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Abstract 
 

Chapter 1 describes an overview of electron-transfer reactions.  The 

kinetic equations for ET reactions have also been described in detail.  

Chapter 2 describes a series of novel kinetic accelerations which 

deviate strongly from the predictions of the classical Debye-Huckle theory 

with a range of different added “inert” electrolytes.  The greater catalytic 

effects seen with the heavier halides and other catalytic electrolytes 

(especially certain dicarboxylates) indicate an important role for hole-transfer 

superexchange in the ET transition state.  The hypothesis of a catalytic 

ternary association complex, [RuII--X--RuIII] has also been explored by kinetic 

modeling of the reaction.  An increasing ratio of anion-catalyzed ketx to 

uncatalyzed ket is obtained when proceeding down the halide series.  

Activation parameters show a strong enthalpy-entropy compensation effect 

according to the identity of the added halide.  Interestingly, the enthalpy 

activation decreases successively upon going to the heavier halides and in 

fact ∆H‡ becomes negative in the most extreme case of added I-. 

Chapter 3 describes a detailed study of electrolyte effects on the 

position and band shape of the intervalence charge transfer (IVCT) band of 

dimeric systems in aqueous solution such as (NH3)5RuII-(bis-

bipyridylethylene)-RuIII(NH3)5(5+).  Unexpectedly, the energetics of optical 

electron transfer blue shift upon adding F- but red shift upon adding other 

halides. This interesting observation correlates with the known water structure 

“making” or “breaking” effects of the added halide anions 
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Chapter One  

  

Introduction to Electron Transfer Reactions  

      

Electron exchange between an acceptor and a donor can be described as 

one of the most basic of all chemical reactions. We know that animals and plants 

live by the action of their biochemical respiration and photosynthesis systems. 

These complex reaction networks depend, inpart, on the facile exchange of 

protons and/or electrons at various elementary steps embedded within these 

networks.1  

  

   

Figure 1-1. Examples of various topics relevant to the electron transfer field (see 
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ref. 1)  

From the 1950s onward, the field of electron-transfer (ET) studies became 

one of the most active research areas in chemistry. After its tremendous 

expansion into different applied disciplines (see Figure 1-1) and theoretical areas 

over the past half century, now it plays a fundamental role in efforts towards 

solving some of the urgent problems facing humanity such as the energy crisis and 

environment pollution. Each advance towards a deeper understanding of electron 

transfer also brings potential progress towards solving related problems in 

inorganic, organic, bio-, and physical chemistry.   

Based on the differences in mechanism grasped early on by 1983 Nobel 

laureate Henry Taube,1a ET reactions were found to be divisible into two broad 

categories; “inner-sphere” and “outer-sphere” ET. The inner-sphere mechanism 

was first described by Taube in his elegant experiments using first-row transition 

metal complexes. In the experiment, substitution a labile [Cr(H2O)6]
2+ reductant 

and an inert [CoCl(NH3)6]
2+ oxidant were shown to form a well-organized 

µ-Cl-bridged precursor complex as crucial step in the mechanism. After an 

electron was transferred to form the new inert [CrCl(H2O)5]
2+ and labile 

[Co(NH3)5(H2O)]2+ complexes, the Cl- as a ligand originally attached to cobalt (III) 

was transferred to form a bond with the now kinetically-inert aqueous chromic (III). 

Radioactive 36Cl- tracer ion was used to prove that the transfer of Cl- was from the 

oxidizing reagent.1a The overall reaction is as shown below,  

[CoCl(NH3)6]
2+ + [Cr(H2O)6]

2+ →[CrCl(H2O)5]
2+ + [Co(NH3)5(H2O)]2+   (1-0) 
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In outer-sphere ET reactions, there is no chemical bond breaking or forming 

and there is no direct bridging ligand between oxidant and reductant during the 

electron-transfer process. Libby1e was the first to apply the Frank-Condon principle 

in attempts to explain the rates of self-exchange ET reactions. Marcus3 proposed a 

more complete explanation by reconciling both Frank-Condon and formalized 

energy conservation conditions in his approach and he received the Nobel Prize in 

1992 for his theoretical contributions. He explained that in order for 

thermally-induced electron-transfer to happen stochastic fluctuations along some 

definable nuclear coordinate had to occur. He introduced the important concept of 

the reorganization energy “λ” (which will be further described in the coming 

section) in his interpretation of the factors governing the rate of ET.  

Electron transfer in solution can occur between redox reactants through two 

clearly separable pathways, either optically or thermally (see Figure 1-2). In the 

optical pathway, as the electron donor (2+) and the acceptor (3+) continually 

collide in the solvent and come close enough to each other at times, the overlap of 

their electronic wave functions may be sufficient to allow for radiation-induced 

electron transfer. In other words, there is a probability that a photon of the correct 

energy can be absorbed so as to excite the electron in its HOMO (largely centered 

on the donor) to the LUMO of the acceptor (3+). This spectroscopic absorption 

process occurs rapidly on the timescale of nuclear motions and thus obeys the 

Franck-Condon principle. A pair of high energy intermediates (“λ” above the 

ground state, see Figure 1-3) is generated at this step before they have enough 
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time for any nuclear reorganization (hence the asterisk on the non-equilibrated 

product ion pair in the upper branch of figure 1-2). Finally, the intermediate relaxes 

to products by reorganizing to the appropriate nuclear wave function 

corresponding to the products’ electronic distribution (followed in this case by 

diffusion apart to form separated product ions).   

 

 

Figure 1-2 Schematic illustration of the optical and thermal electron-transfer 

pathways. (The 2+ ion is the “donor” and 3+ is the acceptor) 

 

In the thermal pathway, in the absence of any incident radiation, the electron 

donor and acceptor with different nuclear configurations in the encounter complex 

need to adjust their first and second coordination shells to the same configuration 

and the same total energy as a necessary step towards electron-transfer. The 

overlap of the donor and acceptor electronic wave functions in this encounter 

complex is called the “resonance energy” HAB (see Figure 1-3) and this is what 
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makes it possible for the electron to tunnel from donor to acceptor. This 

electron-transfer step is also an “electronic transition” and thus it is governed by 

the Franck-Condon principle which requires it to happen at essentially constant 

nuclear configuration and momentum. The product ion-pair formed after the 

electron-transfer then relaxes and dissociates to the final separated products. Both 

photo-induced (or “optical”) electron-transfer and thermal electron-transfer were 

studied in the work to be described in this thesis and will be discussed in greater 

detail in the following chapters.  

 In the case of optical electron transfer, the reactants are taken “vertically” to 

the product’s electronic configuration by absorbing a photon which satisfied the 

resonance condition defined by λ (see Figure 1-3). This is called a “vertical” 

process because the nuclei remain fixed on the timescale of the photon absorption 

event (which is on the order of optical frequencies, ~ 10-15 sec). In the 

thermally-activated case, ET happens (at least sometimes, vide infra) when 

stochastic fluctuations bring the reactants to the intersection region on Figure 1-3 

where the zero-order surfaces cross. 
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Figure 1-3 Schematic diagram showing a simple two-dimensional representation 

of potential energy surfaces governing a  true “self-exchange” electron-transfer 

reaction. Here the driving force ΔG0 = 0 and △q is the change in the nuclear 

coordinates between reactants and products. Hab is the electronic “coupling 

element” (or “resonce energy”) between donor and acceptor at the intersection 

region and λ is the nuclear reorganization (or Franck-Condon) energy.  

The bimolecular outer-sphere electron-transfer reaction between 

hexacoordinate metal complexes is shown below 

 

It is the simplest case in deriving the electron transfer rate equation because no 

bonds are formed or broken along the reaction coordinated. Equation 1-1 is 



 7

generally treated as a sequence of identifiable steps,2 

 

In the first step of this thermal electron-transfer reaction, the reactants 

associate to form a “precursor complex” (eq. 1-2). Second step involves an 

electron-transfer step within this precursor complex to form a successor complex 

(see eq. 1-3). The final step is the dissociation for the successor complex to form 

the products (eq. 1-4).    

According to classical electron-transfer theories, electron transfer is required 

to occur at the intersection region of the 3N-6-dimensional potential energy surface 

describing reactants/products/surrounding solvent system where N is the number 

of the nuclear coordinates which respond to the electronic distribution (see Figure 

1-3).9  Any effective orbital resonance interaction between the reactants will 

create a larger distortion of the potential surfaces at the intersection thus causing a 

decrease in the thermal activation energy. If the resonance energy HAB is large 

enough, then electron transfer to occur with unit probability whenever the system 

oscillates into the intersection region (the “adiabatic” case). The first-order rate 
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constant for the electron transfer within the precursor (encounter) complex in the 

high temperature limit is then described as below,  

                      (1-5)
3,4a

 

where nv  is the effective vibration frequency of the reactants (see equation 1-6) 

and is usually taken to about hTkb /  or 1013 Hz,
6,7 and Eth is the activation energy 

for thermal electron-transfer,  

                                    (1-6)
7
 

Here inE  and
 outE  are the (assumed) temperature-independent inner-sphere and 

outer-sphere reorganization energies; inv  and outv  
are the inner-sphere and 

outer-sphere effective nuclear vibration frequencies ( bk  is the Boltzmann’s 

constant and the h is the Planck constant).  

In the classical model, the entropy contribution to the activational energy is 

usually assumed to be negligible, so that Eth (an internal potential energy due to 

nuclear displacement) is then approximately equal to thG* . Marcus3 theory 

describes this activation energy as, 

                                     (1-7)
3,8

 

where thG*  is the free energy required to achieve the activated-complex 

configuration, and 0G  is the thermodynamic driving force of the reaction.   
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The reorganization energy   is considered as the total reorganization 

energy which is composed of two major parts (equation 1-8, 1-9 and 1-10). The 

inner-sphere in  is due to intramolecular bond length and bond angle vibration. 

The outer-sphere component out  is due to solvent-solute interactions and solvent 

dipole-dipole interactions and can be treated approximately using dielectric 

continuum theory (vide infra).   

                                                    (1-8)
2b,8,9

 

          (1-9)
 4a

 

Here the sum and products are taken into account of all ligands bonded to the 

metal center, Mf  and Lf  are the symmetric breathing force constants of the 

metal center and the bonded ligand groups, LMd   is the metal to ligand distance 

change in Angstrom units upon going from reactants to products, and the Q  are 

resulting vibrational partition functions.   

      Applying dielectric continuum theory to the reorganization energy of the 

surrounding medium, both Marcus3 and Hush4b were able to show that out  could 

be approximately as, 
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    (1-10)
 2b,8,9

 

where 0e  is the charge transferred,   and   are the radii of the donor and 

acceptor sites, r  is the separation of the metal centers in the activated complex 

(generally taken as the close-contact distance 2a  + 3a ), n  is the refractive index 

which is equal to rr  (  is the material's relative  permittivity , and r  is its 

relative  permeability ), and Ds is the static dielectric constant of the medium 

which depends on the temperature and density (78.54 for water at 25oC).10 

By considering the “diabatic” case in which HAB is small and electron transfer 

does not occur with unit probability at the intersection region, the electronic 

transmission coefficient el  ( 10  el ) is introduced to link the classical and 

quantum mechanical rate expressions. Eq 1-5 can then be expressed as, 

                 (1-11)11 

  

and el  is given by  

                       (1-12)
11

 

In 1-12 oP12  is the probability for the electron transfer to occur per single passage 

into the intersection and it is quantitatively determined by the resonance energy 

HAB and the slopes of the potential surface (sA, sB) on either side of the intersection 
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region. A weaker resonance interaction between the reactants and steeper slopes 

of the potential curves will mean that the electron transfer probability is less. oP12  

is given by, 

                    (1-13)
12

 

where v  is the average velocity of the system as it moves through the 

intersection and is taken as the Boltzmann averaged velocity (2RT/µπ)1/2 where µ 

is the effective mass.12 

According to Ulstrup,11 BA ssv   is equal to 2/1))((4 inoutn EERTv  . Eq 1-11 

can be written in the “semi-classical”4a form as,  

     (1-14)  

The temperature-dependence of the rate constants of electron-transfer 

reactions is complicated, but relevant information can be obtained from equations 

1-9, 1-10 and 1-14 (the temperature dependence of HAB is not considered here).   

For a self-exchange ET reaction ( 0 oG , and assumed 4/*  G  

where 
*G  is the free energy required to reorganize the reactants prior to ET 

(=  oG )) and according to Brunschwig and Sutin,4a 
*H  (the enthalpic 

contribution to 
*G ) is given by, 

                  (1-15)  
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          (1-16)4a 

        (1-17)4a 

where 
R

in
aE  and 

R
out
aE  are the averaged inner- and outer- sphere 

reorganization energies of all the molecules.  

Nuclear tunneling under/through the activational barrier is considered to be 

negligible at high temperatures (generally including room temperature as well for 

the solvent modes)4a The tunneling correction is only important at low 

temperatures for ET reactions with large inner-sphere barriers. The nuclear 

tunneling factor “ n ” is defined as the ratio of the rate constant at temperature T to 

the rate constant at the high temperature limit, 

                 (1-18)
4a

 

where   in and Ein are the same definitions as in equations 1-5 through 1-10.  

From eq 1-14, the rate constant within the precursor complex is dependent 

on three major terms, the driving force of the reaction, the temperature dependent/ 

independent reorganization energies, and the resonance energy HAB.   

The ET driving force is determined by the redox potential difference between 

the two redox couples in the reaction. The reorganization energy (also called 

Frank–Condon barrier), as described earlier, is the total energy for the nuclear 
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relaxation to equilibrium with the new molecular electronic wave function. 

Importantly, this quantity includes the outer-sphere solvent shell reorganization 

(consisting primarily of charge-mainly dipole interactions) which happens after 

optical electron-transfer (see equation 1-10) or during the course of 

thermally-activated ET. Central to the work to be described in this thesis is the fact 

that added “innocent” or inert electrolyte species can directly affect the rates of 

bimolecular ET reactions by modulating the association equilibrium shown in 

equation 1-2. Additionally, electrolytes can change the structure of water and thus 

affect the solvent reorganization energy  . This will have effects on both thermal 

and optical ET (details of these effects on optical ET topic will be discussed in 

Chapter 3).  

HAB (see Figure 1-3 and equation 1-13 and 1-14) is the electronic wave 

function coupling matrix element between the reactant and product states. Larger 

coupling will favor the electron tunneling which takes the system from the 

reactant’s to the product’s electronic surface whenever thermal fluctuations bring 

the system to the crossing point in Figure 1-3. A larger HAB will thus make the 

electron-transfer reaction faster. The magnitude of this electronic interaction is 

dependent on the detailed nature of the donor and acceptor wavefunctions and 

also the distance between them and the nature of the intervening medium (which 

might be solvent or some covalent bridge or even some electrolyte species). 

Longer separations (as are common in the biological systems such as ET through 

proteins), will slow down ET rate constants exponentially,13 but the presence of the 
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proteinaceous bridging material linking the donor and acceptor is known to 

dramatically increase the ET rate compared to what it would be if only vaccum 

filled this space. Extensive work on inorganic systems9 has shown that providing a 

bridging conjugated system between donor and acceptor can greatly enhance the 

electronic coupling even at fairly large separations.
14

   

 Figure 1-4 shows us a sequential picture of how the relationship between 

the electronic coupling element HAB and the reorganizational energy   affect the 

reaction potential energy surfaces. When HAB is close to 0 (Fig 1-4a), the coupling 

is so small that the system and the probability of ET with each excursion into the 

intersection region is small (see equation 1-12 and 1-13). As HAB increases (panel 

b) there is a moderate interaction between the reactants and the degeneracy of 

the two potential surfaces at the intersection region will be removed and the 

reaction will become “adiabatic” with el  in equation 1-12 tending towards unity. 

Fig. 1-4c is the extreme case when the electronic coupling is so great that it 

exceeds  /2 and the activation energy goes to zero in the “delocalized limit”.9  
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                             (a)  

 

(b)  

 

(c)  

Figure 1-4. Potential energy vs. nuclear configuration for a symmetric 

mixed-valence complex as a function of HAB and    
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For a non-adiabatic electron-transfer reaction where the probability for the 

electron transfer at the intersection region is small, Fermi’s golden rule as modified 

by Levich15, Van Duyne and Fisher16c and others provides us with a quantum 

mechanical treatment for the probability that electron tunneling will take the system 

from one vibronic energy through one energy eigenstate of the reactant’s surface 

to an energy-matched eigenstate of the product’s. The probability per unit time that 

a quantum system in an initial vibronic state “Av” will pass to a continuum set of 

continuum of vibronic levels is given by, 

                  (1-19)
15,16

 

where w  is the density of final states (number of states per unit of energy). This 

is the origin of the factor of HAB
2 in the pre-exponential term in equation 1-14.   

“Quantum superexchange”17 and “electron hopping”18 are two quantum 

mechanisms which are used broadly in explaining the details of long range 

electron-transfer biological in systems.19 For example, an electron “hole” can be 

generated by photoexcitation such that a low-oxidation potential site (such as 

guanine) holds a mobile positive charge carrier (hole) on a strand of DNA. This 

hole can move down the nucleotide chain to another low-potential site for the 

completion of the electron-transfer reaction. In this process, intervening base sites 

such as adenine, thymine, and cytosine can act as bridges between the guanines. 

In the quantum superexchange picture, the electron tunneling between donor and 

acceptor takes place due to the presence of “virtual” states in which either 



 17

electrons or holes (electron vaconcies) are localized on intervening bridge sites. 

The virtual states are not “populated” and have no definable lifetime. They play a 

role analogous to the central barrier in the case of electron tunneling through a 

“rectangular” energy barrier in a well-known modification of the “particle in a box” 

problem.17 This rectangular barrier problem (also known as the double square-well 

problem) is illustrated in Figure 1-5.  

  

   

Figure 1-5. Electron tunneling through a double square-well potential field at 

frequency tunv  between localized states, Eb is the activation energy barrier height 

and R is the tunneling distance.   

  

     In the “hopping” mechanism, electrons or holes actually become localized as 

chemically-reduced or oxidized sites along with the bridging chain or medium. 

These then act as mobile charge carriers and “hop” from point to point along the 

medium between donor and acceptor according to Boltzman statistics.18 

The energies of the “virtual states” in quantum superexchange are analogous 

to the barrier height Eb in Figure 1-5. Superexchange-mediated electron tunneling 
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is mainly affected by two factors, the distance between the donor and acceptor 

and the energy barrier height. It has been shown that the tunneling rate will 

decrease exponentially as the distance or energy barrier height increases. This 

relationship can be described as below, 

                     etk  ∝ tunv  ∝  bER

b

e
E












 1
                (1-20)

19c,20
 

     The electron-transfer superexchange mechanism can occur via two distinct 

pathways; these are “electron transfer” superexchange and “hole transfer” 

superexchange pathways (as mentioned above). Which pathway dominates 

depends on details of the molecular orbital configuration of the bridging medium. A 

high energy HOMO at some point along the bridge can act as an oxidizable site for 

electron “hopping” or as a virtual hole state in quantum superexchanges.  A low 

energy LUMO on the bridge will favor the “electron” transfer superexchange in 

which the virtual state is defined by electron transfer from electronic donor to the 

bridge. Similarly, if the electron actually resides for a finite period on some reduced 

bridge site, then electron “hopping” can be the dominant mechanism. When 

bridges are short, the superexchange mechanism dominates and the 

donor-to-bridge spectroscopic energy gap (which is dependent in part on bridge 

LUMO levels) will determine the magnitude of the “electron” transfer 

superexchange contribution to the observe ET rate. The bridge-to-acceptor 

spectroscopic energy gap will determine the “hole” transfer superexhcange 

contribution. 
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     Previous work in this lab has shown that the rates of like-charge bimolecular 

electron-transfer reactions can be very sensitive to the nature of the anion of 

added electrolytes.21 Some of these added anions appear to provide their catalytic 

effect by establishing a superexchange interaction between donor and acceptor, 

which would otherwise not be there in the intervening solvent medium. Some 

added salts, however, are relatively poor catalysts and appear to enhance ET 

rates simply by the idealized or “innocent” salt effects predicted by Debye-Huckel 

theory. In Chapter 2, we will detail electrolyte effects on the rates of bimolecular 

ruthenium ammine complex electron-transfer reactions. One example of strong 

catalysis is the rate increase observed upon addition of a salt with conjugated 

dicarboxylate dianions such as sodium muconate.21a Similarly, we will describe 

how the rates increase progressively by adding softer (lower first ionization energy) 

halide electrolytes such as bromide and iodide (which catalyze ET much more 

strongly than fluoride).  
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Chapter Two  

  

Kinetic Studies of Aqueous Electrolyte Effects on Comproportionation 

Electron-Transfer Reactions between Ruthenium Ammine Dimeric 

Complexes  

  

2.1 Introduction  

It is well-known that added electrolytes influence the rates of reactions 

between like-charged reactants by weakening interractant Columbic forces (see 

Figure 2-1).1,2  

 

  

Figure 2-1 Schematic illustration of ionic atmospheres surrounding a pair of 

charged reactants and their encounter complex. 

 

In the case shown above, we see that the positively-charged ruthenium reactants 

are surrounded by an “ion-atmosphere” of oppositely-charged ions (and their 

counter ions) as described by the Debye-Hückel (DH) theory of electrolyte effects 
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on activity coefficients.5,6  This ion atmosphere can effectively shield the electric 

fields of the reactants from each other and this decreases the columbic work of 

associating the reactant ions to a close enough distance for the electron-transfer 

reaction to occur.   

In the prototypical ET pseudo-self exchange reaction (1) and bimolecular 

comproportionation reaction (2) shown in figure 2-2 below, 

 

 

 

 

Figure 2-2. Pseudo-self exchange reaction (1) and bimolecular 

comproportionation reaction (2) used in the kinetic work to be described in this 

chapter.  

 

based on the ion-pair pre-equilibrium assumption3 (see eq. 1-2, 1-3 and 1-4 in 

chapter 1), the predicted rate constant for these reaction (1 and 2) can be derived 
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by applying a steady state kinetic analysis,4 expression below, and this results in 

the kinetic rate expression, 

                                                     (2-1) 

where exk  is the predicted second-order rate constant for the overall reaction, 

etk  is the first-order rate constant for ET inside the associated pair, ak  and dk  

are the association and dissociation rate constants for formation of the precursor 

complex , and daA kkK /  is the precursor formation equilibrium constant.  

In the diffusional pre-equilibrium limit, which is defined when etd kk   , eq. 

2-1 becomes,  

                  (2-2)  

  

The DH theory5,6 of salt effects on activity coefficients and ion atmospheres 

makes use of Poisson’s equation and Boltzman’s principle5c to quantitatively 

model this electrostatic interaction energy between a charged reactant ion and its 

ionic atmosphere.  The theory assumes that every reactant ion is surrounded by 

a polarized ionic atmosphere (as shown in Figure 2-1) which has an average 

potential P0 with an opposite sign to that of the reactant ion’s charge (this physics 

applies to non-reactant ions in the solution as well).  The spatial distribution of 

this potential is determined by the ionic strength which will be reduced to a limit at 

infinite dilution as given by the expression,5c 
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                         (2-4)  

where “z” represents the valence of the reactant ion, “e” is the electronic charge, 

Ds is the dielectric constant of the solution, kb is the Boltzmann’s constant, T is 

the absolute temperature, and   is the ionic strength in the form of 


i

ii zc
22/1 (where ic  is the concentration of the ion of the i th sort).  

The DH limiting law which follows from eq. 2-3 and 2-4 above is valid for 

describing the resulting ionic strength dependence of the activity coefficient of an 

ionic reactant at low ionic strength ( <~ 0.0005 M) is as shown below,5c 

                      (2-5)  

where ir  is the activity coefficient of i th reactant ion, and “A” as a 

temperature-dependent constant of the theory (equal to 0.5085 for an aqueous 

solution at 298K) as given by Manov et al.7 

The limiting law will start to fail at higher ionic strength, so the “extended” 

Debye-Huckel law was introduced later and is given by, 

                    (2-6)8  

where d is the effective radius of the reactant ion (or precursor complex such that 

for the encounter complex BA , d=rA+rB) and   is a temperature dependent 



 28

constant of the theory (equal to 0.3281 for an aqueous solution at 298K) as given 

by Robinson and Stokes.8 

As discussed in the chapter 1, for a simple outer-sphere bimolecular 

electron-transfer reaction (eq. 2-7), the mechanism can be broken down into 

steps, 

   

and in this like-charged reactants case, the rate of electron-transfer reaction will 

thus be accelerated by added electrolytes due to the charge-screening action of 

their ionic atmospheres as discussed above .  In 1922, Bronsted9 proposed an 

equation later proven by Bjerrum10 to link the bimolecular reaction rate constant 

with the activity coefficient in the Debye-Huckle expression,  
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                     (2-8)9,11 

where 0
exk  is the overall rate constant at infinite dilution, and  )1(nn BA

  is the 

activity coefficient of precursor complex.   

Thus, the well-known Debye-Hückle-Bronsted equation can be obtained by 

combining eq. 2-7 and 2-9 as shown below, 
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            (2-9)  

Guggenheim12a,b later provided a similar expression to eq. 2-9 but “with certain 

advantage over it” by approximating the “ d ” term to ~1 since d  in the eq. 2-9 
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is often on the order of 3 angstroms.  Thus eq. 2-9 becomes  

GPzzkk nn BAexex  
)1(02.1loglog 0

             (2-10)  

where                        2/1

2/1

1 



GP                        (2-11)  

So, if the Guggenheim approximation applies, we can expect kinetic 

behavior yielding a straight line with slope of )(02.1 )1(  nn BA
zz  for a plot of 

exklog vs. GP  in the case of a reaction between species An+ and B(n+1)+. For the 

two ET reactions studied in this work (Fig. 2-2), we thus predict a slope of 6.12 

for reaction (1) and a slope of 24.5 for reaction (2).  

DH theory was formally derived on the assumptions of point-charge 

reactants at very high dilution.  There can be strong deviations from the theory 

when introducing certain counter ions (ions of charge opposite to the reactants) if 

specific “ion-pairing” take place.12c  The effects of such specific interactions are 

different from the diffuse ion atmospheres considered by Debye and Hückel.  In 

this case, the added ions are able to form either very tight ion pairs with the 

reactants (usually called “contact” ion pairs), or in some cases looser ion pairs 

which still have intact solvation shells for both ions (so-called “solvent-separated” 

ion pairs).  The kinetic effects of added salts capable of forming such ion pairs 

have a quantitatively different kind of impact on reaction rates than the simple ion 

atmosphere screening effect captured by eq. 2-9 and 2-10. In our studies, we will 

consider kinetic effects arising from both simple ionic strength and contact-ion 

pairing interactions.   
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Ion pair association and dissociation constants and the encounter ion pair 

equilibrium constant can be calculated separately using the well known 

Debye-Smoluchoswski13,14, Debye-Eigen14,15 and Fuoss16
 
equations (eq. 2-12 to 

2-14).  

         (2-12)
13,14,17

 

       (2-13)
14,15,17

 

                     (2-14)
16,17

 

where kB is Boltzmann’s constant, N is Avogadro’s number,   is the solvent 

viscosity (8.9 x 10-4 kg/m*s for water at 298K), ra and rb are the radii of the 

reactant ions in Angstroms, d = ra + rb, Ds  is the static dielectric constant of 

medium, R is the molar gas constant (8.3145 J K-1 mol-1), and ),( rw  is the 

“work term” which describes the free-energy change required in order to bring the 

changed reactants together from infinity. ),( rw can be expressed from 

Debye-Huckel theory6 and can be simplified as, 

            (2-15)
18  

 

where e2 is the square of the elementary charge (taken as 1.388 x 106 J/mol),   

is the Debye inverse length and is 0.329 A-1M-1/2 for water at 298K, and Za, Zb are 
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the (integral) ionic charges of the reactants. 

