive reuse. In general, reclaimed water should 

not be sold below the LCORW. Otherwise, municipalities will lose money.   
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Table 7: Levelized costs of three 20MGD reclamation plants, operating at 15 MGD.  

Levelized 
cost 

Total Cost 
(Present 
Value) 

RW Generation 
(Present Value) 
(MG) 

LCORW 
($/MG) 

LCORW 
($/AF) 

NPR  $245,450,363   140,870   $1,740   $570  

IPR   $425,431,327   140,870   $3,020   $980  

DPR  $404,794,444   140,870   $2,880   $940  

Economic Feasibility of Reclaimed Water Based on Location 

Cities that are able to purchase their raw water at lower rates than the LCORW 

(i.e., levelized cost or true cost of reclaimed water) would not financially benefit from the 

use of reclaimed water, since these cities would lose money by enforcing an alternative 

that is more costly than their current water sources. Nevertheless, cities that are buying 

their water at higher rates than the LCORW would greatly benefit from the application of 

recycled water, as recycled water would be cost effective. For example, Southern cities in 

California spend millions of dollars to import potable water. In 2013, San Diego paid 

roughly $1039/AF for untreated imported water (San Diego, 2013). Hence, in San Diego 

both DPR and IPR are economically feasible since both supplies are below the price of 

imported potable water by $100/AF and $60/AF, respectively.  

Additionally, most cities in California pay about $890/AF for their water supplies (Hanak et al., 2011), making 

NPR economically feasible for most of the state. Based on the rates provided by Hanak et al., 2011, only certain 

areas, like the San Francisco Bay Area and Central Coast, would benefit from all three reuses. The South Coast 

would benefit from both NPR and DPR, as it would save money by purchasing reclaimed water, which is 

cheaper than their current supplies.  See  

 
 

Table 8 for an overview of the range of water rates throughout the state. It is clear 

that some areas of California will benefit by recycling water. Other factors, like 

increasing reliability and water supply, should also be considered when evaluating the 

total benefits of reclaimed water. 

 

 



 38

 
Table 8: Water rates for different regions of the state (Hanak et al., 2011).  Green numbers indicate that only 
NPR is economically feasible. Blue indicates that both NPR and DPR are economically feasible, and red 
indicates that all three reuses are economically feasible. Black represents no economic feasibility. 

Region  Average water price ($/AF) 

San Francisco Bay Area 1,190 

Central Coast 1,857 

South Coast 985 

Inland Empire 748 

Sacramento Metro Area 789 

San Joaquin Valley 545 

Rest of state 886 

Monetary Losses Due to Artificially Low Rates 

A national survey revealed that the majority of existing reclamation plants recover 

less than 25% of their annual operational costs (Carpenter et al., 2008), because most 

municipalities have set artificial low prices to encourage the use of reclaimed water. For 

instance, San Diego sells its NPR water for $0.8 per hundred cubic feet (HCF), while the 

city charges $4.014/HCF for potable water. The price of NPR has not risen since 2001, 

when the price was lowered from $1.34 to $0.8 per HCF to promote NPR (City of San 

Diego, 2015). Based on the LCORW calculated in the section above, reclaimed water for 

nonpotable reuse should be sold at $570/AF or at $1.31 per HCF, so municipalities do not 

lose any money. Currently, in San Diego, NPR water is sold at $.50/HCF below its true 

value. This results in a loss of revenue for the city. Therefore, San Diego is losing about 

$3.72 million annually. To mitigate such financial losses, reclaimed water needs to be 

sold at its true value. With regards to DPR and IPR, these supplies need to be sold at their 

respective LCORW, so no monetary losses will be incurred from the application of these 

reclamation plants.  

