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Abstract 

Kinetic salt effects on the bimolecular ET self-exchange reaction between 

pentaamineruthenium(II)(3-trifluoromethylpyridine)2+, (NH3)5RuIItfmp2+, and 

pentaamineruthenium(III)(3-trifluoromethylpyridine)3+, (NH3)5RuIIItfmp3+, have been 

measured using both 19F NMR line-broadening and CPMG T2 spin-echo relaxation 

techniques in H2O and D2O. Over the equimolar reactants concentration range of 0.10 

mM – 8.00 mM there was a definite “self-salting” rate increase arising from the 

increased solution ionic strengths due to the reactants and counterions themselves. 

The magnitude of this effect diverged significantly, however, from predictions based 

on the classical Debye-Huckle-Bronsted theory of kinetic salt effects. In agreement 

with earlier stopped-flow work, addition of alkali-metal fluoride salts increased the 

rate of ET between the like-charged redox reactants in good quantitative agreement 

with the quantitative predictions of the Debye-Huckle-Bronsted theory of ion 

atmosphere charge screening effects, but the other halides exhibited progressively-

increasing, non-linear upward deviations from theory in the order Cl- < Br- < I- . 

Catalytic effects on the rate of ET from the addition of various dicarboxylate salts 

were also found to deviate in a non-linear fashion from theory.  In sharp contrast to 

previous stopped-flow work wherein addition of the trans,trans-muconate dianion 

showed a uniquely-large catalytic affect, NMR investigations established a complete 

loss in catalytic efficacy  for muconate. Numerous control experiments force us to 

conclude that it is the presence of the magnetic field itself which quenches the 

catalysis as probed by NMR. Similar investigations showed that additions of even 

miniscule amounts of metal-hexacyano salts of formulation K4M
II(CN)6 (M = Fe, Os, 



Ru) caused much larger ET catalytic effects than those seen with any of the added 

halides or dicarboxylates. Consideration of the redox thermodynamics of the metal 

centers involved supports an interpretation of the catalysis based on hole-transfer 

quantum super-exchange mediation by virtual states corresponding to hole creation 

on the bridging anions in presumed ternary ionic assemblies involved in the ET 

transition state. 
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Chapter 1  

An Overview of Electron-Transfer Reactions              

                                                                                                   
1.1  Introduction 

Electron-transfer, ET, reactions have been widely studied over the past 60 

years.1-3  The underlying physical chemistry of ET reactions holds relevance to 

diverse areas of chemical reactivity including naturally-occurring biochemical and 

application-related chemistry such as battery and fuel cell technology. Some 

examples would include photosynthesis (the anabolic pathway which uses light 

energy to drive the catalytic conversion of carbon dioxide into sugars), the electron 

transport chain in human body (the metabolic pathway in the mitochondria which 

contributes to produce the enzyme ATP), and photovoltaic devices which use light to 

create electrical energy by exploiting the photo-physical and electron transport 

properties of semiconductors.4-6  

All “redox” reactions imply the existence of an ET elementary step at some 

point in the mechanism.  This is the point at which an electron (or some substantial 

fraction of a unit electron charge) is transferred from donor (reductant) to acceptor 

(oxidant).  The work described in this thesis will involve a solution-phase sub-case of 

these reactions known as “bimolecular self-exchange reactions” in which, for 

example, two transition metal complexes in different oxidation states collide through 

diffusive encounter and then undergo an ET event over some narrow range of 

interreactant distance during the encounter.7, 8  Much of the work here will describe 

the effects of added salts on the rates of ET self-exchange reactions carried out in 
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water, as well as the possible role of specific anion catalysis due to enhanced 

quantum “super-exchange” mediation between the donor and acceptor in proposed 

ternary encounter assemblies (vide infra).9, 10 

The theoretical model pertaining to the details of how ET reactions take place 

was first established by Rudolph Marcus and Noel Hush beginning in 1956.11-14  This 

model came to be known as the “Marcus-Hush theory.”  It used a simplified model of 

the reactant structural characteristics and a polarizable dielectric continuum 

approximation of the surrounding solvent in order to arrive at the first quantitative 

understanding of ET reaction rates.  Rudolph Marcus won the noble prize in 

chemistry for this model in 1992.  The Marcus-Hush model of ET will be outlined 

below as a part of our description of the reactions studied in this work.  

 
1.2   Complementary Aspects Between Thermal and Optical ET 

 
1.2.1 Thermal ET  

Thermally-induced or “activated” ET can take place in both intramolecular 

and intermolecular contexts.  In the intermolecular (bimolecular) case, the donor, D, 

and acceptor, A, reactant species first diffuse together and upon encounter form what 

is known as the “precursor complex” (associated pair) as shown in Figure 1.1.  In the 

classical picture, the precursor complex reorganizes its nuclear coordinates through a 

thermal activation barrier, ΔGth, to form a transition state configuration relevant to the 

ET event. This transition state is located at, or near the intersection point of the 

corresponding reactant and product potential energy surfaces.  
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In the schematic illustration of the ET processes shown in Figure 1.1, a2 and a3 

represent the average coordination sphere radii, assumed to be proportional to metal-

ligand bond lengths, of the two reactant complexes involved in the ET reaction. M 

and M+ represent the reactants respective oxidation states, and a* represents the radii 

of the thermally activated reactants in which a2 and a3 have “compressed” or 

“expanded” respectively, such that the nuclear coordinates are equal at the 

intermediate, transition state geometry (independent of electronic state). In this 

representation, the reactants start in an already formed associated pair or “symmetric 

binuclear encounter complex” (labeled REACTANT).  From this starting point, ET 

may occur through one of two pathways: thermal ET (lower pathway, represented by 

kth) or optical ET (upper pathway, represented by hν, vide infra).  

 

Figure 1.1  An illustration of optical (represented by “hν”, upper pathway) and 

thermal (represented by “kth”, lower pathway) ET processes relevant to a symmetric 

binuclear complex (or bimolecular encounter complex if the wavy “bridge” is 

omitted).15
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At the transition state geometry, the electron is then able to be transferred on a 

rapid timescale (defined by a tunneling frequency, el , vide infra), such that the 

nuclear coordinates and momenta are unchanged during the electronic transition as 

required by the Franck-Condon principle.  The Franck-Condon principle comes from 

the fact that the time scales of electronic density fluctuations (< 10-15 sec), and 

presumably any transitions between allowed electronic wavefunctions, elψ , are much 

faster than nuclear motion which occurs on the vibration/libration timescale of 10-13 - 

10-11 sec. Therefore, it can be assumed that the nuclei remain “frozen” with respect to 

their positions and momenta during an electronic transition.11, 15   The Franck-Condon 

principle is also related to the Born-Oppenheimer approximation by which the 

wavefunction for some molecular system is divided into two parts; the separated 

electronic, elψ , and vibrational (or nuclear, nuχ ) wavefunctions.  It is the probability 

density overlap between nuclear wavefuntions of two different electronic states which 

directly yields the quantity known as the Franck-Condon “factor”.16, 17  These are 

most often discussed with respect to spectroscopic (“vertical”) transitions between 

ground and excited electronic states, but they may be applied to thermally-induced 

barrier crossings as well.  In our case, the nuclear coordinates, which remain frozen 

during the thermally-activated transition, would include both metal-ligand and all 

other skeletal bond lengths, as well as solvent shell configurations which are 

electrostatically coupled to the location of the probability density centroid of the 

“exchanging” electron (corresponding to the difference at the transition state between 

the system being on either the reactant’s or product’s electronic surface).  
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Once the electron is transferred within the encounter/precursor complex and 

some degree of vibrational relaxation has begun, the resulting successor complex is 

now considered to be “locked” in the products electronic configuration for at least 

some number of vibrations which can then lead to full relaxation in the thermally-

equilibrated product state.  This means that the bond lengths of the two complexes, as 

well as the “solvent shell” around the products now re-adjust to the new electrostatic 

field corresponding to the products electronic surface.  The products then separate 

and diffuse apart.  In the bimolecular thermal ET case, it should be noted that the 

displacement associated with nuclear relaxation from the activated 

precursor/successor intermediate nuclear configuration (transition state geometry) to 

the ET product state is about half of the total nuclear displacement corresponding to 

going from fully equilibrated reactants to equilibrated products (vide infra). 

 
1.2.2 Optical ET 

 The two reactants, donor and acceptor, can exist together in close proximity in 

an electrostatically- disfavored “like-charged” encounter complex, a favored, unlike-

charged “mixed-valence” ion pair, or in a covalently-bound bridged binuclear 

complex as shown in Figure 1.1 (where the wavy line represents the bridge).  In some 

cases, the bimolecular, non-bridged encounter (or “precursor”) complex is a stable 

species, such as the known class of ion pairs of the composition 

(NH3)5RuIIIL/MII(CN)6 where M = FeII, RuII, or OsII.  These strongly-charged (+3) 

and (-4) acceptor and donor ions are now electrostatically held in an overall (-1) 

mixed-valence pair.9  Photon absorption at the correct wavelength, either by the 
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M~M+ as in Figure 1.1 or by a general associated donor-acceptor pair A] [D, , can 

then result in sudden ET from donor to acceptor, and this vertical or “optical” ET 

transition necessarily occurs without any change in nuclear coordinates as required by 

the Franck-Condon principle (vide supra). In covalently linked D-A mixed-valence 

dimers as in Figure 1.1, the bridging group holds the two metal centers at a fixed 

distance and typically modulates the quantum interaction between D and A (or “M” 

and “M+”).  Now both optical and thermal ET may occur just as in the case of an 

associated bimolecular ion pair, but now there is no associative step to form the 

precursor complex and spectroscopic study of the optical ET is facilitated.15 

The “charge-transfer state” or “intervalence-transfer excited state” arrived at 

upon vertical transition caused by photon absorption is necessarily created in a 

vibrational excited state of the new electronic surface since nuclear positions are slow 

to adjust to the new charge distribution.  In the case of symmetrical mixed-valence 

dimer systems where there is no driving force or “0-0” band energy, this Franck-

Condon state (or initially-populated vibrational excited state) is at an energy λ above 

the ground state.15  The energy λ is known in the ET literature as the “nuclear 

reorganizational energy” (vide infra).18 The excited state thus formed can then relax 

to form the thermally-equilibrated products “redox isomer” of the former reactants 

ground state, now described by the product’s electronic distribution [D+, A-] and with 

nuclear coordinates corresponding to, and in equilibrium with, the new electronic 

wavefunction. 
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1.3   The Outer-Sphere Mechanistic Pathway for Activated ET 

The “outer-sphere” mechanism of thermally induced ET has been shown to 

underlie a large fraction of the ET reactions studied thus far.7-9, 19   In the work 

described here, all the reactions studied were outer-sphere reactions. The key defining 

feature of this mechanism is that no covalent bonds directly join the donor or acceptor 

sites at any point along the ET reaction coordinate. Therefore, all quantum 

interactions governing the rate of the elementary ET step are necessarily established 

by relatively weak and fleeting Van der Waals interactions taking place between the 

donor and acceptor species at contact during the lifetime of the encounter complex.  

The outer-sphere mechanism can be divided into three identifiable steps as 

represented by equations (1-1a) to (1-1c). The basic mechanistic scheme is shown 

below, where A is the electron acceptor and D is the electron donor. 

 
                         (1-1a) 

 
 

                                             (1-1b) 
 
 

                                  (1-1c) 
 

In this work, the electron acceptor was the 4d5 (NH3)5RuIII(3-

trifluoromethylpyridine)3+ ion in aqueous solution and the donor (or reducing agent) 

was the 4d6 (NH3)5RuII(3-trifluoromethylpyridine)2+ ion.  Specifics of the reactants as 

well as their structures will be presented in section 1.7 (see reaction (1-27)). 
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In the initial, associative step, the two reactants diffuse together to form the 

encounter or precursor complex (also known as the reactants “ion pair”).  In the 

formation of [A, D], the primary coordination spheres of both complexes remain 

unchanged.  The association rate constant, ka, for formation of the precursor complex 

has an upper bound at the maximum rate at which such reactants can diffuse through 

the solvent.  This is known as the “diffusion-controlled limit” (vide infra).20  In order 

for the elementary ET event to occur, as shown in step (1-1b), both the primary ligand 

sets (the “inner-spheres”) of the reactant ions and their solvation or “outer-sphere” 

molecular environments must be activated to some intermediate transition-state 

geometry such that ET may now occur without any change in energy (as required by 

the Franck-Condon principle in the context of activated rate processes, see the lower 

leg in Figure 1.1).  This activation occurs as a result of stochastic thermal fluctuations 

of the metal-ligand bond lengths and other nuclear coordinates of the respective 

inner-coordination spheres along with simultaneous activation of the outer (solvent 

shell) coordinates.  Due to the smaller quantum level spacing’s of the low-frequency 

solvent dipole librations involved, the rearrangement of the outer-sphere is generally 

the slower process.21  After fluctuations take the system to the correct set of nuclear 

coordinates, ET occurs via tunneling from D to A within the precursor complex and  

creates the successor complex [D+, A-] as shown by step (1-1b). The successor 

complex can then relax and diffuse apart into separated products or revert back to 

reactants.  



9 
 

An expression for the bimolecular ET rate constant, exk , can be arrived at 

using a steady-state kinetic analysis of steps (1-1a) to (1-1c) based on the precursor 

A] [D,  species as shown below, 

' dET

dET

ET

d

a
ex

k k

 k k

k

k
1

k
k


                                          (1-2)20 

here ka is the kinetically second-order association rate constant, dk  is the first-order 

rate of dissociation of [D,A] back to reactants, ETk  is the first-order rate of ET (see 

equation (1-16)), ' dk  is the rate of dissociation of [D+, A-] to products and all other 

variables have been previously defined.  If ak  and dk   are much greater than ETk  , 

then the reaction is “activation” controlled and da k/k  can be treated as an association 

equilibrium constant, KA.  Equation (1-2) is then inverted (to aid in algebraic 

simplification20, 22-24) and upon employing the pre-equilibrium constant form of 

da k/k , equation (1-2) then transforms into, 





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
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                                    (1-3) 

If the rate of dissociation of the successor complex, ' dk , is also much larger than the 

backwards rate of ET, ETk  , then ' dET k/k   is negligible and equation (1-3) reduces 

to, 


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Furthermore, if the rate of dissociation of [D, A] back to reactants, dk , is much larger 

than the forward rate of ET, ETk , then equation (1-4) reduces to,  

ETAex kKk                                                    (1-5) 

This equation describes the commonly-encountered “pre-equilibrium” kinetic limit25  

and frequently applies in low-driving force bimolecular reactions between transition 

metal complexes such as the ones used in this work.  On the other hand, if dk  is 

smaller than ETk , then an important sub-case of equation (1-4) results,  

aex kk                                                        (1-6) 

This represents the “diffusion-controlled” limit and we see that kex will not contain 

any direct information about the rate of the elementary ET step.25  For all the 

reactions studied in this work, the driving force was zero and the 

formation/dissociation rates of the precursor complex are known to be fast compared 

to the rate of ET, therefore equation (1-5) can be rigorously applied.19, 24  

The association equilibrium constant, AK , in equation (1-5) depends on the 

relative magnitudes of ak  and dk  since KA=ka/kd. The factors governing ak  and dk  

include, among other things, the sizes of the diffusing reactant species and their 

charge types.  In all cases when the charge product of the reactants is not equal to 

zero, the magnitudes of ka and kd will depend on the ionic strength, µ, of the reactant 

solution.  This is the underlying basis of the simplest type of “kinetic salt effect” and 

the studies to be reported in this thesis will address this behavior in depth. We will 

characterize both successes and spectacular failures of the longstanding mathematical 
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theories of this rate effect in the context of our NMR-based kinetic rate 

measurements. 

 
1.4   The Reorganizational Energy Barrier, λ, Associated with ET 

For optical ET in a symmetric system (vide supra), the reorganizational 

energy, λ, is a “pure” Franck-Condon energy (where symmetric refers to 

thermodynamically symmetrical cases where the relaxed A] [D,  and ]A ,[D -  

electronic states are energetically indistinguishable).  In the case of transition metal 

complexes, the experimental λ or “Eop” (as seen later in Figure 1.3) will arise both 

from redox-state dependent structural shifts in the primary coordination sphere 

(ligand set) and in the secondary/tertiary coordination spheres (or first and second 

“hydration” shells) surrounding the reactant ions.  Frequently it is assumed that the 

total nuclear reorganizational energy, λ, can be apportioned into separate “inner-

sphere”, inλ , and “outer-sphere”, outλ , reorganizational energy contributions as 

described below, 

outin λλ λ                                                     (1-7)19, 23   

where Oλ would presumably capture all reorganization exterior to the ligand sphere. 

The Gibbs activation free energy for the thermal ET process, *G , is the 

energy required to reach transition state geometry through which reactants must pass 

on their way to products.  This energy has been shown by Marcus and Hush26-28 to be 

described by equation (1-8) below, 
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

                                           (1-8)19, 22, 23 

in the limit of linear solvent response to field fluctuations and strictly harmonic free-

energy surfaces.25, 29  Here GΔ r is the driving force (if any) for reaction (equivalent 

to the “standard reaction Gibb’s free energy change” or ΔE1/2 as measured 

electrochemically). Equation (1-8) follows from the assumption of parabolic 

(harmonic) potential/free-energy surfaces as defining the shape of the reaction 

coordinate (with negligible departure due to resonance interactions) and in the limit of 

negligibly small changes in the harmonic oscillator force constants (of all relevant 

modes) upon going from A] [D,  to ]A ,[D - .12, 26, 30  The activation free energy can 

also be apportioned into inner- and outer-sphere components by applying equation (1-

7) to equation (1-8) and thus, 

*
out

*
in

* GGG                                              (1-9)    

where *
inG  is the inner-sphere (skeletal) part of the Gibbs activation energy and 

*
outG  is the (presumably separable) outer-sphere (solvent) part. For ET self-

exchange reactions such as the ones to be discussed here, the A] [D,  and ]A ,[D -  

ground state species are thermodynamically indistinguishable, therefore GΔ r  is 

necessarily zero and equation (1-8) simplifies to, 

4
 ΔG* 
                                                     (1-10) 

 



13 
 

1.4.1 The “inner-sphere” reorganizational energy, λin 

In the case of ET between transition metal complexes, the “inner-sphere” 

reorganizational energy, inλ , can sometimes be treated in an especially simple way if 

the reactant complexes contain identical small (or even mono-atomic) ligands which 

then carry the bulk inλ  simply in the metal-ligand equilibrium bond distance changes 

attending ET at each metal center.  In such cases, inλ  can be expressed as, 

)( 2

)d(n 

21

2
21

ff

ff
in 


                                              (1-11)22 

where n is the number of identical ligands coordinated to one of the reactant metals 

(typically six), 1f  and 2f  are the symmetric stretching force constants for these 

modes in the two different redox states at the metal center and d  is the difference 

between the equilibrium metal-ligand bond distances in the two different redox states 

(as typically measured on separated reactant ions by crystallography).  This 

expression for the inner-sphere reorganization energy is a highly simplified model in 

which the reactants are treated as two roughly spherical complexes with only one 

specific force constant being ascribed to each reactant ion.  A more realistic portrayal 

of the inner-sphere reorganization energy encompasses the summation over all 

intramolecular vibrations of each complex involved in the reaction which change 

upon ET.  In this more general approach, inλ  is described by, 

 
i

iiin df 2)(
2

1                                             (1-12)23 
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where if  = 2 1f 2f /( 1f + 2f ) and is the “reduced” force constant for the ith inner-

sphere vibration, and i)d(   is the difference in the equilibrium metal-ligand bond 

distances in the two oxidation states.   