In 1949, Olson and Simonson19 observed that the salt dependence of rates 

of reaction between ions is not in always due solely to the added ionic strength, 

but in some cases depends more directly on the simple molar concentration of 

one of the ions of some added salt. For reactions between like-charge reactants, 

the Olson-Simonson rate effect is found to depend on the concentration of the 

opposite charged ion of the added salt.  For reactants of opposite-charge, the 

rate will usually be dominated by one type added ion though both charge types 

may affect the rate.  Olson-Simonson type behavior is now taken as an 

indication that some kind of specific ion-pairing interaction is affecting the rate as 

salt is added.  An empirical equation was proposed by Olson and Simoson to fit 

a variety of experimental data.  The idea was to consider the overall rate 

constant of the reaction as the sum of two fractions of rate constants occurring 

through different pathways, one from the ion-paired species and another from the 

non-ion-paired species. Their expression was,19-20 

               (2-16)  

where Kip is the ion-pair formation constant for the 1:1 pairing between one (or 

both) reactant ions and its various counter ions, and knip and kip are the ideal rate 

constants for the non-ion-paired and 100% ion-paired reactive pathways. Based 

on eq. 16, a prediction can be made that plotting ][XKip  vs. ])[1( XKk ipex  will 

give a slope of kip and an intercept of knip.  
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The Olson-Simonson effect has now been observed for a number of 

electron-transfer reactions between ions with the same sign. Rampi et al. 21 

showed the kinetics of the excited-state quenching reaction between *Ru(bpy)3
3+ 

and Co(sep)3+ (called cobalt sepulchrate22) with different added electrolytes was 

correlated directly with the nature and molar concentration of the added anions 

and not with ionic strength (or GP).  For expample NaCl, BaCl2, and LaCl3 gave 

apparently different electrolyte effects on the rate when plotted as logkq vs. GP, 

but showed no difference if plotted as logk vs. [Cl]-.21  When salts of different 

univalent anions such as F-, Cl-, Br- and ClO4
- were added they showed that the 

rates of the electron-transfer quenching reaction depended remarkably on the 

nature of the anions.  The accelerating effect on the rate was found to follow the 

order F- <Cl- <Br- (see also ref. 23).  Chiorboli24 also showed that the quenching 

rate constant for a similar reaction was in better correlation with [Cl-] than with 

ionic strength.   

In chemical reactions, rates generally depend on temperature exponentially. 

At high temperature, the reacting molecules have greater energy to cross the 

activation barrier.  The relation between rate constant and the absolute 

temperature can be described by the empirical Arrhenius equation25 arrived at by  

Jacobus van't Hoff and Svante Arrhenius in 1889 as given by, 

                       (2-17)  

where Ea is the activation energy and A is the pre-exponential factor. It is 

important to note that this equation was developed on the basis of empirical 
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observations and trial-and-error mathematical modeling and does not incorporate 

detailed mechanistic considerations such as the existence of reactive 

intermediates which might be involved in the overall reaction.26   

Transition State Theory (TST)25 developed by Henry Eyring and Michael 

Polanyi in 1935 provides a first-principles description of how chemical reactions 

proceed through some high energy critical geometric configuration known as the 

“activated state” or “activated complex” or “transition state”.  Eyring included an 

important feature into the TST by showing that the rate is proportional to the 

effective frequency (approximately hTkb / ) with which reactants are converted to 

products once the transition geometry was been reached.27 This formulation is as 

shown below,  

 K
h

Tk
k b                       (2-18)27 

where   is the “transmission coefficient” and K  is the equilibrium constant for 

formation of the high (local maximum) energy activated complex.   

From the standard thermodynamic definitions, we can write,  

                         
RTGeK /                     (2-19)  

and                           

  STHG                   (2-20) 

where H  and S are the activation enthalpy and entropy (by convention we 

use the superscript “  ” to indicate that rate eq. 2-18 is being used). In the 

context of ET reactions, eq. 2-18 can be written as,  
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RTHRSb
elex ee
h

Tk
k //                (2-21)  

To understand the relationship between rate constant and temperature, we can 

divide both sides of eq. 2-21 by T and then take the natural log of both sides to 

obtain:  
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 )ln(ln             (2-22)  

Thus, an “Eyring plot” of lnkex/T vs.1/T can be used to obtain the activation 

enthalpy and entropy information from its slope ( RH / ) and intercept 

( RShkbel /)/ln(  ), respectively.  In multi-step reaction mechanisms, such as 

the pre-equilibrium limit of the bimolecular ET reactions to be described here, 

modifications can be necessary and it may become important to replace the “ ” 

of TST with the more general acitvational superscript “ ”.  This will be explained 

later in this chapter when we address the role of specific ion-pairing catalysis of 

reaction 2 by added halide and other anions.  The origin of the anion-catalysis of 

reaction 2 will be discussed in the context of solvation energy effects and 

presumed quantum superexchange interactions taking place in the precursor 

complex of the ET reaction (similar to those already reported on and analyzed by 

Inagaki et al.12c and Chen37 and Sista41 of this laboratory).  As will be shown, 

reaction 2 behaves similarly to reaction (1) in many respects, but the quantitative 

application of eq. 2-9 fails (probably due to the rod-like geometry of the dimer), 

and in the case of iodide as added salt we find the very unusual occurrence of a 

distinctly negative enthalpy of activation.  



 35

 

2.2.1 Synthesis of Ruthenium Complexes  

  

Chloropentaammineruthenium(III)dichloride (FW = 292.62) was synthesized 

according to the method of Vogt et al.28  Rutheniumtrichloride hydrate (5.0g, 

Aldrich) was mixed with distilled water (62.5 mL) in a 1000 mL round-bottom flask 

with a ground glass joint.  In a fume hood, 62.5 ml of hydrazine monohydrate 

(N2H4 64-65%) was added slowly over a period of 10 min into the stirring mixture 

which was pre-cooled in an ice bath.  A dark purple solution was formed after 

continuous stirring of the mixture for 4 h at room temperature.  The flask was 

cooled to around zero degrees in an ice bath, and then 125 mL of 12 N HCl was 

added slowly (dropwise in the beginning) to the mixture over a period of 20 min.  

After the vigorous exothermic reaction had subsided, the solution was then 

heated at reflux for 2 h and then chilled to 0 oC gradually for maximum 

crystallization.  The yellow-colored product was collected by filtration and 

washed with 0.1 M HCl (10-15 mL) and acetone (20 mL), and finally dried in a 

vacuum desiccator. Yields were 60-70%.            

  

Aquopentaammineruthenium(II)hexafluorophosphate (FW = 494)  was 

synthesized based on a modification of the method of Baumann.29-30  

[(NH3)5RuIIICl]Cl2
 
(0.15 g) starting material was reduced by ~1.5 g of Zn/Hg 

amalgam in ~6 mL argon-degassed, distilled water which was being agitated with 

bubbling argon.  A pale yellow solution of ruthenium(II) aquopentaammine 
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formed in 10-20 min indicating that all of the ruthenium(III) chloropentaammine 

had been reduced.  The [(NH3)5RuII(H2O)2+ solution was filtered under an argon 

blanket into a 10 mL Erlenmeyer flask containing five molar equivalents of solid 

NH4PF6
 
for the maximum precipitation of the product.  Larger amounts of 

NH4PF6
 
precipitated undesirable white-colored zinc complexes.  The flask was 

capped and swirled for a few seconds, then chilled to 0 oC in the freezer for 30 

min to maximize crystal formation.  The pale yellow compound was collected by 

rapid filtration under a blanket of argon and dried in a vacuum desiccator after all 

the mother liquor had drained. Yields were 95-98%.  

  

µ-L-bis(pentaammineruthenium(II))hexafluorophosphate (L= 4,4′-dipyridyl 

(BPY), 4,4′-dipyridylethylene (BPE)) was prepared and purified by modifiying 

the literature methods.31,32  A 30-40 mg sample of ligand was dissolved in ~8 mL 

of thoroughly argon-degassed acetone to which ~250 mg of 

[(NH3)5RuII(H2O)(PF6)2 in 2.5:1 stoichiometry with respect to the bridging ligand 

was added.  This mixture was allowed to react under argon at room temperature 

for about 2-3 h.  The acetone solution containing the crude product was mixed 

with 2 equivalents NH4PF6
 
and about 10 ml of distilled water in a 50 mL 

round-bottom flask for rotory evaporation at room temperature.  The oxo-bridged 

ruthenium and monomer impurities from the reaction mixture remained dissolved 

in the water giving it a grape-wine color, and the purple-black product precipitated 

out upon evaporation of the acetone from the mixture. The product should be 

reisolated 2-3 times using this acetone/NH4PF6/water method.  An 
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acetone/ether re-precipitation method was used as a final treatment to purify the 

dimer products prior to analysis for purity and subsequent kinetic or 

spectroscopic work.  The binuclear ruthenium(II) complex was dissolved in a 

small amount of acetone (~15 ml) in an Erlenmeyer flask and then 

near-quantitatively precipitated out by slow addition of ~4 volumes of ether.  

This final product was filtered by suction filtration and dried in a vacuum 

desiccator.  The final dimer product was judged to be pure only when the max  

values of the MLCT bands were at 542 nm for 4,4′-dipyridyl (BPY) complex, and 

at 568 nm for 4,4′-dipyridylethylene (BPE) complex (both measured in acetone). 

Final yields were 70-80%.  Calculated CHN microanalytical data for the BPE 

dimer: C, 12.70; H, 3.55; N, 14.82.  Found: C, 13.06; H, 3.20; N, 14.42. 

Calculated CHN microanalytical data for BPY dimer: C, 10.83; H, 3.46; N, 15.17. 

Found: C, 10.47; H, 3.11; N, 15.07.  Note: It has been shown previously that the 

MLCT max  values of these binuclear complexes shift to shorter wavelengths if 

synthesis is followed by reduction of a RuIII complex as starting material using a 

strong reducing agent such as Zn/Hg amalgam.33 

  

µ-L-bis(pentaammineruthenium(II))tetrachloride (L=4,4′-dipyridylethylene, 

4,4′-dipyridyl) was synthesized by dissolving ~100 mg of the purified PF6
- salt of 

the (II,II) dimer in ~100 mL reagent grade acetone.  Slow addition of dry 1/32 

saturated TEACl (tetraethylammonium chloride) which was dissolved in a mixture 

of water-free acetone and methanol (7:3) gradually precipitated the purple 
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chloride salt of the II,II dimer product. TEACl addition was continued until most of 

the original dimer had come out and the color of the remaining solution was a 

light purple.  The purple-black precipitate was collected by suction filtration, 

washed with 5 ml of reagent grade acetone (repeated 3 times washing) and then 

dried in vacuum desiccator.  The electrochemical and UV-vis-near-IR spectral 

properties of the chloride salts of these (II,II) dimer products in water agreed with 

literature reports.31  Note: these pure chloride products cannot be dissolved in 

acetone. For the 4,4′-dipyridylethylene complex, impurities (possibly the 

[(NH3)5RuII]2BPE(PF6)xCly) mixed salts were also precipitated out, if there was not 

enough TEACl added during the precipitation or if insufficient acetone was used 

to dissolve the PF6
- salt. This impurity shows a red purple color in water. Such 

mixed salts can be salvaged by repeating the acetone/NH4PF6/water purification 

method described previously. Typical yields were 98%.   

  

µ-L-bis(pentaammineruthenium(III))hexachloride (L= 4,4′-dipyridylethylene, 

4,4′-dipyridyl) was synthesized by dissolving ~30 mg of [(NH3)5RuII]2LCl4 in 

~6mL HCl solution (0.1 M HCl for 4,4′-dipyridylethylene complex, and 1.0 M HCl 

for 4,4′-dipyridyl complex).  The purple ruthenium (II,II) solution was then 

oxidized to the dark orange (III,III) dimer (L=BPE) or the yellow (III,III) (L=BPY) 

solutions by adding 3-4 drops of 30% H2O2
 
(note: more concentrated HCl or a 

larger amount of H2O2 can introduce some impurities due to too-strongly oxidizing 

conditions for the BPE complex).
.
  The product was precipitated by slowly 
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adding ~50 mL of reagent grade ethanol with stirring.  The flocculent precipitate 

was collected by suction filtration and dried in a vacuum desiccator. The yields 

were 90-95%.  The purity of the compounds was checked by the UV-Visible 

spectroscopy by first reducing the (III,III) complex over ~1 g Zn/Hg amalgam for 

~10 min (which gives superior reproducibility compared to added hydrazine as 

reductant) and then using the known λmax and εmax values of the (II,II) dimers 

to infer the purity of the chloride salt products.   

  

2.2.2  Synthesis of the Sodium Salts of the Dicarboxylic Acids  

  

Sodium trans,trans-muconate, and adipate  were prepared by mixing ~1 g of 

the dicarboxylic  acid with ~100ml deionized water. The pH of the solution was 

adjusted to 6.5 by slowly adding 0.1 M NaOH solution.  The solution was filtered 

and the sodium salt was then precipitated by slowly adding the filtrate into a 

stirring ~5-fold volume excess of reagent grade acetone.  The products were 

collected by suction filtration and dried in a vacuum desiccator. Yields were 

95-98%.  
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2.3 Stopped-Flow Kinetic Spectroscopy   

 

Stopped-flow kinetic spectroscopy is the most popular rapid-mixing tool used 

for fast chemical kinetics studies in solution.34  Small volumes (typically 0.5-1.2 

ml) of “run” solutions are driven from syringes using external (pneumatic) forces 

and are rapidly mixed as they flow into a stopping syringe/trigger assembly.  As 

the freshly-mixed solution replaces the old solution (from some prior shot) in the 

optical cell, the expelled solution pushes the plunger of the stopping syringe out 

so as to activate a microswitch which initiates data collection.  Within a few 

milliseconds the real-time kinetic signal is generated as monochromatic light of 

some carefully-selected wavelength passes through the reaction cell and is 

received by the detector.  The time-varying photo-voltage as reaction proceeds 

is picked up using an A/D board interfaced to a computer and the data are finally 

plotted into a voltage vs. time graph.  Detailed illustrations of the Cantech TDI 

MarkIV stopped-flow apparatus used have been given by Chun,35 Eskandari36 

and Chen.37  In this work we used a Keithley KPCI-1301 A/D board and the 

ExeLINX software utility for data collection in Windows98 (vide infra). 

The great advantage of the stopped-flow instrument as compared to simple 

mixing in a cuvette is its short mixing and “dead” time.  Depending on 

construction and solution viscosity, this is often in the range from 0.3 milliseconds 

to a few tens of milliseconds.39  This dead time, which is specifically the time 

between the end of the mixing and the beginning of the kinetic data collection, is 

affected by a few factors, such as the electronic trigger delay time, the solution 
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flow rate, the distance from the mixer to the reaction cell, and the detector 

response time.  The electronic trigger delay time was proven to be negligible 

with our apparatus compared to the half life of the fastest reactions in our 

previous study by Chun.32  More importantly, careful mixing experiments with 

our instrument (see figure 2-3) shows a maximum time interval of 30-40 ms from 

the beginning of mixing the reagent solutions to the beginning of the useful data 

generation (note the 12 points taken during the “push” recorded at ~1 sec in the 

figure).  Thus we see that it is very important to optimize the distance between 

the mixer and the reaction cell in order to eliminate the time wasted during the 

travel of the solutions.   
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Figure 2-3. A stopped-flow kinetic data trace generated in “free-running” mode 

by starting on “command” instead of “digital trigger” using ExceLINX program 

(figure 2-4).  The time interval of each data point here is 3.3 ms (f = 300 Hz).  

Point A shows where the reaction solutions start moving the old solution out of 

the cell and point B shows where the freshly-mixed solution is stopped in the cell 

and begins to react according to reaction (2).  The total mixing interval of 30-40 

ms would require that kinetic half-lives be on the order of as least 150 ms for 

good quantitation of rates. 
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Figure 2-4. KPCI-1301 A/D board control panel parameters setup within the 

ExceLINX extension of Excel provided by Keithley 
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Photodetection  

The photo-detector used in our experiments was built by Dr. Jeff Curtis.  It 

is consisted of a silicon photodiode (Edmund Scientific 100 mm2 blue-sensitive) 

running in unbiased mode amplified by the circuit shown in Figure 2-5.   

  

.

   

Figure 2-5. Circuit diagram for the photo-detection amplifier used in our 

stopped-flow apparatus (with R = 15 MΩ and C = 22pf).  

  

The electronic response time of the photodetector contributes to our 

effective stopped-flow dead time and thus limits the time resolution.  To study 

the roll-off frequency of the circuit, we challenged the response limit of the circuit 

by directing a variable frequency pulsed light source onto the photodetector.  As 
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the frequency is varied from low to high, the detector eventually fails to record the 

full voltage signal and shows an attenuation at high frequency.  The roll off 

frequency (f3db) was measured by the experiment (Figure 2-6) and also 

calculated from the following (approximately applicable) RC circuit equation,    

                                           (2-21)
39

 

where R is the resistance and C is the capacitance in the feedback loop of the 

amplifier. Gain (or attenuation) in decibels for any such circuit can be expressed 

as,  

                                             (2-22)
14

 

where V1 is the voltage output being measured and V0 is a specified reference 

voltage (in this case the photovoltage due to pulsed light source delivered at low 

frequency)  

The calculated roll off frequency is in reasonably good agreement with the 

value experimentally measured.  From our pulsed-light source experiments, a 

maximum detection frequency of 300 to 350 Hz was indicated for obtaining 

accurate time fluctuations in photo-voltage signals arriving at the detector.  This 

translates to an electronic a dead time of ~ 3 ms which would then contribute to 

the scan rate limit of the instrument.  This limitation was clearly less severe than 

the 30-40 ms mixing time measured in our free-running mixing experiments 

described in Figure 2-3.   
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Figure 2-6. Experimentally observed Bode plot for the photo-detector/amplifier 

shown in Figure 2-5. From this graph, f3dB = 562 Hz at -3 dB which corresponds 

to ~70% of the inputted V0 (f3dB was calculated to be 482 Hz using equation 2-21)  

  

Light Source  

Stopped-flow experiments require that the reactants and products have 

different extinction coefficients at least some wavelengths so that a time-varying 

absorbance signal (or “color change”) can be monitored as a reaction proceeds 

from the beginning (when the solutions are first mixed in the instrument) to the 

final equilibrium at t .  The kinetic information is contained in the changing 
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voltage signal which is subsequently converted into the time-varying absorbance 

change and finally the reactant/product concentration changes taking place 

during the reaction.  Different light sources are applied to specific reactions 

depending on the wavelength of maximum absorbance change. This is true 

either for pseudo-self-exchange reaction (1)35,36 or for comproportionation 

reaction (2).37   

To determine the most appropriate monitoring wavelength region for a 

given reaction, the UV-Vis absorption spectra, dominated by the 

metal-to-ligand-charge-transfer (MLCT) bands in our case for both the reactants 

and the products, were measured using a Cary 5G UV-Vis spectrophotometer.  

The maximum absorbance change for pseudo-self-exchange reaction (1) was 

found to be at 422 nm, 41 and for the comproportionation reaction (2) it was found 

to be at 645 nm (see Figure 2-7).   

The light source for reaction (2) was built by connecting a 6 V red LED with 

a narrow-bandwidth optical interference filter from Edmund Scientific (Lot Code# 

1-37-05).  Only a narrow range of wavelengths of light from 640 nm to 660 nm 

were allowed to pass through the reaction cell to gain the most useful kinetic 

information of reactions.  The intensity profile of the light source was measured 

using a CHEM2000-UV-VIS Miniature Fiber Optic Spectrophotometer (Ocean 

Optics, Inc., see Figure 2-8). An Agilent 8453 diode array UV-Visble 

Spectrophotometer (Agilent Technologies, Inc.) was used to characterize the 

interference filter (Figure 2-9).   
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Figure 2-7. Red line: difference spectrum (products-reactants) arising from 

reaction (2) in water; bottom blue line: BPE dimer (III,III) at 10-4 M; top blue line: 

BPE dimer (II,II) at 10-4 M; black line: mixture of BPE dimer (II,II) solution (10-4 M) 

with the same number of equivalents solid BPE dimer (III,III).  

  

 

 Figure 2-8. The intensity profile of the filtered light source as measured by an 

Ocean Optics fiber optic spectrophotometer using OOIBase32 software.    
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Figure 2-9. Transmittance of the filter used in construction of the light source as 

measured by a diode array spectrophotometer.   

  

Stopped-Flow Kinetic Data Collection and Processing  

  

Preparation for the experiments  

Stopped-flow kinetic experiments especially at low ionic strength proved to 

be very sensitive and difficult to control.  Thus, careful and consistent run 

solution preparation work was indispensable in order to get reproducible data 

from the instrument.   

First, the instrument (including the sample reservoirs, driving syringes, 

mixing chamber, and the observation cell) was washed with 4 M nitric acid for 

about 15 min.  The acid was rinsed out with distilled water until the pH of the 

drained water is close to 6.5.   

Second, all volumetric flasks and/or graduated cylinders used for preparing 

the reagent solutions were made of plastic.  This was because previous work by 
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Sista41 had shown that there were large positive apparent deviations of the 

reaction rate constant when measured at concentrations lower than ~10-4 M if the 

stock or run solutions had been exposed to glass surfaces for more than a few 

seconds.  Evidently, exposure to glass gives rise to some strong catalyst which 

speeds up the reaction rate by up to 10 times. Further discussion on this topic will 

be presented later in this section.   

The temperature of the instrument was adjusted to the designated value for 

a specific experiment using a VWR 1165 Refrigerated Constant Temperature 

Circulator.  The coolant used in our experiment was a 50:50 mixture of distilled 

water and antifreeze.  The coolant was kept circulating during the stopped-flow 

experiments, so that the experimental temperature was correlated as closely as 

possible to the temperature of the coolant.  Exact temperature readings at the 

cell were obtained by a platinum digital thermometer (VWR Scientific Model# 

100A) which was in direct metal-metal contact with the thermal block holding the 

reaction cell.       

All circuit connections (light source, photodetector, A/D board) were 

checked carefully to make sure they were correct before connecting to any power. 

The LED light source was connected with a 6 V battery and detector was 

connected with two common-ground 12 V batteries so as to supply ±12 V to the 

photodetector circuit.  The batteries must be fully charged and at the same 

voltage level. The circuit was connected for at least 10 min so as to yield a stable 

voltage with just water in the cell before the measurement.  The AIO Panel of 
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the Keithley software was used to check the electrical noise and signal levels.  

The signal voltage (obtained by toggling the light source on/off) should be less 

than 10 V and the noise voltage should be less than ±10 mV.   

All solutions were prepared with distilled, deionized reagent water 

(purchased from EMD, cat NO. 34172-073) to minimize catalytic effects of any 

ions in the water.  All run solutions were prepared twice as concentrated as the 

objective reactant solutions because the two run solutions dilute each other by a 

factor of two upon mixing.   

  

Running the experiments  

When the solutions were ready for experiments, the run solutions were 

carefully transferred into the two plastic reservoir syringes.  Next, the two 

solutions were drawn into the drive syringes by slowly pulling back the plungers 

of the syringes with the 3-way valves in “fill” position.  The 3-way valves were 

then switched to “run” position so that the solutions could be mixed by pushing 

the drive syringes.  Even if this step was done very slowly, it was still possible to 

introduce some air bubbles inside the instrument.  Bubbles can be cleared by 

pushing the drive syringes back and forth slowly with the valves on “fill” until there 

are no more air bubbles coming out.    

Once the solutions were mixed, the collection of the voltage signal from the 

photodetector was triggered and the voltage vs. time data were passed through a 

Keithley STP-36 terminal box on to a Keithley KPCI 1301 A/D board. The signal 
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was finally recorded into digital data by an ExceLINX program.  Detailed 

procedure of using the software has been described by Chun,35 Inagaki, 36 Chen, 

38 and Sista. 41 

  

Data Processing and Rate Constant Determination  

The raw stopped-flow data recorded on the Excel sheets were in voltage vs. 

time.  In order to be fitted by the second-order kinetic rate equations so as to 

extract the rate constant, the data were converted into absorbance vs. time using 

the equation shown below,  

)/(log)/(loglog 01001010 VVIITA tt                (2-23)  

where  A is absorbance, T is the transmittance, It and Vt represent the current 

and voltage at time t, I0 and V0 represent the current and voltage for the pure 

solvent (which must be measured and recorded prior to each set of runs). 

SigmaPlot 10.0 software was used for these data conversions and the kinetic 

fitting, and detailed procedures have been described by Chen37 and Sista.41   

Pearson42 and Pladziewicz43 proposed two similar methods of deriving the 

rate equations for second-order reversible reactions such as the ones studied 

here.  The different forms of equations described by them were obtained by 

using different initial concentration conditions during the integration steps. King44 

has shown that using different integrated equations for different initial 

concentration conditions is unnecessary.  Both methods were used in our 

calculation of the second order rate constant and proved to give the exact same 
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results. Details of the derivation of the fitting equations are described bellow.  

       For the second-order comproportionation reaction (dimer case) used in our 

work, we can write,  

                         

where A = [RuII, RuII] and C = [RuII, RuIII] are “colored” species and B = [RuIII, 

RuIII] is colorless. Since we at all times kept [A] = [B], we can let the initial 

reactant’s concentrations be denoted by Ru0.
 
 Xe can be thought of as the extent 

of reaction at equilibrium and will denote the change in concentration of each of 

the reactants at equilibrium. The equilibrium constant Keq can then be expressed 

as: 

                                                  (2-25) 

We can solve for Xe by taking the square root of both sides and taking the 

positive solution of the equation, or by reorganizing the equation in order to solve 

it using the quadratic formula as follows,   

                                 (2-26) 

             (2-27)  

Because Ru0 > Xe, equation (2-27) can be simplified to   

                     (2-28) 
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If we then define w  and Q  as,  

                                    (2-29)  

                                                      (2-30) 

Then equation (2-28) for calculation of Xe becomes, 

                      (2-31)  

Concentrations of species A, B, C in equation (2-24) at any time t can be 

represented by [A]t, [B] t, [C]t, and their equilibrium values by [A]e, [B]e, [C]e. By 

denoting [A]t = [A]e + △t (△t is the concentration “distance” from equilibrium at 

time t), and integrating the rate equation of the reaction  

   

we obtain, 

 

(2-32)
43

 

Substituting (2-29), (2-30) and [A]e = [B]e = Ru0 - Xe into (2-32), it can be 

rearranged to, 

  

(2-33)  

We know [A]t = [A]e +△t  and [C]t = [C]e - 2*△t   
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In order to get the constant (denoted “C” in 2-32), we set t = 0, so we have 

[A]0 = [A]e + △0 and [C]e = 2*△0 (thus △0 = △max = Xe = Ru0 *Q). Rearranging 

(2-33), we obtain, 

                                       (2-34)  

By denoting eqKQRuQRuB /*8)1(2 00  , Equation 2-33 becomes  

                (2-35)  

By denoting   

                (2-36)  

Equation (2-35) can be rearranged as, 

                       (2-37)  

We know that the concentration of a given reactive species is often in direct 

proportion with other system properties (such as absorbance, conductivity, vapor 

pressure etc.). In stopped-flow spectroscopy, we use absorbance and Beer’s law 

and so we write,  

                     (2-38)  

where Af, Ai, At are the absorbances at the final, initial and intermediate (time = t) 

states. By denoting V = △ t and employing equation 2-13, (2-38) can be 

rearranged to,  
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                                               (2-39)  

Now we fit the experimental At values by finding the optimum kf in SigmaPlot 

using the user-defined regression utility setup as shown in Table 2-1. 