Environmental Impacts 

Direct Carbon Emissions From Potable and Nonpotable Reuse 

Water reclamation increases carbon emissions, as energy is used during its 

treatment. The size of the plant and type of technologies influence the amount of carbon 

emissions released. In terms of treatment, potable reuse has higher emissions because 

reverse osmosis is very energy intensive. It is estimated that a 20 MGD nonpotable reuse 
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treatment plant emits about 1,700 metric tons of CO2 per year, while a potable reuse plant 

(MF/RO/UV-H2O2) at the same capacity emits about 12,200 metric tons of CO2 per year 

(Schimmoller et al., 2013). Therefore, during treatment potable reuse would emit about 

seven times more CO2 than NPR. However, when the whole life cycle of each reuse is 

considered, it was discovered that DPR had the lowest CO2 emissions, as it uses less 

energy through its life cycle.  

Projections of carbon emissions were based on the average amount of electrical 

energy used throughout the life cycle (see Table 4). The total average electrical energy 

use per meter cube of water treated (kWh/m3) was 1.26, 2.25, and 0.91 for NPR, IPR, and 

DPR, respectively. Based on these results, it is estimated that IPR emits about 2.5 times 

more CO2 than DPR, and about 1.8 times more CO2 than NPR. Finally, NPR emits about 

1.3 times more CO2 than DPR. As a result, carbon emissions for different size plants 

would change, since energy use would increase. Similarly, different reuses have different 

emissions. Furthermore, this analysis excludes the amount of energy used to generate and 

transport chemicals; therefore, this is not truly representative of these findings, because 

potable reuse uses eight times more chemicals and it produces more waste that needs to 

be disposed of.  

Land Use 
The size of the storage tanks utilized contributes greatly to the magnitude of land 

used. Land use also depends on the type of reuse. For instance, NPR and DPR reuse 

requires larger storage tanks than IPR, since their use does not correlate with generation 

time. The effluent from IPR needs less land, as water is discharged into environmental 

buffers like surface and groundwater supplies. The land use for water distribution is hard 

to determine, as it would depend on the volume of water treated, land use regulations, and 

population size. Furthermore, it is assumed that pumping stations and treatment facilities 

will be similar within each reuse if they are the same size. Hence, land impacts will 

mostly depend on the size of storage tanks. It is estimated that for every one MAF of 

water stored, about 0.30 cubic miles of land will be required.  
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Material and Resource Depletion 

Water Recovery (Multiplier Effect) 

 Wastewater is a precious resource that, like money, has a multiplier effect if it is 

recycled. The multiplier effect is use by economists to describe how an injection of 

money increases economical growth, as spending increases. For this analysis, the 

multiplier effect will be used to determine how recycling water increases the water 

supply. For NPR, the multiplier effect would be one because it is assumed that no water 

can be recovered once it is used for irrigation, as this water would renter the natural water 

cycle. Potable use allows for water to be recycled multiple times since it is collected after 

it has been used. Water from DPR can be recovered because, on average, 60 to 90% of 

potable water is directed to wastewater facilities (Klotz Associates, 2010). Likewise, 

assuming that the MF system has a 95% recovery rate and the RO has a recovery rate of 

75%, the total recovery rate of the wastewater from treatment is about 71%. To calculate 

the total recovery rate, we will start with one gallon of water that just exited the 

reclamations plant. Assuming that 10% is lost during conveyance (Hanak et al., 2011), 

then the total amount of water reaching residents is 90%. Furthermore, assuming that 

only 75% (average of 60 and 90%) of this reclaimed water is sent back to a wastewater 

facility after it was used, then approximately 67.5% of reclaimed can be recycled again. 

Since only 71% of water can be recovered from treatment then about 48% of water can 

be recovered the second time. The multiplier effect is calculated by diving one over the 

one minus percent recovery ( �

��%��������
), which is 48%. Hence, DPR has a multiplier 

effect of 1.92 (See Appendix for work). Thus, for every gallon of water that is reclaimed, 

about 1.92 gallons are gained just by reclaiming water.  