 
1.4.2 The “outer-sphere” (solvent) reorganzational energy, λout 

  The energy required to reorganize the medium outside of the primary 

coordination spheres of the reactant ions is defined as the “outer-sphere” 

reorganziational energy, outλ .  It is related to the change in solvation due to solvent 

dipole electrostriction, orientation, libration, and other effects which contribute to the 

overall λ for reaction.31  Generally, the reactant with the higher charge (the species 

“A” in our notation thus far but soon to be specified as “RuIII”) is more strongly 

solvated by the polar solvent molecules than its partner in the encounter complex, and 

this leads to significantly different degrees of polarization of the solvent medium 

exterior to the primary ligand sphere around A.  

In the early model developed by Marcus and Hush, the medium outside of the 

inner-coordination sphere was treated as a “dielectric continuum” with two 

identifiable parts of the total polarization response assumed separable on the basis of 

their respective timescales.  The rapid, smaller portion of the response was ascribed to 

the electronic polarizability of the molecules of the medium, and the slow, larger 

portion to the vibration-libration-orientation polarization of the molecular dipoles of 

the medium.23  They used the fact that the rapid electronic polarizability of the 

medium, Dop, is proportional to the square of the refractive index, n2.  The key 
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realization was that this “optical-frequency” electronic polarizability of the medium 

remains in equilbrium with the electrostatic change accompanying an ET event, while 

the slow vibration-orientaition polarization of the medium has to fluctuate/adjust to a 

non-equilibrium value appropriate to the “averaged” charge distribution of the 

activated complex prior to a thermally-activated ET event. This is the constraint 

which governs whether the electronic ET transition is “allowed” within the zero-

Franck-Condon energy or “isoenergetic” requirement for the elementary ET step.12, 32 

The free-energy change necessary to produce the non-equilibrium polarization of the 

solvent appropriate to the transition state when the reactants are treated as spheres 

was then independently derived by Marcus and Hush as,  



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1
)(λ e                              (1-13)12, 23, 26, 27   

where e  is the amount of charge transferred in the reaction, 1r  and 2r  are the radii 

of the two reactant complexes, d is the distance between the centers of the two 

reactants, n is the refractive index (which upon squaring gives the “optical” dielectric 

constant, opD ), and sD  is the “static” dielectric constant of the medium (which 

describes the ability of any solvent or other condensed medium to screen electric 

fields at low frequency).  In our case n2 is 5.533 and sD  is 78.5 at 298 K for water 

(negligibly different at 298 K for D2O) .  Equation (1-13) is rigorously valid only if, 

)r(r d 21                                                    (1-14) 

which implies that the “contacting spheres” idea is actually outside the range of 

allowed conditions (though metal complexes bound to the ends of a bridging ligand, 
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such as 4,4’-bipyridine, do fit the constraint).15, 34, 35  Extensive experimental work 

has shown, however, that the relation indeed predicts observed optical and thermal 

ET behavior even in cases where this condition is violated to a significant degree. 9, 36 

 
1.5   Potential Energy Surfaces 

Understanding of the interplay between the governing optical and thermal ET 

energetic quantities and the conceptual basis for the quantum rate theory of ET are 

facilitated by explicit consideration of the potential energy surfaces which describe 

the reactant and product states in nuclear configurational space.  In the next sections 

we will develop these ideas more fully. 

 
1.5.1 The harmonic oscillator approximation  

 In the most simplistic approach, we can think of a set of 3N-6 degrees of 

freedom (from N total nuclei) behaving as “normal mode” harmonic oscillators 

contributing to the construction of the relevant hyper-surfaces via their mutually 

orthogonal (potential) energy vs. nuclear displacement functions.  The classical one-

dimensional harmonic oscillator is defined by a point mass bound at some 

equilibrium position to an infinite mass (wall) by a “spring like” restoring force 

whose magnitude is directly proportional to the particle’s displacement from 

equilibrium.37 Noting that energy   force   distance, one can construct energy 

surfaces in their most basic form as the potential energy, V(x), of the oscillator of 

interest using Hooke’s law, 

nxkxV )( 
2

1
)(                                                 (1-15)37 
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where k  is the force constant and x  is the displacement from equilibrium. The 

displacement coordinate x can be that either of a single particle relative to a point in 

space, or the idea can be extended to the distance along some “normal mode” of 

oscillation involving two or more bound masses. The exponent n is equal to 2 in the 

ideal, “harmonic”, case. The potential energy surfaces of the idealized harmonic 

oscillator are smooth and finite for all finite values of x , therefore the oscillators are 

always confined to the curve of the “potential well” function in equation (1-15).  In 

the case of polyatomic reactants, it is a simple matter to extend the potential function 

to any number of vibrational degrees of freedom employing equation (1-12). 

In order to understand the more-relevant quantum mechanical harmonic 

oscillator which would apply to bound atoms, one must solve the Schrödinger 

equation using equation (1-15), or its 3N-6 dimension generalization, as the potential 

energy term in the molecular Hamiltonian.  The energies of the allowed levels, vE , in 

the potential well are then found as the eigenfunction/eigenvalue solutions of the 

Schrödinger equation.  All of the energy levels are equally spaced in the harmonic 

case with the lowest state having zero nodes in its eigenfunction (these being in fact 

the “nuclear” or “vibrational” wavefunctions pertaining to the Born-Oppenheimer 

approximation and the Franck-Condon Principle mentioned in section 1.2).  The first 

excited level has one node, the next two, and so on as shown in Figure 1.2.  In the 

simplest case there is only one wavefunction for each allowed energy level and thus 

all of the levels are non-degenerate.   
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Figure 1.2 The quantum-mechanical solutions (vibrational energies and 

wavefunctions) for the parabolic potential function or “harmonic oscillator” (with 

energy levels, vE , marked by the equally-spaced lines at )v)(2/1(Ev h ; v is the 

quantum number index for each vibrational level and h  is plank’s constant). The 

superimposed wavefunction plots, )(ψv z , correspond to the nuclear probability 

amplitude vs. mode displacement coordinate, z, for each allowed vE .37  

 

 In the case of a spherical or an even higher multi-dimensional harmonic 

oscillator, the potential energy surfaces can be assumed to be symmetrical as a 

simplified starting point. If all vibrations are harmonic, a three-dimensional harmonic 

oscillator may be treated as three separable one-dimensional harmonic oscillators, 

therefore allowing the three-dimensional harmonic oscillator to be analyzed in terms 
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of a sum over three one-dimensional harmonic oscillators, whose mode-by-mode 

wavefunctions are combined by multiplication.37 

In the Marcus-Hush approach to ET in condensed phases, it is the “linear 

response” approximation which allows for generalization from potential energy 

surfaces (including solvent polarization) to parabolic free-energy surfaces and the 

familiar ET “reaction coordinate”.29  This generalization can be applied in the most 

straight-forward way to [D, A], [D+, A-] reactions in the zero driving force limit 

(where the total free energy change between the minima of the reactant, A] [D, , and 

product, ]A ,[D - , parabolas is equal to zero), and where the entropy of activation for 

ET, *S , within the precursor complex is negligible.  These constraints are generally 

accepted as plausible for charge-symmetric systems with overall 0S ~ 0 like the ones 

studied in this work, as well as to similar “low driving force” linking cases where 

λ  G rxn  .19, 25, 28, 38   Therefore, free-energy surfaces are often presumed and used 

analogously to potential energy surfaces by workers describing ET reactions in 

solution via application of Marcus-Hush theory, but it should be noted that the 

harmonic/free energy paradigm is often extended beyond its realm of rigorous 

applicability.   

One major departure from the idealized harmonic oscillator model and 

equation (1-15) relative to real systems involves the sometimes significant degree of 

anharmonicity inherent in real vibration-libration energy manifolds of the 

surrounding solvent (or other) medium components in condensed-phase ET reactions. 

This reflects the fact that potential energy eventually goes up with inward 
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displacement, x , to the 6th-14th power as the nuclei are compressed, and also that it 

goes up as displacement to some power less than 2 once bonds are stretched more 

than 15-20% beyond their equilibrium values and thus start to break. This is 

especially true for the weaker, essentially electrostatic and dipolar, type of 

interactions (including H-bonding) which characterize the solvation sphere 

surrounding the associated reactants in the precursor complex.  In the case pertaining 

to this work, these are predominately ion-dipole and H-bonding interactions with H2O 

acting as an H-bond “acceptor” and the Ru-coordinated ammine ligands acting as H-

bond “donors”.  We note here that an alternative description of these interactions 

which focuses on H2O as electron-density “donor” (Lewis base) and the ammine 

hydrogen’s as electron-density “acceptors” (Lewis acids) has been analyzed 

extensively in prior literature.1, 7  An important consequence of anharmonicity is that 

it causes the allowed quantum spacing’s between vibrational levels to narrow 

significantly at even moderate values of v (the vibrational quantum number), and this 

effectively blurs the vibrational manifold towards a very high density of states and 

“continuum-like” behavior at even moderate thermal energies.37 

An important aspect of the essential physics captured in Figure 1.2 involves 

the amplitude of the non-vanishing nuclear wavefunction extending past the classical 

oscillator “turning points” as described by the analytical and continuous E vs. 

displacement, z, potential function curve. This well-known quantum mechanical 

result applies whether the vibrational problem is treated approximately via the 

harmonic oscillator model or using full anharmonic potential functions in the nuclear 



21 
 

Hamiltonian.39  Interestingly, penetration of the nuclear wavefunctions, nuχ , into the 

classically-forbidden region implies the presence of “negative kinetic energy” for the 

system in these regions.37  More importantly, in the context of ET reactions this 

exponential decay of nuclear probability amplitudes with distance allows for non-zero 

Franck-Condon overlap between vibrational levels in two neighboring such parabolas 

even at energies below that of the classical intersection/transition region.  This forms 

the basis for activationless or “nuclear-tunneling limited” ET rates as will be 

discussed further on.26, 30  

 
1.5.2 Potential energy surfaces in the “zero-order” diabatic limit 

 The potential energy surfaces shown in Figure 1.3 are drawn in the diabatic, 

“zero-order” limit in which any degree of electronic coupling (resonance interaction), 

ABH , between the redox sites is assumed to be energetically negligible. In such cases, 

the shapes of the diabatic curves are solely determined by the potential energy, E, vs. 

nuclear coordinates vibrational potential functions, and in this limit the intersection 

zone of the surfaces, as shown in Figure 1.3, retains a very sharp, “cusp-like” 

character.  A consequence of this limit involves the possibility for the “exchanging 

electron” to remain localized on the donor even as vibrations carry the entire system 

into and past the intersection region such that there is no longer any energetic or 

Franck-Condon overlap type reason for the ]A,[D  A] [D, -  transition not to 

occur.23  In Figure 1.3, E is the potential energy, q is the nuclear configuration along 

the (presumably high-dimensional) reaction coordinate, Eop is the optical ET energy 
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(which in energetically-symmetric ET self-exchange cases is equal to the 

reorganizational energy λ), and Eth is the thermal ET activation energy (which is 

equal to λ/4 in the case of rigorously-parabolic surfaces, see equations (1-8) and (1-

10)).   

 

Figure 1.3 Zero-order (diabatic) potential energy surfaces describing reactants 

(denoted by AAH ) and the products (denoted by BBH ) corresponding ET reactions in 

the weak-coupling, non-adiabatic limit.40   

 

The expectation value, AAH , of the reactant’s energy A] [D,  at the minimum 

of the zero-order energy surface in the absence of any electronic resonance 

interaction with the ]A ,[D -  state (a requirement of the diabatic limit) can be 

expressed as,  

AAAA ψHψH                                               (1-16)23 
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Where our focus here is on Aψ , the electronic wavefunction of the initial state 

(reactants, A] [D, ), and H is the Hamiltonian operator (there would also be 

nuclear/vibrational and spin wavefunction terms present in the full description).  

Similarly, the expectation value BBH of the energy at the minimum of the product’s, 

]A ,[D - , surface in the absence of any resonance interaction with the A] [D,  state is, 

BBBB ψHψH                                               (1-17)23 

where now Bψ  denotes the product’s electronic state.  The cuspiness of the surfaces 

at the point where the product’s and reactant’s surfaces intersect is enforced by the 

diabatic requirement that the resonance coupling matrix element, 0HAB   (vide 

infra).  

 In semi-classical rate theories, this zero-interaction, diabatic constraint is 

relaxed such that the probability of ET occurring near the intersection point depends 

parametrically on the degree of electronic interaction (resonance coupling energy  

HAB) between the two redox sites (or more formally, between the A] [D,  and 

]A ,[D -  electronic states).  In real systems approaching the zero-interaction limit, the 

ET process is relatively slow due to the resulting very low probability (and hence low 

frequency) of the electron tunneling event during nuclear excursions into the 

intersection region. This so-called “non-adiabatic limit” (same as “diabatic” used 

above) is operationally characterized by the condition Tk H BAB   (which leads to 

the “transmission coefficient” el  , being 1  , vide infra).23 
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1.5.3  Potential energy surfaces to first-order (adiabatic ET) 

 When resonance coupling is sufficient that the magnitude of HAB becomes 

significant at the point of intersection of the two surfaces, then the potential energy 

surface profile shown in Figure 1.4 becomes relevant.  The surfaces here are referred 

to as the “first-order” or “adiabatic” states of the system which describe the situation 

when electronic coupling energy HAB is no longer energetically negligible on the 

scale of the zero-order barrier. This lowers the energy at the intersection point by an 

amount ABH , and the total “splitting” between the lower and upper surfaces is then 

equal to AB2H .  The non-negligible HAB decreases the magnitude of the thermal ET 

activation energy, Eth, to ABHλ/4  .  This quantum interaction effectively stabilizes 

the transition state and leads to a rounding of the energy surfaces at the intersection 

region (as compared to the zero-order case, vide supra).  A dynamical consequence of 

this resonance splitting is that as the system reaches the “intersection region” via 

nuclear fluctuations it will remain on the lower, continuous potential energy surface. 

Such cases where HAB   kBT, are said to be in the “adiabatic” ET limit, and in 

contrast to previous case, the transmission coefficient 1el  (vide infra). 
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Figure 1.4 Illustration the of first-order potential energy surfaces for the reactants 

(denoted by HAA) and the products (denoted by HBB) corresponding to ET in the 

adiabatic limit where the coupling or “resonance” energy ABH  is no longer 

negligible.40   

 

1.5.4  The ET rate expression 

 According to classical barrier crossing theories, once the precursor complex 

has formed and has been thermally activated to the intersection region ET may occur.  

In the classical activated complex (or TST) formalism,23 the reaction is assumed to be 

adiabatic ( 1el ) and nuclear tunneling effects (where the nuclear tunneling factor, 

1n , vide infra) are ignored.  In this limit the first-order rate constant for activated 

ET, kET is, 

RT

ΔG

ET

*

 k


 eνn                                                 (1-18)18, 22, 23 
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where nν  is the effective frequency of nuclear motion (which is assumed h/TkB  in 

transition state theory), R is the ideal gas constant, T is the absolute temperature, and 

*ΔG  is the Gibbs energy of activation as defined previously in equation (1-8) and (1-

10).  

The next level of refinement past the classical transition state theory 

expression is the “semi-classical” rate expression where the magnitude of the 

resonance interaction is incorporated by accounting for the probability of ET with 

each nuclear excursion into the intersection region. The electronic “transmission 

coefficient”, el , parametrically describes this probability.  It is derived to reflect the 

balance between the electron tunneling frequency and the amount of time the system 

spends at or near the potential surface intersection region.22  The magnitude of el  is 

proportional to the resonance energy squared, 2
ABH , and approaches unity when this 

(off-diagonal) resonance coupling matrix element is large (thus 1el  for “adiabatic” 

ET and 1el  for “non-adiabatic” = “diabatic” ET).18  According to the Landau-

Zener model, the electronic transmission coefficient in the high-temperature limit can 

be expressed as,  
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                                      (1-19)18, 22, 23 

where nν  has been previously defined and elν  is the frequency of ET (tunneling) 

within the activated complex and is given by, 
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where h is Plank’s constant (all other variables have been previously defined). 

Modifying the rate expression in equation (1-18), we now include the probability of 

ET per passage into the intersection region as seen in equation (1-21).  