Equation  Variables  

Keq=     

Ru0=  

Af=     Ai=  

W=1-4/Keq  

Q=(1-(1-W)^0.5)/W  

C=ln(Q/(Q*W+2*(1-Q)+8*Q/Keq))  

B=2*Ru0*(1-Q)+8*Ru0*Q/Keq  

E=exp(-kf*B*t+C)  

V=E*B/(1-W*E) 

h=V*(Ai-Af)/(Ru0*Q)+Af          fit h to abst  

t = col(1)  

abst = col (4)  

Initial parameters  Constraints  Options  

Iterations: 18000 

Step size: 25  

kf=  

Ai=  

kf > 100  

Tolerance: 0.0000010 

 

Table 2-1. Regression transform used for fitting the comproportionation reaction 

stopped-flow kinetic data. 



 57

For the pseudo-self-exchange reaction (monomer case) used in our study, 

the reaction can be written as, 

  

The Xe can be obtained the same way as described above for the dimer case 

(see equation 2-27). Following the method described by Pearson,33 we will 

integrate the rate equation, 

]][[]][[/ DCkBAkdtdX da                  (2-41) 

where X is now the extent of reaction at any time t,   

                                                                (2-42)  

Substituting [A]0 = [B]0 = Ru0 (equal initial concentrations) in (2-42), and 

rearranging we obtain, 

         (2-43)  

At this point we define quantities C and E as,             

                           (2-44)  

                                                  (2-45)  

and substituting them in Equation (2-43), we obtain,  

                       (2-46)  
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Assuming applicability of Beer’s law over our range of absorbances, we know 

that, 

                (2-47)  

and after rearranging we get, 

                                           (2-48)  

The Sigmaplot template used for user-defined regressions (fitting the 

experimental At values with optimum kf via equation 2-48) is as shown in the 

following table. 

 

 Equation  Variables  

Keq =  Ru0 =   Af =   Ai =  

W=1-1/Keq   Q=(1-(1-W)^0.5)/W  

Xe=Q*Ru0   C=2*Ru0*(Ru0-Xe)/Xe  

E=exp(kf*C*t)  

X=(Ru0*Xe*(E-1))/(Ru0-2*Xe+E*Ru0)  

h=X*(Af-Ai)/Xe+Ai    fit h to abst  

t = col(1)  

abst = col (4)  

 

Table 2-2. (above) User-defined regression setup and functions for pseudo-self 

exchange monomer reaction (most parameters are defined similarly as in Table 

2-1) 
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Since the BPE dimer RuII-RuIII is not long-term stable in solution because it 

can be oxidized slowly when exposed to the air,31 the absorbance vs. time graph 

of Reaction (II) showed a very small dropping tail after the reaction reached 

equilibrium.  Even though the oxidation process was negligibly slow compared 

with the ET reaction rate, the slightly bent tail caused difficulty in fitting of the data 

at long t.  An average of three spectra (from multiple shots in stopped-flow 

experiments) was used for fitting to obtain the rate constant.  If the slight 

decrease in Af was still observed after averaging the data after maximum Af was 

reached (where the curve flattened) were deleted so that fitting became possible.  

Deleting long-t sections of decreasing absorbance data in the graph (typically a 

problem only at times longer than 60 sec) and adjusting the final absorbance 

value (Af) in the fitting transform led to nearly perfect fits of the data in most 

cases (vide infra). (Figure 2-10).   
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Figure 2-10. A kinetic fit (black line) of a typical stopped-flow dimer reaction data 

(green line) in SigmaPlot 10.0 software.  

 

Stopped-Flow Experiments on Added-electrolyte Effects 

In these experiments, either monomeric ruthenium(III) or dimeric [RuIII, RuIII] 

stock solutions and electrolyte “stock solutions” at the designated concentrations 

(the reactant stock solutions were usually ten times concentrated as compared to 

the run solutions) were prepared and then combined and diluted so as to arrive at 

the “run” solution concentration.  The ruthenium(II) solution was prepared as a 

single 30-40ml run solution for a given series of stopped-flow experiments and 

used without further dilution.  All ruthenium solutions should be kept in the dark 
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to avoid photo-decomposition. 

The first data point in all studies was for the no “inert” or “spectator” added 

electrolyte case, just the pure II,II and III,III ruthenium dimer solutions.  The 

ruthenium run solutions were prepared from the stock solution by simple dilution 

methods.  Digital transfer pipets with standard plastic tips (200mml and 

1000mml) were used to transfer an accurate amount stock solution into an empty 

plastic volumetric cylinder (3 mL is the minimum volume of the run solution 

required for running a stopped-flow experiment).  Deionized reagent-grade 

water stored in plastic was used throughout. After preparation, a volume of 3-5ml 

of each of the two ruthenium run solutions was transferred into one of the 

reservoir syringes of the stopped-flow instrument.  These were then rapidly 

mixed and spectrophotometrically monitored in the machine at the controlled 

temperature of 22
o
C as described in references 35, 36 and 37.     

The ruthenium II,II BPE and BPY dimer solutions were found to be slightly 

light sensitive.  They should be covered with aluminum foil and stored in a 

cabinet before using. Also, the RuII-RuII dimer solution can be oxidized slowly to 

RuIII-RuII and RuIII-RuIII by exposure to the air.  For this reason, the RuII-RuII 

solution should be protected by a blanket of argon and sealed with parafilm.  

The various added-electrolytes to be studied in a given experiment were added 

to the ruthenium(III) reactant solution so as to minimize the exposure of the 

ruthenium(II) solution to the air.  A disadvantage of this was that it exposed the 

Ru(III) oxidant to the possibility of reduction by the added salt’s anion. Iodide (I-) 
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was the strongest reducing electrolyte used in our experiments, and it showed 

only a very small reducing effect on the ruthenium(III) solution even at [KI] = 1mM 

in simple mixing experiments (see Figure 2-11).  This effect was negligibly small 

(<1%) compared with the absorbance change due to the ET reaction between 

ruthenium complexes.  In the temperature-dependant (Eyring) kinetic 

experiment involving fixed I- concentration, the I- was added to the Ru(II) and 

Ru(II,II) reactant solution so as to avoid this problem completely.   

  

 

Figure 2-11. Mixing RuIII-RuIII BPE dimer solution (at 10-4
 
M concentration) with 

KI solution (at 10-3
 
M concentration, high end of experimental range for most of 

our added I- studies) in stopped-flow instrument.  The eventual change in 

absorbance was ~0.0012, while the RuIII-RuIII BPE dimer reaction solution at 10-4
 

M had an absorbance change of about 0.13.  
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It is very important that all ruthenium stock solutions should be freshly 

prepared and used in less than 45 min so that the reactant’s aging effect on the 

rate constant is kept within an acceptable range compared to the statistical 

experimental error bars.  Figures 2-12 and Figure 2-13 show that the aging of 

the ruthenium solutions can cause an increase in the rate constant of 0.072 ±

0.004 Logarithm unit per hour of aging and a simultaneous drop in the 

absorbance change due to reaction (2).  Thus, running the experiments quickly 

is important for the dimer reaction experiments.  Because of this, the ruthenium 

stock solutions prepared each time could be used only for evaluating a single 

added electrolyte over a maximum range of 8-9 data points.   

 

Figure 2-12. Aging effect on reaction (2) at ruthenium concentration 2.0 x 10-4 M 

(regression line computed using SigmaPlot 10.0).   
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Figure 2-13. Aging effect of reactants on △A of reaction (2) at ruthenium 

concentration 2.0 x 10-4 M. 

  

Extrapolation of the Early-Time Data in the Case of Highly-Catalytic Anions  

Some electrolytes (such as sodium trans,trans-muconate) behave as very 

strong catalysts and are able to speed up the reaction rate significantly even at 

low added ionic strength.  When the first half-life of the reaction was close to the 

stopped-flow dead time (3-15 ms), the detector started failing to capture all 

kinetic data.  The absorbance vs. time graph (see Figure 2-14 (b) for a typical 

example) showed a loss of about 40% of the delta absorbance as compared with 
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the slow reaction without added electrolyte (Figure 2-14 (a)).   

  

            ( 

                   (a)                                    (b)  

  

Figure 2-14. (a) Kinetic trace of reaction (2) with ruthenium concentration at 5.0 x 

10-5 M without added electrolyte. (b) Kinetic trace of reaction (2) with ruthenium 

concentration at 5.0 x 10-5 M and added Sodium trans,trans-muconate at 2.0 x 

10-3 M concentration.  

  

In order to obtain a proper fit and calculate a valid rate constant in such 

cases, it was necessary to do some extrapolation of the early time portion of the 

graph.  The first step is to figure out the dead time of that particular shot in the 

stopped-flow experiment.  Usually, there were a few bad data points at the very 

start of the data due to vibration and mixing artifacts which were deleted (as they 
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clearly did not lie on the subsequent decay curve).  In applying the fitting 

procedure to the rest of the curve, the instrumental dead time can be estimated 

by introducing a variable time increment (as an X-axis shift) into our fitting 

equations described previously.  This was done by replacing the “t” term in the 

regression equation with a “t + dt” term and adding “dt = xx” as an initial 

parameter.  The At data were fit only to the absorbance values from the 

slowly-varying later kinetic data which did not have any absorbance lost at short t.  

By running the regression equations, a best-fit estimate of the dead time was 

then shown in the “Fit Results” window.  We then went back to the numeric data 

table and added this dead time value to the experimental time values for all data 

points and re-fitted the curve.  Another measure was to add a reasonable data 

point at time zero (0, Ai) to the graph where the Ai estimate was taken from an 

uncatalyzed experiment which had no loss of absorbance at early times in the 

decay.  We can see an example for such a corrected fast reaction trace in 

Figure 2-15.  Finally, this extrapolated/corrected graph was fitted using the 

normal fitting procedure and valid rates obtained (as judged from the fact that 

these rates joined up smoothly with other, slower rates in a given salt or catalyst 

study where such corrections were unnecessary, vide infra). 
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Figure 2-15. Extrapolated/corrected data from Figure 2-14 (b) with dt = 11.5 ms 

and Ai from Figure 2-14 (a). The black line is the subsequent fit obtained using 

the normal fitting method.  

 

Figure 2.16 shows a linear relation between the delta absorbance and the 

concentration of reactants.  These data, taken over many days and batches of 

reactants, indicate the purity consistency of the compounds used in the 

experiments, and demonstrate that the stopped-flow detector (essentially a 

single-beam spectrophotometer) is able to respond linearly to concentration (as 
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expected from Beer’s Law) over the entire investigated range from 1 X 10-6 M to 

5 X 10-4 M.    

 

Figure 2.16 Measured absorbance change (products absorbance minus the 

reactants absorbance) vs. the reactants concentration for comproportionation 

reaction 2 

 

Temperature-Dependent Stopped-Flow Experiments   

The temperature of the stopped-flow instrument was controlled with a 

refrigerated constant temperature circulator over the range of 8-32 oC for studies 
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of the temperature dependence of reaction (2).  The experimental T range was 

limited due to the driving syringes of the instrument which become too tight at low 

T and too loose at high T (which can cause syringe breaking or leaking problems).  

The reaction temperature was measured using a VWR Scientific (Model 100A) Pt 

thermometer with its metallic probe in direct contact with the aluminum thermal 

block bolding the optical cell of the stopped-flow bench (rather than relying on the 

bath readout). After the desired bench temperature was reached and had 

become stable for at least 10 min at the cell, the run solutions were pre-adjusted 

to the same temperature in a separate cooling/ heating water bath prior to 

transferring them to the reservoir syringes (which were kept thermally insulated 

but are not actively temperature-controlled on our instrument).  The solutions 

were then drawn down into the thermally-controlled drive syringes and kept there 

for 1-2 min before mixing so as to beome equilibrated to the same temperature 

as the whole system. The solutions should not be left in the instrument for more 

than 5 min since the drive syringes are made of glass which has been shown to 

give rise to unknown reaction products with our reactants which serve as ET 

catalysts for reactions (1) and (2) at low reactant concentrations (below about 

10-4 M, vide infra).41   

We observed that even if the voltage driving the light source was kept 

rigorously constant, the voltage of a given water vs. water (w/w) shot recorded by 

the instrument depended slightly on the temperature at which the shot was 

carried out.  Figure (2-17) shows the linear relation so-obtained between 

temperature and the w/w voltage (presumably due to refractive index effects of 
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the water in the cell).  Thus, the w/w reference voltage has to be measured at 

each temperature before the kinetic measurement in order for valid absorbance 

values to be calculable.  Separate water-mixing experiments in the stopped-flow 

(Figure 2-18) showed that without the careful temperature pre-adjustment steps 

described above, it could take as long as 10-15 seconds for water freshly driven 

into the cell to reach the instrument temperature (as indicated by finally 

approaching a stable voltage reading).  The kinetic decay times of most of the 

reactions in this study were completed in less then 10 seconds, so pre-adjusting 

the temperatures of the run solutions to the bench temperature was crucial to the 

validity of the experiments.   

Since the temperature dependence of the reaction rate constant at a given 

salt concentration was not a large effect as compared to salt-induced rate 

variations, any aging effects leading to catalytic contaminants could have a 

significant impact on the derived activational parameters.  This impact would be 

most significant when doing experiments without electrolytes added to the 

ruthenium solutions (since these would be the slowest reactions and hence the 

ones most effected by a trace amount of catalyst).  By carefully studying the 

temperature effect with added electrolytes, this aging effect was found to be 

negligible (control experiments show no difference in the measured rate for the 

same pair of reactant solutions within two hours).  In our experiments, all 

ruthenium solutions were prepared and used within 20 min of final dilution and 

glass-contact time in the drive syringes was kept to 1-2 min or less.  To 

minimize any systematic experimental errors due to poor temperature 
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equilibration, we did the experiments while moving the bench temperature in 

different directions, such as from high to low, and then low to high within the 

same experiment, or by randomly jumping about to different temperatures.  The 

lack of any discontinuities or slope changes in the subsequent Eyring plots 

regardless of the pattern of temperature shifts was taken as proof that the 

equilibration problem had been solved. 

 

Figure 2-17. Temperature dependence of the water vs. water voltage from the 

stopped-flow photodetector obtained even when carefully keeping the light 

source voltage constant (by using an AC converter rather than a battery to drive 

the LED source). 
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(a) 

  

(b)  

Figure 2-18. Photodetector voltage from water vs. water stopped-flow traces. (a) 

without pre-adjusting the run solution’s temperature before mixing, and (b) after 

adjusting the water temperature by leaving the water inside the drive syringes for 

5 min. (Bench temperature is 10 0C and water is at room temperature)
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Ruthenium(III)pentaamminepyridine Monomer and Dimer Halide Kip 

Measurements by UV-visible Spectroscopy  

In these experiments, the ion-pair charge transfer (IPCT, vide infra) 

absorption bonds were used to determine ion pair formation constants between 

RuIII-BPE-RuIII or (NH3)5RuIII3Fpy and halides.  Solutions were prepared 

similarly to the method outlined for the studies of the electrolyte effects on IVCT 

bands (see Chapter III for details).  Instead of adding both ruthenium (II) and (III) 

to the solutions, only the spectrum of the ruthenium (III) solution (either 

RuIII-BPE-RuIII or (NH3)5RuIII3Fpy) was studied in the presence of added halide.  

The ruthenium (III) concentration was either 5.0 x 10-4
 
M or 10-3

 
M.  In the case 

of iodide, a trace amount of H2O2 was added in order to minimize the reduction of 

the Ru (III) solution.  The ion-pair charge transfer bands showed up in the UV 

region from 300-400 nm with added halide.  The difference absorbance spectra 

were obtained by subtracting the pure ruthenium (III) spectrum from the ones 

with added halides.   

Kip can be obtained by fitting the ΔAbs vs. [halide] plots (following the 

method described by Waysbort. et al. for the hexaammineruthenium (III) complex) 

using equations 2-49 and 2-50 below,48  
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where OD  is the observed absorbance difference at λmax for the IPCT,    

is the difference between the molar extinction coefficients of the ion pair and its 

constituents, ZRu and ZX- are the charges of the ruthenium complexes and halide, 

d  is the distance of closest approach for the ruthenium complexes and halides 

( d  = dru + dX-), and B is a variable (fit) parameter taken from the Davies 

equation53 and used here to obtain better fitting of the curve.  

The regression transform used for in setting up the Kip fitting equations from 

eq. 2-49 and 2-50 in the Sigma Plot 10.0 program are shown below, 

Equation  Variables  

I=0.5*(42*ruo+2*X) 
 
d= 
 
ruo= 
 
Kip=10^(log(Kipo)+ZruZx-*1.02*(I^0.5)/(1+0.329*d*(I^0.5))+B*I )
 
y=dex*Kip*ruo*X/(1+Kip*X) 
 
Fit y to DOD 

X = col(1)  

DOD = col (2) 

Initial Parameters 
dex= 
Kipo= 
B= 

 

where dex represents  , DOD represents OD . 
 

2.4 Results and Discussion  

     Reaction 1 (monomer pseudo-self exchange ET) and reaction 2 (dimer 

comproportionation ET) are both very common types of electron-transfer 
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reactions.  The research described in this thesis was focused mostly on the 

kinetics of the dimer comproportionation reaction in the presence of different 

sources of added ionic strength.  As explained in the introduction, the work of 

association of charged reactants and the nature of the second coordination 

sphere surrounding the reactants can be altered through adding different 

electrolytes.  These added electrolytes can alter the reaction either through 

classical (Debye-Huckle type) or non-classical (superexchange catalytic) 

mechanisms.34  All of the added electrolytes were found to increase the 

comproportionation reaction rate.  However, their individual behaviors as shown 

in the kinetic plots and possibly the nature of the roles they played in catalyzing 

the ET reaction were different in ways which reveal various aspects of the ET 

process. 

     In order to understand the phenomena described above, we must consider 

the nature of the ET transition state.  The lifetime of the transition state is 

fleeting, and it is impossible to study it directly. Temperature-dependent 

experiments and their application of the Eyring formulism were carried out to 

measure the enthalpy of activation and the entropy of activation.27  We have 

also extended such studies in the presence of varying amounts of a subset of the 

added electrolytes. 

     In the final part of this section, we will describe detailed kinetic simulations 

of these electrolyte effects on the electron-transfer reactions.  By proposing 

logical mechanistic pathways for the electrolyte-affected reactions, we are able to 

fit our experimental kinetic results in such a way as to uncover subtle details of 
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how the various added salts exert their influence.     

       

2.4.1 Electrolyte Effects   

 

 Reactant Concentration Effects on ET Kinetics; Catalysis and Self-Salting  

     Based on typical kinetic rate laws, it is commonly accepted that the reaction 

rate constant for a bimolecular reaction at constant temperature and pressure 

conditions will, in fact, be constant and independent of reactant concentrations.  

However, while studying the rates of the dimer and monomer reactions in this 

work without any other added electrolytes present, we observed that when 

changing the reactants concentrations, the fitted kinetic rate constant clearly 

changed.  In order to verify that this observation was real, we studied the 

reactions over a range of concentrations (from 6.0 x 10-6 M to 5.0 x 10-4 M) using 

reactant solutions made up in both glass and plastic volumetric labware.   

     We found, in agreement with observations made previously by Sista41, that 

the use of glass volumetric flasks does indeed generate some unknown catalytic 

species which can have a great influence on the rate of electron-transfer 

reactions at low concentrations (< ~ 5 x 10-5 M) (see Figure 2.19).  The apparent 

increase of the measured rate constants in the glass-exposed experiments was 

found to be a reproducible phenomenon.  This catalytic effect becomes much 

smaller (but does not disappear completely) when solutions for a given kinetics 

experiment are prepared in plastic volumetric flasks (see Table 2.3 and note the 

filled circles in Figure 2.18).  In Figure 2.18, the reproducible linearity of the 
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kinetic data at higher concentrations indicates a “safe zone” for the execution of 

valid further experiments.  From the figure we see that this catalytic effect at low 

concentration solution can be negligible as long as the reactant’s concentration is 

lower than 5 x 10-5 M (GP ~ 0.38) and when the solutions are not made up in or 

exposed to glass labware (see the closed circles in the plot).   

Some effort has been made to understand the catalytic effect of the glass 

by checking for catalysis due to added silicates,41 but no conclusions have been 

arrived at.  The possibilities remain that the catalysis observed at low reactant 

concentrations might due to trace amounts of some unknown glass-related 

(presumably silicate species) dissolved in the water, or due to some interaction 

between the reactants themselves and the glass giving rise to a catalytic specie. 

 

Table 2.3 The effect of reactants concentration (and hence total GP) on the rate 

constant of reaction 2 (dimer) in solution made up using plastic and glass 

volumetric flasks.   

Data from plastic volumetric flasks 

Reactant’s Concentration (M) 

[RuII, RuII] = [RuIII, RuIII] 

 

μtot GP logkex 

95% CI 

(confidence 

interval)(a) 

6.0 x 10-6 1.87 x 10-4 .0135 3.199 0.11 

1.0 x 10-5 3.09 x 10-4 .0173 3.054 0.06 

2.0 x 10-5 6.20 x 10-4 .0243 3.070 0.03 
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3.0 x 10-5 9.30 x 10-4 .0296 3.083 ---- 

4.0 x 10-5 1.24 x 10-4 .0340 3.058 0.11 

5.0 x 10-5 1.55 x 10-3 .0379 3.087 0.05 

6.0 x 10-5 1.86 x 10-3 .0413 3.131 0.06 

8.0 x 10-5 2.48 x 10-3 .0474 3.136 0.10 

1.0 x 10-4 3.09 x 10-3 .0527 3.220 0.08 

1.2 x 10-4 3.72 x 10-3 .0575 3.334 0.07 

1.5 x 10-4 4.64 x 10-3 .0638 3.340 0.08 

1.6 x 10-4 4.96 x 10-3 .0658 3.412 0.06 

2.0 x 10-4 6.20 x 10-3 .0730 3.450 0.07 

2.5 x 10-4 7.75 x 10-3 .0809 3.570 0.05 

3.0 x 10-4 9.31 x 10-3 .0880 3.663 0.07 

4.0 x 10-4 0.0124 .1002 3.820 0.04 

5.0 x 10-4 0.0155 .1107 3.933 0.03 

Data from glass volumetric flasks 

Reactant’s Concentration (M) 

[RuII, RuII] = [RuIII, RuIII] 

 

μtot GP logkex 

4.0 x 10-6 1.24 x 10-4 
.0110 

4.257 

4.0 x 10-6 1.24 x 10-4 
.0110 

4.094 

4.0 x 10-6 1.24 x 10-4 .0110 4.060 

4.0 x 10-6 1.24 x 10-4 .0110 4.116 

4.0 x 10-6 1.24 x 10-4 .0110 4.257 
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4.0 x 10-6 1.24 x 10-4 .0110 4.229 

4.0 x 10-6 1.24 x 10-4 .0110 4.072 

6.0 x 10-6 1.87 x 10-4 .0135 3.922 

6.0 x 10-6 1.87 x 10-4 .0135 3.904 

6.0 x 10-6 1.87 x 10-4 .0135 3.949 

6.0 x 10-6 1.87 x 10-4 .0135 3.870 

6.0 x 10-6 1.87 x 10-4 .0135 3.860 

6.0 x 10-6 1.87 x 10-4 .0135 3.951 

6.0 x 10-6 1.87 x 10-4 .0135 4.075 

6.0 x 10-6 1.87 x 10-4 .0135 4.032 

6.0 x 10-6 1.87 x 10-4 .0135 4.001 

6.0 x 10-6 1.87 x 10-4 .0135 3.971 

1.0 x 10-5 3.09 x 10-4 .0173 3.830 

1.0 x 10-5 3.09 x 10-4 .0173 3.818 

1.0 x 10-5 3.09 x 10-4 .0173 3.730 

1.0 x 10-5 3.09 x 10-4 .0173 3.722 

1.0 x 10-5 3.09 x 10-4 .0173 3.832 

2.0 x 10-5 6.20 x 10-4 .0243 3.584 

2.0 x 10-5 6.20 x 10-4 .0243 3.590 

2.0 x 10-5 6.20 x 10-4 .0243 3.559 

2.0 x 10-5 6.20 x 10-4 .0243 3.632 

2.0 x 10-5 6.20 x 10-4 .0243 3.669 
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2.0 x 10-5 6.20 x 10-4 .0243 3.518 

2.0 x 10-5 6.20 x 10-4 .0243 3.576 

2.0 x 10-5 6.20 x 10-4 .0243 3.637 

2.0 x 10-5 6.20 x 10-4 .0243 3.558 

2.0 x 10-5 6.20 x 10-4 .0243 3.543 

3.0 x 10-5 9.30 x 10-4 .0296 3.347 

3.0 x 10-5 9.30 x 10-4 .0296 3.476 

3.0 x 10-5 9.30 x 10-4 .0296 3.363 

3.0 x 10-5 9.30 x 10-4 .0296 3.436 

3.0 x 10-5 9.30 x 10-4 .0296 3.445 

4.0 x 10-5 1.24 x 10-4 .0340 3.367 

4.0 x 10-5 1.24 x 10-4 .0340 3.342 

4.0 x 10-5 1.24 x 10-4 .0340 3.379 

4.0 x 10-5 1.24 x 10-4 .0340 3.324 

4.0 x 10-5 1.24 x 10-4 .0340 3.406 

4.0 x 10-5 1.24 x 10-4 .0340 3.318 

4.0 x 10-5 1.24 x 10-4 .0340 3.477 

4.0 x 10-5 1.24 x 10-4 .0340 3.324 

4.0 x 10-5 1.24 x 10-4 .0340 3.395 

4.0 x 10-5 1.24 x 10-4 .0340 3.444 

6.0 x 10-5 1.86 x 10-3 .0413 3.368 

6.0 x 10-5 1.86 x 10-3 .0413 3.397 
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6.0 x 10-5 1.86 x 10-3 .0413 3.314 

6.0 x 10-5 1.86 x 10-3 .0413 3.227 

6.0 x 10-5 1.86 x 10-3 .0413 3.401 

6.0 x 10-5 1.86 x 10-3 .0413 3.378 

6.0 x 10-5 1.86 x 10-3 .0413 3.454 

8.0 x 10-5 2.48 x 10-3 .0474 3.260 

8.0 x 10-5 2.48 x 10-3 .0474 3.341 

8.0 x 10-5 2.48 x 10-3 .0474 3.369 

8.0 x 10-5 2.48 x 10-3 .0474 3.309 

8.0 x 10-5 2.48 x 10-3 .0474 3.414 

8.0 x 10-5 2.48 x 10-3 .0474 3.463 

8.0 x 10-5 2.48 x 10-3 .0474 3.432 

1.0 x 10-4 3.09 x 10-3 .0527 3.422 

1.0 x 10-4 3.09 x 10-3 .0527 3.464 

1.0 x 10-4 3.09 x 10-3 .0527 3.421 

1.0 x 10-4 3.09 x 10-3 .0527 3.444 

1.0 x 10-4 3.09 x 10-3 .0527 3.274 

1.0 x 10-4 3.09 x 10-3 .0527 3.462 

1.2 x 10-4 3.72 x 10-3 .0575 3.378 

1.2 x 10-4 3.72 x 10-3 .0575 3.433 

1.2 x 10-4 3.72 x 10-3 .0575 3.485 

1.6 x 10-4 4.96 x 10-3 .0658 3.528 
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1.6 x 10-4 4.96 x 10-3 .0658 3.536 

1.6 x 10-4 4.96 x 10-3 .0658 3.403 

1.6 x 10-4 4.96 x 10-3 .0658 3.571 

2.0 x 10-4 6.20 x 10-3 .0730 3.494 

2.0 x 10-4 6.20 x 10-3 .0730 3.534 

2.0 x 10-4 6.20 x 10-3 .0730 3.507 

2.0 x 10-4 6.20 x 10-3 .0730 3.566 

2.0 x 10-4 6.20 x 10-3 .0730 3.630 

2.0 x 10-4 6.20 x 10-3 .0730 3.671 

2.0 x 10-4 6.20 x 10-3 .0730 3.650 

2.0 x 10-4 6.20 x 10-3 .0730 3.588 

3.0 x 10-4 9.31 x 10-3 .0880 3.679 

3.0 x 10-4 9.31 x 10-3 .0880 3.693 

4.0 x 10-4 0.0124 .1002 3.804 

4.0 x 10-4 0.0124 .1002 3.855 

5.0 x 10-4 0.0155 .1107 3.956 

 (a) based on replicate measurements 
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Figure 2.19  Rate constant of reaction 2 (dimer comproportionation ET) at 

various reactants concentrations for solutions made up in both plastic and glass 

volumetric labware. The Error bars are created based on 95% confident intervals 

calculated from replicate measurements. The slope of the best-fit-line at high 

concentration ( 5100.5  M) is 11.5±0.3. 
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      Figure 2.18 shows a linear relationship between the logarithm of the 

observed rate constant and the Guggenheim parameter at higher concentration 

in both plastic and glass experiments, but the linear region is clearly expanded by 

avoiding glass.  This is an interesting and to our knowledge novel observation, 

and it does not conflict with what we have learned in other salt added 

experiments.  After performing many experiments with a broad range of 

electrolytes, we now know that the rate of reaction between like-charged 

reactants increases linearly with GP as long known from early work (see equation 

2-10).12c  Thus we assign the current “self-salting” concentration effect as being 

due to the ionic strength being contributed by the reactants themselves.  Even 

though there is no other “spectator” electrolyte added, the reactants themselves 

are in the form of chloride salts of polycationic species, and we see here that this 

ionic strength alone can clearly enhance the rate of electron-transfer between the 

ruthenium cations. More details on this will be discussed in the section on the 

“Olson-Simonson effect”.   