A similar methodology was applied to IPR. A recovery rate from treatment is 

71%. Determining the percent of recovery for IPR is difficult, as water would be lost 

when it enters the environment. This water is lost during evaporation, leaks and 

infiltration. Making a conservative judgment, I believe approximately 50% of the 

reclaimed water is lost during this process. About 75% of the water will be recovered 

after people use it; so only about 26.6% of water is truly recovered from an IPR system. 

Overall, IPR would have a multiplier effect of 1.36, so the water supply would increase 

about 1.36 times for every gallon of wastewater treated. Thus, both DRP and IPR will 
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increase drinking water supplies. Furthermore, by expanding the water supply, less water 

needs to be transported or purchased; thereby reducing costs to municipalities, as less 

water has to be purchased for potable reuse. In other words, reclaiming water for potable 

reuse in municipalities has the potential to increase current drinking water supplies. 

Soil Quality 

Soil contamination can occur when water is injected into groundwater basins and 

when is used for irrigation. The risk of soil contamination from potable reuse is 

extremely low as very small concentrations of contaminants are found in the end product, 

thereby accumulation would be minimal. Nonpotable reuse has a higher risk of soil 

contamination since the water quality is poorer than potable reuse. Additionally, studies 

indicate that reclaimed water from nonpotable reuse increases salinity, chlorine and 

sodium levels. This results in the contamination of agricultural land. However, no 

observable effects were detected in areas where chlorine levels were high (Platts et al., 

No Date). NPR has a higher potential of degrading the soil quality, thus causing 

environmental and health problems as containments accumulate and leach into 

groundwater supplies.  

Impacts of Materials’ Depletion 

The environmental impacts attributed to the use of materials and resources are 

substantial, as several of these materials are energy intensive, nonrenewable and 

nondegradable. For instance, both the chemical and cement industries are large emitters 

of greenhouse gasses (GHG), as their production processes are energy intensive. It is 

estimated that approximately 7% of global GHG emissions are emitted from cement 

plants (Ali et al., 2011), and in 2005 the chemical industry emitted roughly 3.3 gigaton of 

CO2 equivalent (gtCO2e)(ICCA, 2009). The extraction of metal is detrimental to the 

environment because it causes air and noise pollution, and destroys entire ecosystems as 

land is disrupted. The production of filtration membranes depletes fossil fuels, metals, 

and inorganic materials like alumina, titania, and silicates (Reif, 2006). Due to the 

composite structure of filtration membranes, recycling of these materials is difficult. 

Filtration membranes are usually sent to landfills where membranes stay for hundreds of 

years, or are incinerated, which increase air pollution (Netravali et al., 2003). Hence, 

these materials are lost. Since potable reuse consumes about eight times more chemicals 
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than NPR, the indirect impacts for potable reuse from the chemical sector is eight times 

greater. It was assumed that the amount of concrete and metals used were similar for both 

potable and nonpotable reuses, thereby resulting in similar indirect impacts. Potable reuse 

utilizes about twice the amount of filtration membranes, so it depletes twice the amount 

of materials than NPR. Finally, water resources are increased with the implementation of 

recycled water because water is reclaimed. As discussed in the above section, reclaimed 

water has a multiplier effect (recovery factor); hence, in potable system reclaimed water 

can be reclaimed multiple times.  

Table 9: Impacts of materials. One (1) symbolizes equal magnitudes or similar impacts. Negative numbers 
implies generation. This is an estimation of how much water is reclaimed. 