Additional corrections to equation (1-18) must be made to capture quantum 

mechanical effects in cases of low temperature or high effective nuclear frequencies 

and hence vibrational level spacing’s.  This is accomplished by including the nuclear 

tunneling factor, n , which allows for a finite nuclear tunneling frequency through 

the potential energy barrier in cases where activated barrier passage is slow.23  The 

rate constant for ET according to this extended semi-classical formalism is then given 

by, 

RT

ΔG

ET

*

 k


 eν neln                                             (1-21)22 

The nuclear factor is defined as the ratio of the nuclear frequency factor including 

tunneling effects (semi-classical treatment, n ) to the high-temperature limit 

(classical treatment,   T)( n ) as described by, 
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where *
inG  is the classical, temperature-independent, inner-shell reorganizational 

energy (coming from   T)( n ) and )T(G*
in  is the temperature-dependent, inner-

shell reorganization energy (coming from n ).23  The temperature dependent, n , 

term can be expressed in terms of temperature dependent reorganization energy as,  
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en                                            (1-24)23 

At high-temperatures, )T(G*
in , approaches the classical *

inG  and n  approaches 

unity. This quantum mechanical correction adjusts the rate expression to account for 

nuclear tunneling without abandoning the classical free-energy barrier.41, 42  When the 

ET reaction is adiabatic ( el =1), equation (1-21) then becomes, 

RT

ΔG

ET

*

 k


 eν nn                                               (1-25) 

When the reaction is non-adiabatic and el  1  / nel νν , and equation (1-21) is now, 

RT

ΔG

ET

*

 k


 eν nel                                              (1-26) 

In the classical non-adiabatic case, ET may only occur when the system 

vibrates into, or very near, the intersection region of the potential surfaces and 

quantum electron tunneling occurs. This does allow for the reactants to transition to 

the products surface, but it is a rare event when compared to the frequency of barrier 

“attempts” arising from the stochastic inner- and outer-sphere nuclear fluctuations. 

Marcus theory was originally derived for rigorous application to systems in this non-

adiabatic regime, but subsequent experimental work has shown that it can also be 
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applied usefully to understand ET reaction dynamics, well up into the adiabatic 

regime as well.8, 18   

In order to more fully explain the rates of non-adiabatic ET reactions (over a 

larger temperature range) and the observed rates of ET at very low temperatures, a 

“full” quantum mechanical approach is needed which formally encompasses both 

nuclear and electronic tunneling probabilities.20 Tunneling processes determine 

observed rates in the quantum non-adiabatic model in three identifiable ways.  These 

are: I. electron tunneling at the transition state, II. Activated nuclear tunneling, and 

III. temperature-independent nuclear tunneling. We will discuss these in order here 

and make reference to Figure 1.5 which shows the relevant surfaces and nuclear 

wavefunctions.30 

When electron tunneling occurs at the transition state, the reactant and product 

states have the same nuclear configurations (as seen at the point of intersection of the 

surfaces in Figure 1.5). The A] [D,  and ]A ,[D -  state have large vibrational 

wavefunction overlap at this point when the systems are in the high-lying vibrational 

state denoted by I. in Figure 1.5.  There is a finite probability that an electron will 

tunnel from D to A and take the system from the reactants surface to the products 

surface even if HAB is very small ( el <<1) but still greater than zero.  The probability 

of tunneling at the intersection region is not temperature dependent, but the overall 

rate of reaction will be temperature dependent due to the activation energy required to 

reach the intersection region where the vibrational overlap (Franck-Condon) integrals 

are large. 



30 
 

 

Figure 1.5 Surfaces and vibrational levels relevant to the three types of tunneling 

processes in the quantum non-adiabatic ET model. I. Electronic tunneling from a 

vibrational level with energy near that of the transition state. II. Activated nuclear 

tunneling. III. Temperature-independent nuclear and electron tunneling. 

 

Activated nuclear tunneling involves the electron tunneling between 

intermediate vibrational levels, as shown by the energy level denoted II. in Figure 1.5.  

Although the system may not reach the intersection region, tunneling is still possible 

due to the potential energy surfaces being close enough in proximity to have some 

finite amount of vibrational wavefunction overlap (non-zero Franck-Condon factors).  

In this case, the rate of ET is also temperature dependent, but not as much so as in the 
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previous case since such activated nuclear tunneling does not require Boltzmann 

population as far up into the manifold as does tunneling at the transition state.  

The third type of tunneling is temperature-independent tunneling, which 

involves tunneling between the ground vibrational states of the precursor complex 

and the successor complex as denoted by III. in Figure 1.5.  If the χnu wavefunctions 

of the vibrational ground states of the precursor and successor complexes in their 

respective potential energy surfaces extend sufficiently close to each other, a small 

but finite possibility exists that the nuclei can tunnel from one ground state to the 

other.  At very low temperatures, all activated ET events become negligible due to a 

lack of thermal energy to reach levels with 0 v  (much less the transition state itself), 

but nonetheless a small residual rate of ET due solely to combined nuclear and 

electron tunneling can be and has been measured in such cases.43  The confirmed 

existence of this type of ET validates the full quantum-mechanical model of ET.  This 

is more than a fine point since many biological ET rates require this level of treatment 

in order to quantitatively rationalize observed rates.43-45  

 
1.6   Quantum Super-Exchange Theory of HAB Modulation 

 The quantum super-exchange coupling (QSEC) formalism was first 

introduced by McConnell as a way to rationalize the measured rates of a certain 

category of chemical reactions.46 His work involved the observation of the 

intramolecular ET between two phenyl groups in mononegative α,ω-

diphenylalkaines, [phenyl-(CH2)n-phenyl]-.  The kinetics of this process was 

rationalized quantitatively by considering the electronic coupling between the two 
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redox-active sites being contingent on the energy of a virtual excited state on the 

methylene bridge connecting them.  QSEC facilitates ET between identifiable donor 

and acceptor sites (situated in some condensed medium) and is known to facilitate 

long-distance hole and electron tunneling through the spatial region between the 

exchanging sites. This indirect mixing of the donor and acceptor electronic 

wavefunctions through participation of the HOMO and LUMO levels of the bridging 

group dramatically increases the tunneling frequency as compared to any through 

space interaction at similar distance. QSEC operates via the participation of “virtual” 

bridge states which can be constructed using bridge orbitals in combination with 

orbitals on D and A.47    

 The “virtual bridge states” in QSEC refer to quantum states of indeterminate 

lifetime but estimatable energies corresponding to states wherein either a “hole” (or 

electron vacancy) moves from acceptor A onto the bridge (equivalent to moving an 

electron from the bridge to the RuIII in our case) or an electron moves from donor D 

into an empty level on the bridge (equivalent to placing an electron from RuII into a π* 

level of the bridge in our case). The effective height of the electron tunneling barrier 

between D and A at the intersection point, and thus the quantum tunneling frequency, 

is thus determined by the energy necessary to reach one or the other of these two 

virtual states. These energies are not just typical thermal energies, but rather can 

include gaps on the order of visible-wavelength photon energies and beyond. There is 

no measurable “lifetime” during which the electron resides in the virtual state on the 

bridging group. Electron tunneling through the D-Bridge-A assembly via quantum 
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super-exchange is thus a concerted process rather than a “hopping” one.48 Figure 1.6 

illustrates the “electron-transfer” and “hole-transfer” pathways schematically.  

Importantly, even though these seem and are very different in terms of the virtual 

state descriptions, real ET reactions are known to incorporate the action of either or 

both pathways in the manifestation of observed rates. 

 In the “electron-transfer” pathway (upper corridor in Figure 1.6), the electron 

is transferred (in a virtual, indefinite sense) from the donor, in our case RuII, through 

the LUMO of the bridging group and on to the acceptor (which was the RuIII in the 

work done here).  This process would correspond to virtual population of a π* or σ* 

anti-bonding orbital of the bridging group and creation of a hole on RuIII.  The energy 

required to populate the LUMO of the bridging group is then taken as defining the 

effective height of the tunneling barrier for “electron” super-exchange.  This energy 

will be roughly equal to the MLCT (metal-ligand charge-transfer) absorption band 

energy in the context of the (NH3)5Ru-L complexes used in this work.   

 The “hole-transfer” pathway (lower corridor in Figure 1.6) corresponds to an 

electron moving from the filled HOMO (or other level) of the bridging group into the 

LUMO of the acceptor (the “hole” corresponding to the 4d t2g vacancy on the RuIII in 

our case). The virtual hole created on the bridge is simultaneously filled with a 

higher-lying electron from the donor (RuII) site thus completing the full ET process.  

The energetic magnitude of the hole-transfer tunneling barrier in our context is 

roughly equal to LMCT (ligand to metal charge transfer) band energy of the 
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(NH3)5Ru-L complexes used in this work (or in some cases an ion-pair charge 

transfer from an associated anionic species such as Br- or FeIII(CN)6
4-, vide infra).  

 

Figure 1.6 The “electron-transfer” (upper pathway) and “hole-transfer” (lower 

pathway) quantum super-exchange mechanisms, where A is the electron acceptor site 

and D is the donor site. 

 

1.7   Debye-Hückel Theory and The Effects of Ionic Strength on Activity  

Coefficients 

Since most of the kinetics to be described here focused on salt-induced ET 

rate variations, we will develop here some of the basic ideas and foundational 

principles of solution-phase electrolyte theory.  The Debye-Hückel theory of ion 

atmospheres was the first successful model of electrolyte solutions and had its basis 

in treating ions as point charges distributed in a featureless dielectric continuum.49  
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This model analyzes the distribution of ions in very dilute electrolyte solutions in 

order to characterize the “ionic atmosphere” or “cloud” of surrounding charges which 

build up near a charged solute (including charged reactant species) and results in the 

so-called “local potential”.  From their treatment, quantitative predictions of salt 

effects on the rates of reaction between ionic reactants are possible, and these include 

the rates of bimolecular ET reactions in water such as those studied here (note the 2+ 

and 3+ reactant charges indicated in equation (1-27)).  

The ET reaction kinetics studied in this work were measured in aqueous 

solutions.  Due to the strongly-polar nature of water, each of the reactant ions will be 

surrounded by some number of “hydrating” water molecules (with a significant 

amount of the hydration energy arising from specific hydrogen bonding interactions 

between water, a Lewis base, and ruthenium ammine hydrogens acting as Lewis 

acids, vide infra).  This dipolar solvation of the reactant ions partially screens their 

charges from the other ions present in solution.  As Debye and Hückel showed, 

however, another significant increment in charge screening of an ionic reactant arises 

from the statistically-perturbed nature of the ion atmosphere which surrounds a 

charged reactant in the presence of some inert spectator electrolyte.50   The cations 

and anions surrounding a charged reactant are “sorted” to some extent and migrate 

such that the counterion of opposite charge to the reactant is present at a 

concentration which is enhanced relative to its bulk value.  This perturbation dies off 

with distance according to Poisson-Boltzmann statistics but has the effects of both 

screening the field and depressing the activity coefficient of the charged reactant.49, 51 
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The work described in this thesis focused on specific instances of how added salts 

(some simple, as in alkali-halides, and some more complex) affected the measured 

rates of the aqueous bimolecular ET self-exchange reaction between 

pentaamineruthenium(II)(3-trifluoromethylpyridine)2+, [(NH3)5RuIItfmp]2+, and 

pentaamineruthenium(III)(3-trifluoromethylpyridine)3+, [(NH3)5RuIIItfmp]3+, as 

shown in equation (1-27) below, 

 

 

(1-27) 

 

 

In agreement with prior observations made by Chun52, Inagaki40, Sista38, and 

Qin53, we observed very divergent salt effects depending on the nature of the added 

anion.  In some cases, variable degrees of super-exchange mediation must be invoked 

in order to rationalize the observed trends in the kinetic salt effects, but in some cases 

(especially for added fluoride), “simple” or “classical” salt effects in full agreement 

with theory were observed. These rate effects corresponded quantitatively to the 

behavior predicted by the Debye-Hückel-Bronsted equation19, 54 (vide infra) which 

flows directly from the (thermodynamically-derived) Debye-Hückel model of ion 

atmospheres mentioned above. 49  In what follows we will lay out a brief introduction 

to ion-atmospheres and prepare the way for analyzing the very strong and surprising 

(yet still systematic) deviations from classical behavior which we have uncovered. 
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Electrostatic interactions between ions in liquids are known to be much 

weaker than those in a vacuum or between ions in a lattice. This is an effect of 

Coulomb’s Law which tells us that the interionic force, F, is described by, 

  
 rD 4 2

s

21


qq

F                                             (1-28) 

where q1 and q2 are the charges of the two ions (or charged complexes) separated by 

distance r (see Figure 1.7), Ds is the static dielectric constant, and o  is the 

permittivity of vacuum.  The Ds term arises from the collective action of solvent 

dipoles orienting to the electric field(s) associated with ionic species in solution 

including charged reactants.55  The Ds term captures the extent of interionic charge 

screening, and because of its collective dipolar origin, Ds varies inversely with 

temperature on account of increased thermal randomization of the dipoles as T 

increases.  
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Figure 1.7 Charged ions, A and B at distance r, cause dipoles in the solvent to 

reorient according to their dipolar structure and this causes a net shielding of the ionic 

fields. The bulk dielectric constant, Ds , of a solvent captures the overall effect of this 

behavior as a single macroscopic observable. 55 

 

As the like-charged reactant cations in our ET reaction approach each other to 

form the precursor complex (see equations (1-44) to (1-46)), they are doing so while 

working against an already partially-screened coulombic repulsive force (vide supra).  

Figure 1.8 illustrates the fact that there will be at least two levels of hydration 

surrounding the reactant cations (the secondary level is represented by the dipole 

arrow exterior to the dotted line in Figure 1.8). The primary hydration shell includes 

the neighboring solvent dipoles (also represented by arrows) which are oriented and 

essentially in contact with (or even hydrogen bonded to) the reactant cations at the 

boundary surface of their primary coordination spheres (shown here as the solid lined 

circles).  The “secondary” hydration shell in our case refers to water dipoles which 
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are in the third coordination sphere out from the central ion since the ammine ligands 

comprise the primary coordination sphere.  Moving beyond the second hydration 

sphere, the water structure returns to that of bulk water (which has an inherent 

dynamical structure of its own and has been the topic of intense investigation56-60). 

 

Figure 1.8  Solvent dipoles representing the first and second hydration spheres and 

the counter ions forming the Debye-Hückel “ion atmosphere” around the reactant 

ions, [(NH3)5RuIIL]2+ and [(NH3)5RuIIIL]3+. 

 

As noted previously, the concentration of the counter ions around reactant 

ions exponentially decays to the bulk value with increased distance from the reactant 

cation however, the electrical potential of the reactant ions is found to decrease with 

distance by Coulomb’s law and the effects of Ds (see Figure 1.7 and 1.8).49  In the 

presence of the ion atmosphere formed in solutions of finite ionic strength however, 

the electrical potential decays significantly more rapidly.  This added charge 

screening has the effect of decreasing the thermodynamic activity coefficients of 
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charged reactants in solution, and this realization was key in linking the theory of the 

ion atmosphere to our experiment. 

An important quantity which follows from Debye-Hückel theory is the 

reciprocal distance or “inverse length”, κ .  This quantity captures the effects of the 

Poisson-Boltzmann statistics on the charge density structures of the ion atmosphere 

(this usage of κ  has nothing to do with the transmission coefficient or the 

“adiabatically parameter” shown in equations (1-18) to (1-24).49, 51  The effective 

“radius” of the ion atmosphere is then taken as the inverse of κ , 
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where sD  is the static dielectric constant, o  is the permittivity of vacuum, R is the 

ideal gas constant, T is the absolute temperature, F is Faraday’s constant, and   is 

the ionic strength (vide infra) in units of mol/m3 (where 1 L = 0.001 m3).  One can 

conclude from equation (1-29) that the Debye length (the effective size of the ion 

atmosphere) is inversely proportional to the square root of the ionic strength of a 

solution, and therefore electrostatic interactions between charged reactants can be 

modulated or deduced on the basis of ionic strength.  As the ionic strength increases, 

reactions between liked charged particles will proceed faster and reactions between 

oppositely charged particles will become slower.61  

The total ionic strength of a solution, µ, is a measure of the effective 

“iconicity” of a solution.  It depends on both the concentrations and charge types of 

all the ionic species in a solution as shown in equation (1-30) below, 
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where iz  is the charge of the ion and ic  is the concentration of the ion.  This ionic 

strength thus reflects the total amount of mobile charge in a solution and is found to 

be the controlling variable in accounting for the interionic interactions in a solution 

and the resulting individual electrolyte ion thermodynamic activities.62, 64  In our 

work, the charges of the two ruthenium complexes, their counter ions, and then any 

added salts must all be accounted for when calculating the total ionic strength of a 

solution.  Values of ionic strength are typically calculated in units of molarity, but 

when used in calculating dependent quantities such as the Columbic work term (vide 

infra) the units are subject to change.  