          

Classical and Non-classical Electrolyte Effects on Comproportionation ET 

Reaction Two 

     Electrolyte effects on the rate of dimer comproportionation reaction (2) were 

studied at three different reactant’s concentrations; 5.0 x10-5 M, 1.0 x 10-4 M and 

2.0 x 10-4 M.  These experiments were intended to help us to obtain a more 

general picture of the mechanism of the electrolyte effect on the electron-transfer 

process than we could by just looking at one reactants concentration.  In these 
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experiments the reactant’s concentrations were kept at constant while the 

increase in ionic strength was achieved solely by the addition of the various 

electrolytes.     

  

Electrolyte Effects at 5.0 x10-5 M Reactant’s Concentration  

     Extensive studies12c,36,41
 
have shown that for the monomer pseudo-self 

exchange reaction (reaction 1), simple salt effects generally follow the 

Debye-Huckle law (with a kinetic slope in the experimental GP vs. logkex plots 

near that of the reactant’s charge product, (+2)(+3) = 6.  For reaction 2 however 

(the dimer comproportionation reaction), the reactants have higher charges (4+ 

and 6+) and the molecular shapes are not at all sphere-like as in the monomer 

case.   So one of our question was to see how well the Debye-Huckle theory 

would be followed in this much less “ideal” case. 

     First, simple salts such as the chloride salts LaCl3, CaCl2, and KCl, and the 

potassium halide salts KBr and KI were used to study the kinetic behavior of the 

reaction (2) at a reactants concentration of 5.0 x 10-5 M (see table 2.4 and figure 

2.20).   

  

Table 2.4  Kinetic data (simple salts only) for reaction 2 at 5.0 x 10-5 M 

reactant’s concentration  

[LaCl3] (M) Total μ GP logkex
a 

0.00 1.55 x 10-3 0.0379 3.050 ± .092 
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3.33 x 10-5 1.75 x 10-3 0.0402 3.087 

1.33 x 10-4 2.35 x 10-3 0.0462 3.182 

3.33 x 10-4 3.54 x 10-3 0.0562 3.381 

6.67 x 10-4 5.54 x 10-3 0.0693 3.610 

1.00 x 10-3 7.54 x 10-3 0.0799 3.820 

1.33 x 10-3 9.54 x 10-3 0.0890 3.976 

1.67 x 10-3 0.0115 0.0970 4.117 

[CaCl2] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 0.0379 3.050 ± .092 

6.67 x 10-5 1.75 x 10-3 0.0402 3.065 

2.67 x 10-4 2.35 x 10-3 0.0462 3.254 

6.67 x 10-4 3.54 x 10-3 0.0562 3.477 

1.33 x 10-3 5.54 x 10-3 0.0693 3.770 

2.00 x 10-3 7.54 x 10-3 0.0799 3.902 

2.67 x 10-3 9.54 x 10-3 0.0890 4.158 

3.33 x 10-3 0.0115 0.0970 4.335 

[KCl] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.050 ± .092 

2.00 x 10-4 1.75 x 10-3 .0402 3.169 ± .122 

4.00 x 10-4 1.95 x 10-3 .0423 3.181 

8.00 x 10-4 2.35 x 10-3 .0462 3.335 ± .139 
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2.00 x 10-3 3.54 x 10-3 .0562 3.654 ± .084 

4.00 x 10-3 5.54 x 10-3 .0693 4.049 ± .033 

6.00 x 10-3 7.54 x 10-3 .0799 4.329 

6.00 x 10-3 7.54 x 10-3 .0799 4.310 

8.00 x 10-3 9.54 x 10-3 .0890 4.538 ± .018 

0.010 0.0115 .0970 4.721 

0.012 0.0136 .1043 4.855 

0.015 0.0166 .1140 5.074 

0.020 0.0215 .1280 5.246 

0.030 0.0315 .1508 5.597 

0.035 0.0366 .1605 5.654 

0.045 0.0466 .1775 5.861 

0.050 0.0515 .1850 5.890 

0.060 0.0616 .1988 6.088 

[KBr] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.050 ± .092 

2.00 x 10-4 1.75 x 10-3 .0402 3.139 

2.00 x 10-4 1.75 x 10-3 .0402 3.216 

4.00 x 10-4 1.95 x 10-3 .0423 3.250 

8.00 x 10-4 2.35 x 10-3 .0462 3.393 

8.00 x 10-4 2.34 x 10-3 .0462 3.368 
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2.00 x 10-3 3.54 x 10-3 .0562 3.840 

2.00 x 10-3 3.54 x 10-3 .0562 3.750 

4.00 x 10-3 5.5443e-3 .0693 4.292 

4.00 x 10-3 5.54 x 10-3 .0693 4.131 

6.00 x 10-3 7.54 x 10-3 .0799 4.613 

8.00 x 10-3 9.54 x 10-3 .0890 4.822 

8.00 x 10-3 9.54 x 10-3 .0890 4.855 

0.015 0.0166 .1140 5.355 

0.030 0.0315 .1508 5.882 

0.045 0.0466 .1775 6.160 

0.060 0.0616 .1988 6.457 

[KI] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.050 ± .092 

2.00 x 10-4 1.75 x 10-3 .0402 3.167 

4.00 x 10-4 1.95 x 10-3 .0423 3.305 

8.00 x 10-4 2.35 x 10-3 .0462 3.423 

2.00 x 10-3 3.54 x 10-3 .0562 3.954 

4.00 x 10-3 5.54 x 10-3 .0693 4.521 

6.00 x 10-3 7.54 x 10-3 .0799 4.847 

8.00 x 10-3 9.54 x 10-3 .0890 5.105 

(a) Stated errors are based on statistical analysis of replicate measurements 
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Figure 2.20 Simple salt effects on the reaction 2 (dimer comproportionation 

reaction) up to GP 0.1 with fixed reactants concentration at [RuII-RuII] = [RuIII-RuIII] 

= 5.0 x 10
-5

 M. The 95% confidence level error bars are included for points with 

replicate measurements. 
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     From Figure 2.20, we see that for the chloride salts, the rate accelerating 

ability when plotted as total GP decreases in the order of KCl > CaCl2 > LaCl2.  

Both, CaCl2 and LaCl3 behave fairly linearly in the GP plot, whereas KCl, KBr and 

KI exhibit increasing curvature with steeper slopes at low GP. None of the salts 

follow the Debye-Huckle slope exactly (see table 2.5 for initial slopes).  CaCl2 

with its slope of 21.7 ± 0.7 is nearly within error of the Debye-Huckle slope of 

24.5, but the others are all significantly different.  

  

Table 2.5  Initial slopes (from GP = 0.0379 to 0.0462) of the kinetic curves 

obtained with various halide salts at 5.0 x 10-5 M reactants concentration for 

reaction two. 

Added electrolytes Initial slope of kinetic curve in GPa 

LaCl3 18.8 ± .3 

CaCl2 21.7 ± .7 

KCl 32.9 ± 1.6 

KBr 36.0 ± 1.3 

KI 48.2 ± .8 

(a) Errors are based on replicate measurements 

 

     Because of the differences between the cations of these three salts, it is 

reasonable to assign these effects as possibly being due to specific cation effects. 

Following this idea, an immediate question is whether it is the size or the charge 
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of the cation which matters.  Figure 2.21 however, shows that there is little if any 

difference between the KBr, NaBr, and LiBr salt effect on reaction 2.  This 

indicates that the size of the cation does not affect the rate of electron-transfer 

above error level in these experiments.   

       

   

Figure 2.21  Effects of added NaBr, LiBr and KBr on reaction 2 at a reactant’s 

concentration of 5.0 x 10-5 M.   

            

     Since the reactants are both positively-charged (4+ and 6+), the anions in 

the solution might reasonably be expected to play more important roles than the 

cations in the electron-transfer process.  Olson and Simonson described this 
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kind of specific-ion effect in their study of a broad range of electrolyte effects on 

reactions  between charged reactants.19  By plotting the KCl, CaCl2, LaCl3 

graphs as simple concentration of Cl- vs. logkex (Figure 2.22), we observe that all 

the three lines from Figure 2.20 merge into one and show the same kinetic 

behavior regardless of the charges on the cations.  Olsen and Simonson 

interpreted such curves as a sign that a given ion of charge opposite to the 

like-charge reactants was involved in some kind of specific pre-equilibrium step 

or in the formation of the kinetic transition state itself in addition to any 

ion-atmosphere/Debye-Hückel type of charge screening and activity coefficient 

effect. 
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Figure 2.22  Olson-Simonson plot for KCl, CaCl2 and LaCl3 effects on reaction 2.    

 

     The clear differences in kinetic behavior seen between KCl, KBr, and KI 

effects in Figure 2.20 are necessarily due to differing anion effects.  Importantly, 

they all exhibit much higher initial slopes than the predicted Debye-Huckel slope 

of 24.5 as shown in Table 2.6.  I- accelerates the rate fastest of the three halides 

and has an initial slope of 48.2.  This progressive variation along the halide 

series may be related to their first ionization energies (F-; 1681 kJ/mol, Cl-; 1251 

kJ/mol, Br-; 1139 kJ/mol, I-; 1008 kJ/mol )53 and hence redox potentials in 
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solution, or simply to their ionic radii.  A difficulty we face here is that these two 

properties are strongly correlated.  For example, I-
 
has the largest ionic radius at 

2.1 Å and is also the softest lewis base (most polarizable) of the halides, so it is 

most easily oxidized (E0 = 0.536 V vs. in water) while Cl- has r = 1.80 Å and E0 = 

1.358 V.50  The greater catalytic effect with heavier halides may indicate an 

important role for both hole-transfer superexchange in the transition complex and 

radius-related solvation energy effects (vide infra).    

     The most immediate observation is that the simple salts effects do not 

follow the classical Debye-Huckel theory to give the predicted linear dependence 

between logkex and GP.  This may indicate that the reactants are forming 

ion-pairs with the added anions in a manner consistent with the Olsen-Simonson 

effect.  Any such specific ion-pairing would decrease the charges of the 

reactants, and the reduced charge products would in turn decrease the predicted 

logkex vs. GP slope at higher anion concentrations where the extent of ion pairing 

is higher. 

     Figure 2.23 shows how the slopes for KBr and KCl change when going to 

high GP.  At the high end of the ionic strength range in the figure, the added-salt 

concentration is more than 1000 times larger than the reactants concentration. 

For KBr, we find that the initial slope is 36.0 ± 1.3 and the final slope is 12.8 ± 0.5. 

For KCl, the initial slope is 30 ± 0.6 and the final slope is 11.8 ± 0.5. We note that 

they have nearly the same final slopes within experimental error.  
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Figure 2.23  KBr and KCl salt effects on the reaction 2 at reactant’s 

concentration of 5.0 x 10-5 M up to 0.2 GP.   

 

     Figure 2.24 shows the data from table 2.6 for the effects of added “catalytic” 

electrolytes on reaction 2 at a reactant’s concentration of 5.0 x 10-5 M.  All these 

added salts show much higher initial slopes than the theoretical ones, but at 

higher GP where more ion pairs would be formed, the final slopes all drop below 

the Debye-Huckel theoretical one.  The situation is very obvious for the 1:2 

electrolytes, such as Na2muc, Na2adip, Na2(1,5NDS), Na2terephalate, and 



 96

Na2(chdc).  These salts all show a very strong catalytic effect on the reaction in 

the beginning (see Table 2.7 and Figure 2.24), and end up with a much lower 

slope towards the end of the range (see especially the Na2(chdc) data).  A good 

example will be the Na2(chdc) whose initial slope is 174 ± 24 and final slope is 

about 1.5.   

     Figure 2.25 shows an expansion plot of Figure 2.24 and clearer patterns at 

low GP.  NaSCN has a much stronger effect on ET than KBr at the beginning, 

but they end up with almost the same kinetic effect at higher GP.  Muc2- is a 

much better catalyst than its saturated analogue adip2- even though they have 

almost the exact same size and identical changes.  The same is true for 

unsaturated/saturated terephalate2- and chdc2- pair.  This effect has been 

explained by Curtis et al.12c as being a result of the conjugated electronic 

structures of muc2- and terephalate2- and their ability to provide a better 

electron-tunneling superexchange pathway.   

  

Table 2.6  Catalytic salt effects on dimer comproportionation reaction at 

reactant’s concentration 5.0 x 10-5 M.  

[NaSCN] (M) Total μ Total GP logkex
a 

0.00 1.55 x 10-3 .0379 3.150 

1.00 x 10-4 1.64 x 10-3 .0390 3.370 

2.00 x 10-4 1.75 x 10-3 .0402 3.550 

2.00 x 10-4 1.75 x 10-3 .0402 3.723 
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4.00 x 10-4 1.95 x 10-3 .0423 3.700 

4.00 x 10-4 1.95 x 10-3 .0423 3.819 

8.00 x 10-4 2.34 x 10-3 .0462 3.867 

8.00 x 10-4 2.34 x 10-3 .0462 3.899 

2.00 x 10-3 3.54 x 10-3 .0562 4.092 

2.00 x 10-3 3.54 x 10-3 .0562 4.147 

4.00 x 10-3 5.54 x 10-3 .0693 4.457 

4.00 x 10-3 5.54 x 10-3 .0693 4.433 

6.00 x 10-3 7.54 x 10-3 .0799 4.640 

8.00 x 10-3 9.54 x 10-3 .0890 4.860 

8.00 x 10-3 9.54 x 10-3 .0890 4.912 

0.015 0.0166 .1140 5.403 

0.030 0.0315 .1508 5.933 

0.045 0.0466 .1775 6.291 

[Na2(adipate)] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.158 

6.67 x 10-5 1.75 x 10-3 .0402 3.478 

1.33 x 10-4 1.95 x 10-3 .0423 3.732 

2.67 x 10-4 2.34 x 10-3 .0462 4.13 

6.67 x 10-4 3.54 x 10-3 .0562 4.641 

1.33 x 10-3 5.52 x 10-3 .0692 4.965 
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2.67 x 10-3 9.54 x 10-3 .0890 5.287 

4.00 x 10-3 0.0136 .1043 5.427 

6.67 x 10-3 0.0215 .1280 5.571 

1.00 x 10-2 0.0315 .1508 5.692 

[Na2(muconate)] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.150 

0.00 1.55 x 10-3 .0379 3.182 

1.67 x 10-5 1.60 x 10-3 .0385 3.459 

1.67 x 10-5 1.60 x 10-3 .0385 3.368 

3.33 x 10-5 1.64 x 10-3 .0390 3.673 

3.33 x 10-5 1.64 x 10-3 .0390 3.600 

6.67 x 10-5 1.75 x 10-3 .0402 4.115 

6.67 x 10-5 1.75 x 10-3 .0402 3.947 

1.33 x 10-4 1.95 x 10-3 .0423 4.691 

1.33 x 10-4 1.95 x 10-3 .0423 4.640 

2.67 x 10-4 2.34 x 10-3 .0462 5.134 

2.67 x 10-4 2.34 x 10-3 .0462 5.160 

5.33 x 10-4 3.14 x 10-3 .0531 5.523 

6.67 x 10-4 3.54 x 10-3 .0562 5.682 

1.33 x 10-3 5.54 x 10-3 .0693 5.959 

2.00 x 10-3 7.54 x 10-3 .0799 6.134 
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2.67 x 10-3 9.54 x 10-3 .0890 6.193 

[Na2(chdc)] (M) Total μ Total GP logkex 

0.00 1.55 x 10-3 .0379 3.240 

6.67 x 10-5 1.75 x 10-3 .0402 3.708 

1.33 x 10-4 1.95 x 10-3 .0423 4.054 

2.67 x 10-4 2.34 x 10-3 .0462 4.209 

2.67 x 10-4 2.34 x 10-3 .0462 4.076 

6.67 x 10-4 3.54 x 10-3 .0562 4.516 

1.33 x 10-3 5.54 x 10-3 .0693 4.784 

2.00 x 10-3 7.54 x 10-3 .0799 4.877 

2.67 x 10-3 9.54 x 10-3 .0890 5.085 

5.00 x 10-3 0.0166 .1140 5.275 

6.67 x 10-3 0.0215 .1280 5.383 

1.00 x 10-2 0.0315 .1508 5.472 

1.17 x 10-2 0.0366 .1605 5.529 

1.50 x 10-2 0.0466 .1775 5.551 

1.67 x 10-2 0.0515 .1850 5.625 

2.00 x 10-2 0.0616 .1988 5.622 

2.33 x 10-2 0.0715 .2110 5.682 

3.00 x 10-2 0.0916 .2323 5.748 

4.00 x 10-2 0.1215 .2585 5.795 
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5.33 x 10-2 0.1616 .2867 5.844 

7.33 x 10-2 0.2215 .3200 5.886 

[Na2(terephthalate)] (M) Total μ Total GP logkex 

0.0000 1.55 x 10-3 .0379 3.17 

1.67 x 10-5 1.60 x 10-3 .0385 3.653 

3.33 x 10-5 1.64 x 10-3 .0390 3.890 

6.67 x 10-5 1.75 x 10-3 .0402 4.342 

1.33 x 10-4 1.95 x 10-3 .0423 4.825 

2.67 x 10-4 2.34 x 10-3 .0462 5.251 

6.67 x 10-4 3.54 x 10-3 .0562 5.848 

1.33 x 10-3 5.54 x 10-3 .0693 6.166 

2.00 x 10-3 7.54 x 10-3 .0799 6.351 

2.67 x 10-3 9.54 x 10-3 .0890 6.465 

[Na2SO4] (M) Total μ Total GP logkex 

0.0000 1.55 x 10-3 .0379 3.15 

6.67 x 10-5 1.75 x 10-3 .0402 4.385 

1.33 x 10-4 1.95 x 10-3 .0423 4.801 

2.67 x 10-4 2.34 x 10-3 .0462 5.250 

6.67 x 10-4 3.54 x 10-3 .0562 5.790 

1.33 x 10-3 5.54 x 10-3 .0693 6.135 

2.00 x 10-3 7.54 x 10-3 .0799 6.270 
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[Na2(1,5NDS)] (M) Total μ Total GP logkex 

0.0000 1.55 x 10-3 .0379 3.150 

1.67 x 10-5 1.60 x 10-3 .0385 3.600 

1.67 x 10-5 1.60 x 10-3 .0385 3.411 

3.33 x 10-5 1.64 x 10-3 .0390 3.920 

3.33 x 10-5 1.64 x 10-3 .0390 3.771 

6.67 x 10-5 1.75 x 10-3 .0402 4.434 

6.67 x 10-5 1.75 x 10-3 .0402 4.607 

1.33 x 10-4 1.95 x 10-3 .0423 5.195 

1.33 x 10-4 1.95 x 10-3 .0423 5.049 

2.67 x 10-4 2.34 x 10-3 .0462 5.736 

2.67 x 10-4 2.34 x 10-3 .0462 5.760 

6.67 x 10-4 3.54 x 10-3 .0562 6.175 

(a) Stated errors are based on statistical analysis of replicate measurements 

 

 

Table 2.7  Initial slopes of the kinetic curves for the strongly catalytic salts at 5.0 

x 10-5 M reactants concentration for reaction two. 

Added electrolytes Initial slope of kinetic curve in GPa 

NaSCN 127 ±24 

Na2 (adipate) 117 ± 6 
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Na2 (muconate) 378 ± 26 

Na2 (chdc) 174 ± 24 

Na2 (terephthalate) 502 ± 71 

Na2SO4 376 ± 100 

Na2(1,5 NDS) 579 ± 40 

(a) Stated errors are based on statistical analysis of replicate measurements 
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Figure 2.24  Catalytic salt effects on reaction 2 with reactants concentration at 

5.0 x 10-5 M   
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Figure 2.25  Catalytic salt effects on reaction 2 with reactants concentration at 

5.0 x 10-5 M ; expansion plot at low GP (GP < 0.09, μ < 0.0096).  
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Electrolyte Effects at 1.0 x10-4 M Reactant’s Concentration  

     Since the reactant’s concentration of 5.0 x 10-5 M is at the low end of the 

range which is not contaminated by glass-related catalysis, we decided to also 

conduct salt studies at higher reactant’s concentrations in order to check for the 

consistency of the behavior.  Table 2.8 lists the kinetic data obtained by 

stopped-flow for both the simple and the “catalytic” salts already discussed as 

well as some additional salts (the fluorides).  

 

Table 2.8  Kinetic data for reaction 2 at 1.0 x 10-4 M Reactant’s Concentration  

[LaCl3] (M) Total μ Total GP logkex
a 

0 3.09 x 10-3 0.0527 3.218 

1.33 x 10-4 3.90 x 10-3 0.0588 3.317 

3.33 x 10-4 5.10 x 10-3 0.0667 3.459 

6.67 x 10-4 7.09 x 10-3 0.0777 3.704 

1.33 x 10-3 9.10 x 10-3 0.0871 3.889 

2.00 x 10-3 0.0111 0.0953 4.021 

[LaNO3] (M) Total μ Total GP logkex 

0 3.09 x 10-3 0.0527 3.218 

1.33 x 10-4 3.90 x 10-3 0.0588 3.343 

3.33 x 10-4 5.10 x 10-3 0.0667 3.446 

6.67 x 10-4 7.09 x 10-3 0.0777 3.673 

1.33 x 10-3 9.10 x 10-3 0.0871 3.851 



 106

2.00 x 10-3 0.0111 0.0953 3.945 

[CaCl2] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.194 

2.67 x 10-4 3.90 x 10-3 0.0588 3.361 

6.67 x 10-4 5.10 x 10-3 0.0667 3.523 

1.33 x 10-3 7.09 x 10-3 0.0777 3.796 

2.00 x 10-3 9.10 x 10-3 0.0871 4.067 

2.67 x 10-4 0.0111 0.0953 4.218 

4.00 x 10-3 0.0151 0.1094 4.494 

[KCl] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.188 +/- 0.064 

8.00 x 10-4 3.90 x 10-3 0.0588 3.477 +/- 0.080 

2.00 x 10-3 5.10 x 10-3 0.0667 3.803 +/- 0.059 

3.00 x 10-3 6.09 x 10-3 0.0724 4.029 +/- 0.062 

4.00 x 10-3 7.09 x 10-3 0.0777 4.160 +/- 0.031 

6.00 x 10-3 9.10 x 10-3 0.0871 4.418 +/- 0.018 

8.00 x 10-3 0.0111 0.0953 4.595 +/- 0.026 

0.010 0.0131 0.1027 4.753 +/- 0.050 

0.012 0.0151 0.1094 4.885 +/- 0.031 

[KBr] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.188 +/- 0.064 
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8.00 x 10-4 3.90 x 10-3 0.0588 3.582 +/- 0.080 

2.00 x 10-3 5.10 x 10-3 0.0667 3.941 +/- 0.080 

3.00 x 10-3 6.09 x 10-3 0.0724 4.231 +/- 0.060 

4.00 x 10-3 7.09 x 10-3 0.0777 4.366 +/- 0.088 

6.00 x 10-3 9.10 x 10-3 0.0871 4.665 +/- 0.057 

8.00 x 10-3 0.0111 0.0953 4.882 +/- 0.048 

0.010 0.0131 0.1027 5.083 +/- 0.055 

0.012 0.0151 0.1094 5.217 +/- 0.039 

[KI] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.188 +/- 0.064 

8.00 x 10-4 3.90 x 10-3 0.0588 3.659 +/- 0.100 

2.00 x 10-3 5.10 x 10-3 0.0667 4.091 +/- 0.097 

3.00 x 10-3 6.09 x 10-3 0.0724 4.412 +/- 0.049 

4.00 x 10-3 7.09 x 10-3 0.0777 4.571 +/- 0.103 

6.00 x 10-3 9.10 x 10-3 0.0871 4.889 +/- 0.081 

8.00 x 10-3 0.0111 0.0953 5.138 +/- 0.050 

0.010 0.0131 0.1027 5.324 +/- 0.055 

0.012 0.0151 0.1094 5.493 +/- 0.034 

[KF] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.188 +/- 0.064 

8.00 x 10-4 3.90 x 10-3 0.0588 3.300 +/- 0.060 
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2.00 x 10-3 5.10 x 10-3 0.0667 3.425 +/- 0.055 

3.00 x 10-3 6.09 x 10-3 0.0724 3.500 +/- 0.056 

4.00 x 10-3 7.09 x 10-3 0.0777 3.595 +/- 0.050 

6.00 x 10-3 9.10 x 10-3 0.0871 3.708 +/- 0.042 

8.00 x 10-3 0.0111 0.0953 3.810 +/- 0.050 

0.010 0.0131 0.1027 3.914 +/- 0.031 

0.012 0.0151 0.1094 3.991 +/- 0.056 

[LiF] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.1183 

8.00 x 10-4 3.90 x 10-3 0.0588 3.2350 

2.00 x 10-3 5.10 x 10-3 0.0667 3.3612 

4.00 x 10-3 7.09 x 10-3 0.0777 3.5416 

6.00 x 10-3 9.10 x 10-3 0.0871 3.6646 

8.00 x 10-3 0.0111 0.0953 3.7455 

[Na2(adipate)] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.2140 

6.67 x 10-5 3.29 x 10-3 0.0543 3.4660 

1.33 x 10-4 3.50 x 10-3 0.0559 3.7530 

2.67 x 10-4 3.90 x 10-3 0.0588 4.0610 

6.67 x 10-4 5.10 x 10-3 0.0667 4.5510 

1.33 x 10-3 7.09 x 10-3 0.0777 4.9540 
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2.67 x 10-3 0.0111 0.0953 5.2980 

4.00 x 10-3 0.0151 0.1094 5.4300 

6.67 x 10-3 0.0231 0.1319 5.5190 

1.00 x 10-2 0.0331 0.1539 5.6690 

[Na2(muconate)] (M) Total μ Total GP logkex 

0.00 3.09 x 10-3 0.0527 3.2020 

1.67 x 10-5 3.14 x 10-3 0.0531 3.5010 

3.33 x 10-5 3.19 x 10-3 0.0535 3.6670 

6.67 x 10-5 3.29 x 10-3 0.0543 3.8920 

1.33 x 10-4 3.50 x 10-3 0.0559 4.4020 

2.67 x 10-4 3.90 x 10-3 0.0588 4.9320 

6.67 x 10-4 5.10 x 10-3 0.0667 5.5660 

1.33 x 10-3 7.09 x 10-3 0.0777 5.9100 

2.00 x 10-3 9.10 x 10-3 0.0871 6.0100 

2.67 x 10-3 0.0111 0.0953 6.0900 

(a) Errors are based on replicate measurements 

 

In Figure 2.26, we see that LiF and KF yield the same kinetic pattern within 

error and have lower slopes than the Debye-Huckel slope (24.48).  The same 

heavier halide anion effect (Cl-, Br-, I-) patterns are observed for this higher 

reaction concentration as were seen at 5 x 10-5 M reactant’s concentrations.  