Material Description of Possible 

Environmental Impacts 

NPR IPR DPR 

Chemicals Chemical production is energy 

intensive so a higher use of 

chemicals equals higher GHG 

emissions 

1 8 8 

Metals Mining increase air and noise 

pollution and disrupts ecosystems 

1 1 1 

Concrete Energy intensive so high GHG 

emissions 

1 1 1 

Plastics 

(filtration 

membranes) 

Depletes fossil fuels, metals, and 

inorganic materials  

1 2 2 

Water Water depletion (negatives means 

that there is a generation) 

-1 -1.36 -1.92 

 

Social Impacts  

Increase Water Prices and Affordability  

California’s water systems are under financial stress, as most water systems are 

old and need to be replaced and upgraded to meet new environmental and safety 

regulations. Municipalities have been able to fund about 85% of these costs by raising 
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rates for water and wastewater services (Hanak et al., 2014). Therefore, the 

implementation of reclamation projects will increase water prices in localities where 

these plants are built. An increase in water prices will heavily impact low-income 

families, as their cost of living goes up. A higher cost of living can result in new social 

impacts, like increased poverty and political conflict (Howe, 2005). Thus, mitigating 

these social impacts is crucial to make reclaimed water suitable and socially just. 

Currently, California has Proposition 218, which was designed to prevent certain rates 

and fees from exceeding the cost of providing a service. This proposition harms both 

water projects and disadvantaged groups, as water agencies are not allowed to generate 

revenue to fund new projects and lifelines programs for low incomes families (Hanak el 

at., 2011). Therefore, most municipalities cannot implement reclamation projects or sell 

water at its true cost because low-income families would not be able to afford these rates. 

Hence, the funding of recycled water needs to be considered when planning for these 

projects, and ensure that the most economically feasible reuse is implemented to mitigate 

monetary losses.  In many areas of the state, especially northern California, more than 

20% of single-family homes are already paying water bills that exceed 2% of their annual 

income (Refer to Figure 11), and between 10 and 20% of families in Southern California 

and Coastal areas are also paying high water bills. However, since the majority of the 

population lives in coastal area, the cost of implementing reclaimed water projects would 

have a lesser effect than in areas where populations are smaller. This is because cost can 

be distributed with more people, thus reducing large spikes in rates.  
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Figure 11: Water bills exceeding 2% of annual income. Darkers areas show areas where more than  20% of 
population is paying more than 2% of their income on water. The second darkerst color shows 10-20% and 
lighter color shows less than 10% is population paying  more than 2 % on water (hanak et al., 2011) 

Social Inequity of Price Discrimination 

Currently, the management of reclaimed water is socially unjust, as people 

benefiting from this resource are not paying its true value. For example, the city of 

Tucson in Arizona sells its reclaimed water at flat rates instead of block prices. This 

pricing was implemented to encourage reclaimed water usage, as it can save an owner of 

an 18-hole golf course up to $150,000 to $200,000 on irrigation annually (Dotson, no 

date). Likewise, the city of San Diego is losing about $3.72 million annually for adopting 

similar strategies. Many municipalities are losing money with the implementation of 

reclaimed water because they have adopted similar pricing strategies. Municipalities are 

being forced to pass this cost onto wastewater and potable water customers by raising 

their fees. This strategy is unacceptable as the main users of reclaimed water are 

agricultural and industrial businesses. These selected groups benefit both monetarily and 

by having access to cleaner water, while people who do not benefit are paying for it. This 

social inequity is concerning, as it increases the social gap between the rich (agricultural 

and business) and everyone else, by increasing water prices. Furthermore, these 

discriminatory prices are also hindering water conservation efforts as lower prices 

promote higher consumption.  
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5.0 Life Cycle Interpretations and Recommendations 

Interpretations 

The environmental impacts of reclaimed water are substantial as it increases 

carbon emissions (due to high-energy use), waste generation, and chemical consumption. 

However, reclaimed water also provides vital benefits, including improvement of water 

quality and expansion of water supply. Furthermore, the true cost of reclaimed water is 

competitive with the cost of other water supplies in California. Refer to Figure 12 for a 

comparison of environmental impacts between the three options.  

Overall, indirect potable reuse (IPR) systems have the highest environmental 

impacts and economic cost, as they use more energy, chemicals and emit more CO2 than 

direct potable reuse (DPR) and nonpotable reuse (NPR) systems. Additionally, the water 

quality of IPR is less because it degrades when mixed with other water supplies during 

groundwater recharge or surface augmentations.  