 When establishing the relationship between the electrostatic potential at a 

reference point in solution and the change in chemical potential of an ionic reactant 

arising from ion-ion interactions, Debye and Hückel showed that the activity 

coefficient of any charged species and the total ionic strength of the solution could be 

related using the “limiting law” which is defined as, 

  ZZ -  γlog -
                                           (1-31)49, 65, 66 

where γ  is the stoichiometric “mean molar activity coefficient” for reactant ions in 

the medium, Z  and -Z  are the charges of the cation and anion respectively,   is a 

constant (which depends on the temperature and the relative permittivity, Ds, of the 

solution), and   is the ionic strength. This equation was found to be quantitatively 

valid only for very dilute solutions with ionic strengths lower than ~0.001 M.49  The 
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Debye-Hückel limiting law was later modified in order to describe activity 

coefficients in terms of both the charge types and the sizes of the reactant ions, and 

this is modification (which works up to higher μ values) is known as the Debye-

Hückel “extended law” as defined by, 
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  -                                         (1-32) 

 where σ is the center-center distance between a reference (or reactant) ion and an ion 

of the ion-atmosphere at contact.    and   are constants of the theory and are equal 

to 0.509 and 0.328 in water at a temperature of 298 K, respectively.19, 67  The   term 

depends on both the temperature and relative permittivity of the solution (static 

dielectric constant, sD ) and is defined as, 
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where NA is Avogadro’s number (6.022x1023 mol-1), e  is the elementary charge of an 

electron (1.602x10-19 C),   is the density of the solvent in kg/m3, o  is the 

permittivity in a vacuum (8.854x10-12 C2 J-1 m-1), Bk  is Boltzman’s constant 

(1.381x10-23 J/K), and T is the temperature in K.  In water at a temperature of 298 K, 

  is equal to 3.28x109 kg1/2 mol-1/2 m-1 (this number is large due to the use of meters 

instead of angstroms). The Debye inverse length, often denoted by κ, is then equal to  

 . The quantity 1/κ is interpreted as being the characteristic “thickness’ of the 

ion atmosphere surrounding an ion of charge Z+ at a given ionic strength. 
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In 1922, Johannes Bronsted proposed the following expression to describe 

general bimolecular reactions in terms of the rate constant to form an “associated 

pair”, 
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kk                                               (1-34)54, 69 

where Aγ  is the activity coefficient of reactant A, Dγ is the activity coefficient of 

reactant D, AD
γ  is the activity coefficient of the activated/associated pair 

(corresponding to the “transition state” in modern terms), 0k   is then taken to be the 

rate constant at infinite dilution (where all 1γ i ), and exk  is the now generalized 

rate constant at any given finite ionic strength. This expression explains quantitatively 

why the addition of inert, ionized salts to a solution typically causes reactions 

between oppositely charged ions (or molecular ions) to proceed more slowly and 

causes reactions between liked-charged species to proceed faster.54  Using both the 

Debye-Hückel extended law and the Bronsted equation above, the kinetically relevant 

Debye-Hückel-Bronsted equation can be derived as shown below, 
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where all quantities are as defined previously except the distance σ  now refers to the 

center-center distance between the two reactant ions rather than the predominate 

counter ion in solution.  This is an explicit, quantitative prediction of how the rate of 

any reaction between charged species will vary with ionic strength and is the origin of 

what are called “primary salt effects” on the inter-ionic reaction kinetics.  This will be 
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a key equation in the analysis of the ET kinetics work to be described in this thesis.  It 

was noted early on by Guggenheim70 that the product of   and   is approximately 

equal to 1 Å for many reactant ion/counterion combinations.71  This allows for 

equation (1-35) to be approximated by,  
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0ex                                (1-36) 

From the form of equation (1-35), we see that it is useful to then define the general 

and very simple ionic strength-related quantity now known as the “Guggenheim 

parameter”, which we will denote as GP,  
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1
GP                                                 (1-37)19, 70 

Applying equation (1-37) to equation (1-36), the Debye-Hückel-Bronsted equation 

then becomes, 

(GP) 2klogklog DA0ex ZZ                                  (1-38) 

This is the version most-commonly used in studies of kinetic salt effect today. Using 

equation (1-38), kinetic data collected at different total ionic strengths are plotted as 

exklog  vs. GP.  The observed slopes are frequently very close to the simple DAZZ  

charge product since   in equation (1-38) is equal to 0.509 in water at 298 K.   In the 

case of our reaction (see equation (1-27)) this would imply that the slope should be 

approximately equal to 6.  As we will show, this “ideal” Debye-Hückel-Bronsted 

behavior is only observed for our reaction in the presence of alkali-metal salts of the 

fluoride anion, while all other salts investigated deviate from this linear prediction 
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and in fact present distinct curves (as will be presented and discussed later in      

chapter 2).38, 40, 53, 72 

 
1.8   Association Constants 

From the treatment of outer-sphere ET reactions described previously we 

know that second-order bimolecular ET reactions occur via three identifiable 

component steps as represented by equations (1-1a) to (1-1c).  It should be noted that 

in our work the reactants are both positively-charged ions (see equation (1-27)).  If 

the formation of the precursor complex according to equation (1-1a) is not rate 

determining, then the “pre-equilibrium” limit applies and, 

ETAex kKk                                                  (1-39) 

d

a
A k

k
K                                                      (1-40) 

From equation (1-39), we see that the observed rate constant, exk , depends solely on 

the product of the pre-equilibrium association constant, AK , and the rate-determining 

first-order rate constant for ET inside the precursor complex, ETk  (as was derived in 

section 1.5.4 on the assumption that ET-d' kk  ).  From equation (1-40), it is clear 

that any solution condition- or composition-induced perturbations of either the 

second-order rate of association, ak , or the unimolecular rate of dissociation, dk , will 

then be directly reflected in a measured exk  if ETk  itself is constant or relatively 

unperturbed.  On this basis, we now need to introduce some of the known details of 

reactant encounter theory which underlie quantitative calculation of both ak  and dk . 
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According to Kirk’s presentation,68 the second-order bimolecular rate constant 

for association by diffusional encounter can be taken from the Debye-Smoluchowski 

equation and expressed as, 
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where NA is Avogadro’s number (6.022x1023 mol-1), Bk  is Boltzman’s constant 

(1.381x10-23 J/K), T is the temperature in K, η is the viscosity of the solvent 

(1.002x10-3 N s m-2 for water at 298 K), Ar  and Dr  are the radii of the reactants A and 

D in meters, σ is the sum of the radii Ar  and Dr  in meters, r is the center-center 

distance distance between reactants in meters over which integration is carried out, 

and ),( rw is the Debye-Hückel work term in Joules as defined by equation (1-43).  

Similarly, the first-order rate constant for the dissociation/separation of the 

associated encounter complex can be derived using the Debye-Eigen equation and is 

expressed by, 
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   (1-42)68, 73 

where ),( w  is the Debye-Hückel work term in J as defined below by equation (1-

43) only with a substitution of the quantity σ (the sum of the hard-sphere radii) for the 

variable r (the center-center distance). The Debye-Hückel electrostatic work of 
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association, ),( rw , from bringing two ions together from infinity to s is expressed 

by, 
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  (1-43)23, 68 

where e  is the elementary charge of an electron (1.602x10-19 C), o  is the 

permittivity in a vacuum (8.854x10-12 C2 J-1 m-1), sD  is the static dielectric constant of 

the solvent (78.4 for water at 298 K),   is a constant defined by equation (1-33),   

is the total ionic strength in units of mol kg-1, A (or D ) is the sum of the radius of 

reactant ion A (or D) and the dominant counterion present in meters. Simplified work 

term expressions are available and will be presented in chapter 2. 

If the formation of the precursor complex is less than diffusion controlled, the 

encounter pair equilibrium constant may then be calculated using a simple ratio of the 

Debye-Smoluchowski and Debye-Eigen values for ka and kd, which turns out to be 

equivalent to the thermodynamically-derived Eigen-Fuoss equation.68, 73 The 

association constant to form the precursor complex (see equations (1-1) and (1-27)) is 

thus equal to, 
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Either equations (1-40) to (1-43) using individual ak  and dk  values, or the Eigen-

Fuoss expression above can be used to calculate an equilibrium association constant, 

AK .  
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As we will show, the explicit calculations of the dynamics of reactant ion 

association/dissociation are necessary in order for us to successfully model our 

observed kinetic salt effects on bimolecular ET rates.  As a prelude to this discussion, 

it is useful to consider an especially simple approach to calculating the average 

distance between reactant ions in solution. At the crudest level, we will assume a 

simple cubic model as describing the effective statistical distribution of ions in the 

solution. Ignoring ion atmosphere or other aggregation effects, this can be used to 

derive an idealized, statistical or “expectation” value for the average interreactant 

distance as a function of reactant concentration (see Figure 1.9).  While clearly 

approximate, this approach has been used, for example, by Robinson and Stokes as a 

starting point in their classic treatment on electrolyte solutions.51 Figure 1.9 below 

illustrates this idea (with species A and D occupying alternate vertices in the lattice). 
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Figure 1.9  A simple cubic “lattice” model which can be used to calculate the 

effective center-center interreactant distance, <dvv>, between equivalent (like-

charged) ionic species placed the vertices of an idealized solute lattice. 

  

In order to calculate the effective center-center distance between the members 

of either the anionic or cationic statistical sub-lattices of ions in solution at a 

particular molar concentration, we need first recognize that the average distance 

between vertices of the simple cubic configuration will depend on the ratio of edge 

length to volume (presumed cubic) per reactant particle. To accomplish this we must 

first find the number of atoms in a set volume of, for example, 1L as shown below by, 

      VN  [A]  Volume ain  atoms of # A                              (1-45) 

where ]A[  is the molar concentration of species A in units of mol m-3                              

(recall that 1 L = 0.001m3), AN  is Avogadro’s number in units of mol-1, and V is the 

volume in L. Next, the number of atoms on an edge of this cubic volume is found to 

be,  
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     3
A  VN  [A]   cube a of edgean on  atoms of #                    (1-46) 

Now, we can calculate the distance between two vertices in the cube, <dvv>, as shown 

below, 

(m)  
]A[

1
101.18 

N ]A[

1

VN ]A[ 

V
d 3

-8
3

A
3

A

3

vv 







                  (1-47) 

If we convert equation (1-47) into units of Å ( 3/1]A[8.11  , where [A] is expressed in 

M) and compare it with the equation for the anion-cation expectation value for the 

distance in solution presented by Robinson and Stokes51  

( 3/1
cationanion ]A[4.9 d 

   Å) we find an overall difference of about 26%. This is 

because we need to correct our single-species lattice model to reflect the anion-cation 

(or as we will see, RuII-RuIII) expectation distance rather than that for a single species 

with respect to itself. To do this we must apply the idea of interpenetrating sub-lattice 

structures, illustrated below in Figure 1.10. Here we present an illustration of an 

illustration of the prototypical CsCl body-centered crystal lattice (bcc) structure with 

the green spheres representing Cs and the grey spheres representing Cl. In our 

reactant solution the green spheres would represent either a cation or a RuIII reactant 

ion and the grey spheres would represent an anion or an RuII reactant ion and the 

assumption now is that any given solution component would “see” an expectation 

distance to the vertices of another component’s sub-lattice. The corresponding 

distance between the grey and green sphere’s (our reactants) would be one-half of a 

cube diagonal away. 
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Figure 1.10 An illustration of the interpenetrating body-centered cubic crystal 

lattice sub-structures characteristic of CsCl, for example, which can be applied 

statistically to our reactant solutions.74 

 

From simple geometry, we see that a factor 866.02/3   now converts 

<dvv> of equation (1-47) into <dcv> corresponding to the average distance between 

the cube center (green sphere or RuIII) and the vertex (grey sphere or RuII or dominant 

salt anion) as in equation (1-48) below,  

(m)  
]A[

1
101.02 d 3

-8
cv 








                                       (1-48) 
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If equation (1-48) is converted into units of Å and concentration is expressed in M 

units, then 3/1
cv ]A[2.10 d   Å. We now find a difference of 9% with respect to 

the formula of Robinson and Stokes.51 While this difference might be considered 

negligible for practical purposes, we note that if instead a face-centered cubic (NaCl 

or “fcc”) lattice model is chosen to describe the ion distribution, then  '
cvd  works 

out to be    vv
'
cv d2/2  d . The Robinson and Stokes expression in fact 

derives from the averaging of these two limits. Given that our ET reactions are taking 

place on a timescale which is very long compared to diffusion times over tens of 

angstroms, we favor the slightly more expanded, but also more statistically sensible 

effective bcc lattice model for the electrolyte solutions.  

A further refinement is to consider the average edge-edge distance between 

two reactant ions in the body-centered cubic model. Now the sum of the ionic radii 

must be subtracted from the average center-center distance between non-identical 

component positions as shown below, 

    (m)   d  d cv
'
cv                                          (1-49) 

   (m)  DA rr                                                (1-50) 

Lists of center-center reactant distances, as well as edge-edge reactant 

distances for our reactant system (where σ = 4.48 Å + 4.55 Å = 9.03 Å) and those 

calculated using the Robinson and Stokes equation51 are shown in Table 1.1. As seen 

from the Table, the error introduced by ignoring the radii of the reactant themselves is 

on the order of ~8% at 1.00 mM reactant, but climbs rapidly to ~17% at 10.00 mM 
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reactants. Thus the radii of the reactants themselves cease to be negligible compared 

to <dcv> from equation (1-48) at reactant concentrations much above 0.05 mM 

reactants (for reactant radii on the order of 4.5 Å such as our ruthenium complexes), 

as illustrated in Figure 1.11. These excluded-volume effects would presumably bring 

about deviations from models of diffusive encounter in solution such that non-ideal 

behavior would emerge at reactant concentrations much above 1.00 mM (possible 

evidence for such effects will be presented in Ch. 2). The individual behaviors of 

<dcv>, <dcv, RS>, and <d’
cv> are plotted in Figure 1.11, and the inset graph 

specifically illustrates the behavior relevant to our experiment concentration range.  
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Table 1.1  A list of center-center single-species distances, <dvv>, and center-

center reactant distances, <dcv>, as well as edge-edge reactant distances, <d’
cv> 

(specific to reaction (1-27)) at various equimolar reactants concentrations, compared 

with center-center interreactant distances calculated according to Robinson and 

Stokes.51 

Concentration of 
Reactants (M) 

<dvv> (Å) (a) <dcv> (Å) (b)  <dcv, RS>  (Å) (c) <d'
cv> (Å) (d)

0.00005 321 278 255 269

0.0001 255 221 203 212

0.0005 149 129 118 120

0.001 118 102 94 94

0.005 69 60 55 51

0.01 55 48 44 39

0.1 26 22 20 13

1 12 10 9.4 1.2

1.5 10 8.9 8.2 N/A
 

 

(a) center-center single-component distances calculated via equation (1-47), (b) center-center cation-

anion or inter-reactant distances calculated via (1-48), (c) center-center cation-anion distances 

proposed by Robinson and Stokes, (d) edge-edge inter-reactant distances calculated via equation (1-49) 

using the sum of radii from reaction (1-27) set equal to 9.03 Å. 
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Figure 1.11 The change in the interreactant distance in solution vs. reactant 

concentration for reaction (1-27) applied for both center-center single-component 

distances, <dvv> (red line, calculated via equation (1-47)) and center-center inter-

reactant distances, <dcv> (blue line, calculated via equation (1-48)) compared with the 

center-center distances <dcv, RS>  proposed by Robinson and Stokes.51  
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Chapter 2 

Kinetic Studies of Salt Effects and Concentration Effects of Reactants on Self-

Exchange Reactions Monitored by 19F NMR Spectroscopy  

 
2.1  Introduction 

The previous chapter introduced the conceptual framework of bimolecular ET 

in solution and the basis of how added salts might be expected to affect ET rates 

between electron donor and acceptor complexes.  Many studies have focused on how 

the rates of reactions between charged species in solution respond to the addition of 

added salts,1-5  and previous studies conducted in this lab6-9 have focused specifically 

on measuring the ET kinetic effects arising from the addition of various “inert” or 

“spectator” salts. The bulk of that work concerned aqueous reaction mixtures 

involving the low-driving force “pseudo-self-exchange” reaction between 

pentaamineruthenium(II)(3-fluoropyridine)2+, [(NH3)5RuII3-fpy]2+, and 

pentaamineruthenium(III)pyridine3+, [(NH3)5RuIIIpy]3+ (as described below in Figure 

2.1), via the stopped-flow kinetic spectroscopy technique.1,6,7,9  

 

  

(2-1) 

 

 

Figure 2.1  The low-driving force (69 mV in H2O) “pseudo-self-exchange” 

reaction between [(NH3)5RuII3-Fpy]2+ and [(NH3)5RuIIIpy]3+ studied in prior stopped-

flow work. 
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Initial studies of salt effects on “true” (i.e. zero-driving force) self-exchange 

reactions were completed through 19F NMR line-broadening techniques, and these 

studies have been continued and augmented by the work described in this thesis.8 We 

have investigated salt effects on the “true” ET self-exchange reaction between 

pentaamineruthenium(II)(3-trifluoromethylpyridine)2+, [(NH3)5RuIItfmp]2+, and 

pentaamineruthenium(III)(3-trifluoromethylpyridine)3+, [(NH3)5RuIIItfmp]3+, as 

shown in Figure 2.2.  

 

 

(2-2) 

 

 

Figure 2.2 The “true” (zero-driving force) ET self-exchange reaction between 

[(NH3)5RuIItfmp]2+ and [(NH3)5RuIIItfmp]3+ used in our NMR kinetics work. 

 

The sensitivity of the spin-½ 19F nucleus in NMR spectroscopy is almost 

equivalent to that of the 1H isotope, and this has enabled us to obtain accurate kinetic 

data through NMR relaxation techniques using the 19F nucleus from the workable 

line-broadening concentration range (5.00 mM and above) down to the previously-

explored stopped-flow concentration range (~0.50 mM and below).10  The 

pentaamineruthenium(II/III)(3-trifluoromethylpyridine)2+/3+ complexes shown in 

reaction (2-2) above have proven to be especially beneficial when studying salt 

effects on ET rates by NMR because the strong, singlet 19F resonance which is 
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cleanly resolvable in both the ruthenium(II) and ruthenium(III) complexes (the 

chemical shift differential is ~5 ppm or ~2460 Hz in D2O, vide infra). The appearance 

of these two peaks allows for simple verification of the necessary 50:50 redox state 

distribution between the two reactant ions in solution and for accurate kinetic rates to 

be calculated accurately from either peak.  

 The added inert salts previously studied included some “simple” salts (such as 

KF, NaCl, KI, KBr, etc.), as well as a selection of dicarboxylate salts (sodium 

muconate, sodium terepthalate, etc.) as shown in Table 2.1, and the three hexacyano-

MII group VIII B salts of the composition K4FeII(CN)6, K4RuII(CN)6, and K4OsII(CN)6 

as shown in Table 2.2.  The concentration range of redox reactants used in the prior 

stopped-flow work on reaction (2-1) was between 0.06 mM and 0.30 mM, while the 

earlier 19F NMR line-broadening work8 on reaction (2-2) was done with the redox 

reactants at 3.00 mM and above (with most of the work done at 5.00 mM).  In the 

current work, we have optimized the NMR T2 spin-echo experiment (vide infra) to 

now directly measure the rate of reaction (2-2) over the entire reactants concentration 

range from 0.10 mM up to 5.00 mM. This overlap between the stopped-flow and 

lower-end NMR reactants concentration ranges allows direct comparison of ET self-

exchange kinetics as measured by NMR and the stopped-flow rates measured for 

reaction (2-1). As we will show, this experimental refinement has enabled 

investigation of the possible origins of the very significant deviations between salt-

effect patterns mapped out by previous workers using the two kinetic methods which 
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were operationally constrained to measuring the ET rates at widely different reactant 

concentrations.  