However, there is a larger difference upon going from the 1:1 F- salts to KCl than 
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upon going from Cl- and from Br- or Br- to I-. This effect may be related to a few 

aspects of these ions in solution. First, the F- ion is considered to be 

strongly-solvated in the water and is known to be a “structure maker” ion,45,46 

while the other halides are all relatively poorly-solvated and are classified as 

“structure breaker” ions.45,46  This could mean that the larger halides would be 

able to approach to (or perhaps even ion pair with) the cationic reactants more 

easily with their less tightly-held surrounding water molecules.  It is possible that 

this might also allow the larger halides to form ternary association complexes 

with the ET reactants more easily, and that this could lead in favorable cases 

both to a lower energy pathway to the precursor/encounter complex (“pcx”, vide 

infra) and to a larger degree of electronic coupling via super-exchange mediated 

ET catalysis (in cases where reaction adiabaticity affects the magnitude of ket, ketx, 

vide infra).12c,41  Supporting the second idea, we note that F- has a very large 

ionization potential as compared with the others, and it is a relatively poor Lewis 

base for H-bond acceptance. On this basis we would expect that it might be less 

able to facilitate electron tunneling in any relevant encounter complexes.   
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Figure 2.26  Simple salt effects on the reaction 2 (dimer comproportionation 

reaction) up to GP 0.11 with fixed reactant’s concentration at [RuII-RuII] = 

[RuIII-RuIII] = 1.0 x 10-4 M. 
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In previous work on the monomer pseudo-self exchange reaction (1),41 it 

has been noticed that 1:1 fluoride salts result in the most “classical” salt 

behaviors, as judged by nearly exact quantitative agreement with the 

Debye-Hückel logkex vs. GP predicted slopes, of all salts studied. Therefore their 

downward deviation in this dimer comproportionation case is both surprising and 

interesting. 

     The approximately “ideal” behavior of F- as electrolyte in the monomer ET 

reaction was initially thought to be because of its small size and “hard” base 

properties since these would make F- come closer than the other halides to 

satisfying the point-charge assumption required in the derivation of 

Debye-Hückel-Bronstead equation (if specific solvation effects, such as hydration 

sphere size, are neglected; see eq. 2-9).9   

In Figure 2.26, F- exhibits an initial slope 16-17 (see also Table 2.9) in 

logkex vs. GP and then falls even lower at GP > 0.07.  If rather than using the 

Guggenheim approximation of “βd~1” (see eq. 2-6) we instead use βd = 

(0.509)(σ) = 3.548, whereσ= 1.50 + 5.47 (the ionic radius of F- and the 

calculated BPE dimer radius respectively) in computing the x-axis, we find that 

the initial slope for F- changes to 21 which is then in much better agreement with 

the theoretical slope of 24 (see Figure 2.27).  This better correlation of kinetic 

behavior with the Debye-Hückel theory implemented without using the 

Guggenheim approximation was also observed by Cai et al.46 in the quenching of 

the dimeric chromophore *[Pt2(pop)4]
4- by [Co(CN)5I]

 3- with added KCl.  This 
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may indicate that the quantitative utility of the Guggenheim approximation 

diminishes fairly rapidly as the ionic reactants deviate from spherical charge 

distributions. 

 

 

Table 2.9 Initial slopes of the kinetic curves for simple and catalytic salts at 1.0 x 

10-4 M reactant’s concentration.   

Added 

electrolytes 

Initial slope of kinetic 

curve in GPa 

Added 

electrolytes 

Initial slope of kinetic 

curve in GPa 

LaCl
3
 20.0 ± .5 KCl 42.5 ± 1.2 

La(NO
3
)
3
 18.5 ± .6 KBr 51.9 ± 2.8 

CaCl
2
 24.9 ± .7 KI 64.4 ± 6.5 

LiF 16.8 ± 0.4 Na
2
(adipate) 145 ± 15 

KF 16.0 ± .5 Na
2
(muconate) 436 ± 65 

(a) Errors are based on replicate measurements 
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Figure 2.27 LiF and KF effect on reaction 2 plotted using “βd” = 3.548 in 

computing the x-axis rather than βd = 1 and “GP”. 

  

     The “catalytic” salt Na2muc and its saturated analogue Na2adip were 

studied at this 1.0 x 10-4 M, and the results are shown in Figure 2.28.  At the 

high end of the GP range we find that muc2- increases kex by almost 250 times 

compared to F- effect at the same total GP.  The strong catalytic effect of muc2- 

ion on the electron-transfer rate constant has been explained previously as 
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arising from its conjugated electronic structure, its dianionic charge, and its ability 

to participate in H- bonding at both ends.36,37,41  The conjugated structure is 

thought to allow more resonance interaction between the redox partners by 

enhancing both hole- and electron-transfer superexchange coupling (as has been 

described in detail in ref. 12c).  It is also possible that the 2- charge on it allows 

for better general charge shielding between the reactants and this helps bring 

them into closer contact.  The acceleration effect also shows up with the 

saturated adipate (adip2-) anion – and more in this dimer comproportionation ET 

case than was seen previously in the monomer ET case.12c,41  This may be due 

to the very different charge distributions of the reactant ions in the dimer case 

and the possibility of a side-to-side associative pathway which would not be 

possible in the monomer reaction (where the dianionic adipate ion might now be 

able to interpose itself between the reactants in a parallel rather than end-to-end 

manner).   
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Figure 2.28 Catalytic salt effects on reaction 2 at reactants concentration 1.0 x 

10-4 M   

 

     Evidence of the Olson-Simonson effect is observed once again with the 1:1, 

1:2, 1:3 simple electrolytes at 1.0 x 10-4 M reactant’s concentration (Figure 2.29).  

All the Cl- salts (KCl, CaCl2, LaCl3) again correlate with each other better in the 

simple logkex vs. concentration plot than in the logkex vs. GP graph (compare to 

Figure 2.26). LaNO3 shows the exact same pattern acceleration as its Cl- salt. 
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The simplest interpretation here is that this indicates that electrostatic effects are 

dominating the kinetic salt effect on ET for these simple anions which are acting 

as hard sphere and forming ion pairs which then facilitate formation of the ternary 

encounter complex PCX (vide infra) via simple columbic screening. 

 

 

Figure 2.29 Olson-Simonson plots for KCl, CaCl2, LaCl3, and La(NO3)3 effect on 

reaction 2 in reactants concentration 1.0 x 10-4 M.   
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Electrolyte Effects at 2.0 x10-4 M Reactant’s Concentration  

     The measured salt effects at this even higher reactant’s concentration 

follow the same patterns as the others shown before, but now we have included 

the new salt KClO4 and also pushed total GP out to higher values with KCl and 

CaCl2 (Table 2.10).  The initial rate vs. GP slopes for all salts studied here are 

listed in Table 2.11.  The simple salt (LiF, KF, KCl, KBr, KI, La(NO3)3, CaCl2) 

effects are shown in Figure 2.30.   

 

Table 2.10  Catalytic salt effects on BPE dimer comproportionation reaction at 

reactant’s concentration 2.0 x 10-4 M.  

[La(NO3)3] (M) Total μ Total GP logkex 

0 6.20 x 10-3 0.0730 3.367 

1.33 x 10-4 6.99 x 10-3 0.0772 3.460 

3.33 x 10-4 8.19 x 10-3 0.0830 3.600 

8.33 x 10-4 0.0110 0.0949 3.850 

1.33 x 10-3 0.0142 0.1065 4.107 

2.00 x 10-3 0.0182 0.1189 4.300 

[CaCl2] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.360 

6.67 x 10-5 6.40 x 10-3 0.0741 3.407 

2.67 x 10-4 6.99 x 10-3 0.0772 3.488 

6.67 x 10-4 8.19 x 10-3 0.0830 3.581 
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1.33 x 10-3 0.0102 0.0917 3.846 

2.00 x 10-3 0.0122 0.0995 4.070 

2.67 x 10-4 0.0142 0.1065 4.226 

4.00 x 10-3 0.0182 0.1189 4.497 

6.67 x 10-3 0.0262 0.1393 4.870 

1.00 x 10-2 0.0362 0.1598 5.100 

1.50 x 10-2 0.0512 0.1845 5.413 

2.00 x 10-2 0.0662 0.2046 5.574 

[KCl] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.295 

0.00 6.20 x 10-3 0.0730 3.428 

2.00 x 10-4 6.40 x 10-3 0.0741 3.375 

8.00 x 10-4 6.99 x 10-3 0.0772 3.530 

8.00 x 10-4 6.99 x 10-3 0.0772 3.591 

2.00 x 10-3 8.19 x 10-3 0.0830 3.769 

4.00 x 10-3 0.0102 0.0917 4.043 

6.00 x 10-3 0.0122 0.0995 4.341 

8.00 x 10-3 0.0142 0.1065 4.528 

0.012 0.0182 0.1189 4.862 

0.015 0.0222 0.1297 5.093 

0.020 0.0262 0.1393 5.249 
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0.030 0.0362 0.1598 5.507 

0.045 0.0512 0.1845 5.817 

0.060 0.0662 0.2046 5.995 

[KBr] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.343 

8.00 x 10-4 6.99 x 10-3 0.0772 3.636 

2.00 x 10-3 8.19 x 10-3 0.0830 3.945 

4.00 x 10-3 0.0102 0.0917 4.364 

6.00 x 10-3 0.0122 0.0995 4.626 

8.00 x 10-3 0.0142 0.1065 4.871 

0.012 0.0182 0.1189 5.197 

[KI] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.350 

8.00 x 10-4 6.99 x 10-3 0.0772 3.693 

2.00 x 10-3 8.19 x 10-3 0.0830 4.077 

4.00 x 10-3 0.0102 0.0917 4.572 

6.00 x 10-3 0.0122 0.0995 4.866 

8.00 x 10-3 0.0142 0.1065 5.137 

0.012 0.0182 0.1189 5.565 

[KF] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.364 
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8.00 x 10-4 6.99 x 10-3 0.0772 3.467 

2.00 x 10-3 8.19 x 10-3 0.0830 3.555 

4.00 x 10-3 0.0102 0.0917 3.700 

6.00 x 10-3 0.0122 0.0995 3.803 

8.00 x 10-3 0.0142 0.1065 3.893 

0.012 0.0182 0.1189 4.029 

[LiF] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.356 

8.00 x 10-4 6.99 x 10-3 0.0772 3.458 

2.00 x 10-3 8.19 x 10-3 0.0830 3.552 

4.00 x 10-3 0.0102 0.0917 3.679 

6.00 x 10-3 0.0122 0.0995 3.779 

[KClO4] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.376 

8.00 x 10-4 6.99 x 10-3 0.0772 3.606 

2.00 x 10-3 8.19 x 10-3 0.0830 3.888 

4.00 x 10-3 0.0102 0.0917 4.248 

6.00 x 10-3 0.0122 0.0995 4.492 

8.00 x 10-3 0.0142 0.1065 4.714 

[Na2(adipate)] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.450 
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6.67 x 10-5 6.40 x 10-3 0.0741 3.650 

1.33 x 10-4 6.59 x 10-3 0.0751 3.912 

2.67 x 10-4 6.99 x 10-3 0.0772 4.150 

6.67 x 10-4 8.19 x 10-3 0.0830 4.610 

1.33 x 10-3 0.0102 0.0917 4.998 

2.67 x 10-3 0.0122 0.0995 5.191 

4.00 x 10-3 0.0142 0.1065 5.280 

6.67 x 10-3 0.0182 0.1189 5.420 

[Na2(muconate)] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.4200 

1.67 x 10-5 6.25 x 10-3 0.0733 3.6070 

3.33 x 10-5 6.29 x 10-3 0.0735 3.6920 

6.67 x 10-5 6.40 x 10-3 0.0741 3.9250 

1.33 x 10-4 6.59 x 10-3 0.0751 4.2410 

2.67 x 10-4 6.99 x 10-3 0.0772 4.7060 

6.67 x 10-4 8.19 x 10-3 0.0830 5.3986 

1.33 x 10-3 0.0102 0.0917 5.7820 

2.00 x 10-3 0.0122 0.0995 5.9190 

2.67 x 10-3 0.0142 0.1065 5.9650 

[NaSCN] (M) Total μ Total GP logkex 

0.00 6.20 x 10-3 0.0730 3.3079 
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5.00 x 10-5 6.25 x 10-3 0.0733 3.3913 

1.00 x 10-4 6.29 x 10-3 0.0735 3.4190 

2.00 x 10-4 6.40 x 10-3 0.0741 3.4833 

4.00 x 10-4 6.59 x 10-3 0.0751 3.5957 

8.00 x 10-4 6.99 x 10-3 0.0772 3.7110 

2.00 x 10-3 8.19 x 10-3 0.0830 3.9762 

4.00 x 10-3 0.0102 0.0917 4.3432 

6.00 x 10-3 0.0122 0.0995 4.6591 

8.00 x 10-3 0.0142 0.1065 4.7779 

0.012 0.0182 0.1189 5.1749 

0.020 0.0262 0.1393 5.5936 

0.025 0.0312 0.1501 5.6958 

0.030 0.0362 0.1598 6.0170 

0.040 0.0462 0.1769 6.1287 

 

Table 2.11  Initial slopes of the kinetic curves shown in Figure 2.30 for simple 

and catalytic salts at 2.0 x 10-4 M reactant’s concentration.   

Added 

electrolytes 

Initial slope of kinetic 

curve in GP 

Added 

electrolytes 

Initial slope of kinetic 

curve in GP 

La(NO
3
)
3
 22.0 ± .2 KBr 59.6 ± 4.6 

CaCl
2
 25.9 ± .7 KI 72.0 ± 4.4 
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LiF 16.8 ± 1.3 KClO
4
 50.8 ± 1.7 

KF 17.5 ± 1.1 NaSCN 110 ± 1.6 

LiCl 29.8 ± 1.1 Na
2
(adipate) 215 ± 18 

KCl 37.4 ± 2.1 Na
2
(muconate) 450 ± 42 

(a) Errors are based on regreesion line fit as calculated by Sigma Plot. 

 

In prior work, ClO4
- has been claimed to be especially catalytic towards 

momomeric ET reactions of ruthenium ammine complexes similar to ours.6  We 

note here that KClO4 does show a stronger kinetic effect than the KCl and falls 

between Cl- and Br- on the plot, but the difference is just slightly larger than error.  

The NaSCN, Na2muc and Na2adip salt effects are shown in Figure 2.31 and the 

pattern is similar as before.  The Olson-Simonson plots for the 1:1, 1:2, 1:3 

electrolyte effects are shown in Figure 2.32. They fall on one curve again even 

when taken to the higher total GP value of 0.20 as shown in Figure 2.33.  
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Figure 2.30 Simple salt effects on the reaction 2 (BPE dimer comproportionation 

reaction) up to GP 0.12 with fixed reactant’s concentration at [RuII-RuII] = 

[RuIII-RuIII] = 2.0 x 10-4 M  
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Figure 2.31 Catalytic salt effects on reaction 2 at reactant’s concentration 2.0 x 

10-4 M   
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Figure 2.32 Olson-Simonson plots for reaction 2 with reactant’s concentration 

2.0 x 10-4 M   
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Figure 2.33 Olson-Simonson Plots for KCl and CaCl2 up to 0.2 GP at reactant’s 

concentration 2.0 x 10-4 M   

 

The Olson-Simonson Effect; Plots and Data Reorganized 

     Even though the Olson-Simonson effect has been seen extensively in prior 

research,19 it is rare to find detailed explanations of how the evident counter ion 

effect works.  The demonstration of the effect comes when researchers plot the 

observed rate constant versus the simple molar concentration of added salt 

rather the ionic strength or GP.  The interpretation is confirmed when it is shown 

that it is the added salt’s ion of charge opposite to the like-charged reactants 

which is establishing/controlling the observed behavior (this would equate to 
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added anion-specific rather than cation–specific effects in our case, as observed).  

This effect has now been observed consistently in our study of the dimer 

comproportionation reaction as we have discussed in the previous sections.  We 

will now show some more evidence and seek to explain how the Olson-Simonson 

effect might be working in our particular case.  

     In Figures 2.34, 2.35, 2.36, we compare the three catalytic salt’s effects 

obtained at different reactant’s concentrations in separate graphs by plotting the 

kinetic data vs. both GP and the added salt concentration (note: the Cl- counter 

ion concentrations introduced from the reactants themselves are not considered 

here for easier comparison, and from the scales of Figures 2.29 and 2.33 we 

know that these small amounts of initial chloride will have negligible rate effects).  

Here we see once again that the different kinetic patterns arising from a given 

electrolyte when plotted as logkex vs. GP come together and agree precisely in 

the Olson-Simenson logkex vs. conc. plots for SCN- and adipate, but in the case 

of muconate there appears to be a slight downward trend in catalytic efficacy as 

the reactants concentration is increased.  In the concentration plots, we can see 

that the initial logkex difference of the lines is very small compared with the overall 

kinetic acceleration due to added salt, at least for these reaction concentrations.  

This shows that ion-pairing interactions with and the specific catalytic properties 

of these anions dominate their effects on the ET kinetics of reaction (2).  



 130

 

 

Figure 2.34 NaSCN effects on reaction (2) vs. total GP (upper) and vs. 

concentration (lower) at both [RuII, RuII] = [RuIII, RuIII] = 5.0 x 10-5 M and 2.0 x 

10-4 M. 
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Figure 2.35 Na2adip effects on reaction (2) vs. total GP (upper) and vs. 

concentraction (lower) at [RuII, RuII] = [RuIII, RuIII] = 5.0 x 10-5 M, 1.0 x 10-4 M and 

2.0 x 10-4 M. 
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Figure 2.36 Na2muc effects on reaction (2) vs. total GP (upper) and vs. 

concentraction (lower) at [RuII, RuII] = [RuIII, RuIII] = 5.0 x 10-5 M, 1.0 x 10-4 M and 

2.0 x 10-4 M. 
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     In Figure 2.37, all of the chloride and nitrate salts used in our study are 

combined and plotted as logkex vs. concentration.  They generally follow the 

Olson-Simonson effect even though some of them don’t have the same initial 

ruthenium concentration.  The points from the linear part of the reactants-only 

concentration effect (see figure 2.19) we described in the previous section also 

falls on the line if we plot logkex vs. anion concentration (for the self-salting effect 

where Cl- is the counter ion from the ruthenium complex).  This Cl- anion effect 

may thus explain part of the self-salting effect we see (though we note that the 

self-salting slope of 11.2 for logkex vs. GPtot is much lower than the value of ~43 

listed in Table 2.9). 

     Unfortunately, there is no general way to predict or interpret the exact 

shape of the Olson-Simonson curve, but rather the smoothness of it and 

variations in it can be used to infer the importance of specific ion-ion interactions 

in some kinetic process.  Later in this chapter we will show how detailed kinetic 

modeling using calculated ion association/dissociation rates and best-fit first 

order ET rate constants within presumed ternary (or higher) encounter 

complexes can be used to explain the more complex logkex vs. GPtot behavior 

shown in the upper panels of Figures 2.34-2.36. 
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Figure 2.37 Combined concentration effects and salt effects on the rate of dimer 

comproportionation reaction (reaction 2) of all Cl- and NO3
- salts at different initial 

reactants concentrations.  
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Temperature-Dependent Kinetic Studies  

To gain further mechanistic insight into the observed salt effects and 

self-salting effects on reaction (2), we performed temperature-dependent kinetic 

studies at various reactant’s concentrations and with various salts so as measure 

how the activation enthalpy and entropy quantities behaved.  Table 2.12 shows 

the kinetic data from experiments done with the reactant’s concentrations at 1.0 

X 10-4 M and 3.0 X 10-4 M and in the presence of added catalytic or non-catalytic 

electrolytes with reactant’s concentration at 1.0 X 10-4 M. The resulting Eyring 

plots are shown in Figure 2.38 as plots of ln(kex/T) vs. 1/T (the best-fit line to each 

set of kinetic data is extended to 0 on the X-axis for easy comparison of the 

y-intercepts). 

 

Table 2.12 Stopped-flow kinetic measurements of reaction (2) as a function of 

temperature with reactant’s concentrations at 1.0 X 10-4 M and 3.0 X 10-4 M and 

in the presence of a variety of electrolytes at the reactant’s concentration of 1.0 X 

10-4 M. 

[RuII-RuII] = [RuIII-RuIII] = 3.0 X 10-4 M with no added salt (GPtot = 0.0880) 

T (K) 1/T (K-1) kex ln(kex/T) 

283.0 0.00353 2323 2.105 

294.8 0.00339 2774 2.242 

288.7 0.00346 2681 2.229 

300.6 0.00333 3033 2.312 
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294.9 0.00339 2705 2.216 

306.0 0.00327 3101 2.316 

300.8 0.00332 3003 2.301 

289.0 0.00346 2716 2.240 

283.7 0.00352 2665 2.240 

297.7 0.00336 3189 2.371 

304.5 0.00328 3370 2.404 

291.7 0.00343 2961 2.317 

285.5 0.00350 2514 2.175 

295.3 0.00339 3027 2.327 

301.1 0.00332 3220 2.370 

289.2 0.00346 2810 2.274 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with no added salt (GPtot = 0.0527) 

T (K) 1/T (K-1) kex ln(kex/T) 

294.8 0.00339 1294 1.479 

288.7 0.00346 1170 1.399 

300.6 0.00333 1388 1.530 

294.9 0.00339 1222 1.422 

306.0 0.00327 1454 1.558 

300.8 0.00332 1350 1.501 

289.0 0.00346 1182 1.409 
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283.7 0.00352 1256 1.488 

297.7 0.00336 1430 1.569 

304.5 0.00328 1542 1.622 

291.7 0.00343 1352 1.534 

285.5 0.00350 1148 1.391 

295.3 0.00339 1388 1.547 

301.1 0.00332 1497 1.604 

289.2 0.00346 1260 1.471 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added KF  

([KF] = 6.2 mM, GPtot = 0.088) 

T (K) 1/T (K-1) kex ln(kex/T) 

285.5 0.00350 4695 2.800 

295.7 0.00338 5661 2.952 

301.1 0.00332 6474 3.068 

291.1 0.00344 5222 2.887 

284.0 0.00352 4487 2.760 

298.8 0.00335 5976 2.996 

305.0 0.00328 6932 3.124 

289.1 0.00346 4897 2.830 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added KCl  

([KCl] = 6.2 mM, GPtot = 0.088) 
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T (K) 1/T (K-1) kex ln(kex/T) 

285.5 0.00350 19710 4.235 

295.7 0.00338 21900 4.305 

301.1 0.00332 24020 4.379 

291.1 0.00344 20900 4.274 

283.6 0.00353 19102 4.210 

297.8 0.00336 23096 4.351 

304.7 0.00328 25574 4.430 

287.3 0.00348 20140 4.250 

300.6 0.00333 22829 4.330 

289.8 0.00345 20727 4.270 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added 

([KBr] = 6.2 mM, GPtot = 0.088) 

T (K) 1/T (K-1) kex ln(kex/T) 

284.0 0.00352 38920 4.920 

298.8 0.00335 41690 4.938 

305.0 0.00328 44540 4.984 

289.1 0.00346 40320 4.938 

285.7 0.00350 39035 4.917 

295.1 0.00339 41740 4.952 

301.7 0.00331 43236 4.965 
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290.6 0.00344 41822 4.969 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added KI 

([KI] = 6.2 mM, GPtot = 0.088) 

T (K) 1/T (K-1) kex ln(kex/T) 

285.0 0.00351 75910 5.585 

295.7 0.00338 73930 5.522 

300.9 0.00332 73780 5.502 

290.4 0.00344 72220 5.516 

283.6 0.00353 79544 5.637 

297.8 0.00336 74215 5.518 

304.7 0.00328 72839 5.477 

294.3 0.00340 75717 5.550 

300.6 0.00333 71582 5.473 

289.8 0.00345 73464 5.535 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added KI 

([KCl] = 1.8 mM, GPtot = 0.0654) 

T (K) 1/T (K-1) kex ln(kex/T) 

285.7 0.00350 9316 3.485 

295.1 0.00339 9997 3.523 

301.7 0.00331 10530 3.553 

290.6 0.00344 9722 3.510 
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[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added Na2Adip 

([Na2Adip] = 3.0 mM, GPtot = 0.0871) 

T (K) 1/T (K-1) kex ln(kex/T) 

284.9 0.00351 106400 5.923 

295.9 0.00338 129500 6.081 

301.6 0.00332 154400 6.238 

288.6 0.00347 115100 5.989 

291.9 0.00343 123789 6.050 

297.8 0.00336 136820 6.130 

304.7 0.00328 162645 6.280 

300.2 0.00333 143570 6.170 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added Na2Muc 

([Na2Muc] = 3.0 mM, GPtot = 0.0871) 

T (K) 1/T (K-1) kex ln(kex/T) 

295.7 0.00338 1251295 8.350 

300.9 0.00332 1440674 8.474 

290.4 0.00344 1109436 8.248 

284.9 0.00351 1047000 8.209 

295.9 0.00338 1197000 8.305 

301.6 0.00332 1392000 8.437 

288.6 0.00347 1186000 8.321 
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301.6 0.00332 1527000 8.530 

[RuII-RuII] = [RuIII-RuIII] = 1.0 X 10-4 M with added Na2Muc 

([Na2Muc] = 1.0 mM, GPtot = 0.0667) 

T (K) 1/T (K-1) kex ln(kex/T) 

284.8 0.00351 342000 7.091 

295.5 0.00338 384000 7.170 

301.6 0.00332 388200 7.160 

288.6 0.00347 371700 7.161 

284.8 0.00351 334100 7.067 

295.5 0.00338 353300 7.086 

301.6 0.00332 380000 7.139 

288.6 0.00347 341200 7.075 
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Figure 2.38  Eyring plots for reaction (2) for both reactant-only cases at 1.0 x 