Direct potable reuse (DPR) systems have the lowest health risk and lowest direct 

carbon emission and energy use. DPR also has the highest recovery, thus highest 

potential to increase water supply. Although the true cost of DPR is relatively high, it is 

about $40/AF cheaper than IPR and thereby is more economically feasible than IPR for a 

municipality that needs a new potable source.  

Nonpotabe reuse (NPR) systems are the most attractive alternative in terms of 

cost and energy use. These systems use fewer chemicals and generate less waste; 

however, they provide lower water quality, which can increase health risks. Finally, NPR 

systems are only capable of expanding water supplies by the amount of water that is 

recycled, as this water cannot be recovered for further use after it has been utilized. In 

contrast, both IPR and DPR have higher recycled potential (multiplier effect) because this 

water can be recovered after residents use it.  

One of the social impacts arising from the implementation of reclaimed water is 

an increase in water prices. High water prices can increase the cost of living, thereby 

creating social issues, such as social inequality as well as increased poverty and increased 

political conflict (Howe, 2005). In some areas of the state installing recycled water 

projects will be difficult, as many cities lack the funds to do so. In many cases 

municipalities would have to charge less than the true value of reclaimed water to make 
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; thus, municipalities would lose money. These monetary 
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cost of reclaimed water (LCORW). For example, cities in the San Francisco Bay Area, 

and Central and South Coast are paying between $980 and $1,860 per acre-feet for their 

water. DPR would cost them around $940/AF. For these cities, DPR is economically 

feasible and beneficial since money would be saved. Other areas that would benefit from 

the use of DPR are those that import their water from long distances. In these locations, 

implementing DPR would reduce energy cost and greenhouse gases, as less water would 

be transported to meet the water demand. For example, on average conveyance in 

Southern California uses approximately 8,900 kWh per million gallons (CEC, 2005), 

while DPR (entire life cycle or total energy use) would use approximately 3,400 kWh per 

million gallons (See Appendix), thereby reducing energy use by about 60%. Furthermore, 

DPR is appropriate for urban cities, as they already have or are planning to improve their 

water infrastructure. Additionally, the costs of DPR are lessened as it is distributed on a 

larger population size; hence, reducing spikes in water prices.  

Cities that have poor water quality would also benefit from DPR, as consumers of 

DPR are less likely to be exposed to biological and chemical contaminants. In theory, 

DPR systems can be designed to meet or exceed drinking water standards (GWRS, No 

Date), which would allow these municipalities to save money on water treatment. When 

DPR is mixed with other supplies the overall water quality increases, which results in a 

reduction of water treatment for existing potable supplies. Finally, DPR helps 

municipalities increase local water supplies. This is because for every gallon of water that 

is recycled, an additional 0.92 gallon of water would be recovered, as this water can be 

recovered multiple times. Thus, the water supply would increase by about 1.92 times the 

reclaimed water. As a result, municipalities would save money, as less water needs to be 

purchased.  

Indirect Potable Reuse 

Indirect potable reuse (IPR) is the most expensive reuse system because it 

requires more electricity for conveyance and pumping. It is estimated that IPR uses about 

8,500 kWh per million gallons treated (based on energy use during life cycle). This is 

similar to what most cities in Southern California are paying for conveyance. Therefore, 

IPR is economically feasible for areas with high conveyance cost. Although, IPR systems 

are the most expensive, these systems are recommended for areas with local water 
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supplies, like groundwater aquifers and surface water. In general, the water from IPR 

improves the water quality of local supplies. Currently, groundwater basins near 

agricultural areas tend to have higher concentrations of nutrients, pesticides, and 

chemicals; therefore, IPR is advocated for areas whose water quality is an issue.  