 

Table 2.1 The structures, names, and abbreviations for the dicarboxylate salts 

used in this work and earlier stopped-flow work.6,9 

Name Structure Abbreviation

1,4-dicarboxylcyclohexane 1,4-dcch2-

muconate muc2-

adipate adip2-

terephthalate tere2-
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Table 2.2 The structures, names, and abbreviations of the group VIII B 

hexacyano salts used both in this work and previous stopped-flow as well as NMR 

line broadening work.8,9 

Name Structure Abbreviation

[K4FeII(CN)6]

ruthenocyanide [K4RuII(CN)6]

osminocyanide [K4OsII(CN)6]

ferrocyanide

 
 
2.1.1  Known effects of added simple salts on ET rates 

 Prior stopped-flow work in this lab has shown that added simple salts of the 

anions F-, Cl-, Br-, I-, NO3
-, etc. enhance the rates of ET in reaction (2-1) in a way 

which routinely violates the quantitative predictions of Debye-Hückel theory6,9 

(Debye-Hückel theory was introduced in chapter 1 (see section 1.7) and is used to 

characterize the ionic atmosphere near a charged solute in terms of “local potential” 

and the resulting effects on ionic activity coefficients2,5).  The stopped-flow work 

established that ET only in the presence of added F- did the rate respond as would be 

predicted by Debye-Hückel theory. The rate acceleration due to added F- salts agreed 

nearly perfectly with the theoretical Debye-Hückel-Bronsted logkex vs. GP slope of 
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6.12 (see equation (1-38))11, while salts containing the other halide anions:  Cl-, I-,  

Br-, the dicarboxylate salts: muconate2-, adipate2-, terephthalate2-, and 1,4-

dicarboxylcyclohexane2- (see Table 2.1), and the hexacyano complexes: FeII(CN)6
4-, 

RuII(CN)6
4-, and OsII(CN)6

4- (see Table 2.2) deviated upward as shown in Figures 2.3 

through 2.8.   

 From the stopped-flow work of Sista, as illustrated in Figure 2.3, we see that 

upon going from F- to Cl-, to Br-, and then finally to I- the observed early slope (first 

few points) of the graph of the logkex vs. GP for reaction (2-1) changes from 6.2 ± 0.1 

for F-, to 14.4 ± 0.5 for Cl-, to 20.6 ± 1.2 for Br-, and then to 21.6 ± 0.5 for I-.6 This 

progressive deviation from the classical Debye-Hückel-Bronsted charge-product 

slope has been multiply-verified and is considered to be a real, anion-specific ET 

catalytic effect.1,6 
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Figure 2.3 Log of the measured ET rate vs. added salt data from previous 

stopped-flow work done with equimolar reactant concentrations of 0.10 mM (see 

reaction (2-1)). Note the progressive deviation away from the theoretical Debye-

Hückel-Bronsted slope (dotted line) as the identity of the added salt is varied over 

NaF, KCl, KBr, and KI.6  
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 Figure 2.4 shows results from subsequent 19F NMR line-broadening work by 

Qin measuring the kinetic salt effects due to added NaF, NaCl, and KBr on the rate of 

the true ET self-exchange reaction (2-2).8 Here we not only see a similar qualitative 

pattern of progressive change over the F- to Br- series found in Figure 2.3, but we also 

find that the magnitude of the ET rate accelerations due to all three salts deviate 

downward in a quantitative sense from what was observed in the stopped-flow work. 

The F- anion is still “most-ideal” since it is the only one exhibiting strictly linear 

behavior, but with a slope of 0.92 ± 0.05, while the observed early slopes due to 

adding Cl- and Br- fall to 8.2 ± 0.6 and 10.7 ± 0.7, respectively. 
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Figure 2.4 19F NMR line-broadening kinetic salt effects measured by Qin using 

equimolar reactant concentrations of 5.00 mM (see reaction (2-2)). There is 

qualitative similarity to the pattern of effects seen with added NaF, NaCl, and KBr 

obtained by stopped-flow (Figure 2.3), but the quantitative agreement with Debye-

Hückel-Bronsted theory seen in stopped-flow for added F- is lost.8  
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 The large drop in the magnitude of the kinetic salt effects was provisionally 

linked to the fact that the NMR work was done at a reactants concentration of 5.00 

mM, which is 50-fold higher than the reactants concentration of 0.10 mM used (for 

reasons of limited time-resolution) in the stopped-flow work.  This increase of 50x in 

concentration translates into a significantly decreased average inter-reactant distance 

in solution (see Figure 1.11), and this might be expected to have ramifications 

regarding the quantitative applicability of the Debye-Hückel-Bronsted equation. Part 

of the motivation behind the work to be described here was to see if these decreases 

in kinetic salt effects at high reactant concentrations might simply be due to the 

change in average inter-reactant distance or if some other effect might be involved. 

 
2.1.2 Known effects of added dicarboxylate salts on the rate of ET 

 In addition to the work completed on added “simple” salts, other kinetic work 

in this lab has focused on the salt effects arising upon the addition of the more 

complicated family of dicarboxylate salts shown in Table 2.1. The saturated 

dicarboxylate salts showed similar effects to those of the “simple” salt cases (vide 

infra).6,8,9  However, in the case of the trans, trans-diene “muconate” dianion, the 

observed rate effects are greatly enhanced when compared to the saturated 

dicarboxylates and the simple salts studied by stopped-flow at a 0.10 mM reactants 

concentration.  

 In Figure 2.5 (taken from stopped-flow work at 0.10 mM reactants), we see 

that while the adipate anion is more catalytic than F-  (behaving nearly equal to Br-), it 

lags muconate by about 1.4 log units at a GP of about 0.07. This reproducible, large 
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catalytic effect is unique to added muconate (nearly two orders of magnitude as 

compared to F-). This has been attributed to muconate acting as a “diffusive wire” and 

enhancing the ET process by an associative mechanism involving quantum “super-

exchange” mediation (as explained in chapter 1, section 1.6) in a presumably H-

bonded ternary assembly of the formulation [L-RuII(NH3)5, muc2-, (NH3)5RuIII-L].1,6  

In the case of sodium terephthalate and its saturated analog, sodium 1,4-

dicarboxylcyclohexane (1,4-dcch2-), there was again a substantial acceleration for 

terephthalate (tere2-) over 1,4-dcch2- by stopped-flow, but to a lesser degree than for 

the muc2- and adip2- pair.  
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Figure 2.5  Kinetic data from previous stopped-flow work with equimolar 

reactant concentrations of  0.10 mM (see reaction (2-1)), showing the effects of added 

sodium muconate (Na2muc), sodium adipate (Na2adip), sodium terephthalate 

(Na2tere), sodium 1,4-dicarboxylcyclohexane2- (Na21,4-dcch), KBr, and KF on the 

rate of ET.6  
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 In surprising contrast, 19F NMR line-broadening ET rate measurements at an 

equimolar reactants concentration of  5.00 mM in the presence of added muconate 

exhibited no such “special” catalytic effect, as can seen in Figure 2.6.8  Here we see 

that muconate, while still slightly more accelerating than adipate, falls far below 

bromide as an ET catalyst when studied by NMR line-broadening. This puzzling loss 

in the catalytic efficacy of muconate in the NMR work was initially attributed to 

some unknown effect of the relatively high concentrations of reactants. One 

hypothesis in this regard hinged on possible effects arising from the “rod-like” (high 

aspect ratio) shape of the muconate dianion. Here it was thought that at the high 

reactant’s concentration of the NMR work, the anisotropic diffusion properties of 

muconate might impair its ability to get “in between” the redox reactants rapidly 

enough to enhance the ET process via the same “quantum super-exchange” 

mechanism hypothesized as being operative as in the stopped-flow work at  0.10 mM 

reactants concentration.  A competing, though less-favored, hypothesis was that it 

may have in fact been the magnetic field itself which somehow attenuated muconate’s 

catalytic effectiveness.  This latter idea was partially tested by performing stopped-

flow measurements in the presence of a modest external magnetic field (obtained by 

stacking strong permanent magnets on the flow cell), but no attenuation of the 

catalytic efficacy of muconate was detected.12  A third hypothesis was that the D2O 

used in the NMR work was exchanging deuterons for the ammine protons of the 

reactant complexes (a known, rapid process) and that perhaps the ET catalysis by 

muconate relied on some degree of proton (in addition to electron) tunneling. The  
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Figure 2.6 Results from previous 19F NMR line-broadening work done with 

equimolar reactant concentrations of 5.00 mM (see reaction (2-2)). Here we see that 

added sodium muconate (Na2muc), sodium adipate (Na2adip) and KF give rise to 

very muted accelerations relative to theory and KBr (which in this case nearly 

matches theory).8  
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much lower tunneling probability of deuterons might then show up as a loss of 

catalytic efficacy.13  To this end, stopped-flow studies were conducted in D2O, but the 

catalytic effect of muconate remained as high as in H2O.6,12  This conundrum was 

another reason why we sought in this work to extend NMR rate measurements down 

in concentration far enough to overlap with the stopped-flow conditions. The 

surprising results of these studies and their bearing on the “muconate mystery” will 

be discussed in a later section.  

 
2.1.3 Known effects of added hexacyano complexes (K4M(CN)6, where M =  

 FeII, RuII, OsII) on the rate of ET 

 Both stopped-flow9 and NMR line broadening work8 have shown that the 

rates of ET reactions (2-1) and (2-2) are most spectacularly catalyzed by the addition 

of very small amounts of the potassium hexacyano salts (from Table 2.2), as shown in 

Figures 2.7 and 2.8. Through both techniques, it was observed that the catalytic 

efficacy was greatest for K4FeII(CN)6, then K4OsII(CN)6, and finally K4RuII(CN)6. 

This observed pattern of ET catalytic effects was linked to the known, 

thermodynamically favored ion-pair formation reactions of these species. For 

example, the series of ion-pairs formulated as (NH3)5RuIIIL/MII(CN)6, where L = 

substituted pyridine and MII = FeII, RuII, or OsII, are known to exhibit ion-pair 

intervalence-transfer transitions between the d6 and d5 redox centers.14  In the case of 

the bimolecular ET rate catalysis reported here, the [MII(CN)6]
4- salts are thought to 

facilitate “hole-transfer” quantum super-exchange mediation, the theoretical basis of 

which was discussed in chapter 1 (see section 1.6).  The acceleration is thought to 
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again be due to enhanced donor/acceptor electronic coupling, in this case in presumed 

ternary association complexes of the general formulation, [(NH3)5RuIIL, MII(CN)6, 

(NH3)5RuIIIL]+.  The additional electronic coupling here would be provided by the 

virtual hole state of the MII(CN)6
4- bridging unit (in analogy to the ion-pair 

intervalence transitions mentioned above). Our current measurements of this effect 

and the extension to low-concentration NMR T2 spin-echo kinetic measurements will 

be discussed in detail further on.8,9 
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Figure 2.7 Data from stopped-flow work with equimolar reactants concentrations 

of 0.10 mM (see reaction (2-1)), showing the effects of added K4FeII(CN)6, 

K4OsII(CN)6, and K4RuII(CN)6 on the rate of ET.  At the highest GP reached of 

0.0301 with RuII(CN)6
4- as a catalyst, the hexacyano complex is still only present at 

6x10-6 M, which is 6x lower in concentration than the reactants.9  
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Figure 2.8 Data from previous 19F NMR line-broadening work with equimolar 

reactants concentrations of 5.00 mM (see reaction (2-2)), showing the effects of 

added K4FeII(CN)6, K4OsII(CN)6, and K4RuII(CN)6 on the rate of ET.  Here we see 

that at the highest GP reached of 0.1833 with RuII(CN)6
4- as a catalyst, the hexacyano 

complex is still only present at 5.4x10-4 M, which is 10x lower in concentration than 

the reactants.8  
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2.2   Determination of Kinetic Rate Constants from NMR Line-Broadening   

      and T2 

Measurements of the rates of the bimolecular ET self-exchange reaction (2-2) 

were executed using both 19F NMR line-broadening and 19F T2 spin-echo (transverse) 

relaxation measurements.10,15  Rutheniumpentaammine-L complexes in both the RuII 

and RuIII oxidation states are known to be “substitution inert” over moderate periods 

of time (4-6 hours) in aqueous solution, meaning that the ET reaction taking place is 

in all cases happening via the outer-sphere mechanism discussed in chapter 1 (see 

section 1.3).16  As is typical for 2nd and 3rd row transition metal complexes, the high-

spin/low-spin characteristics of the electronic states of the RuII / RuIII redox sites will 

not change during the course of an ET event since both are rigorously low-spin. The 

“extra” electron on the RuII center will exchange between one of the filled, mostly 

non-bonding, dπ or (t2g)
6 orbitals, of the low-spin RuII ion and the “hole” in the dπ or 

(t2g)
5  orbital set of the low-spin RuIII ion. 

NMR spectroscopy is a useful tool for measuring the rates of “chemical 

exchange” events if there is an observable resonance peak of both, or even just one, 

of the reactant ions, that shifts in resonance frequency due to a change in chemical 

environment; sometimes this can simply be a change in structural conformation, 

and/or a change in redox state (and therefore charge type), as in our work.  If the 

chemical exchange dynamics of the spin system observed match the NMR timescale 

then rates can be obtained using either the exchange-induced NMR line-broadening 

values (which allow the relevant T2 values to be inferred under certain assumptions) 
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or by direct determination of the kinetically-perturbed T2 values via spin-echo 

relaxation methods (vide infra).10 It is the superiority of this latter approach in the 

“slow exchange” region which has allowed us to study the ET kinetics of reaction (2-

2) by NMR in the stopped-flow concentration range at which reaction (2-1) was 

studied. 

In the simplest cases, measured NMR line-widths depend directly on the 

dynamics of the free induction decay, FID, or “dephasing” of the post-pulse coherent 

spin-echo superposition in the x,y-plane (90° rotated net magnetization vector) as 

shown in Figure 2.9. 

In step (a) the net magnetization vector arising from the unequal spin 

population in the sample at equilibrium (thick blue arrow) is “pushed” from its prior 

equilibrium along the z axis (the direction of the permanent magnetic field of the 

magnet, Bo) into the x,y-plane by a 90° radio frequency (RF) pulse along x, which is 

gated on for a very precisely defined amount of time.  In step (b) the RF pulse is 

turned off once the net magnetization has precessed into the x,y-plane, and then the 

individual magnetization vectors (or “isochromats”), arising from the 

environmentally-different nuclei (in our case the magnetically-inequivalent fluorines 

on the RuII and RuIII complexes in the sample), begin their respective dephasing 

processes in which they spread apart from each other as they precess in the x,y-plane 

(around Bo)  according to their resonance frequencies and then ultimately relax back 

to their original orientation along z (re-establishing the previous equilibrium 

condition).  During this time, the RF receiver coil is turned on and the amplified 
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voltage signal of the precessing isochromats is heterodyned against a pure sine wave 

reference or “observe” frequency. The intensity of the resulting “beats” decays due to  

a.                           b.       

c.   

Figure 2.9 A schematic illustration of how NMR peak resonances arise. At point 

(a), the net magnetization vector (thick blue arrow) has been pushed 90º into the x,y-

plane by a precisely-timed RF pulse. (b) Illustrates the dephasing of the “net 

magnetization vector” into the individual “fast” and “slow” spin system isochromats 

corresponding to different chemical environments and hence different resonance 

frequencies. (c) Illustrates the acquisition step wherein the FID signal from the 

heterodyned dephasing of the individual isochromats is recorded in the time domain. 

The spectral line-shape results when the FID is Fourier-Transformed so as to create a 

“spectrum” of intensity vs. frequency (showing here only as a single peak due to 

frequency axis truncation). 

 

the aggregate dephasing processes creating the dynamic profile of the Free-Induction 

Decay, FID, as shown by part (c) in Figure 2.9. A Fourier transform algorithm is then 
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applied to the “time domain” FID which then produces a resonance peak in the 

frequency domain at a specific position and with a definable line-width. The 

transverse relaxation time, T2, of a given individual resonance peak will depend on 

the dynamics of the dephasing processes specific to that isochromat and will be 

encoded in the “true” line-width at half-height, 2/1 , for that resonance line (vide 

infra). The transverse, or spin-spin, relaxation time is defined as the rate at which 

phase coherence in the x,y-plane and the precession-induced NMR signal is lost after 

a 90º RF pulse is applied to the sample.10,17  The magnitude of T2 in the simplest case 

is determined by “spin-spin” relaxation processes innate to the solvent/solute 

environment as well as coupling between the spin system being observed and nearby 

(but generally not directly bound) spin states. We will go into greater depth on this 

topic later. 

 In the most ideal case this innate spin-spin dephasing process would fully 

explain the measured line-widths of the resonances in an NMR spectrum, but in fact 

this is rarely the case. The total measured line-width often incorporates additional 

factors with the most common being “inhomogeneous broadening” due to small, but 

finite variations of the macroscopic magnetic fields which the instrument creates and 

manipulates throughout the sample.17  These derive from instrumental imperfections 

such as “bad shims” and unavoidable field inhomogeneity caused by sample magnetic 

susceptibility effects. Another factor which contributes to line-widths being larger 

than would be predicted from the innate or “natural” T2 relaxation time alone (vide 

infra), stems from “homogenous” broadening. This is due to fluctuations of the 
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microscopic (local) magnetic field in the sample itself on the length scale of the 

molecules and nearby environments, and these effects cannot be avoided or corrected 

for.  The measured line-width is necessarily due to contributions of all these effects 

and thus line-widths larger than what the underlying T2 values alone would dictate are 

often observed experimentally. 

When studying the kinetics of some chemical exchange process through NMR 

spectroscopy, the “mean kinetic lifetime”, L , is defined as the average time the 

observed nucleus spends in the magnetic environment (local field strength and hence 

resonance frequency) corresponding to a given chemical environment (meaning 

conformer, redox state, state of association, etc.).10,15  In an exchanging or oscillating 

environment where a conformational change or other chemical process scrambles the 

spin-system isochromats during the FID acquisition time, there is now an additional 

dephasing mechanism which causes the FID to decay faster than the innate spin-spin 

relaxation in that solvent environment would otherwise dictate. It is this decrement in 

the measured T2 which holds information relevant to the mean kinetic lifetimes of the 

exchanging species present.  The details of the link between the kinetic rate of the 

stochastic scrambling event and the acceleration of the dephasing process will be 

explained below. 

In the work done here the relevant exchange process was in all cases the 

second-order bimolecular ET reaction shown in equation (2-2). The mean kinetic 

lifetimes of the magnetically-inequivalent RuII and RuIII species, IIRu
  and IIIRu

  

respectively, are directly related to the rate of scrambling during the x-y dephasing 
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period which determines to the FID curve shown in Figure 2.9 (b) and (c). The 

relevant expressions in terms of the ET self-exchange rate constant are,  
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II

RuII                                 (2-3)18 

and, 

 
]Ru[k

1
  

II
ex

RuIII                                                 (2-4) 

where [RuII] corresponds to the concentration of [(NH3)5RuIItfmp]2+, [RuIII] 

corresponds to the concentration of [(NH3)5RuIIItfmp]3+, and kex is the second-order 

ET self-exchange rate constant as described in chapter 1 (see section 1.3). When the 

concentrations are adjusted such that [RuII] is equivalent to [RuIII], then the kinetic 

lifetimes of the two exchanging species will necessarily be equal. 