10-4 M and 3.0 x 10-4 M in the presence of added salts with [RuII-RuII] - [RuIII-RuIII] 

= 1.0 x 10-4 M 
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     Table 2.13 lists the measured H and S  values calculated for these 

reactions using the Eyring equation (eq. 2-22).  From the T dependent 

experiment on the “self-salting” effect where we increase the reactant’s 

concentrations from 1.0 x 10-4 M to 3.0 x 10-4 M, we can see the rate 

enhancement at higher reactant’s concentration is mainly due to an entropy 

effect ( S goes from -166 to -158 J K-1 M-1) and H  for both concentrations 

are the same within error at ~ 6 KJ/mole 

     When the reactant’s concentration was kept constant and different 

potassium halides were added to the reaction (at either 18 or 62 times the Ru 

concentration), the H  values obtained from the T-dependence experiments 

decreased gradually upon gong from added F- to I-.  An interesting and unusual 

negative enthalpy effect ( H = -4.5 kJ/mol) was observed for the added I- case 

at 6.2 x 10-3 M.  By plotting the magnitude of the first half life t1/2 vs. T (where t1/2 

is taken from the absorbance vs. time kinetic curve from each of the 

temperature-dependent stopped-flow experiments), we can see that the first 

half-lives of the reactions decrease as expected when increasing T in the case of 

added F- and Cl-, but the trend goes almost flat (no change with T) for the added 

Br- and I- case (see Figure 2.39).  The activation entropies for the reaction in the 

presence of the added halides decrease progressively (meaning that the entropic 

barrier,  ST , becomes larger) upon going from added F- to I-. This trend of an 

increasingly negative contribution to the enthalpic barrier from the heavier added 

halides, especially iodide has been reported previously by Sista in his work on 
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reaction (1).41  Our overall activation free energies decrease only slightly from 

added F- to I-, and an experimentally significant enthalpy-entropy compensation 

effect is observed upon plotting S   vs. H   (see Figure 2.40).54 

     As discussed previously by Sista, we know that the hydration enthalpies of 

the halides drop (become less negative) as F- > Cl- > Br- > I-,41 and that the 

entropies of hydration increase (also become less negative) over the same series 

(both trends thought to be related to the progressive increase in radius of X- and 

hence decrease in hydration sphere electrostriction).53 Our kinetic data are 

consistent with these trends and the idea of a presumed ternary (or possibly 

higher) precursor complex where X- becomes desolvated so as to form a “bridge” 

between the two redox partners. For example, it “costs” most in terms of enthalpy 

to desolvate F-, but releasing the tightly-held salvation layer also yields greatest 

entropic compensation of that cost. Conversely, I- is easily desolvated but doing 

so provides little entropic benefic. The surprising results (note Table 2.13) is that 

other aspects of the overall mechanism seem to place entropic constraints on the 

transition state (negative contributions to S ) such that the overall H , or 

  SG , sum, actually comes up negative – a rarely encountered results.55-58 
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Table 2.13  Activation parameters calculated from Eyring plots with Eq. 2-22 for 

reaction (2) with reactant’s concentrations of 1.0 X 10-4 M and 3.0 X 10-4 M and in 

the presence of a variety of electrolytes at the reactant’s concentration of 1.0 X 

10-4 M. 
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Figure 2.39  First reaction half-life t1/2 from the absorbance vs. time kinetic 

curves from the temperature-dependent kinetics experiments for reaction (2) (all 

run with reactant’s concentration at 1.0 x 10-4 M in the presence of added halides 

salts at 62 fold molar excess and total GP = 0.088). 
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Figure 2.40  Enthalpy and entropy compensation effect for reaction (2) with 

reactant’s concentration at 1.0 x 10-4 M in the presence of added halides and 

catalytic salts (total GP = 0.088) 

 

We have discussed previously how the kinetic rate constants increase 

significantly by adding simple salts (such as F-) and how addition of catalytic salts 

(such as Muc2-) leads to a much greater change.  From table 2.13 and Figure 

2.40, we can see a clear trend in the entropy effect by comparing added F- 

through I- with added Adip2- or Muc2- ( S is -131 J K-1 M-1 for added F-; -104 J 
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K-1 M-1 for added Adip2-; -89 J K-1 M-1 for added Muc2-) and interestingly, the 

activation of enthalpies of these cases are the same within experimental error.  

This trend in S   agrees with the ideas discussed previously35,36 that the 

electronic structure of muconate provides strong enough electronic coupling to 

effect the adiabaticity of the reaction (which would be expected to show up in the 

intercept of an Eyring plot, see parameter el   in equation 1-12 of Ch. 1). 

 

Ion Pair Formation Constant Measurements using UV-Vis Spectroscopy 

     The Ion-pair formation constant Kip for association equilibria between ions 

in solution can be calculated by the well-known Eigen14,15 and Fuoss16
 
equations 

(2-12 to 2-14), or it can be obtained experimentally in favorable cases like ours 

where an ion-pair charge transfer band is observable49 (from X- to RuIII) by fitting 

the observed absorbance difference OD  at the ion-pair λmax to the added 

halide concentration through a Debye-Huckel type expression.48  One of the 

drawbacks of the Eigen-Fuoss equations is that they treat the reactants as 

spheres, and this might be a poor approximation of the geometry of the actual 

molecule - especially in a case like our BPE RuIII-RuIII dimer which has a more 

rod-like shape and therefore highly non-spherical charge distribution.  When 

forming the first ion-pair with a halide ion, for example, it is very likely that one of 

the RuIII centers on the dimmer will interact more strongly than the other RuIII 

center. Thus, using an overall charge of 6+ for RuIII-RuIII dimer in the 

Eigen-Fuoss equations for calculating the Kip might be expected to introduce a 
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large error and result in overestimated Kip values. Experimental measurements 

for more reliable Kip values thus become necessary in order to evaluate the 

reaction mechanism.  

Ion-pair charge transfer (IPCT) spectra have been characterized in early 

work by Navon et al.48 using the RuIII(NH3)6
3+ ion as the electron accepting center 

and by Sexton et al.50 using the (NH3)5RuIIIpy3+ ion.  In order to validate our 

methods here on the decaammine RuIII-BPE-RuIII dimer, we also performed 

measurements using the related (NH3)5RuIII(3-Fpy)3+ ion since it yields more 

cleanly-separated and distinct IPCT spectra and λmax values than the BPE 

dimer or (NH3)5RuIIIpy3+ does (see Figure 2.41-2.43 and Table 2.14).  We note 

that even though the higher redox potential of the (NH3)5RuIII(3-Fpy)3+ complex 

as compared to the pyridine complex studied by Sexton et al.50 (0.157 V as 

compared to 0.095 V vs. SCE),41 the IPCTλmax for the chloride ion pair is at the 

same wavelength (312 nm) and the IPCT for Br- is slightly blue-shifted by 1 nm 

compared with the reported value of 338 nm by Sexton et al.50.  Applying 

equations 2.49 and 2.50 to the data in Table 2.14, we able to fit the ΔAbs (ΔOD 

in equation 2.49) as shown in Figure 2.44.  The best-fit values for Kip are as 

shown in Table 2.15.  The best-fit experimental values actually show 

comparable association constants to the calculated Eigen-Fuoss values (in the 

first colummn) and also agree reasonably with the experimental values of 15.0 for 

Cl- and 11.1 for Br- arrived at by Navon et. al. using the hexaammine Ru(III) 

complex.48 
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     Though the exact best-fit Kip values are somewhat model-dependent 

(inclusion of B term from equation 2.50 or not), we see that there probably is a 

small difference between Cl- and Br- in the experimental Kip which is not captured 

in the calculated Eigen-Fuoss value.  As shown in Table 2.15, the Dex (best-fit 

IPCT band extinction coefficient) arrived at using the Eigen-Fuoss equation 

without the BI term used by Navon converges on what are probably 

unreasonably large values of Dex, especially for Cl-. 

Since these ruthenium monomer complexes are reasonably spherical, it is 

not surprising that the experimental best-fit and calculated Kip values from the 

Eigen-Fuoss equations are in good agreement.  To verify this, we also 

performed the UV-Vis measurement of the IPCT spectra with (NH3)5RuIII3Fpy by 

adding halides.  Figure 2.41, 2.42 and 2.43 show the UV-Vis measurement of 

the spectra of (NH3)5RuIII3Fpy monomer at 1.0 mM concentration by adding KCl, 

KBr and KI.  Since the IPCT spectra with this monomer complex obtained upon 

adding I- shows a significant MLCT band which corresponds to the reduction of 

RuIII by I-, we did not include these results in our fitting work for Kip.  The 

measured absorbance values at λmax for added Cl- and Br- are listed in Table 

2.14, and the ΔAbs vs. [X-] plots are shown in Figure 2.44. 

 

 

 

 



 151

  

(a) 

  

(b) 

Figure 2.41  a) absolute UV-Vis (vs. water only) spectra generated by adding 

KCl (conc. of Cl- ranges from 0.005 to 1.0 M) to the (NH3)5RuIII3Fpy3+ monomer 

with [RuIII] at 1.0 x 10-3 M;  b) Spectra obtained by subtracting the spectrum of 

the dimer without any added KCl from the spectra with KCl; note that the 

absorption at λmax clearly increases with added KCl. It was the longer-wavelength, 

fully-resolved band at 312 nm which was used in calculation of Kip 
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(a) 

  

(b) 

Figure 2.42  a) Absolute UV-Vis (vs. water only) spectra generated by adding 

KBr (conc. of Br- ranges from 0.005 to 1.0 M) to the (NH3)5RuIII3Fpy3+ monomer 

with [RuIII] at 1.0 x 10-3 M;  b) Spectra obtained by subtracting the spectrum of 

the dimer without any added KBr from the spectra with KBr; note that the IPCT 

absorption at λmax = 339 nm clearly increases with added KBr. 



 153

 

Figure 2.43  Absolute UV-Vis (vs. water only) spectra generated by adding KI 

(conc. of I- ranges from 0.005 to 1.0 M) to the (NH3)5RuIII3Fpy monomer with 

[RuIII] at 1.0 x 10-3 M; note that the absorptions at λmax = 290 and 355 nm may 

be IPCT bands (since they clearly increase with added KI) but the growing MCLT 

at 420 nm interferes.  

 

Figure 2.44  IPCT absorbance values from Table 2.15 for the (NH3)5RuIII3Fpy3+ 

complex and added Cl- and Br-; the presumed absorbing species is then [3+,X-] 

(where 3+ is the (NH3)5RuIII3Fpy3+ monomer). The best fitted lines with Kip = 26.9

± 2.2 for KCl and 20.4 ± 2.5 for KBr are obtained using Eq. 2.14 with B term = 

0.64 and 0.62, respectively.  
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Table 2.14  UV-Vis absorbance data at the IPCT λ max position for 

(NH3)5RuIII3Fpy3+ in the presence of added Cl- and Br-; the presumed absorbing 

species is then [3+,X-] (where 3+ is the (NH3)5RuIII3Fpy3+ monomer) 

[Cl-] M 
Abs (Cl-) 

(at 312 nm) 
[Br-] M 

Abs (Br-) 

(at 339 nm) 

5.0e-3 0.0187 5.0e-3 0.0240 

0.010 0.0282 0.010 0.0315 

0.020 0.0398 0.020 0.0423 

0.040 0.0567 0.040 0.0684 

0.080 0.0779 0.080 0.1037 

0.120 0.0937 0.120 0.1087 

0.200 0.1153 0.200 0.1450 

0.300 0.1312 0.300 0.1775 

0.400 0.1502 0.400 0.1972 

0.600 0.1835 0.600 0.2389 

0.800 0.2035 0.800 0.2777 

1.000 0.2367 1.000 0.3101 

  0.010 0.0341 

  0.020 0.0487 

  0.080 0.0943 

  0.400 0.2001 

  0.533 0.2327 
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  0.800 0.2970 

 

  

Table 2.15  Measured Kip by fitting plots in Figure 2.48 vs. calculated Kip from 

Eigen-Fuoss equations (Eq. 2-14) for (NH3)5RuIII3Fpy3+ with X-.  

 

a) Dex is the best-fit difference between the molar extinction coefficients for the ion pair 

solutions and the constituent RuIII and X- ions alone; b) the radius of the (NH3)5RuIII3Fpy3+ 

ion was taken as 4.37 Å, Cl- as 1.90 Å and Br- as 2.0 Å.41 

 

From Figures 2.45, 2.46 and 2.47 pertaining to the BPE dimer, we see that 

the IPCT band λmax does not shift according to the identity of the halide in the 

same way as it does for the monomer RuIII(NH3)6
3+ acceptor studied by Navon, 

the RuIII(NH3)5py3+ studied by Sexton et. al., or the (NH3)5RuIII(3-Fpy)3+ monomer 

complex shown in Figure 2.41-2.43.   This is probably due to the actual λmax of 

the band not being fully resolved from the *   band of the BPE ligand.  

Despite this spectral masking, we are still able to see IPCT absorbance for the 
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part of the band which is not masked and then apply the fitting method of Navon 

to the absorbance data for extraction of a best-fit Kip (but the Dex extinction 

coefficient of the IPCT band will correspond only to some random position on the 

low energy side of the IPCT band). Figure 2.48 shows the fit to the absorbance 

data and Table 2.17 summarizes the best fit Kip and Dex values. 

For spectra with added Cl- and Br-, the IPCT bands with the BPE dimer are 

more clearly shown than the spectra with added I-.  In Figure 2.47 (b), we can 

see that with added I-, a second peak shows up at ~ 540nm which corresponds in 

wavelength to the reduced RuII-RuIII species. Even though trace of H2O2 was 

added to the RuIII-RuIII solution prior to adding I-, the reduced species was still 

observed in UV-Vis spectrum. So, the measured Kip for RuIII-RuIII with I- here will 

be not as accurate as the other cases with added Cl- and Br-. 
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(a) 

  

(b) 

Figure 2.45  a) Absolute UV-Vis (vs. water only) spectra generated by adding 

KCl (conc. of Cl- ranges from 0.004 to 0.5 M) to the decaammine BPE dimer with 

[RuIII-RuIII] at 5.0 x 10-4 M;  b) Spectra obtained by subtracting the spectrum of 

the dimer without any added KCl from the spectra with KCl; note that the 

absorption at λmax ≈ 390 – 440 nm clearly increases with added KCl.  
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(a) 

  

(b) 

Figure 2.46  a) Absolute UV-Vis (vs. water only) spectra generated by adding 

KBr (conc. of Br- ranges from 0.004 to 0.4 M) to the decaammine BPE dimer with 

[RuIII-RuIII] at 5.0 x 10-4 M;  b) Spectra obtained by subtracting the spectrum of 

the dimer without any added KBr from the spectra with KBr; note that the 

absorption at λmax ≈ 390 – 455 nm clearly increases with added KBr. 
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(a) 

  

(b) 

Figure 2.47  a) Absolute UV-Vis (vs. water only) spectra generated by adding KI 

(conc. of I- ranges from 0.002 to 0.2 M) to the decaammine BPE dimer with 

[RuIII-RuIII] at 5.0 x 10-4 M;  b) Spectra obtained by subtracting the spectrum of 

the dimer without any added KI from the spectra with KI; note that the IPCT 

absorption at λmax ≈ 390 – 440 nm clearly increases with added KI, but the 

MLCT of the generated trace product II,III dimer partially obscured it. 
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Table 2.16  UV-Vis absorption values at the observed IPCT λmax
(a) positions 

from spectra obtained from the RuIII-RuIII BPE dimer in the presence of added 

halides. The presumed absorbing species is the [6+,X-] (where 6+ is the BPE 

dimer) 

[Cl-] M 
Abs (Cl-) 

(at 401 nm) 
[Br-] M 

Abs (Br-) 

(at 401 nm)
[I-] M 

Abs (I-) 

(at 402 nm)

4.00e-3 0.0230 1.00e-3 0.0228 2.00e-3 0.0264 

5.00e-3 0.0280 2.00e-3 0.0436 4.00e-3 0.0751 

8.00e-3 0.0391 3.00e-3 0.0400 8.00e-3 0.1285 

0.018 0.0560 4.00e-3 0.0594 0.016 0.2054 

0.032 0.0722 8.00e-3 0.0753 0.032 0.2594 

0.060 0.1000 0.010 0.0900 0.064 0.3262 

0.100 0.1231 0.016 0.1327 0.100 0.3885 

0.150 0.1480 0.050 0.2490 0.200 0.4825 

0.200 0.1638 0.080 0.3118 2.00e-3 0.0264 

0.200 0.1680 0.080 0.3000 4.00e-3 0.0751 

0.250 0.1800 0.120 0.3530 8.00e-3 0.1285 

0.300 0.2012 0.160 0.3973 0.016 0.2054 

0.400 0.2139 0.200 0.4400 0.032 0.2594 

0.500 0.2224 0.240 0.4738 0.064 0.3262 

  0.032 0.1892   

  0.320 0.4940   
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  0.400 0.5244   

a) As noted in the text, these are not true λmax values for the IPCT bands, but rather points on 

the sides of them not overlappings with the strong π-π* bands of the III,III dimer alone. 

 

 

Figure 2.48  IPCT absorbance values from Table 2.16 for the RuIII-RuIII BPE 

dimer and added Cl-, Br- and I-; the presumed absorbing species is then [6+,X-] 

(where 6+ is the RuIII-RuIII BPE dimer). The best fitted lines with Kip = 80.0 ± 2.7 

for KCl, 88.2 ± 4.5 for KBr and 106 ± 9.3 for KI are obtained using Eq. 2.14 

with B term = 2.33, 3.47 and 1.35 respectively.  
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Table 2.17  Measured Kip by fitting plots in Figure 2.48 vs. calculated Kip from 

Eigen-Fuoss equations (Eq. 2-14) for RuIII-RuIII BPE dimer with X-.      

 

a) Dex is the best-fit difference between the molar extinction coefficients for the ion pair 

solutions and the constituent RuIII-RuIII and X- ions alone; b) the radius of the BPE RuIII-RuIII 

6+ ion was taken as 5.47 Å (Calculated using the volume = tight option within Gaussiuan 

03W59 with the 6-31 + g(d,p)/ sdd basis set and optimizations done with the BHANDH 

functional,59 vide infra), Cl- as 1.90 Å, Br- as 2.0 Å and I- as 2.2 Å.49  

      

According to Waysbort48 the B term (see Eq. 2-50) is approximately equal 

to 1, thus we can fit the curves using a fixed B value (=1).  However, we can get 

better fits by varying the B values (see Table 2.17). The calculated Kip values 

from Eigen-Fuoss equations are also listed in the tables.  We can see that by 

assuming the RuIII-RuIII dimer is a sphere with charge 6+ in the Eigen-Fuoss 

calculation, we arrive at very different Kip values as compared with the measured 

Kip.  By putting a more reasonable charge (which can be considered as an 
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effective charge when interacting with halides) such as 4.5+ for RuIII-RuIII dimer, 

then the Kip calculated values agree much better with the measured Kip.  

From Table 2.15, we can see the Kip values for (NH3)5RuIII3Fpy monomer 

with added Cl- and Br- are much closer to the calculated Kip values obtained from 

Eigen-Fuoss equations than in the case for the measurement of the BPE (III,III) 

dimer.  This confirms our hypothesis that the BPE (III,III) dimer does not behave 

as 6+ point charge when interacting with halides.  We will try to consider this 

factor and make an approximation of the charges on various redox states of the 

dimer in the later kinetic simulation section.   

 

Kinetic Simulation of Salt Effects on ET of Comproportionation Reaction (2) 

and Mechanistic Implications 

Computational kinetic simulation of the observed ET reaction kinetic traces 

using an assumed mechanistic scheme or model can provide insight regarding 

which mechanisms are most plausible and allow for quantitative estimates of the 

rate constants for the individual elemental steps within a given or proposed ET 

mechanistic model.  In our case, we are interested to understand the rate 

enhancement observed with added electrolytes in the context of schemes like the 

one shown in the general pre-equilibrium scheme shown in equation (2-7).  

Extensive kinetic modeling work along these lines using the Specfit software 

written by Binstead51 has been carried out for monomer reaction (1) as described 

by Inagaki12c,36 and Sista.41  Details of the procedure and instructions for 

operation of the software will not be described in this section.  Based on their 
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work, we have found that it is generally possible to obtain successful matches 

between simulation and experiment using three parallel ET pathways as shown 

in Scheme 2.1 below on dimer comproportionation reaction (2),  

 

Scheme 2.1 Three pathway model involving association/dissociation and ET 

reaction steps for direct (Pathway One), singly-ion paired (Pathway Two) and 

doubly-ion Paired (Pathway Three) reactions. 

 

Pathway One (Simple Encounter, see equation 2-7) 

  

Pathway Two (Single Anion Catalysis) 
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Pathway Three (Double Anion Catalysis) 

+
ka7

kd7

(9)

ka8

kd8

(10)

(13)
ketxx

k-etxx

[RuII-L-RuII]4+ +

kd12

ka12

(14)

X-[RuIII-L-RuIII, X-]5+

[RuII-L-RuIII, X-]4+

[X-, RuIII-L-RuIII, X-]4+

X- [RuII-L-RuII, X-]3+

+
k10

kd10

(11)

ka11

kd11

(12)

[RuII-L-RuII,(X-)2, RuIII-L-RuIII]8+[RuII-L-RuII]4+ [X-, RuIII-L-RuIII, X-]4+

+[RuII-L-RuII, X-]3+ [RuIII-L-RuIII, X-]5+ [RuII-L-RuII,(X-)2, RuIII-L-RuIII]8+

[RuII-L-RuII,(X-)2, RuIII-L-RuIII]8+ [RuII-L-RuIII,(X-)2, RuII-L-RuIII]8+

[RuII-L-RuIII,(X-)2, RuII-L-RuIII]8+ 2

 

where [RuIII-L-RuIII]6+ refers to the BPE [RuIII, RuIII] dimer (and so on), and X- is 

the anion of the added salt under investigation. 



 166

Pathway one is relevant to the case of direct bimolecular reaction of 

[RuII-L-RuII]4+ and [RuIII-L-RuIII]6+ when there is only the electrostatic repulsion 

effect between the ruthenium reactants to give rise to any ionic strength (or GP) 

effect on rate.  Pathway Two is relevant to the single ion-pair formation case 

where now the species [RuIII-RuIII,X]5+ also contributes to the observed ET rate. 

Pathway Three is relevant at high [X-] where it is possible for the specie 

[RuIII-RuIII,X2]
4+ to exist at significant (meaning kinetically relevant) concentrations 

along the way.  It is also possible to incorporate other routes (besides the ones 

written above, steps 9, 11 and 12) into Pathway Three which result in formation 

of [RuIII-RuIII,X2, RuII-RuII]8+ or “pcxx” (vide infra), but earlier work by Sista has 

shown that no significant changes in the best-fit values of ketxx result from doing 

so.41   

Importantly, all the association rate constants ka for these pathways can be 

calculated (as a function of ionic strength) by the Debye-Smoluchoswski 

equations (Eq. 2-12) and the dissociation rate constants kd can also be 

calculated as a function of ionic strength from the Debye-Eigen equations (Eq. 

2-13).  In calculation of these rates, we have made the simplifying assumption 

that the radii of the ru22, ru23 and ru33 dimers are equal at a value of 5.47 Å 

(sphere of equal volume radius a0 + X as calculated). 

The pathways in Scheme 2.1 are inputted into Specfit using the condensed 

notation shown in Figure 2.49. Of primary interest in our modeling work, we are 

trying to find the optimum values of ket, ketx and ketxx which, when combined with 

the ionic strength-dependent ka and kd values, will reproduce our experimental 
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kinetic salt effects.  Note that as we have discussed in the previous section on 

ion pairing, calculating the ka, kd rate constants with the Debye-Smoluchoswski 

and Debye-Eigen equations for the dimer might be risky and introduce large 

errors into the calculation if we were to assume that the dimer can be 

approximated as a spherical charge distribution containing the nominal overall 

charges of 6+ for the RuIII-RuIII, 5+ for RuIII-RuII and 4+ for RuII-RuII.  Our 

attempts to model the experimental rate data using the nominal charges at each 

of the ka, kd kinetic steps in the simulation failed.  However, as with the Kip 

measurement experiments in the previous section, we found that good fits with 

reasonable ket, ketx and ketxx values could be obtained by adjusting overall 

charges on the 6+, 5+ and 4+ BPE dimers by the same multiplicative factor of 

0.75 to 4.5+, 3.75+ and 3+ in our kinetic simulations.  

     Table 2.18 lists the radii of the various ions used in the kinetic simulations.  

The simulated overall rate constants at each GP value (arising from the reactants 

and any added salt) for each of the different added salts are listed in Tables 2.19 

and 2.20.  The best-fit rate constants for the ket, ketx and ketxx ET steps within the 

presumed binary, ternary and quaternary association complexes are listed in 

Table 2.20.  Figures 2.50 to 2.55 show the best-fit simulated kinetic data (open 

symbols) compared with the experimental data plotted (black circles) as logkex vs. 

GP.  
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Figure 2.49 Inputted format of Scheme 2.1 in Specfit software written by Dr. R. A. 

Binstead52 using the condensed notation for the cases of simple encounter 

(Pathway 1-1), single anion catalysis (Pathway 1-2) and double anion catalysis 

(Pathway 1-3); where ru22 is [RuII-L-RuII]4+, ru23 is [RuII-L-RuIII]5+ and ru33 is 

[RuIII-L-RuIII]6+; X is corresponding halide; pc, sc, pcx, scx, pcxx, scxx are the 

corresponding precursor and successor complexes. 

Pathway 1-1: 

 

 

 

 

 

Pathway 1-2: 
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Pathway 1-3: 

 



 170

 

 

Table 2.18  Radii of the ions used in the kinetic simulation for reaction (2). 