Similarly, IPR is encouraged in areas where groundwater is used as the main 

water supply. In 2009, Senate Bill X7 6 was passed into law, which mandates local 

agencies with groundwater basins to monitor and report their groundwater elevations 

(CDWR, 2012). The main goal of this law was to establish a systematic monitoring 

system to track seasonal and long-term trends in groundwater elevations so groundwater 

management can be improved. The California Statewide Groundwater Elevation 

Monitoring (CASGEM) program was created to identify the areas that are mostly 

threatened by present and future water demand (CDWR, 2014). Refer to Figure 13 for a 

map of the high and medium priority groundwater basins. IPR systems are recommended 

for areas that were identified as high and medium priority zones by the CASGEM. Thus, 

the Central and San Joaquin Valley, Los Angeles Region, and the Sacramento Area are 

the best places to implement IPR systems. Additionally, in these locations IPR systems 

can lower pumping cost, as the water table would be raised. Although, IPR systems 

increase carbon emissions the environmental benefits exceed the consequence, as 

groundwater aquifers would be recharged and maintained at a constant water table. 

Furthermore, land subsidence and seawater intrusion would be reduced and energy use 

for pumping would decrease as the water table is raised. Overall, carbon emissions can be 

mitigated if the energy used comes from renewable sources. Therefore, IPR systems are 

ideal for these high and medium priority basins, where large volumes of groundwater are 

extracted. 

Another place where IPR systems are valuable are near coastal areas that are 

susceptible to seawater intrusion. It has been reported that during drier years and drought, 

groundwater reservoirs supplied up to 60% of the water demand (Croyle et al., 2014). 

Thus, coastal areas that depend on groundwater are highly vulnerable to seawater 

intrusion. Installing IPR systems near these areas, especially the Central Coast (Monterey 

to Ventura), is recommended to prevent seawater intrusion and its impacts. Seawater 

intrusion results in the formation of saline water. This water is unsuitable for irrigation or 
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domestic use. The Central Coast, depends on groundwater to irrigate high value crops 

like strawberries, thus a decrease in water quality would result in great losses for the 

agricultural sector. It was reported that more than 40% of the Central Coast local 

groundwater basins were ranked high to medium priority in CASGEM (Martin, 2014). 

The Central Coast is advised to install IPR systems to prevent seawater intrusion, and 

protect their water from becoming unsuitable for beneficial use. 

Most of the areas where IPR is recommended are located in agriculture zones. It 

is estimated that approximately 28% of the population in these places is occupied by low-

income families (Taylor et al., 2000). Therefore, it is imperative for local agencies to 

implement equitable prices, so these families are not harmed by these projects. The 

majority of funding for these projects should come from farmers, as they are responsible 

for overdrafting and degrading the water quality of these water supplies. Additionally, 

water sold to groundwater basins should be traded at its true cost; otherwise these costs 

would be passed to water and wastewater customers.  



 

Figure 13: Priority areas for groundwater management programs. IPR 
high and medium priority rankings (CDWR, 2014)
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be reconsidered, as this water can be allocated for other uses. Therefore, NPR is 

recommended for agricultural use. Specific areas like the Central Valley and the Central 

Coast (South Central Region) and parts of the North Central region should implement 

both NPR and IPR systems to meet their irrigation demand and improve local 

groundwater management (see Figure 13 for locations). Although, NPR would affect soil 

quality it would also free up potable water and reduce groundwater extraction. The soil 

quality in these areas would be affected, as this water contains contaminants that were not 

removed during treatment, but research shows that they are insignificant. Accumulation 

of these contaminants can increases salinity and in some cases would contaminate potable 

groundwater basins. Thus, NPR is not recommended for groundwater recharge because it 

would diminish water quality, and compromise potable reservoirs. Additionally, NPR is 

recommended to combat seawater intrusion, as the main goal of this use would be to 

increase the water table. Injection of NPR near coastal areas would reduce the amount of 

IPR needed to increase the groundwater table; therefore, IPR can be allocated elsewhere. 