 The line-width at half-height of a given resonance, 2/1 , in the exchanging 

solution will thus be determined by the inherent contributors to dephasing discussed 

previously, as well as the additional dephasing caused by the chemical exchange 

process (ET in our case) depends on the chemical kinetics. Within certain limits, the 

line-widths of NMR resonance peaks are calculable using the following relation, 

)(

1

L
L 

                                                     (2-5)18 

where L  (same as 1/2 ) is the Lorentzian line-width at half-height of the peak 

corresponding to species L, and L  is the mean kinetic lifetime of species L. 

Importantly if one applies the Heisenberg energy-duration uncertainty relationship 



 
 

85 

from atomic spectroscopy using 2L T   for Δt and the NMR Lorentzian line-width10 

as a measure of ΔE, the one can write, 

)T(

1

2
L 

                                                  (2-6)10,18 

where T2 is the transverse relaxation time.  In the presence of stochastic chemical 

exchange, the transverse relaxation (dephasing) time is shortened to some new value 

2T , and this in turn increases the line-width (energy uncertainty) of the NMR 

resonance peak.  There are caveats involved in applying equations (2-5) and (2-6), 

and these will be addressed in detail in section 2.3  

When the concentrations of both exchanging sites are equal as in our case, the 

total relaxation frequency, 'T/1 2 , which describes the dephasing rate seen in the FID 

can be decomposed into component relaxation frequencies according to, 

L22

1

T

1

'T

1


                                                  (2-7)19-22 

where 'T2  is the measured transverse relaxation time in the presence of chemical 

exchange of the species being observed, 2T  is the transverse relaxation time of that 

species in absence of chemical exchange (pure RuII or RuIII solutions in our case), and 

L  is the mean kinetic lifetime of the species being observed in the exchanging 

sample as in equation (2-5).  The Lorentzian line-width expression defined by 

equation (2-6) can now be applied to equation (2-7) to obtain the following key 

relation, 
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  2/12/1   ' 
1 


                                             (2-8)19 

where '1/2  is the line-width of the resonance peak in the presence of chemical 

exchange and 1/2  is the line-width of the peak in the absence of chemical 

exchange.  When equation (2-3) or (2-4) is combined with equation (2-8), the second-

order rate constant for a bimolecular ET self-exchange reaction can be extracted from 

any measured line-broadening beyond the innate or “natural” line-width dictated by  

2T  using equation (2-9) below,  

 
]C[

    ' 
k 2/12/1

ex

 
                                           (2-9)22 

where [C] is the concentration of the ruthenium complex other than the one being 

observed ([RuII] and [RuIII] were kept equal in all cases in the work done here). 

 The consequences of exchange processes on the observed line-shapes of NMR 

resonance peaks depend on how “fast” the kinetic rates are compared to the natural 

excited-state lifetime, as well as the difference in the NMR resonance peak 

frequencies of the nuclei in both exchanging and non-exchanging environments as 

seen in Figure 2.10.  There are a variety of exchange rate “regions” ranging from the 

case of “very slow” exchange where isochromat scrambling barely increases the 

natural transverse dephasing rate, to “very fast” exchange where the mean kinetic 

lifetime,  , is much less than the natural transverse relaxation lifetime, 2T .  Figure 

2.10 illustrates how NMR line-shapes depend on exchange rate processes as the 

magnitudes of   and 2T  are varied. 
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Figure 2.10 Illustration of how line-widths and shapes of exchange-coupled peaks 

respond to varying kinetic rates of scrambling. This general case diagram applies 

directly to our system for exchange of the 19F 3-trifluoromethylpyridine singlets due 

to the ET self-exchange reaction shown in reaction (2-2).8 
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In Figure 2.10,   is the difference in chemical shift between the RuII and 

RuIII NMR resonance frequencies in the absence of chemical exchange, e  is the 

difference in chemical shift between the RuII and RuIII resonance frequencies in the 

presence of chemical exchange, 1/2  is the line-width at half-height of the resonance 

peak in the absence of chemical exchange, '1/2  is the line-width at half-height of 

the resonance peak in the presence of chemical exchange, and *W  is the line-width at 

half-height of the “merged” peaks in the presence of intermediate to fast chemical 

exchange.   

In the “very slow” exchange region, the peaks become only slightly broadened 

and do not change frequencies relative to the non-exchanging case (i.e. solutions 

containing only pure RuII or RuIII).  As the rate of chemical exchange increases, more 

ET events take place during FID acquisition, and these stochastically scramble the 

“signals” of the two different peak resonances. As we go up the sequence  in Figure 

2.10, the rate of scrambling relative to 1
  goes up, and the peaks start to broaden as 

well as “move in” towards each other.  In the intermediate region, peak overlap erases 

the return to baseline between the peaks, and the sequence finishes with coalescence 

of the two into a very broad, “merged” peak.  In the fast exchange region, scrambling 

occurs on such a rapid timescale that only one peak will appear (which becomes sharp 

again in the limit where each nucleus spends exactly 50% of its time precessing as 

RuII and 50% as RuIII).  



 
 

89 

Expressions for NMR spectrum-derived kinetic rate constants are not solely 

dependent on line-width. In the “slow exchange” region as labeled in Figure 2.10, 

another rate expression in replacement of equation (2-9) is derived from methods 

based on peak separation and is found to be, 

  2/122
ex

2 ]C[
k e

                                      (2-10)15 

where   is the difference in chemical shift between the RuII and RuIII resonance 

frequencies in the absence of chemical exchange, and e  is the difference in 

chemical shift between the RuII and RuIII resonance frequencies in the presence of 

chemical exchange.  

 Takeda and Stejskal derived a general bandwidth expression using the Bloch 

equations for an equally populated two-site case without any approximations.15,23  A 

slightly modified form of this equation can be written as, 
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where *W  is the width at half-height of the broad peak in the presence of chemical 

exchange when the two previously-distinct peaks have merged, and A and B in 

equation (2-11) are defined in equation (2-12) (all other variables have been 

previously defined). Through the expansion of the term (2A+B)-1 in a series and 
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neglecting all terms higher than second order in B, equation (2-11) can be solved for 

kex and is found to be, 
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This equation is valid over the entire range of exchange broadening. If the natural 

line-width can be neglected when compared to the line-width in the presence of 

chemical exchange )W( *
2/1  , equation (2-13) can be simplified as shown 

below and is valid in the “intermediate” exchange region as noted in Figure 2.10, 
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Here W* is more generally defined as being the width of the resonance at the intensity 

which is half the intensity at the center of the doublet. In the “fast” exchange region, 

)1/(W*  , and equation (2-13) can be further simplified to the following, 
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Equations (2-9), (2-10), (2-14), and (2-15) will be used to analyze the kinetic data 

collected in this thesis.   

 
2.3  The T2 Spin-Echo Experiment 

As mentioned previously, the transverse relaxation time constant for any 

given non-exchanging resonance peak, T2, depends on the dynamics of transverse 

(x,y-plane) dephasing of that isochromat due to spin-spin relaxation (energy transfer) 
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processes with the nearby medium.17  Any operative chemical exchange processes 

will shorten T2 in a way which can provide kinetic rate information. In ideally-

behaving systems where homogeneous broadening is negligible, measured 2/1  

values will depend directly on the inverse of π(T2) as expressed by equation (2-6).  In 

such cases, the experimental T2 of a given peak is rigorously defined upon measuring 

the spectra line-width, but in practice this turns out not to be a universally-reliable 

linkage. The spectroscopic line-width can be larger than what would be predicted 

from the actual T2 relaxation time due to the combination of both inhomogeneous 

broadening and homogenous broadening.17  

For this reason, we undertook the challenge to optimize the “gold standard” 

spin-echo experiment for precise determination of T2 itself. As we will show this 

enables measurements of more rigorously valid chemical exchange rates over a 

broader range (independent of any assumed linkage to line-width). An example of 

this divergence relative to our system is shown in Table 2.3 below.  

Here we have listed the experimental spin-echo T2 relaxation times, the 

experimental line-widths, the “calculated” line-widths arrived at from T2 (expt) using 

equation (2-6), and the “calculated” T2 values which would be arrived at from            

 (expt)  2/1 , also employing equation (2-6). This table shows data for (a) the free-

ligand 3-trifluormethylpyridine (tfmp), (b) the pure [(NH3)5RuIItfmp]2+ complex (as 

the Cl- salt),  and (c) the pure [(NH3)5RuIIItfmp]3+ (all in D2O at concentrations of 

5.00 mM). These values clearly illustrate the large error which can arise if line-widths 

alone are relied upon for estimation of T2 via equation (2-6); clearly, heedless 
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application of equation (2-6) to experimental 2/1  data could lead to vastly incorrect 

“measured” kinetic constants. 

 

Table 2.3 Experimental T2 values obtained using the spin-echo technique at 299 

K (column 1) and the ideal, calculated 1/2  values from equation (2-6) which would 

result (columns two) if equation (2-6) held rigorously. Columns 3 and 4 list the 

experimental line-widths and the incorrect T2 (calc) values which would be inferred 

from them using equation (2-6). The free-ligand 3-trifluoromethypyridine (tfmp), and 

the [(NH3)5RuIItfmp]2+ and [(NH3)5RuIItfmp]2+ complexes (as chloride salts) were all 

present (alone) at 5.00 mM in D2O.  

Compound
T2 (expt)           

(sec)

  Δ ν1/2 (calc)    

(Hz)

Δ ν1/2 (expt)     

(Hz)

T2 (calc)     

(sec)

tfmp free ligand in D2O 2.304 ± 0.003 0.14 4.47 0.071

[(NH3)5RuIItfmp]2+ in D2O 1.375 ± 0.006 0.23 3.87 0.082

[(NH3)5RuIIItfmp]3+ in D2O 0.101 ± 0.003 3.17 6.74 0.047

 

In the “very slow exchange” rate region shown in Figure 2.10, the line-width 

based rate equation (2-9) may be transformed into the more rigorously-correct 

difference between contributing dephasing times as follows, 

 
]C[

)T/1( )'T/1( 
k 22

ex





                                      (2-16) 

where 'T2  is the experimental transverse relaxation time measured in the presence of 

chemical exchange and 2T  is the transverse relaxation time in its absence (that of 

either RuII or RuIII alone in our case). We will use this more basic approach and 

experimental T2 values to calculate ET rates in the “slow” exchange region and 
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thereby circumvent the difficulties in using line-widths to measure the slow rates at 

low concentrations of reactants (where homogeneous line-broadening effects place a 

“floor” under Δν1/2 invalidate equations (2-5) and (2-6)). 

The CPMG spin-echo pulse sequence allows for homogenous broadening (or 

spin coherence decay) due to spin-spin relaxation arising from fluctuating 

microscopic magnetic fields and/or chemical exchange broadening to be 

distinguished from inhomogeneous broadening arising from variations of the 

macroscopic magnetic field over the entire sample due to instrumental (shim) 

imperfections or sample magnetic susceptibility effects.17 This means that direct 

measurement of T2 provides a more general and reliable approach to studying “slow” 

chemical exchange kinetics than methods relying solely on the line-shape. 

Importantly, in our work we find that we can extract ET rate constants at much lower 

reactant concentrations than in the previous NMR work done in this lab, including the 

0.10 mM to 0.50 mM reactants concentration range explored the prior stopped-flow 

work but where the exchange broadening by NMR was too small to be measured. 

Figure 2.11 illustrated the CPMG T2 spin-echo pulse sequence in conventional 

NMR schematic notation.17 Here D1 is the relaxation delay between acquisitions 

which is used to insure that all magnetic vectors are longitudinally relaxed along z 

(the direction of the permanent magnetic field, Bo) before spin manipulation has 

begun. The first box represents the first RF-pulse applied to the equilibrated sample, 

and it is an exact 90º or )2/(  pulse which, when properly calibrated (vide infra), 

will push the net magnetization vector precisely into the x,y-plane via precession 
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about x. The second box represents a precisely-timed 180⁰ or π RF-pulse which has 

the effect of rotating the precessing sample isochromats by 180º about the same axis 

(typically “x”) as the initial 90º pulse was directed. The spin evolution interval 

between the two pulses, 2/ , is kept at the same length as the one preceding signal 

acquisition (FID collection as symbolized by the decaying sine wave) which occurs 

when the RF receiver coil is gated “on”. Operationally, an “arrayed” experiment is 

performed by varying values of   in such a way that   starts small and becomes 

large compared to the actual T2 value of the sample according to an automation 

routine.  A Fourier transform is applied to the data collected at the end of each pulse 

train, and a stacked plot of these will give rise to a set of spectra peaks whose 

amplitudes vary with the values of   with each going through a maximum-intensity 

“echo” (due to isochromat refocusing) at a certain value of  , which then decays as 

  increases.  

 

 

Figure 2.11 The CPMG T2 spin-echo pulse sequence.17 
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Figure 2.12 The rotating frame depiction the net of magnetization vector and 

isochromat behaviors during execution of the CPMG T2 spin-echo pulse sequence 

shown in Figure 2.11.10  

 

 Figure 2.12 uses the “rotating frame” formalism to illustrate the specific 

magnetic spin vector manipulations.  Step (A) shows the net magnetization vector at 

equilibrium (in the direction of the permanent magnetic field, Bo).  The 90º pulse is 

then applied to the sample such that the net magnetization vector is rotated into the 

x,y-plane as shown in step (B).  The spin evolution )2/(  delay then allows the 

individual magnetic vectors to begin the dephasing process (due to their different 

precession frequencies), as shown in step (C), where the various isochromats in the 

sample (denoted here by the spreading arrows) precess either more slowly or quickly 

than the Larmor frequency (which would lie stationary and exactly along y in the 

“rotating frame” formalism used here for analyzing the NMR spin dynamics).10  After 
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a delay of )2/( , the 180º pulse is applied to rotate the spreading isochromats around 

x. This has the effect of reversing their relative spreading directions in the rotating 

frame as shown in panel (D) and herein lies the origin of the re-focusing towards the 

eventual “echo”. A second delay of )2/(  is then applied before acquisition starts 

and if the timing is correct, the isochromats of the net magnetization vector will have 

now refocused along x in the x,y-plane and aligned (very briefly) in the opposite 

direction of where they had originally started out as shown in panel (E).  During the 

precisely-gated acquisition period after (E), the “spin-echo” signal will be observed 

with peak now 180⁰ out of phase with the respect to a “normal” 90⁰ pulse-then-

acquire spectrum. As spin-spin relaxation or other stochastic processes (such as 

chemical exchange) occur, phase coherence will be lost in the x,y-plane and a decay 

in the spin-echo peak intensities will result. The experimental T2 value is obtained 

from analysis of the intensity vs.   decay curve. 

 Experimental problems can arise when measuring the T2 value of a particular 

resonance peak. Two of the more frequent problems are due to dissolved oxygen 

effects and an incorrectly calibrated 90º pulse-width, pw90 (vide infra). Oxygen 

present in the solvent can affect the measured T2 relaxation by providing enhanced 

spin-spin relaxation (dephasing) resulting from the paramagnetic nature of the oxygen 

ground state.10 Paramagnetic molecules present in solution can greatly enhance spin-

spin relaxation due to the quadrupole moments of the paramagnetic nuclei coupling 

with electric field gradients.17  This is known to produce larger line-widths in some 

cases and can even give rise to “paramagnetic shifts” in peak positions of open-shell 
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spin systems due to the very large magnetic moments associated with unpaired 

electrons.  The importance of oxygen effects on T2 varies depending on the nature of 

the spin system under investigation, but it is important to check for any such effects in 

a T2 investigation since O2 is present at 5x10-4 M in air-saturated D2O at 25°C.24,25  In 

our case, multiple control experiments showed no significant effects due to dissolved 

oxygen on all of our measured T2 values (details of these determinations will be 

discussed further on). Incorrectly calibrated pulse-widths can also lead to incorrect T2 

relaxation values since the net magnetization vector is not pushed precisely into the 

x,y-plane prior to further manipulation and acquisition. The effects of this error 

source on experimental T2 decay curves will be discussed in the experimental 

section.26  

In the rest of this chapter we will show how the combined application of both 

line-width and carefully-optimized direct determinations of T2 have allowed us to 

explore electrolyte and super-exchange catalytic effects on ET reaction (2-2) over a 

50-fold range of concentration (0.10 mM to 5.00 mM) in our bimolecular reaction.  In 

many cases, our results lead to very precise confirmation of the prior stopped-flow 

and NMR line-broadening based measurements carried out in this lab, while in other 

cases, new and interestingly divergent behaviors are encountered.  In the case of ET 

catalysis by muconate in particular, we find that a longstanding mystery has in fact 

deepened upon closer examination.  
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2.4   Synthesis and Purification of Reactants and Salts 

Synthesized (and purchased) compounds used in this work were characterized 

through NMR and UV-Vis spectroscopic techniques as well as by differential pulse 

voltammetry. The purities of the ruthenium complexes were verified through UV-

Visible and DPV analysis as well as reference to known λmax, εmax, E1/2 values.  

Purification procedures were repeated as necessary in order to obtain the highest 

purity.  

 
2.4.1 Preparation of ruthenium(III)chloropentaaminedichloride, 

[(NH3)5RuIIICl]Cl2 

Ruthenium(III)chloropentaaminedichloride, [(NH3)5RuIIICl]Cl2, was 

synthesized from commercial rutheniumtrichloride hydrate, RuCl3•H2O (Sigma 

Aldrich, CAS 14898-67-0), using a modification from the literature.27  In a typical 

preparation, 5.00 g of RuCl3•H2O were added to a 500 mL or 1000 mL round bottom 

flask containing 62.5 mL of commercial grade distilled water and was allowed to 

dissolve. The reactant solution was placed in an ice bath and then 62.5 mL of 

hydrazine monohydrate (Alfa Aesar, CAS 7803-57-8) were added dropwise with 

stirring to the solution (which was chilled by suspension in an ice bath before and 

during the addition). The resulting dark purple mixture was then allowed to stir at 

room temperature for at least 4 hours, but no longer than 24 hours.  The final mixture 

was a dark red-purple color after reaction. The reaction flask was again placed in an 

ice bath and 125 mL of 12 M HCl were slowly added dropwise with stirring to the 

solution. The solution was then heated at reflux for 2 hours. The resulting yellow 
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product was isolated via filtration and washed with 20 mL of 0.1 M HCl, followed by 

20 mL of reagent grade acetone (Pharmco-Aaper, CAS 67-64-1). The resulting 

product was dried in a vacuum (typical yields were 70%).  