Ion Radius (A) Ion Radius (A) 

RuIII-BPE-RuIII 5.47a Br- 2.00b 

(NH3)5RuIII3Fpy 4.37a I- 2.20b 

F- 1.50b adipate2- 3.94a 

Cl- 1.90b muconate2- 3.82a 

a) Calculated using the volume = tight option within Gaussiuan 03W59 with the 

6-31 + g(d,p)/ sdd basis set and optimizations done with the BHANDH functional;  

b) see ref. by Jacob Kielland.49 

 

Table 2.19  Specfit simulation results for reaction (2) in the presence of added 

halides at reactant’s concentration of 1.0 x 10-4 M. (see Table 2.20 for ket, ketx and 

ketxx summary) 

KF; ket = 7.8 x 105 , ketx = 6.5 x 105 , ketxx = N/A 

GP Experimental logkex logkex (PW 1-2)  
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0.0527 3.188±0.064 3.188 
 

0.0588 3.300±0.060 3.305 
 

0.0667 3.424±0.055 3.439 
 

0.0777 3.594±0.050 3.598 
 

0.0871 3.707±0.042 3.716 
 

0.0953 3.810±0.050 3.809 
 

0.1094 3.991±0.056 3.960 
 

KCl; ket = 7.8 x 105 , ketx = 2.1 x 106 , ketxx = 1.3 x 107 

GP Experimental logkex logkex (PW 1-2) logkex (PW 1-3) 

0.0527 3.188±0.064 3.113 3.184 

0.0588 3.476±0.080 3.363 3.466 

0.0667 3.802±0.059 3.621 3.799 

0.0777 4.170±0.041 3.913 4.155 

0.0871 4.417±0.035 4.123 4.387 

0.0953 4.595±0.030 4.350 4.556 

0.1094 4.885±0.031 4.542 4.742 

KBr; ket = 7.8 x 105 , ketx = 2.8 x 106 , ketxx = 2.5 x 107 

GP Experimental logkex logkex (PW 1-2) logkex (PW 1-3) 

0.0527 3.188±0.064 3.188 3.188 

0.0588 3.582±0.080 3.583 3.559 
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0.0667 3.941±0.080 3.869 3.979 

0.0777 4.365±0.088 4.135 4.400 

0.0871 4.665±0.057 4.304 4.666 

0.0953 4.882±0.048 4.428 4.855 

0.1094 5.217±0.038 4.637 5.120 

KI; ket = 7.8 x 105 , ketx = 3.9 x 106 , ketxx = 4.5 x 107 

GP Experimental logkex logkex (PW 1-2) logkex (PW 1-3) 

0.0527 3.188±0.064 3.188 3.188 

0.0588 3.659±0.100 3.655 3.653 

0.0667 4.090±0.097 3.963 4.160 

0.0777 4.570±0.102 4.240 4.620 

0.0871 4.889±0.081 4.414 4.897 

0.0953 5.138±0.050 4.541 5.092 

0.1094 5.493±0.034 4.724 5.360 

 

Table 2.20  Specfit simulation results for reaction (2) in the presence of added 

adip2- and muc2- at reactant’s concentration of 1.0 x 10-4 M. 

adipate2-; ket = 7.8 x 105 , ketx = 6.6 x 106 , ketxx = 1.2 x 106 

GP Experimental logkex logkex (PW 1-2) logkex (PW 1-3) 

0.0527 3.188±0.064 3.188 3.188 
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0.0559 3.753 3.790 3.850 

0.0667 4.551 4.300 4.640 

0.0777 4.954 4.500 4.930 

0.0953 5.298 4.700 5.230 

0.1319 5.519 4.900 5.540 

0.1799 5.743 5.150 5.720 

 

muconate2-; ket = 7.8 x 105 , ketx = 2.2 x 106 , ketxx = 1.2 x 107 

GP Experimental logkex 
logkex  

(PW 1-2) 

logkex  

(PW 1-3) 

logkex (PW 1-3) 

(with muc- and half V) 

0.0535 3.667 3.687 3.740 3.920 

0.0559 4.402 4.150 4.440 4.500 

0.0588 4.932 4.400 4.931 4.860 

0.0667 5.566 4.700 5.510 5.350 

0.0777 5.910 4.880 5.875 5.810 

0.0871 6.010 5.000 6.045 6.050 

0.0953 6.090 5.070 6.150 6.210 
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Figure 2.50  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added KF; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles. 
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Figure 2.51  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added KCl; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles; best fit simulation obtained using pathways One, Two and Three = 

open red circles. 
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Figure 2.52  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added KBr; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles; best fit simulation obtained using pathways One, Two and Three = 

open red circles. 



 177

 

Figure 2.53  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added KI; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles; best fit simulation obtained using pathways One, Two and Three = 

open red circles. 
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Figure 2.54  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added Na2Adip; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles; best fit simulation obtained using pathways One, Two and Three = 

open red circles. 
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Figure 2.55  Results from modeling the kinetic data for reaction (2) at reactant’s 

concentration of 1.0 x 10-4 M with added Na2Muc; experimental data = filled black 

circles; best fit kinetic simulation obtained using pathways One and Two = open 

green circles; best fit simulation obtained using pathways One, Two and Three = 

open red circles; best fit simulation obtained using pathways One, Two and 

Three by assuming Muc as -1 charge and using half Muc volume in the rate 

constant calculation = open blue circles. 
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Table 2.21  ket, ketx, ketxx values used when obtaining the best-fit from Specfit 

simulation for reaction (2) in the presence of added salts.  

Added Electrolyte ket ketx ketxx 

KF 7.8 x 105 6.5 x 105 N/A 

KCl 7.8 x 105 2.1 x 106 1.3 x 107 

KBr 7.8 x 105 2.8 x 106 2.5 x 107 

KI 7.8 x 105 3.9 x 106 4.5 x 107 

Na2adip 7.8 x 105 6.6 x 105 1.2 x 106 

Na2muc 7.8 x 105 2.2 x 106 1.2 x 107 

Na2muc a 7.8 x 105 4.0 x 108 3.5 x 109 

a) kinetic simulation with -1 charge and half volume for muconate ion 

 

Plotting the first ionization potentials of the halides vs. the best-fit ketx values 

from Spefit simulation (see Figure 2.56), we can see an almost linear relationship 

between them.  As the ionization potential because larger upon going from I- to 

F-, meaning halides are getting more difficult to oxidize, the best-fit catalytic rate 

constant ketx relevant to the assumed ternary association complex in our model is 

also seen to become smaller.  This is consistent with what was observed by 

Sista for the monomer reaction (1).41 
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Figure 2.56  First ionization potential of the halogens plotted against ketx values 

obtained from Specfit simulations.  

 

For the (possibly) more ideal “point-charge” and “non-catalytic” (vide infra) 

anion F-, we find that only pathway 1-2 (direct reaction and one ion-pair formation 

event between the [RuIII-L-RuIII]6+ oxidant with a single F-) is needed in order to 

arrive at a good fit of the experimental data for added KF (see Figure 2.50).  

When going to the heavier halides and the more-strongly catalytic salts (adip2- 

and muc2-), pathways 1-3 (now also including double ion-pair formation between 
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reactants and anions so as to involve the quaternary encounter complex PCXX) 

are necessary in order to get a good fit to the experimental kinetic data.  For the 

-1 charged anions, the ET rate constants within the presumed binary, ternary, 

and quaternary association complexes were found to increase in the order of ket 

< ketx < ketxx which agrees with previously reported results from this lab on 

monomer ET reactions.36 However, from a close look at the ket, ketx and ketxx 

values in Table 2.21, we can see that the ketx value for adip2- is smaller than the 

ket value.  This result conflicts with the fact we have seen that added adip2- 

shows a strong catalytic effect on the experimental ET rates.  Also, the ketx value 

for muc2- appears to be even smaller than those found for Br- and I- (very unlike 

the results found by Sista41).  This led us to suspect that there might be some 

as-yet unaccounted for source of error within our kinetic modeling of the -2 

charged catalytic anions. 

Even though we have “corrected” the charges on the BPE dimers to 

plausible effective values for our kinetic simulations, the mechanism of how the 

dianions muc2- and adip2- associate to the ruthenium dimers is still unclear.  One 

limit is to assume that there is only one carboxylate group on each dianion 

forming the ion-pair with ruthenium but that the dianion can be modeled as a 2- 

charge in a sphere of volume a0 as calculated by Gaussian (as was done by 

Sista in calculating the rate of each elemental association or dissociation step). 

Another plausible limit would be to assume since only one end of muc2- is binding 

to the ruthenium dimer to form the ion-pair, then one might use half of the muc2- 

dianion (-1 charge and half volume) in attempting to perform the simulation.  
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With this approximation we obtained larger ketx and ketxx values in a pattern more 

like the one found in SIsta’s prior analysis of monomer reaction (1) without having 

to make this modification.41  Even though this approach is based on a rather 

ad-hoc correction to the classical Debye-Huckel assumptions, it does appear to 

point towards a possible way forward in improving our kinetic modeling.  It now 

also becomes clear that the modeling done by Sista needs to be repeated using 

this same half-dianion limit so that the monomer/dimer cases can be more fully 

compared. 

Another possibility is that the dianions may ion pair with the dimers in a 

side-side fashion and thus present a very different case than the monomer 

systems (where an approximately spherical metal complex associates 

predominately with one end of the rigid muconate dianion but may or may not 

associate with both ends of the flexible adipate homolog).  If this were to be the 

case, then the presumed ternary PCX species in our modeling scheme might be 

more accurately thought of as a “sandwich” structure held together by favorable 

electrostatic and H-bonding interaction (as contrasted to a more linear/series 

resistor type arrangement of monomer RuII–dianion–monomer RuIII which might 

underlie the monomer catalytic action).  In such a sandwich/parallel type of 

associative geometry, it might turn out that the “catalytic” effect of the dianion has 

more to do with their ability to ease association of the reactants than with their 

ability to facilitate electron (or hole) tunneling over distance.  One striking 

difference between Sista’s experimental results and our dimer cases described 

here is that now adipate is clearly a much better catalyst than any of the simple 
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salts (note Figures 2.30 and 2.31), whereas Sista’s work with reaction (1) showed 

adipate to be only about as effective as KCl in speeding up the reaction (at a 

reactants concentration 1.0 x 10-4 M; see Sista’s thesis, Figure 2.32, p. 148, and 

Figure 2.38, p. 162).  This rather striking change (enhancement) of adipate’s 

catalytic efficacy in the dimer case does suggest some kind of change in catalytic 

mechanism. 

 

Conclusions 

Our stopped-flow kinetic studies of electrolyte effects on dimer 

comproportionation reaction (2) have verified and extended the nature of known 

salt effects on electron-transfer reactions of ruthenium ammine dimeric 

complexes and shown a reactant’s concentration or “self-salting” effect on the 

rate of reaction (2) similar to prior work in this lab.41  In our case the observed 

logkex vs. GP slope for self-salting is 11.5 ± 0.3 (see Figure 2.19) which is in 

poor agreement with the predicted Debye-Huckel slope of 24.5 based on the 

nominal (+6)(+4) charge product (see equation 2.10).  By altering the nominal 

6+ and 4+ charge types to 4.5+ and 3+ using the measured Kip values, however, 

the predicted slope based on the “effective” charges drops to 13.5 which is in 

much closes to the self-salting slope.  Also in agreement with prior monomer 

work, we observe non-classical kinetic accelerations which deviate strongly from 

Debye-Huckle theory over a range of different added “inert” electrolytes.  The 

observed catalytic effects with the heavier halides and the especially catalytic 
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dicarboxylates are again in agreement with a possible important role for 

hole-transfer superexchange in the ET reaction transition state complex.   

We have quantitatively explored the hypothesis of catalytic ternary and 

quaternary association complexes, [RuII-L-RuII, X-, RuIII-L-RuIII]9+ and [RuII-L-RuII, 

2X-, RuIII-L-RuIII]8+, by doing kinetic modeling of the reaction.  In fitting our 

experimental data, we find an increasing ratio of ketx (the electron-transfer rate 

constant inside the presumed ternary association complex) to ket (the rate 

constant inside the classical precursor complex) upon proceeding down the 

halide series (see Figure 2.56).  Our measured activation parameters for 

comproportionation reaction (2) show a strong enthalpy-entropy compensation 

effect according to the identity of the added halide.  Interestingly, the enthalpy of 

activation drops successively as we go to the heavier halides and in fact ∆H‡ 

becomes negative in the most extreme case of added I-. We ascribed this striking 

behavior to the enthalpy-entropy compensation effect in the formation of ternary 

association complexes. 
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Chapter Three  

  

The Effects of Added Salts and Temperature Variations on the Inter-Valence 

Charge Transfer (IVCT) Bands of Mixed-Valence Dimeric Systems in Water  

  

3.1  Introduction  

      Mixed-valence complexes containing two or more metal centers in different 

oxidation states have received intensive study over the past few decades.1 Much 

of the focus in these studies has centered on the unique metal-to-metal 

charge-transfer (MMCT) or inter-valence charge-transfer (IVCT or IT) absorption 

band in which photon absorption essentially transfers an electron from one redox 

site to the other. Experimental characterization of the mixed-valence IVCT band 

and its relevance to the topic of ET in general was brought to prominence in the 

pioneering studies of the Creutz and Taube ion,2 and later in related systems such 

as the 4,4’ bipyridine-bridged diruthenium decaammine dimer.1a Trinuclear and 

tetranuclear transition metal complexes were also synthesized and had their IVCT 

band spectra studied and interpreted by Kneene and coworkers.3 A general 

formulation of the IVCT “optical” ET process is shown below in equation 3-1, 

 
where Lbr is some “bridging ligand” such as pyrazine (Pz), 4,4′-dipyridylethylene 

(BPE) and 4,4′-dipyridyl (BPY) or 4-cyanopyridine (4CNP). 
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     The energy, intensity and shape of the IVCT absorption bands of binuclear 

complexes can be powerful tools for inferring details of the activation barrier 

relevant to the corresponding thermal intramolecular electron-transfer which must 

necessarily be taking place in these systems.4  For a symmetrical mixed-valence 

system that contains the same metal center and coordinated ligands at each end, 

such as the (NH3)5RuII-L-RuIII(NH3)5 example shown above (where L is the 

bridging ligand; L =  BPE and BPY in our study ), the thermodynamic driving 

force for the thermal ET reaction is necessarily zero, and there is thus no “0-0” 

energy gap for the optical ET process.  This means that to a first-approximation, 

the IVCT band energy is a pure Franck-Condon energy which directly reflects the 

extent to which the ground-state nuclear coordinates are out of equilibrium with 

the excited-state electronic wave function after photon absorption (this level of 

approximation requires that we ignore minor corrections having to do with 

spin-orbit coupling effects at the Ru(III) center created in the IVCT excitation as 

well as small symmetry-induced splittings of the t2g orbital set5).  An IT transition 

of the type shown in equation 3-1 can at least be conceptualized (if not always 

measured) in the case of outer-sphere self-exchange ET process where the 

reorganization energy (λ) of the reaction would be equal to the optical ET energy 
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(Eop or EIT relevant to the encounter or precursor complex discussed in chapter 

one, see figure 1-3).  In favorable cases, Eop can be measured through 

UV-Vis-NIR spectroscopy and the actual reorganization energy of the 

intramolecular ET can be obtained if the IT band is well-separated from other 

electronic transition bands of the molecule.  Extensive research has shown how λ 

responds to varying the inner-coordination sphere (including ligands and bridging 

ligand variations6) and the outer-coordination sphere (as with solvent,7 

temperature,8 ionic strength9 and counter ion variations10). All of these factors 

affect the energetics of the intramolecular ET process.   

     According to Hush,4,11 the maximum absorbance ( maxmax /hchvEop  ) of 

the IVCT band can be expressed in the following equation,   

'0 EGE outinop                        (3-2) 

where in  and out  are the inner- and outer-sphere reorganization energies (see 

chapter one for details), 0G  is the free energy change associated with the 

thermal ET reaction (equal to 0 for a bimolecular self-exchange or a symmetrical 

intra-molecular ET process), and 'E  reflects any additional energy contributed 

from spin-orbit coupling effects and ligand-field asymmetry (t2g orbital 

non-degeneracy due to deviations from Oh symmetry at the metal center).12   

     Hupp and coworkers have found that the added SO4
2- can first blue shift 

then red shift the IT band of some Fe and Ru dinuclear complexes in water.13 

Similar effects were also observed in mixed-solvent systems5a and with added 
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crown ethers5g on the IT band of the decaammine BPY dimer (as shown in eq. 

3-1).  They attributed these shifts to specific ion-pairing events which either 

destroyed or restored the end-to-end symmetry of the IT chromophore. We have 

recently discovered that added F- and other halides can shift the IT bands of the 

Lbr = BPY and 1,2-bis-bipyridylethylene (BPE) dimers in different directions 

depending on the identity of the halide (in water as solvent). We observe 

consistent blue shifts with added F- salts, but consistent red shifts are obtained 

with the other halides.  These novel salt effects on the IT band energy cannot be 

explained simply by considering some kind of transiently-induced 0G  or 0-0 

energy gap as was used by Hupp et al. in explaining their observations.  

The work to be described in this chapter will show that our observed 

spectroscopic shifts are related to the fact that these different halides have 

demonstrably different effects on the structure of the liquid water they are 

dissolved in (see ref. 14 for a recent and thorough review; F- is known to be 

“structure making” and the other halides are “structure breaking” with respect to 

how they tighten or loosen the overall H-bonded network of water).  We will show 

how these water-structure making/breaking properties of different added ions 

seem to be affecting the Franck-Condon energy (as measured by spectroscopic 

studies of Eop and band width) for mixed-valence dimers as shown in eq. 3-1 with 

Lbr = BPE and BPY.  The effects of temperature variations were also investigated. 

It is well-known that molecules of this type (Ru(II) and Ru(III) ammine complexes 

in general) are capable of strong hydrogen-bonding type interactions with solvent, 
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including water.5,12,15  Our salt-effect data will show that the IT band of these 

mixed-valence dimers is in fact a sensitive new probe of water structure and that 

the most-likely mechanism of the solvent-solute interaction is related to the 

previously-identified strong H-bonding interactions characteristic of these 

systems.15 

MLCT (metal to ligand charge transfer) and LMCT (ligand to metal charge 

transfer) absorption bands are known to respond sensitively to solvent via 

H-bonding interactions at the ammine ligands as mentioned above, and both of 

these types of absorption bands are present in our dimers as well (at higher 

energies than the NIR region of the IT band).  The dimers thus exhibit MLCT, d-d 

(d-orbital or “ligand field” transitions on Ru), and *   band (  to *  orbital 

transitions centered on bridging the ligands) in the fully-reduced II,II redox forms, 

and MLCT, *  , d-d, LMCT and IT bands in the mixed-valence II,III redox 

forms (and d-d, *   and LMCT bands in the III,III redox states).  Of these, we 

would expect the LMCT and IT bands to show the largest solvent and/or 

salt-induced water structure effects since the ammine ligands bound to Ru(III) are 

known to interact most strongly with solvents (in cases where the solvent has 

sufficient Lewis-base strength to act as a hydrogen bond “acceptor”5,12,15).  

Unfortunately, direct measurement of the LMCT energies of the bridged 

dimers proved to be impossible in both the 5+ and 6+ dimers because of spectral 

overlap with the much more intense *   transitions of the ligand.5a
   

For this 

reason, the electrolyte and temperature-dependent behaviors of LMCT band were 
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studied using the [(NH3)5RuIII(dmapy)]3+ (dmapy = 4-(dimethylamino)pyridine) 

monomeric complex as a model and the effects on the MLCT band were studied 

using both the fully-reduced (II,II) BPE dimer and the  [(NH3)5RuIIpy]2+ monomer 

complex.  

 

 

3.2 Experimental 

 

Materials and Syntheses 

The BPE and BPY dimers were synthesized as described in Chapter two 

(see section 2.2.1 for details). [(NH3)5RuIIpy]Cl2 was synthesized as described by 

Sista.16  N,N-dimethyl aminopyridine (dmapy) was purchased from Aldrich and 

used without further purification.  

 

Synthesis of (NH3)5RuIII(dmapy)]Cl3 (dmapy = 4-(Dimethylamino)pyridine)  

This complex was synthesized using a modification of the method described 

by Curtis.5  0.2 g of [RuII(NH3)
 
5(OH2)](PF6) (see Chapter two for synthesis) was 
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dissolved in 80 mL of argon-degassed acetone giving a yellow-colored solution. 

Three equivalents of dmapy (as the solid) were added to the solution followed by 

stirring for 4 h at room temperature under an argon blanket.  The final solution 

volume was reduced to about 20 mL by bubbling N2. The solution was then filtered 

under an argon blanket into 20 mL of argon-degassed diethyl ether in order to 

precipitate the product.  The solid [(NH3)5RuII(dmapy)](PF6)2 product was 

collected by another filtration under argon, washed with ether and dried under 

vacuo. Yields were typically 40-60%.  

We found that the [(NH3)5RuII(dmapy)](PF6)2 decomposes rapidly under O2 

to form traces of the blue-colored Ru(III) complex, thus Ru(II) complex should be 

stored in an Ar or N2-filled vial in the freezer and used within a day of initial 

preparation.   

     The chloride salt can be synthesized by dissolving a small amount (typically 

10 mg) of [(NH3)5RuII(dmapy)](PF6)2 in Ar degassed acetone and then 

precipitating it as the chloride by adding a few mL of 1/8 saturated 

tetra-n-butylammonium chloride in degassed acetone.  The gray solid was 

collected via filtration and dissolved in minimum amount of 0.2 M HCl.  The RuII 

was then oxidized to RuIII by adding a few drops of 30% H2O2, yielding a deep 

blue solution. The product was precipitated with addition of 10 volumes of acetone, 

collected via filtration and dried in vacuo. Yields were 30-40%  

(The yield calculation for this step is somewhat uncentain due to the large 

deviation introduced by starting with a relatively small amount of 
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[(NH3)5RuII(dmapy)](PF6)2 initially and product loss during filtration and collection.) 

 

Spectroscopic Measurements 

The intervalence-charge transfer bands of the dimeric systems were 

measured using either a Cary 5G or a Cary 5000 UV-Vis-NIR spectrophotometer. 

The height of the cell holder in the instrument had to be carefully adjusted to the 

proper level so that all light would pass through a 1cm pathlength quartz cell 

containing only 2 mL solution (this relatively small volume being helpful for 

conservation of sample).  A relatively-slow scan rate of 120nm per minute was 

used so as to obtain a better signal-to-noise ratio than the default setting of 

600nm per minute.  Each run solution was prepared by diluting/mixing ruthenium 

(III, III) and (II, II) dimer stock solutions of a given dimer and an electrolyte (added 

salt) stock solution in a 2.00 mL volumetric flask.  In all run solutions, the 

ruthenium dimer concentrations were kept the same (typically 2.5 x 10-4 M for both 

(II, II) and (III, III)) and the added-electrolyte concentrations were varied from 2.5 x 

10-3
 
M to the maximum possible before either the saturation point of that salt was 

reached or precipitation of the ruthenium complex occured.  For example, to 

study the effect of added KBr on the IVCT band of the (II, III) BPE dimer, the 

nominal ruthenium (II, III) concentration was 5.0 x 10-4
 
M.  The “nominal” 

concentration is the concentration which would apply if the comproportionantion 

reaction went to 100% conversion.  The actual concentration of (II, III) was 

calculated based on the known Keq of the comproportionation reaction.  In a 
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typical experiment, 0.50 mL ruthenium (III, III) dimer, 0.50 mL of the ruthenium (II, 

II) stock solutions at 1.0 x 10-3
 
M and up to 1.00 ml (volume added depending on 

the desired salt concentration) of salt-containing solution were mixed in a 2.00 ml 

volumetric flask (in a final volume of 2.00 ml; distilled water was added if needed). 

This solution in the flask was then transferred to a cuvette for UV-vis 

measurement. 

Even in the absence of the di-ruthenium dimer (or other) chromophore, there 

were some relatively narrow absorption bands in the near infrared region which 

appear and then become more significant as the concentration of a given added 

salt is increased past ~0.1 M (presumably due to salt-induced changes of the 

hi-order H2O overtone bands in the IR which appear if the “blank” scan is taken as 

a simple water vs. water scan).  In order to correct the IT spectra of our 

mixed-valence chromophores for the obscuring effect of these salt-induced bands 

at higher salt concentrations, a “blank” solution was prepared consisting solely of 

the pure electrolyte solution at the same salt concentration as a given dimer 

spectrum, and this was used as the “blank” solution in the reference cell which 

was scanned (now as salt vs. salt) prior to recording a given run solution of dimer 

+ salt. Thus the salt-induced absorbance changes in the NIR water spectrum 

where cleanly zeroed-out of the IT spectra. 

 The absorbance vs. λ data obtained from a given scan can be exported 

as an Excel file using the Cary Scan software (of the Cary spectrometer) via the 

following procedure: First, double click the “WinUV” icon to open the software, 
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then choose “Clear report” in the main menu and click “Recalculate” to open a 

new window.  Select “Include X-Y Pairs Table”, choose “OK” to generate spectra 

data in a table of Abs vs. λ on screen. From the main menu, select the “File” tab. 

Choose “Save Data As” and then select “Files of type” as [*. CSV] and input the 

file name and click “Save”.  The absorbance vs. wavelength data will now open 

as two columns in an Excel spreadsheet file.  These data can be converted into 

absorbance vs. energy (in eV) and processed using Sigmaplot or PeakFit software 

(both obtained from Systate Software Inc) deconvolute and analyze the IVCT 

spectrum for best-fit   λmax, Emax (eV), εmax and bandwidth (also known as 

“fwhm” or 2/1v ).   

Note: the same method was used in the study of electrolyte effects on the 

MLCT and LMCT bands of the ruthenium monomer complexes.  Details on 

operating the PeakFit program for spectral deconvolution have been described in 

detail by Qin.
17

 

  

   Temperature Dependent Studies of the IVCT Bands   

The temperature-dependent UV-Vis spectroscopy experiments were carried 

out with or without added electrolyte using an experimental temperature range 

from 4 to 45 oC.  The experimental temperatures were chosen at random (rather 

than sequential) so as to avoid any systematic errors due to time-dependent 

spectral changes.  The solutions were prepared according to the same procedure 
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as used for the electrolyte effect experiments described previously.  The run 

solution concentration (either ruthenium chromophore only or with added 

electrolyte) was held constant at the experimental temperature by suspending it in 

the reservoir of the circulating temperature bath (Lab-line instruments VWR1165) 

at each experimental temperature.  Argon gas was blown into the cell 

compartment of the instrument in order to exclude water vapor and thus prevent 

condensation on the cell at low temperatures (this was typically a significant 

problem at temperatures lower than 10 oC).  The temperature was controlled 

using a temperature circulation system with a 50:50 water:antifreeze mixture as 

coolant. The exact temperature at the cell was read on a digital Pt thermometer 

immersed in the cell solution at the time of measurement (after 1-2 min of 

equilibration time).  We found it necessary to record a separate water vs. water 

baseline correction at each experimental temperature to avoid absorbance errors 

due to the baseline drifting with temperature.  The same method was used in the 

study of the MLCT and LMCT band temperature dependence effects.  