NPR is not strongly recommended for landscape irrigation in urban areas, as it 

would increase the risk of cross contamination, which increases health risks. These 

systems can be implemented for urban agricultural or industrial areas, but cross 

connections would need to be eliminated. NPR systems should only be considered in 

urban areas where there is a low demand for potable reuse. Overall, NPR has the least 

environmental impacts during the LCA, as less chemicals and energy are used. However, 

as water scarcity increases, our main focus should be to increase potable supply.  

 

Potential Issues with Reclaimed Water 

Currently, reclaimed water has no clear owner. The ambiguity of reclaimed water 

rights can potentially create social issues, as the industrial and agricultural sectors 

appropriate of this new source. The Water Code Section 1210 hints that treated 

wastewater should be owned by the treatment facility (Somach, 1994). Hence, only 

groups that can afford treatment can technically own this new supply. Furthermore, we 

have to ask ourselves how reliable is this water supply if it depends on existing sources. 

Reclaimed water does not generate new supply, and as water continuous to deplete how 

are we going to adapt to these extreme cases. Finally, how is California preparing to 
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control chemicals from cosmetics, medicines and cleaning supplies to prevent them from 

entering the water supply? 

Table 10: Recommendation for best use of DPR, IPR and NPR 

Reuse Where should these reuses be considered? 

NPR • Agricultural and industrial areas 

• Coastal areas susceptible to seawater intrusion  

• Cities with low potable demand 
 

IPR • Cities with high conveyance cost 

• Cities with local water supplies, but poor water quality 

• Cites with high reliance on groundwater supplies 

• Coastal areas susceptible to seawater intrusion  

• Cities identified as high and medium priority in the 2014 CAGEM 
study 
 

DPR • Cities with high potable demand 

• Cities purchasing water at a higher cost than levelized cost DPR 

• Cities that import their water 

• Urban cities (large populations) 

• Cities with poor water quality 

• Cities with no local supplies  

• Cities that want to increase their water supply 

6.0 Conclusion 

Reclaimed water is vital for the state, as population grows and water scarcity 

increases. California will certainly benefit from reclaimed water since it will increase 

water supply. In addition, the superior water quality that would be supplied to 

Californians from this source provides a higher level of protections against contaminants. 

Similarly, it will help alleviate some of the environmental and economic impacts that the 

state is facing due to the drought. Although, reclaimed water does have social and 

environmental impacts like carbon emissions, depletion of resources, and waste 

generation, it will also help the state become more sustainable, as the state government 

takes this opportunity to improve the state’s water management programs. Furthermore, 

reclaimed water is economically feasible making it a competitive source, so it can be 

sustained even after the drought is over. 
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 Finally, it is important to recognize that other issues that were not considered in 

this Masters Project, like water rights can complicate the implementation of these 

projects. Furthermore, it is imperative to create a study that fully assesses the impacts of 

reclaimed water, so the necessary precautions are taken. Thus, life cycle assessment 

methodologies should be conducted for current systems, so impacts can be identified and 

mitigated before California starts building these new projects in the state.   
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Appendixes 
Levelized (True Cost) 
 
Cost: The capital cost and annual cost were obtained from Schimmoller et al., 2013. 
These costs were estimated for a 20 MDG plant. 
 

Reuse 

Capital 
Cost 

(millions) 

Annual O 
& M Cost 
(millions) 

Power 
Cost 

(millions) 

Chemical 
Cost 

Total (millions) 
NPR 47 2.8  $4,691,134   $221,737.50   $55  

IPR  120 5.9  $4,196,840   $1,773,900   $132  

DPR 120 5.9  $3,394,777   $1,773,900   $131  

 
Annuity costs were converted to present value. It was assumed n=50, r= 3% 

�� � ���� �
1 � �1 � �
�

�
 

 