 
2.4.2 Recrystallization of ruthenium(III)chloropentaaminedichloride, 

[(NH3)5RuIIICl]Cl2 

 In order to ensure best results in subsequent synthesis, the crude product from 

above was added to about 125 mL of 0.1 M HCl and heated to about 70°C, or until all 

of the compound went into the solution.  The solution was then cooled slowly to room 

temperature, placed in an ice-bath, and cooled to 0°C.  The purified yellow crystalline 

product was isolated by filtration, washed with reagent grade acetone and allowed to 

dry by air suction for at least 30 minutes (typical yields were 85%).  

 
2.4.3 Preparation of Zn/Hg amalgam 

 About 1.00 g of 20 mesh Zinc granules, Zn (Sigma Aldrich, CAS 7440-66-6), 

were added to a 25 mL round bottom flask. The Zn granules were briefly washed with 

about 5 mL of 1 M HCl to remove the oxide on the zinc surface. Hydrogen bubbles 

initially formed on the surface of the metal, but then dispersed when about 3 mg of 

mercuric chloride, HgCl2 (EM Science, CAS 7487-94-7), were added to the solution 

with swirling agitation. Within about 30 seconds the bubbles were gone, and the Zn 

granules became noticeably shiny and clumped together indicating the presence of a 

thin layer of metallic mercury having been reduced onto the zinc particles. The 

resulting Zn/Hg amalgam was then washed three times with three small portions of 
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distilled water and henceforth carefully protected from exposure to air. The flask was 

then filled with 5 mL of distilled water and a small stir bar was added. Two pasteur 

pipets of trifluoroacetic acid vapor (Sigma-Aldrich, CAS 76-05-01) were then puffed 

into the flask to slightly acidify the solution. The flask was immediately sealed with 

parafilm and allowed to stir for a minimum of 2 minutes. The amalgam must be used 

for subsequent synthesis within a few minutes of preparation, and after use it must be 

removed from frits and flasks immediately so as to avoid the formation of 

problematic zinc oxide, ZnO, deposits (as these require soaking in acid in order to 

remove later).  

 
2.4.4 Preparation of ruthenium(II)L-pentaamminehexafluorophosphate, 

[(NH3)5RuII-L](PF6)2, where L= tfpm 

 About 0.1 g of [(NH3)5RuIIICl]Cl2 were added to a 25 mL round bottom flask 

containing fresh Zn/Hg amalgam (vide supra). 1.5 molar equivalents of the pyridyl 

ligand (tfmp: Aldrich, CAS 3796-23-4) were added to the flask, which was then 

sealed with parafilm and covered with foil to block ambient light. The solution was 

rapidly stirred at room temperature for 25 minutes (so as to tumble the Zn/Hg and 

poorly soluble RuIII suspension) and was then filtered, using a coarse filter (to  

remove the amalgam) into a flask containing 3 molar equivalents of 

ammoniumhexaflourophosphate, NH4PF6 (Aldrich, CAS 16941-11-0). The filtrate 

mixture was then swirled, sealed, and placed into a -20°C freezer for at least 15 

minutes and no longer than 30 minutes. The resulting suspension of crude 

[NH3)5RuIIL](PF6)2 product was then allowed to thaw if necessary and the yellow-
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orange crystalline product was isolated by filtration. The product was allowed to 

drain under air suction for 20 minutes and was then dried in a vacuum desiccator 

(typical yields were 80%). 

 
2.4.5  Acetone/Ether purification pentaammineruthenium(II)-L-

hexafluorophosphate, [(NH3)5RuII-L](PF6)2 where L= tfpm 

 The crude pentaammineruthenium(II)L-hexafluorophosphate, [(NH3)5RuII-

L](PF6)2, was dissolved in a minimal amount of reagent grade acetone (~3-7 mL) and 

was filtered using a fine frit to remove any undissolved solid. A three to five fold 

volume excess of diethylether was then slowly added to the filtrate in order to 

precipitate > 95% of the RuII product (the filtrate should be just barely colored a faint 

yellow for optimum results). The product was then isolated via filtration and dried in 

a vacuum desiccator (typical yields were about 90%).  

 
2.4.6 Preparation of pentaamineruthenium(II)-L-chloride, [(NH3)5RuII-L]Cl2 

where L = tfmp 

 About 30 mg of the purified [(NH3)5RuII-L](PF6)2 (vide supra) were dissolved 

in a minimal amount of reagent grade acetone (~3-7 mL) and filtered using a fine frit 

to remove any undissolved solid. About 20 mL of reagent grade acetone were then 

added to the deep red (L = tfmp) colored filtrate. About 1 mL of HPLC grade 

methanol (Pharmco-Aaper, CAS 67-56-1) was mixed with about 1 mL of 1:8 

saturated TEACl, tetra-ethyl-ammonium chloride, in rigorously dry 70:30 

acetone/methanol. The TEACl/methanol mixture was then added dropwise (~25 



 
 

102 

drops) to precipitate the product out of solution. The red-orange colored crystalline 

product was obtained via vacuum filtration. The mother liquor should be slightly 

colored indicating no excess amount of TEACl was added (as removal of TEACL 

contamination of the product is very difficult). The precipitate was then washed twice 

with 5 mL of reagent grade acetone and was allowed to dry by air suction for at least 

25 minutes (typical yields were about 80%). These chloride salts of the (NH3)5RuII-

L2+ are only stable for about 24 hours, and therefore should not be prepared in 

unnecessarily large amounts. 

 
2.4.7 Preparation of pentaamineruthenium(III)-L-chloride, [(NH3)5RuIII-L]Cl3, 

where L = tfmp 

 About 30 mg of [(NH3)5RuIIL]PF6 (vide supra) were dissolved in a minimal 

amount of reagent grade acetone (~3-7 mL) and filtered using a fine frit to remove 

any undissolved solid. About 2-3 mL of commercial grade D.I. water were added to 

the filtrate. Then, 9 drops (~0.3 mL) of 1 M HCl were added to the solution in order 

to slightly acidify the reactant solution and provide the necessary additional Cl- ions. 

After mixing, 8 drops (~0.4 mL) of 30% hydrogen peroxide, H2O2, (EMD Chemicals, 

CAS 7722-84-1) were added to the reactant solution. The ruthenium(II) was 

considered to be completely oxidized when the color of the solution turned from red-

orange to a persistent pale yellow. A fifteen-fold excess of reagent grade acetone was 

then added slowly to the solution. The yellow crystalline product was isolated by 

vacuum filtration, washed twice with 5 mL of reagent grade acetone, and was allowed 

to dry by air suction for at least 25 minutes (typical yields were around 80%). These 
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RuIII products can be stable for more 24 hours but since they were generally used in a 

paired manner with the less-stable RuII chlorides, we in all cases prepared the RuII and 

RuIII reactants in tandem. 

 
2.4.8 Preparation of disodium dicarboxylate salts, Na2-X, where X = muc, tere, 

1,4-dcch, adip 

 1.00 g of the acid equivalent of the sodium dicarboxylate salt product sought, 

for example muconic acid, H2(muc), was added to a 250 mL erlenmeyer flask 

containing 100 mL of D.I. water and a stir bar. A 1 M NaOH solution was then used 

to titrate the sodium dicarboxylate acid solution until a pH of 6.5 was reached using 

two-point a calibrated glass electrode pH meter (Beakman, Electrode Part # 511060, 

Lot #50088) to monitor the pH of the solution. During this titration process, the 

sparingly-soluble solid dicarboxylate acid dissolved as the pH approached 6.5. The 

solution was left to stir until the pH was maintained at 6.5. The resulting solution was 

then filtered using a fine frit, and 4 volumes of reagent grade acetone were added to 

the filtrate in order to precipitate out the sodium dicarboxylate salt. The precipitate 

was then isolated using a fine frit and dried in a vacuum desiccator (typical yields 

were about 90%).  No further purification was needed for these salts.  

 
2.4.9 Preparation of potassium ruthenocyanide, K4RuII(CN)6 

 Potassium ruthenocyanide, K4RuII(CN)6, was synthesized using the method 

according to Howe.28 In a typical preparation, 2.00 g of ruthenium chloride, 

RuCl3·H2O, were added to a 125 mL erlynmeyer flask containing 50 mL of saturated 
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aqueous potassium cyanide, KCN (J.T. Baker, CAS 151-50-8, Lot # 41395), and 

allowed to dissolve. This solution was then heated at reflux for 24 hours. The reactant 

solution was then allowed to cool to 0ºC overnight which resulted in a white 

crystalline precipitate. The crude crystalline product was then isolated by filtration, 

washed with several 5 mL portions of HPLC grade methanol, and dried in a vacuum 

desiccator (typical yields were 70%). Commercial K4RuII(CN)6 (Aldrich, CAS 

339268-21-2, Lot # MKBL1258V) was purchased as well to compare results with the 

“in-house” K4RuII(CN)6.
   

 
2.4.10 Preparation of potassium osminocyanide, K4OsII(CN)6 

 Potassium osminocyanide, K4OsII(CN)6, was synthesized analogously to 

K4RuII(CN)6, only using ammoniumhexachloroosmate, (NH4)2OsCl6 (Engelhard 

Industries, CAS 12125-08-5, Lot # Os-70), as the starting material instead of 

ruthenium chloride.  

 
2.4.11 Recrystallization of potassium ferrocynadie, K4FeII(CN)6 

 In a typical recrystallization, about 1 g of potassium ferrocyanide, K4FeII(CN)6 

(Sigma-Aldrich, CAS 14459-95-1, Lot # SLBC1213V), was added to a 125 mL 

erlenmeyer flask. About 50 mL of distilled water were slowly added to the flask 

slowly so as to partially dissolve the K4FeII(CN)6 complex. The solution was then 

slowly heated to about 45⁰C or until all of the K4FeII(CN)6 complex went into 

solution. More K4FeII(CN)6 complex was added to the heated solution until a 

saturated solution was obtained. The heated solution was then filtered using a fine frit 
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and cooled slowly to 0ºC overnight. The microcrystalline precipitate was isolated via 

filtration, washed with HPLC grade methanol and dried in a vacuum desiccator.  

 
2.4.12 Recrystallization of potassium hexacyano complexes, K4M(CN)6, where 

M = RuII, OsII 

 About 0.2 g of the potassium hexacyano complex were added to a 125 mL 

erlynmeyer flask. About 15 mL of D.I. H2O were added to the flask so as to dissolve 

the K4M(CN)6 complex (room temperature throughout). The resulting solution was 

then filtered to remove any undissolved solid. HPLC grade methanol was then added 

dropwise (~20 mL) so as to precipitate out the product. The white microcrystalline 

precipitate was isolated via filtration, washed with HPLC grade methanol and dried in 

a vacuum desiccator. 

 

Table 2.4 Spectroscopic and electroanalytical characterization data for the 

complexes used.  

Compound
λmax (nm) in 

Acetone
εmax E1/2 

Solvent for E1/2 

measurement

[A5RuIItfmp](PF6)2 450 9000 0.035(a) Acetone

[A5RuIItfmp]Cl2 436 8235 0.143(b) Water

Fe(CN)6 - - 0.2(b) Water

Os(CN)6 213 47000 0.4(b) Water

Ru(CN)6 - - 0.7(b) Water
 

(a) The E1/2 value was measured against an Ag/AgCl reference electrode and the fc/fc+ couple was 

measured against the same Ag/AgCl reference during that same experimental session. (b) The E1/2 

value were measured against SCE in 0.1 M KCl. 

 



 
 

106 

2.5   Solution Preparation 

Solutions for all NMR and UV-Vis spectroscopic work were prepared using 

the appropriate micropipette (calibrated by mass) and/or volumetric glassware (all 

solutions with concentrations < 0.10 mM were prepared in plastic glassware6). All 

quantities weighed were within the analytical specifications of the balance, which in 

our case required that quantities be no smaller than 3.5 mg in order to achieve ~5% 

precision. 

 
2.5.1 Solution preparation of reactant solutions for NMR ET self-exchange 

measurements 

 For solutions with concentrations of reactants of 5.00 mM and above, 

reactants were weighed out directly in amounts which would correspond to the 

desired concentration of reactants in a 2.00 mL solution of D2O.  For solutions with 

concentrations of reactants between 1.00 mM and 5.00 mM, the reactants were 

weighed out in amounts which would correspond to the desired concentration of 

reactants in a 10.00 mL solution of D2O. For solutions with concentrations of 

reactants between 0.50 mM and 1.00 mM, the reactants were weighed out in amounts 

which would correspond to the desired concentration of reactants in a 25.00 mL 

solution of D2O. For all solutions with concentrations of reactants below 0.50 mM, a 

25.00 mL stock with a concentration of reactants of 0.50 mM was first prepared. 

From this stock solution, a 2.00 mL solution of the desired concentration was 

prepared using appropriate dilution and analytical techniques (using plastic 

volumetric flasks and graduated cylinders). 
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2.5.2 Solution preparation for added-salt NMR kinetic measurements 

 The following method was used for all simple salts and dicarboxylate salts. 

Before preparation of the salt solutions; the concentrations, total ionic strength, 

overall GP, and volumes of the salt solution aliquots to be added to the reactant 

solution were first calculated such that the total volume of the salt solution added 

would be less than 8% of the total volume of the reactant solution and thus introduce 

negligible dilution error. We also note that no delivered volume of an added salt 

solution was ever smaller than 0.8 µL.  Once the calculations of the volumes of the 

stock salt solution to be added to a given reactant solution were complete (so as to 

arrive at the desired total µ and GP), the amount of salt needed to make the desired 

concentration of the salt stock solution in 2.00 mL of D2O was calculated and 

prepared using the appropriate analytical techniques as outlined above.  

 For the highly-catalytic hexacyano salts (K4FeII(CN)6, K4OsII(CN)6, and 

K4RuII(CN)6) a similar procedure was performed as in the simple and dicarboxylate 

salt cases, but with minor alterations due to the need for achieving exceptionally close 

control of the very low concentrations of M(CN)6
4- required in these cases. To 

achieve controllable M(CN)6
4- stock solution concentrations down in the range of    

10-5 M salt in 2.00 mL, a 3.00 mM M(CN)6
4- stock solution was first prepared and 

then diluted accordingly in order to achieve the desired final concentration using the 

appropriate size micropipette with plastic tip.  
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2.6   NMR Instrument Set-Up and Experiment Execution 

All NMR measurements were made using a Varian 500 MHz NMR 

spectrometer (Part # MR0904W025, VNMRS, vnmrj 3.2). Before loading/acquiring 

any NMR data, the instrument must first be setup specifically for the nuclei of interest 

according to procedures outline in the USF vnmrj 4.2 user manual.29  The nucleus of 

interest in the majority of the work to be reported here was the spin-½ 19F nucleus of 

the CF3 substituent on the 3-triflouromethylpyrinde ligand (see Figure 2.2). 

Therefore, it was necessary to first set up the instrument for general 1-D 19F NMR 

experiments before any pulse calibration, relaxation, kinetic, or temperature 

dependent experiments could be performed. We will include here a brief mention of 

some aspects of general set up, but will focus primarily on those aspects particularly 

important to 19F NMR work. 

The sample was inserted into the NMR and a “field frequency lock” was 

established on D2O.  The probe was tuned and matched to the 19F nucleus according 

to the steps outlined in the USF vnmrj 4.2 user manual.29  Due to the precise nature of 

the kinetic relaxation and temperature-dependent rate experiments of our work, we 

found it was necessary that the probe be tuned and matched using the “fine” criterion.  

 
2.6.1  Setting up the 19F NMR experiment 

 In order to set up and execute a 1-D 19F NMR experiment, first the 19F 

experiment was selected in the “Protocol” window, located on the left side of the 

screen. The “Liquids” tab was then opened, the “Std 1-D” button was selected, and 

“FLOURINE” was chosen. This action called up all necessary experimental 
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parameters for 19F acquisition.  Then the “Acquire” tab was opened (located at the top 

left in the parameter panel window).  One may go at this point through and adjust any 

parameter desired, such as the relaxation delay (D1) which is the delay time before 

any pulse is applied and is typically set equal to 5xT1 (vide infra), the pulse width at 

90º (pw90, vide infra), the number of scans (ns) which is the number of repetitions of 

the pulse sequence which will take place before the FID is Fourier transformed, and 

the block size (BS) which is how many scans must be taken before an updated FID is 

saved to the acquisition window.  These are just a few of the parameters which may 

be adjusted in this window.  The parameters were typically assigned as follows for 

our reactant solutions in D2O; D1 was set equal to 10 sec, the initial pw90 was 9.7 

μsec at a power of 57 dB, and for simple 1-D spectra, the number of scans, ns,  was 

typically set to 64 (except for dilute solutions) and the block size was 4.  

 
2.6.2 NMR pulse calibration 

Before any kinetic data can be obtained via the 1-D 19F NMR line-broadening 

method or the 19F spin-echo T2 relaxation method (see section 2.7), careful calibration 

of the 90° pulse length, pw90, is required. The pw90 is defined as the duration, in 

microseconds, that an RF-signal of a given power level must irradiate a sample in 

order to tilt the net magnetization vector precisely into the x,y-plane, which is by 

definition 90° away from the z axis of the NMR’s magnetic field. This pulse is also 

often referred to as the π/2 pulse.  Precise calibration of the pw90 ensures that the 

manipulations of the net magnetization of the 19F spin system will be executed as 

intended in the pulse program and that the state of the spin system after evolution 
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delays will be well-defined. In addition to making the spin-echo (or any other) pulse 

sequence function properly, accurate pw90’s are key to obtaining the optimum signal 

to noise ratio (S/N) in the final data collected. This is because of the cumulative 

coherence loss which accrues effect when multiple pulses are applied to the sample, 

such as 45°, 90°, and 180°, during the pulse program.  