 

3.3  Results and Discussion   

          

   3.3.1  Halide Effects on Charge Transfer Bands    

Our results indicated that adding simple electrolytes to solutions of both 

monomeric and mixed-valence dimeric ruthenium systems can bring about 

complex and qualitatively different spectral shifts depending on the specific 
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identities of the added electrolyte ions.  Tables 3.1 and 3.2 list how EIT or “Eop” for 

the BPE and BPY-bridged dimers vary with concentration for added potassium 

halide salts as well as sodium sulfate and sodium nitrate.  Figures 3.1 and 3.2 

show the IVCT energetic graphically.  We see that Eop for the intramolecular [RuII, 

RuIII] intervalence transfer transition shows a clear blue shift with added F-
 
but red 

shifts with the other halides (Cl-, Br- and I-).  The extent of the red-shift correlates 

with is related to the molecular weight of the halide, increasing in the order Cl- < 

Br- < I-. The blue shift with added KF is more rapid with the appearance of 

possible saturation effect at lower concentration for the BPE dimer as compared 

with other added halides. Added NaNO3 was observed to have an effect similar to 

Cl- for the BPY dimer case. With added SO4
2-, we observed an IT band shift 

pattern that is similar to what was discovered by Hupp in his studies of the BPY 

dimer in D2O as solvent.10    

  

Table 3.1  Salt effects on the position of the IT band of the 

[(NH3)5RuII-BPE-RuIII[(NH3)5]
5+ dimer in aqueous solution (nominal concentration 

of the II, III system = 5.0 x 10-4 M and calculated actual conc. = 3.6 x 10-4 M based 

on Kc = 14.48).19 

 [KF] (M) Eop (ev) (a) [KCl] (M) Eop (ev) (a) [KBr] (M) Eop (ev) (a)

0.000 1.270 0.000 1.266 0.000 1.268 

0.005 1.271 0.005 1.266 0.005 1.266 
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0.010 1.273 0.010 1.268 0.010 1.267 

0.020 1.274 0.020 1.266 0.020 1.267 

0.040 1.280 0.040 1.263 0.040 1.263 

0.100 1.283 0.100 1.262 0.100 1.258 

0.200 1.285 0.200 1.261 0.200 1.256 

0.400 1.288 0.300 1.258 0.300 1.250 

0.600 1.288 0.400 1.259 0.400 1.246 

0.800 1.290 0.600 1.256 0.500 1.243 

1.200 1.292 0.800 1.252 0.600 1.239 

1.600 1.294 1.000 1.251 0.800 1.238 

 

[KI] (M) Eop (ev) (a) [Na2SO4] (M) Eop (ev) (a) [Na2SO4] (M) Eop (ev) (a)

0.000 1.269 0.000 1.271 0.400 1.269 

0.005 1.264 0.005 1.290 0.600 1.261 

0.010 1.260 0.010 1.291 0.800 1.261 

0.020 1.258 0.020 1.291 1.000 1.254 

0.040 1.253 0.040 1.287 

0.100 1.246 0.100 1.286 

0.200 1.240 0.200 1.278 

 a) All Eop values are obtained by refining the experimental raw spectra with Peakfit as 

described by Qin17; error limits on Eop are ± 0.002 eV. 
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Table 3.2 Salt effects on the position of the IT band of the 

[(NH3)5RuII-BPY-RuIII[(NH3)5]
5+ dimer in aqueous solution (nominal concentration 

of the II, III system = 5.0 x 10-4 M and calculated actual conc. = 3.5 x 10-4 M  

[KF] (M) Eop (ev) (a) [KCl] (M) Eop (ev) (a) [KBr] (M) Eop (ev) (a)

0.000 1.189 0.000 1.186 0.000 1.188 

0.005 1.192 0.005 1.186 0.005 1.184 

0.010 1.193 0.010 1.187 0.010 1.182 

0.020 1.195 0.020 1.186 0.020 1.180 

0.040 1.198 0.040 1.186 0.040 1.180 

0.100 1.202 0.100 1.183 0.100 1.173 

0.200 1.204 0.200 1.180 0.200 1.170 

0.400 1.206 0.400 1.177 0.400 1.160 

0.600 1.207 0.600 1.172 0.600 1.156 

0.800 1.207 0.800 1.170 0.800 1.148 

1.200 1.210 1.000 1.166 1.000 1.141 

1.600 1.206     

[KI] (M) Eop (ev) (a) [Na2SO4] (M) Eop (ev) (a) [NaNO3] (M) Eop (ev) (a)

0.000 1.189 0.000 1.189 0.000 1.189 

0.005 1.181 0.005 1.209 0.005 1.188 

0.010 1.180 0.010 1.210 0.010 1.188 
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0.020 1.177 0.020 1.207 0.020 1.187 

0.040 1.170 0.040 1.205 0.040 1.185 

0.100 1.154 0.100 1.202 0.100 1.182 

0.200 1.150 0.200 1.199 0.200 1.182 

  0.400 1.189 0.400 1.179 

  0.600 1.184 0.600 1.177 

  0.800 1.183 0.800 1.176 

  1.000 1.177 1.000 1.174 

a) All Eop values are obtained by refining the experimental raw spectra with Peakfit as 
described by Qin17; error limits on Eop are ± 0.002 eV. 
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Figure 3.1 Eop for the [(NH3)5RuII-BPE-RuIII[(NH3)5]
5+ IVCT band vs. concentration 

of various added salts in water. (Nominal concentration of the II, III system = 5.0 x 

10-4 M and calculated actual conc. = 3.6 x 10-4 M based on Kc = 14.48).19 
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Figure 3.2 Eop for the [(NH3)5RuII-BPY-RuIII[(NH3)5]
5+ IVCT band vs. concentration 

of various added salts in water. (Nominal concentration of the II, III system = 5.0 x 

10-4 M and calculated actual conc. (a) = 3.5 x 10-4 M based on Kc = 14.48).19 
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The salt effects on the IVCT band energies of the dimers would be expected 

to be related to salt effects on the MLCT and LMCT band energies of the related 

RuII and RuIII monomer species (since these charge-transfer transitions also 

involve redox state changes at Ru and thus lewis acidity changes at the ammine 

hydrgens and presumably changes in the solvent-solute H-bonding in the excited 

state12,20).  There are both MLCT and LMCT bands present in the “II,III” 

mixed-valence dimers, but, there is considerable spectral overlap of the LMCT 

band on these dimers and the   to * transitions centered on the aromatic 

ligands.5a  For this reason, we used the LMCT band of [(NH3)5RuIII(dmapy)]Cl3 as 

a surrogate for the half of the dimer which gets “photo-reduced” upon 

intervalence-transfer photon absorption.  Table 3.3 shows the LMCT band energy 

as a function of concentration of varous added halides. Figure 3.3 shows how 

added KF and KBr affect the LMCT transition of [(NH3)5RuIII(dmapy)]Cl3 in 

aqueous solution.  As seen previously with the IT bands in our dimers, the LMCT 

of the Ru(III) monomer was blue-shifted by F- and red-shifted by Br-. In the same 

concentration range of added F- and Br-, the LMCT and IVCT bands show very 

similar (F-) and nearly identical “iono-chromic shift” behaviors (Br-) (see Figures 

3.4 and 3.5).  
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Table 3.3  Salt effects on the energy of [(NH3)5RuIII(dmapy)]Cl3 LMCT band in 

aqueous solution. 

  
[KF] (M) Eop (ev) (a) [KBr] (M) Eop (ev) (a) 

0.000 2.118 0.000 2.118 

0.005 2.118 0.005 2.115 

0.010 2.118 0.010 2.114 

0.020 2.120 0.020 2.112 

0.040 2.121 0.040 2.110 

0.100 2.124 0.100 2.105 

0.200 2.126 0.200 2.100 

0.400 2.129 0.400 2.094 

0.800 2.134 0.600 2.088 

1.200 2.138 0.800 2.084 

  1.200 2.076 

a) All LMCT band energies reported here are as obtained directly from the UV-vis 

measurements without further spectral refinement or deconvolution with Peakfit 
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   Figure 3.3  The energy of the [(NH3)5RuIII(dmapy)]Cl3 LMCT band (with [RuIII] = 

5.0 X 10-4 M) at varying concentrations of added KF and KBr in water.   



 210

 

Figure 3.4  Added KF and KBr effects on the energies of a) the BPE dimer IVCT 

band, b) the BPY dimer IVCT band, and c) the [(NH3)5RuIII(dmapy)]Cl3 LMCT band 

(with [Ru] = 5.0 X 10-4 M) in water.   
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Figure 3.5  The energy shifts, ΔEop for the BPE and BPY dimer IT bands and 

the [(NH3)5RuIII(dmapy)]Cl3 LMCT band with added KF and KBr  

 

In contrast to the IVCT and LMCT data, the measured λmax and Eop values 
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(Table 3.4) of the MLCT transition of the [(NH3)5RuIIpy]Cl2 monomer complex 

show only small dependences on the added halides (see Figures 3.6 and 3.7). 

Figure 3.8 shows that there is a slight red shift in Eop for the [(NH3)5RuIIpy]Cl2 

MLCT band with both added KF and KBr; this is obviously a significant qualitative 

difference than what we see in those cases where the charge-transfer transition 

brings about photoreduction at an Ru(III) center.  From Figure 3.6 and 3.7 we see 

that the MLCT absorption band at 408 nm drops and a new absorption in the 

region around 260 nm grows in with both added F- and Br-.  Spectra at low added 

salt concentration (< 0.1 M) have nice isosbestic points (see Figures 3.6c and 3.7c) 

indicating that the added salt is affecting some equilibrium relation between two 

species in solution.  The spectra seem to deviate slightly away from the 

isosbestic points at higher added salt concentrations.  It is possible that the 

isosbestic point might be due to an ion-pair formation of the [(NH3)5RuIIpy]2+ 

chromophore with the added halides; and this would be not surprising since the 

ion-pair formation constant between [(NH3)5RuIIpy]2+ and F- would be expected to 

be on the order of ~ 15 M-1 (see Ch.2, Table 2.12 for RuIII data) and so ion-pairing 

would be ~ 90% halfway through the range of concentrations, used here going 

through the isosbstic point at ~ 340 nm. 

 

 

 

Table 3.4  KF and KBr effects on the energy of [(NH3)5RuIIpy]Cl2 MLCT band in 
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aqueous solution. 

 
Added salt concentration (M) EMLCT (KF) EMLCT (KBr) 

0 
3.043 3.043 

0.005 
3.043 3.043 

0.010 
3.043 3.043 

0.020 
3.043 3.043 

0.040 
3.043 3.043 

0.100 
3.042 3.042 

0.200 
3.040 3.042 

0.400 
3.039 3.042 

0.800 
3.038 3.039 

1.200 
3.034 

N/A 

a) All MLCT band energies are obtained directly from UV-vis measurements without further 

spectral deconvolution or refinement with Peakfit 

 

Figure 3.6  (below) Effect of added KF on the [(NH3)5RuIIpy]Cl2 MLCT band (with 

[RuII] = 3.0 x 10-4 M, arrow indicates increasing KF concentration). (a) UV-Vis 

spectra changes with added KF (up to 1.2 M concentration); (b) zoom in of (a) at ~ 

408nm; (c) Difference absorption spectra with added KF; [spectrum of 

[(NH3)5RuIIpy]Cl2 with added KF] minus [spectrum without added KF].  
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    (a) 

 

    (b) 

   

    (c) 

isosbestic

increasing [F-] 

isosbestic

increasing [F-] 
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Figure 3.7 (below) Effect of added KBr on the [(NH3)5RuIIpy]Cl2 MLCT band (with 

[RuII] = 3.0 x 10-4 M, arrow indicates increasing KBr concentration). (a) UV-Vis 

spectra changes with added KBr (up to 0.8 M concentration); (b) zoom in of (a) at 

~ 408nm; (c) Difference absorption spectra with added KBr; [spectrum of 

[(NH3)5RuIIpy]Cl2 with added KBr] minus [spectrum without added KBr]. 

 

 (a) 

 

 (b) 

isosbestic

increasing [Br-] 

increasing [Br-] 
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  (c) 
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Figure 3.8  The energy of the [(NH3)5RuIIpy]Cl2 MLCT band (with [RuII] = 3.0 X 

10-4 M) as a function of added KF and KBr in water.   

 

isosbestic

increasing [Br-] 
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The striking result here is that now both F- and Br- lead to an 

approximately-linear red shift, and the magnitude of the shift is much less than 

what we see in the IVCT and LMCT cases.  This qualitative difference in behavior 

suggests that the mechanism of the salt-induced spectral shift changes upon 

going from the IVCT and LMCT transitions (where photon absorption leads to 

“reduction” at Ru(III) in the excited state) to MLCT transitions where absorption 

causes “oxidation” at Ru(II) (by creating an excited state which can be 

approximately described as .  

Since it is well-known that Ru(III) ammine complexes (in their ground states) 

are very strongly solvated by specific H-bonding interactions with solvents,5,15 we 

hypothesize that the IVCT and LMCT salt effects documented here probably 

reflect the salt-induced changes to this specific solvation structure somehow, while 

the qualitatively-different MLCT salt effects must reflect some kind of weaker, 

more general “ionic strength” or “ion-atmosphere” type effect.  A plausible 

mechanism here might simply be that the added salt is able to favorably polarize 

and form a denser and more stabilizing ion atmosphere around the more polar 

LMCT excited state (where ground
el  ~ (NH3)5RuIIpy2+ and ground

el  

~ ).  The qualitatively similar F- and Br- shifts in Figure 3.8 are 

different to explain without considering such a “o-o” energy gap effect.  

As discussed in the recent extensive review by Marcus, 11 it is well-known 
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that the F- ion in water has a positive Jones-Doyle viscosity B coefficient18 ( B = 

0.107), and this is deemed to be a manifestation of an overall “structure making” 

effect of F- in water (meaning that water becomes more viscous or “stiffer” upon F- 

addition).  The other halides all have negative B  values (-0.005 for Cl-, -0.033 

for Br-, -0.073 for I-) which means that they are overall “structure breaking” ions 

and are thought to loosen the structure of water based on their viscosity effects.  

If we plot the total IVCT spectral shift obtained at 0.2 M added salt for the BPE 

dimer (see Figure 3.1) vs. the Jones-Doyle B coefficient for each halide, we obtain 

Figure 3.9 below, 

B coefficient

-0.08 -0.04 0.00 0.04 0.08 0.12

 E
op

-0.03

-0.02

-0.01

0.00

0.01

0.02
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Figure 3.9  (above) The relation of energetic differences of IVCT shifts (obtained 

at 0.2 M added potassium halides) and Jones-Doyle B coefficients for the BPE 

dimer. 

 

Doing the same thing for the BPY dimer data (see Figure 3.2), we obtain Figure 

3.10 below, 

B coefficient
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Figure 3.10 The relation of energetic differences of IVCT shifts (obtained at 0.2 M 

added potassium halides) and Jones-Doyle B coefficients for the BPY dimer and 

(NH3)5RuIII(dmapy)3+ monomer.  
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Also included in Figure 3.10 are the KF and KBr data points that we have for the 

LMCT band of (NH3)5RuIII(dmapy)3+. 

In the simplest sense, current thinking is that the F- anion, acting as 

“structure maker” is somehow able to enhance the solvent-solvent interaction 

(presumably because of the overall increase in hydrogen bonding in the water). 

Conversely, the heavier halides disrupt the hydrogen bond network in water.14   

The spectroscopic effects we observe in TVCT and LMCT absorption bands 

correlates well with the water-structure related viscometric “B” coefficient, 

including the sign change between F- and Cl-.  

Comparison of the combined ΔEop vs. [salt] data for the two dimeric 

chromophores and the single monomeric chromophore studied imply (though 

don’t yet prove) that more than half of the measured “salt effect” in the dimers 

arises from changes occurring at the Ru(III) end of the dimers.  As mentioned 

before, the Ru(III) ends of ruthenium ammine dimers such as these is where the 

strongest solvent-solute interaction (H-bonding) is known to be taking place,5,15 

and this means there would be more “structure” to disrupt or enhance by added 

salt at that end.  In the bridged dimeric complexes, it may also be true that the 

electronic structure at the Ru(III) site would be affected more than at the Ru(II) site 

upon salt addition since changing the solvent structure will change the amount of 

electron density which ultimately flows from the surrounding water (acting as 

Lewis base) to the ruthenium center via H-bonding between water and ammine 

hydrogens.15 Thus there are two mechanisms, both effects on water structure 
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and on electronic structure, by which added salts might change the degree of 

asymmetry between the two ends of the dimer.  

Figure 3.11 illustrates how the magnitude of the total shift in op
tot

BrF E  vs. 

[salt] concentration behaves for the BPE and BPY dimer IVCT bands and the 

[(NH3)5RuIII(dmapy)]Cl3 monomer LMCT band.  Here we see that the op
tot

BrF E  

values (simply Eop obtained with added KF minus Eop obtained with added KBr at 

a given concentration) at 0.8 M are 0.050, 0.058 and 0.050 eV for the BPE, BPY 

dimers and [(NH3)5RuIII(dmapy)]Cl3 monomer, respectively. op
tot

BrF E  for the 

monomer at 0.8 M is thus 93% of the average value for the two dimmers, which is 

probably identical within experimental error.  This quantitatively suggests that 

most of the salt effect “happens” at the Ru(III) ends of the dimers since this is 

where there would probably be more “water structure” to enhance or disrupt in the 

first place.  We note that this is also where added anions would form the 

most-dense “ion atmosphere” and therefore be expected to exert maximum effect 

on the water structure. 
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Figure 3.11  The energy differences of the BPE and BPY dimer IT bands and the 

[(NH3)5RuIII(dmapy)]Cl3 monomer LMCT band with added KF and KBr (Eop of 

spectra with added KF minus Eop of spectra with added KBr) 

 

     This result present something of a puzzle in the context of Marcus-Hush 

theory and how IVCT bands are generally interpreted, since the dimer will undergo 
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both “oxidation” at one end and “reduction” at the other upon photon absorption 

into the IVCT band, one would expect both tightening and loosening, respectively, 

of the associated hydration spheres (and these reorganizational changes would 

contribute to the total Franck-Condon energy which defines the energy of the 

band).  One would thus expect only about one half as much effect with the 

A5RuIIIdmapy3+ monomer (upon modulation of water structure by salt addition) 

since there is only one hydration sphere to be reorganized upon photon 

absorption.  Our measurements strongly contradict this simple idea and suggest 

that there much be another effect at work in the A5RuIIIdmapy3+ case, such as 

salt-induced variations in the electronic ground vs. excited-state energy gap for 

the RuIII monomer which are clearly irrelevant in the dimeric systems.  Work in 

progress now by Fabrizio and Doran in the Curtis lab seeks to explore this 

possibility.21 

 

3.3.2  Temperature-Dependence of the Charge-Transfer Bands    

Altering the solution temperature is another way to change the 

second-coordination (hydration) sphere surrounding ruthenium ammine solute 

ions such as ours, and these changes in the solvent-solute interaction would also 

be expected to show up in the energy of an optical ET process.  Only a few 

examples8 in the literature have focused on the temperature dependence of EIT. 

According to Hupp, temperature dependence of the IVCT bands in mixed-valence 

systems are essentially large in asymmetrical complexes, 8a and also presumably 
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exist in valence-localized systems.8c Here we will show an unusual example of a 

temperature dependence of EIT for a symmetrical mixed-valence ruthenium 

dimeric system, the BPE-bridged dimmer.  

The temperature dependences of the BPE and BPY dimer IT bands were 

measured from 5 to 45 oC and the Eop values are listed in Tables 3.5 and 3.6. 

Figures 3.12 and 3.13 show that EIT for the BPE dimer exhibits a positive 

temperature coefficient ( dTdEop / = 2.75 ± 0.2 x 10-4 eV/oC in D2O and 3.29 ± 

0.29 x 10-4 eV/oC in H2O), and, puzzlingly, the BPY dimer exhibits almost no 

temperature coefficient above noise level ( dTdEop /  = 2.99 ± 1.1 x 10-5 eV/oC).  

The temperature range used in our study was constrained to 40 oC by the freezing 

point of the aqueous solution and the instability of the ruthenium dimers at higher 

temperature.  Even though the temperature effect on the BPE dimer was small, 

multiple runs gave consistent results with variations well-above experimental error 

(as taken from the standard deviation in slope of the best-fit line; see Figure 3.12).  

To our knowledge, there is no reported symmetric system in water which exhibits 

a positive temperature coefficient for EIT.   
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Table 3.5  Temperature effects on the IT band energy of the BPE dimer in both 

H2O and D2O 

T (K) in H2O Eop (eV) (a) T (K) in D2O Eop (eV) (a) 

278.4 1.263 280.8 1.267 

279.8 1.260 280.8 1.266 

279.8 1.258 285.4 1.268 

280.1 1.263 292.8 1.270 

281.5 1.262 293.2 1.271 

284.8 1.260 301.6 1.274 

286.7 1.265 304.5 1.273 

286.7 1.266 307.4 1.275 

287.7 1.262 313.2 1.275 

290.1 1.262 316.8 1.277 

291.5 1.265 

295.4 1.266 

296.5 1.268 

298.6 1.2666 

301.3 1.267 

301.4 1.267 

301.4 1.266 
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304.5 1.271 

304.9 1.269 

308.6 1.267 

312.2 1.270 

312.2 1.275 

314.0 1.274 

315.1 1.272 

315.1 1.272 

a) All Eop values are obtained by refining the experimental raw spectra with Peakfit as 
described by Qin17; error limits on Eop are ± 0.002 eV. 
 

 Table 3.6  Temperature effects on the IT band energy of the BPY dimer in H2O  

T (K) Eop (eV) (a) T (K) Eop (eV) (a) 

278.4 1.190 294.5 1.191 

279.7 1.190 298.0 1.191 

281.5 1.190 301.2 1.190 

285.5 1.191 305.7 1.190 

285.8 1.192 307.2 1.191 

287.0 1.190 311.0 1.191 

290.0 1.191 313.5 1.192 

293.5 1.191 316.7 1.192 

a) All Eop values are obtained by refining the experimental raw spectra with Peakfit as 
described by Qin17; error limits on Eop are ± 0.002 eV. 
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   Figure 3.12  Temperature dependences of the IT bands for BPE and BPY dimers 

in H2O and D2O , [RuII, RuIII] = 5 X 10-4 M. Best-fit regression equations are 

)006.0190.1()102.075.2( 4   xy  for BPE dimer in D2O, 

)008.0169.1()1029.029.3( 4   xy  for BPE dimer in H2O and 

)003.0182.1()1012.00.3( 5   xy  for BPY dimer in H2O. 
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Figure 3.13  Temperature dependences of the IT band for the mixed-valence 

BPE dimer in H2O and D2O, [RuII, RuIII] = 5 X 10-4 M. 

 

Temperature effects on the MLCT bands of the [(NH3)5RuIIpy]Cl2 and BPE 

(2,3) dimer as well as the LMCT band of the [(NH3)5RuIII(dmapy)]Cl3 were also 

studied, and these data are listed in Tables 3.7, 3.8 and 3.9. Figures 3.14 and 

3.15 show the blue-shifts observed upon heating for the MLCT bands, and Figure 

3.16 shows the red-shift obtained for the LMCT band.     
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Table 3.7  The effect of temperature on the MLCT band energy of 

[(NH3)5RuIIpy]Cl2  

  
Experiment order T (K) Eop (eV) 

1 295.0 3.0435 

2 278.0 3.0402 

3 286.0 3.0425 

4 317.0 3.0505 

5 303.0 3.0468 

a) Temperature order was chosen so as to minimize any systematic error due to sample 

decomposition 

 

Table 3.8  The effect of temperature on the MLCT band energy of (2,3) BPE 

dimer  

 

Experiment order T (K) Eop (eV) 

1 281.5 2.2707 

2 303.8 2.2794 

3 291.8 2.2745 

4 313.1 2.2838 

a) Temperature order was chosen so as to minimize any systematic error due to sample 

decomposition 
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Table 3.9  The effect of temperature on the LMCT band energy of 

(NH3)5RuIIIdmapyCl3  

Experiment order T (K) Eop (eV) Experiment order T (K) Eop (eV)

1 278.0 2.134 6 320.1 2.107 

2 285.0 2.128 7 305.0 2.117 

3 293.0 2.123 8 295.0 2.124 

4 302.0 2.119 9 282.0 2.134 

5 310.5 2.114 10 314.5 2.112 

a) Temperature order was chosen so as to minimize any systematic error due to sample 

decomposition 
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  Figure 3.14  Temperature dependence of EMLCT for the [(NH3)5RuIIpy]Cl2 in H2O 

(taken from table 3.7, [RuII] = 1.0 X 10-4 M). The order in which the data points 

were taken is labeled with numbers in the graph (chosen so as to minimize any 

systematic error due to sample decomposition); the best-fit regression equation for 

the data is )006.0967.2()1021.064.2( 4   xy .  
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  Figure 3.15  Temperature dependence of EMLCT for the 2,3 BPE dimer in H2O 

(taken from table 3.8 [RuII, RuIII] = 1.0 X 10-4 M). The order in which the data 

points were taken is labeled with number in the graph (chosen so as to minimize 

any systematic error due to sample decomposition); the best-fit regression 

equation for the data is )005.0154.2()1015.012.4( 4   xy .  
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Figure 3.16  Temperature dependence of ELMCT for the [(NH3)5RuIII(dmapy)]Cl3 in 

H2O (taken from table 3.9 [RuIII] = 5.0 X 10-4 M). The order in which the data 

points were taken corresponds to the numbers in the graph (chosen so as to 

minimize any systematic errors due to sample decomposition); the best-fit 

regression equation for the data is )009.0314.2()1029.047.6( 4   xy .  

 

If we consider how the temperature effects on the LMCT and MLCT bands 

might combine in the context of a mixed-valence dimer, we might make a simple 
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prediction for the expected temperature effect on the IVCT bands of the dimers. 

As shown in Figures 3.15 and 3.16, these two distinct effects shift the spectra in 

opposite directions (the MLCT slope for the (2,3) BPE dimer is 4.12 ± 0.15 x 10-4  

eV/K, and the slope for the LMCT band of the [(NH3)5RuIII(dmapy)]Cl3 monomer is 

-6.46 ±0.29 x 10-4 eV/K).  The larger red shift of the LMCT and the smaller 

relative blue shift of the MLCT band might therefore lead to an overall red shift in 

the IT band energy if the temperature effects were simply additive.  This 

prediction is inconsistent, however, with the observed IVCT shifts of the dimmers 

shown in Figure 3.12 and 3.13.  The dimer systems thus seem to be more 

complicated and cannot be explained by simply combining these two LMCT and 

MLCT energies since it appears that (especially for the (2,3) BPE dimer IVCT 

band shift) the relatively weaker MLCT band blue shift seen with the monomer 

somehow dominates the expected strong negative contribution from the LMCT red 

shift seen with the monomer.  The IVCT band shift of the 2,3 BPY dimer falls 

closer to an average value between the MLCT and LMCT shifts, but it too comes 

out closer the positive MLCT value.  We note also that from the Marcus-Hush 

expression for 0  shown in equation 1-10, we would expect 0  (and thus EIT) to 

drop with increasing temperature for a symmetrical dimer since it is well-known 

that “Ds” always drop with increased temperature.  Thus the explanation of the 

temperature dependence of the optical ET process stands as an open question at 

this point and is clearly not related in a simple way to the behaviors of the MLCT 
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and LMCT processes.  Further more, we not that this behavior contradicts 

expectations based on extrapolation of the salt-induced changes to the water 

structure as well.  Fluoride, a “structure maker” with a positive Jones-Dole “B” 

coefficient, gives us a blue shift in what is presumably “stiffer” water with 

increased structure, yet heating a solution of dimer with no added salt also gives 

rise to a blue shift even though the overall H-bonding network necessarily 

becomes weakened at higher temperature. 

 

3.4  Conclusions  

In this chapter, we have shown that the IT bands of ruthenium 

mixed-valence dimeric complexes exhibit distinctly-different halide ion effects 

depending on the identity of the added halide.  F- gives rise to a consistent blue 

shift while the heavier halides red shift the IT bands of both dimers. As shown in 

Figures 3.9 and 3.10, the shifts correlate with the known water structure “making” 

or “breaking” effects of the added halide anions. 

Comparing the effects of added halides on the MLCT band of the monomeric 

complex [(NH3)5RuIIpy]Cl2 and the LMCT of [(NH3)5RuIII(dmapy)]Cl3 indicate that 

the halide effects on the IT bands of the dimers are most closely related to the 

LMCT transition.  Thus the water structure “making” behavior of F- and “breaking” 

behaviors of the other added halides seem to exert their strongest influence at the 

Ru(III) site (presumably due to their effects on its hydration sphere).  

Temperature dependent experiments in water alone show a more 
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complicated pattern.  There is a positive temperature coefficient for the energy 

dependence of the BPE dimer IT band, but almost no temperature dependence in 

the BPY dimer case.  The MLCT bands of the 2,3-BPE dimer and the 

[(NH3)5RuIIpy]Cl2 monomer both show positive temperature coefficients, while the 

LMCT band of the [(NH3)5RuIII(dmapy)]Cl3 monomer shows a stronger negative 

temperature dependent effect.  So, in this case, the dimer IT band energies are 

shifting more like the MLCT bands do (or somewhere in between as with the BPY 

dimer).  This latter observation stands as an unresolved puzzle and the results 

will need to be repeated and extended before an interpretation can be advanced. 
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