Levelize
d cost Capital cost PV of O&M PV of Power 

PV of 
Chemical 
cost Total cost 

NPR  $47,000,000   $72,043,339  
 

$120,701,771   $5,705,254  
 

$245,450,363  

IPR  
 

$120,000,000  
 

$151,805,608  
 

$107,983,691  
 

$45,642,028  
 

$425,431,327  

DPR 
 

$120,000,000  
 

$151,805,608   $87,346,808  
 

$45,642,028  
 

$404,794,444  

 
Levelized is calculated by adding the total present value divided by the amount of water 
generated. Water was discounted because in economic it is assumed that today’s 

resources are more valuable then in the future. ��� ! �
"#$%&'#($

)%$*�+*�*�%$*,
 

 

Generation (gallons of 
Water) PV Gen (MG/Year) 

LCORW 
($/MG) 

LCORW 
($/AF) 

5475 140870  $1,742.38   $567.76  

5475 140870  $3,020.02   $984.08  

5475 140870  $2,873.52   $936.34  
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Multiplier Effect 
 
The multiplier effect is used to see how an injection of money surges the economy as 
spending increases. For this analysis, this was used to determine how much reclaimed 
water helps increase the water supply. Therefore, the percent recovery of water for reuse 
was calculated. The percent recovery was determined how much water is lost during 
treatment (e.g. brine), conveyance, and use  
 
DPR 
So for every gallon that exist the reclaimed facility about 10% of water is loss during 
conveyance and only about 75% of water used by resident enters a wastewater treatment 
plant. Once water enter treatment plant 5% is loss during MF and 25% RO.  
Water loss during transportation = 10% 
Water used by consumer = 1-0.1=0.9 
Water entering wastewater treatment plant = .9*0.75= 67.5% 
Water recovered during treatment = 95% (MF)*75%(RO) = 71.25% 
% Recovered = 71.25% *71.25% = 48.1% 
Total amount water recovered (multiplier effect)= 1/(1-% recovered) = 1/(1-.50.8) = 19.2 
 
IPR: 
Water loss to environment, = 50% 
Water used by consumer = 1-0.1=0.5 
Water entering wastewater treatment plant = .5*0.75= 67.5% 
Water recovered during treatment = 95% (MF)*75%(RO) = 36.1% 
% Recovered = 36.1% *71.25% = 26% 
Total amount water recovered (multiplier effect)= 1/(1-% recovered) = 1/(1-.50.8) = 1.36 
 
NPR: 
Water can only be recovered 1 time. 
 

Energy 
 
Electricity Cost Estimates for a 20 MGD plant: 
 

Average electricity use during the life cycle of the systems in kWh/m3 

NPR IPR DPR 

1.259 2.249 0.9075 

 
 
Cost = average electricity cost * volume of water treated *cost of electricity ($/kWh) 
Volume of water treated = 20,000,000 gal/day *365 day/year* 1 m3/264 gal = 2.76E7 (m3/year) 

Cost of electricity = $.135/kWh (EIA) 
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Power Cost (millions) 

=1.2575*20*10^6*0.135*365/264.172 

=1.125*20*10^6*0.135*365/264.172 

=0.91*20*10^6*0.135*365/264.172 

 

Power Cost 
(millions per 

year) 

 $4,691,134  

 $4,196,840  

 $3,394,777  

 
 
Electricity saved by implementing DPR (See recommendations for DPR) 
DPR energy used (kWh/m3) = 0.9075 
For 1,000,000 gallons treated about kWh are used. 
1,000,000 gal *(1 m3/264 gal)= 3790 m3 
So DPR uses = 0.9075 kWh/m3 * 3790 m3 = 3,440 kWh 
So about 3,400 kWh of electricity are used to treat one million gallons 
Thus using only 39% (3,440/8,900) of energy compared to conveyance. So by applying 
DPR Southern California would reduce their energy consumption by 60%  
 
Electricity saved by implementing IPR 
IPR energy used (kWh/m3) = 2.249 
So IPR = 3790 m3 * 2.249 kWh/m3 =8,523 kWh 
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