Each nucleus within a given compound has a distinct chemical environment, 

and in theory, each will have a unique 90° pulse width. However, since the chemical 

shift dispersions between different peaks in a sample are typically on the order of less 

than 1000 ppm, pw90 variations will be on the same order (0.1% or ~10 nsec) and 

thus fall below the level of settable precision on our instrument (0.1 µsec). The 

simplest pulse sequence of “irradiate-observe” on a one-peak spectrum will display 

maximum signal intensity when the pulse duration corresponds exactly to a 90° pulse, 

as seen in Figure 2.13.  However, the difficulties in precisely measuring the 

maximum signal intensity by comparing similarly intense peaks, as would be 

obtained at 89° or 91° pulse width, results in it being more accurate to observe and 

calibrate the 180° pulse, or better still the 360° pulse. The 360° pulse measurement is 

therefore the most commonly-used method for calibrating the 90° pulse. If the 360⁰ 

pw90 calibration curve is not a smooth and symmetrical sine curve (peak intensity vs. 

irradiation pulse length in µsec) like the one in Figure 2.13, then the four key things 

which must be adjusted are the initial guess for pw90 (or pw[1] in Varian notation), 

the pre-pulse (relaxation) delay time (D1), the probe tuning and matching, and the 

magnetic field homogeneity (shims).26,30  
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Multiple determinations of pw90 (as pw360 / 4) for 19F using our tfmp 

complexes in D2O consistently gave 9.7 µsec at a power level of 57 dB. This value 

was found to be adequate for all experiments involving reaction (2-2). Over an 

operating period of 26 months or so, we found no significant change in this pw90 for 

19F.  By way of comparison, the standard pw90 for 1H at a power level of 57 dB was 

found to be 7.5 µsec. 

 

 

Figure 2.13 An illustration of a pw90 determination via peak intensity vs. angular 

rotation plot out past pw360. Note the maximum peak intensity at 90°, and the nulls 

at 180°, and 360°.30  

 

 In practice, a quality 1-D 19F NMR spectrum is obtained, the cursors are used 

to zoom in on the peak of interest, and this portion of the spectrum is carefully phased 

according to the USF vnmrj 4.2 user manual.29 It is recommended that peaks used for 

pw90 calibrations be from a well-resolved singlet resonance of the sample. In order to 

initiate the Varian pw90 calibration utility, the following input was typed into the 

command line (with “enter” being pressed after each command): 
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 nt=1             (stands for number transients = 1) 

 gain=’y’       (stands for receiver gain = value in stored experiment) 

 ai vp=50      (stands for absolute intensity mode and spectrum vertical  

    position = 50) 

 pw90?     (stands for the current pulse width at 90º) 

Next, an array of values for the pulse width is created which brackets the expected 

360º pulse width of 4 x pw90. In the case of our ET reaction (see Figure 2.2), the 360º 

pulse width was known to be around 39 µsec. To define the appropriate array for a 

“coarse” pw90 calibration, a large range of pw values were chosen by inputting: 

  array(‘pw’,45,0,1)    (stands for array pw with 45 increments starting at  

        0μsec with a step size of 1μsec) 

Next, the guessed pw90 was defined and the calibration was initiated by entering the 

following in the command line: 

 pw[1]=9.7    (stands for the first pw which is the current value of pw90   

    given when pw90? was typed in) 

 au                (stands for auto gain and go which will start the experiment) 

Once the calibration had completed, in order to process, autophase, and stack the 

spectra the following must be typed into the command line: 

 wft(1)              

 aph 

 vsadj 

 wft dssh 
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At completion of the array of the pw values, a plot like the one in Figure 2.14 is 

displayed.  Each intensity value in the plot corresponds to a different irradiation time. 

The first null represents the 180º pulse width and the second null represents the 360º 

pulse width.  The time at where the 360º null is was divided by 4 and this number was 

then accepted as the coarse pw90 value specific to the sample being measured.  

 

 

Figure 2.14 A coarse pw90 calibration curve for the complex [(NH3)5RuIItfmp]Cl2 

in D2O at a concentration of 5.00 mM using the 19F nucleus. 

 

After a crude calibration of pw90 was completed, a more accurate value of 

pw90 is obtained.  The same sequence of commands was used, only now the array of 

pulse widths used to acquire the first, crude calibration of the pw90 was adjusted to 

zoom in precisely on the region of the 360º null.  This was achieved by adjusting the 

array to have smaller time increments between the different trial pulse widths and by 

re-defining the pw90 as the value obtained from the prior crude calibration as shown 

below:  

  array(‘pw’,30,37,0.1)  (stands for array pw with 30 increments starting at  

        37 μsec with a step size of 0.1 μsec) 
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 pw[1]=enter value obtained from first, crude calibration 

The new, more accurate value of pw90 obtained from the second calibration was used 

for all experiments involving that particular sample with the observable nucleus being 

19F of tfmp.  In our experience (demonstrated stability of pw90 for greater than 28 

months), there is no need for frequent recalibration when one is investigating similar 

systems in the same solvent.  If, however, a T2 spin-echo experiment were to be run 

on a significantly different molecular species or in a different solvent, or on a 

different nucleus, then checking of a pw90 would be strongly recommended. 

 
2.6.3 Setting up the 19F spin-lattice (longitudinal) relaxation, T1, experiment 

 The spin-lattice or “longitudinal” relaxation time, T1, is the characteristic first-

order relaxation time constant for the spin system (and hence net magnetization 

vector) to re-establish its Boltzmann equilibrium distribution with the external 

magnetic field, Bo (along z), after spin manipulations have taken it to some non-

equilibrium state (vide supra).10  It is crucial to know this value prior to running the 

majority of pulse sequenced experiments since a relaxation delay on the order of 5xT1 

is required in order to have a well-defined system prior to sequence initiation (for 

optimally valid results to be obtained). In order to set up and acquire a 19F T1 

determination experiment, a 1-D 19F NMR spectrum and the pw90 for the sample of 

interest must first be obtained as described above. To load the T1 inversion-recovery 

experiment, the “Liquids” tab was opened in the “Protocol” window, then the “Std 1-

D” button was chosen and “T1_MEASURE” was selected. The standard parameter 

set is commonly setup to acquire using the default 1H nucleus parameters, therefore 
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these values must be changed in order to measure T1 using 19F (or any other nucleus) 

as the observe nucleus. The parameters which will be listed here apply to most of the 

samples used in this work, but some parameters apply specifically only to the 

[(NH3)5RuIItfmp]Cl2 complex in D2O at a concentration of 5.00 mM. These include 

the relaxation delay, the pw90, the first pulse, the observe pulse, and all parameters 

associated with the array of delays between pulses.  

The observe nucleus is set to be the 19F nucleus by opening the “Channels” sub-

tab located on the left side of the parameter panel window under the “Acquire” tab. 

The following values are then entered in manually as shown in Figure 2.15:  nucleus 

= F19, offset = 12349.5 Hz, and pw90 = 9.70 μsec at a power of 57 dB.  

 

 

Figure 2.15 The setup of the “Channels” sub-tab under the “Acquire” tab in the 

parameter panel window showing the correct parameters for the 19F T1 inversion-

recovery determination.  

 

The general T1 inversion-recovery sequence parameters to be adjusted next 

are located under the “Acquisition” sub-tab on the left side of the parameter panel 
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window under the “Acquire” tab. The following values were entered in manually as 

shown in Figure 2.16: spectral width = 18939.4 Hz (which is equivalent to a spectral 

width of -80.2 ppm to -39.9 ppm), acquisition time = 1.730 sec, complex points = 

32768, number of scans = 4, number of steady state scans = 0, block size = 4, 

relaxation delay (which should be at least 5xT1) = 20 sec, first pulse (which is 

equivalent to a precise 180º pulse) = 19.4 μsec, observe pulse (which is equivalent to 

a precise 90º pulse) = 9.7 μsec, and the receiver gain = 40.   

 

 

Figure 2.16 The setup of the “Acquisition” sub-tab under the “Acquire” tab in the 

parameter panel window displaying the correct parameters for the 19F T1 inversion-

recovery specific to the [(NH3)5RuIItfmp]Cl2 complex in D2O at a concentration of    

5.00 mM. 

 

 After establishing these programmed instructions, the “Defaults” sub-tab was 

then opened (located on the left side of the parameter panel window under the 

“Acquire” tab), and the spectral width was set to -80.2 ppm to -39.9 ppm.  The array 

of delays between pulses was then setup by selecting the “Arrays” button at the top of 
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the parameter panel window. The array pop-up window (as shown in Figure 2.17) 

was then set up with the array size set equal to 12 starting at 0.06 seconds and ending 

at 15 seconds (with an exponential evolution delay incrementation applied).  

 

 

Figure 2.17 The setup of the “Array Parameter” window corresponding to the 19F 

T1 inversion-recovery experiment on the [(NH3)5RuIItfmp]Cl2 complex in D2O at a 

concentration of 5.00 mM. 

 

Once all of the parameters for a given experiment have been entered, it is 

important to verify the programming by checking the pulse sequence as a visual 

display (since it will indicate currently set parameter values). This is done by 

selecting the grey box labeled as “Sequence”. The T1 inversion-recovery pulse 
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sequence established according to the input in Figures 2.15 to 2.17 appears on the 

screen as shown in Figure 2.18, with key pulse widths and delay times placed 

appropriately. 

 

 

Figure 2.18 The 19F T1 inversion-recovery pulse sequence displaying parameters 

associated with the [(NH3)5RuIItfmp]Cl2 complex in D2O at a concentration of       

5.00 mM. 

 

After checking the pulse sequence for correctness, the 19F T1 inversion-

recovery experimental acquisition was started by selecting the green “Acquire” button 

at the top of the parameter panel window.  Once the experiment had completed, the 

spectral intensity vs. evolution time data were then analyzed under the “Process” tab 

by selecting the green box labeled “Auto Process”.  

To improve the sensitivity of the T1 sequence (and therefore the S/N), it is 

very common to apply “weighting functions” in the form of a small amount of line-

broadening (exponential multiplication of the FID) to the spectrum in order to extract 

a more accurate value for T1 from a “noisy” experiment. The amount of line-

broadening applied to the sample should be no larger than the experimental line-width 
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of the peak under investigation, and this type of weighting function is known as a 

matched filter.31,32  If the applied line-broadening is larger than the actual line-width 

of the peak, then the sensitivity of the experiment actually degrades and the T1 

analysis leads to invalid relaxation data (T1 values which are “shorter” than the real 

decay times and which would correspond to larger than true, natural line-widths).  

The optimum amount of matched-filter line-broadening to be applied to different 

samples will vary and must be chosen according to a 1-D spectrum obtained using 

little or no line-broadening in processing. To apply the matched-filter line-broadening 

to the T1 data, the “Basic” sub-tab is opened (which is located on the left side of the 

parameter panel window under the “Process” tab), and then the box next to 

“linebroaden” was checked and the amount of line-broadening desired was entered in 

units of Hz (corresponding to the peak of interest). Optimum values in our 

experiments typically usually ranged between 1 Hz and 5 Hz.  

The best-fit T1 relaxation values corresponding to each peak (RuII or RuIII) in 

the spectrum from the 19F nuclei of the tfmp ligand were obtained by opening the “T1 

Analysis” sub-tab located on the left side of the parameter panel window under the 

“Process” tab. Then the grey box labeled “Display Last Spectrum” was selected. At 

this point the final spectrum was phased and adjusted as necessary for good display. 

Then the grey button labeled “Do T1 Analysis” was selected, which causes the fitted 

T1 values for all peaks visible in the spectrum to be listed. To illustrate all of the T1 

curves which were analyzed, the button labeled “Display All Fits” was selected. All 

T1 values and the errors associated with these values were displayed on the right side 
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of the parameter panel window. If only one particular curve was sought to be 

displayed instead of all of the T1 curves, the number of the desired peak was entered 

in the “Display Selected Fits” box and “enter” was pressed. An example 19F T1 

inversion-recovery decay curve corresponding to the [(NH3)5RuIItfmp]Cl2 complex in 

D2O at 5.00 mM (using the parameters as stated here) is shown in Figure 2.19. 

 

Figure 2.19 An example of the 19F T1 inversion-recovery curve corresponding to 

the spin-lattice relaxation of the [(NH3)5RuIItfmp]Cl2 complex in D2O at a 

concentration of 5.00 mM using the parameters stated. 

 
 
2.6.4  Setting up the 19F T2 spin-echo experiment 

 The transverse relaxation time, T2, is the fundamental relaxation time constant 

related to the lifetime of the net magnetization (isochromat coherence time) in the 

x,y-plane after a well calibrated pw90 has brought it perpendicular to the external 

magnetic field, Bo, along z. Another explanation for this defines T2 as the time 

constant at which the intensity of the “beat signal” due to spin precession in the x,y- 

plane as referenced to the synthesized observe frequency decays to zero (vide 

supra).10 As such, it can be readily seen visually as the decay “envelope” containing 
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the interferogram pattern of the free induction decay (FID) which, upon Fourier 

transformation, yields the frequency spectrum.  To set up and run the 19F T2 spin-echo 

experiment, a 19F NMR spectrum, a pw90, and a T1 value for the sample of interest 

must first be obtained as described above.  

To bring up the standard parameter set for the T2 spin-echo pulse sequence, 

the “Liquids” tab is opened in the “Protocol” window located on the left side of the 

screen. Then the “Std 1-D” button is opened and “T2_MEASURE” is selected. The 

standard parameter set contains the defaults to acquire using 1H as the observe 

nucleus, therefore various parameters must be changed so as to measure T2 for 19F. 

Most of the parameters which will be listed here apply to most of the samples used in 

this work, but some specific parameters have been refined to apply to the 

[(NH3)5RuIItfmp]Cl2 complex in D2O at a solute concentration of 5.00 mM and these 

will be specified. The key parameters which must be adjusted, and one specific for 

each sample, are the relaxation delay (D1), the pw90, the observe pulse length, and all 

parameters associated with the array of spin system evolution delays between pulses.  

The observe nucleus is changed to 19F by opening the “Acquire” tab and 

selecting the “Channels” sub-tab located on the left side of the parameter panel 

window. The parameters for 19F were entered analogously to the 19F T1 inversion-

recovery sequence as already described.  

The specific parameters for the 19F T2 spin-echo pulse sequence were adjusted 

by opening “Acquisition” sub-tab, and the following values were entered in manually: 

spectral width = 18939.4 Hz, acquisition time = 1.730 sec, complex points = 32768, 
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number of scans = 4, number of steady state scans = 0, block size = 4, relaxation 

delay = 10 sec, observable pulse (which is equivalent to a 90º pulse) = 9.7 μsec, and 

the receiver gain = 40 or higher.  

  After this, the “Defaults” sub-tab was opened (located on the left side of the 

parameter panel window under the “Acquire” tab). The spectral width field was 

inspected to verify that it was equal to -80.2 ppm to -39.9 ppm.  The array describing 

the series of spin evolution delays between pulses was then setup by selecting the 

“Arrays” button located at the top of the parameter panel window. A window 

appeared as in the T1 experiment, and in this window the number of array values was 

generally set to equal to 10, starting at 0.025 seconds and ending at 13 seconds, in this 

case using linear increment spacing.  

The correctness of the entered parameters was again verified by checking the 

displayed pulse sequence. This was done by selecting the grey box labeled 

“Sequence”. The T2 spin-echo pulse sequence appeared on the screen showing the 

current parameters as in Figure 2.20 below. 
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Figure 2.20 The 19F T2 spin-echo pulse sequence displaying the parameters 

associated with the [(NH3)5RuIItfmp]Cl2 complex in D2O at a concentration of         

5.00 mM. 

 

 After verifying the pulse sequence, the T2 spin-echo acquisition was initiated 

by selecting the green “Acquire” button at the top of the parameter panel window. 

Once the experiment had completed, the spectra were analyzed by opening the 

“Process” tab and selecting the green box labeled “Auto Process”. As in the T1 

inversion-recovery experiment, line-broadening may be applied to help with the 

signal-to-noise ratio as long as one adheres to the same validity constraints (vide 

supra).  

The T2 value of each peak in a multi-peak spectrum can be obtained by 

opening the “T2 Analysis” sub-tab (located on the left side of the parameter panel 

window under the “Process” tab).  Once again, the grey field “Display Last 

Spectrum” is selected. During this time the spectrum should be phased, or adjusted in 

any way necessary.  Then the grey button labeled “Do T2 Analysis” is selected and 

the T2 relaxation values (and associated errors) will be displayed for all peaks present 

in the spectrum on the right side of the parameter panel window. The “Display All 
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Fits” button is then selected to display the all of the T2 decay curves.  If only one 

curve is sought for display, then instead of all of the T2 curves being selected by 

default, the number of the desired peak for decay curve display should be entered in 

the “Display Selected Fits” box (followed by “enter”). The T2 decay curve thus 

obtained for the [(NH3)5RuIItfmp]Cl2 complex in D2O at 5.00 mM is shown in Figure 

2.21. 

 

Figure 2.21 The 19F T2 spin-echo decay curve of the [(NH3)5RuIItfmp]Cl2 complex 

in D2O at a concentration of 5.00 mM as obtained using the parameters stated.  

 

2.6.5 NMR probe/sample temperature calibration 

The variable temperature, VT, control system of the NMR spectrometer 

adjusts and stabilizes the temperature of the system (probe and sample) at a constant, 

user defined value. The temperature readout comes from a factory calibrated 

thermocouple located in the probe, but, importantly, not in the sample itself. 

Therefore, a temperature differential can exist between the two, and in order to obtain 

an accurate reading of the temperature in the sample, a careful VT calibration curve 

must be constructed (this procedure is critically-important if valid kinetic activational 
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parameters are to be measured).  The sample temperature in our work was calibrated 

vs. the thermocouple “readout temperature” using a standard 100% methanol sample 

(Varian, CAS 968120-80, Lot 8D-265-P) over a range of -10°C to 55°C.  The two 

peaks which appear in the proton spectrum of the calibration standard represent the    

-OH peak located at ~4.5 ppm and the –CH3 peak located at ~3.3 ppm, as shown in 

Figure 2.22.8   

 

Figure 2.22 The 1H NMR spectrum of the standard 100% methanol sample 

displaying the chemical shift difference between the two peaks, Δδ, arising from the   

-OH and -CH3 functional groups of the methanol.8 

 

Using the distance between these two peaks, in units of ppm, the actual 

temperature of the system may be calculated using the published interpolation 

formula, 

                                          36.5421.85403.0T(K) 2                             (2-17)33 



 
 

126 

where   is the distance between the two peaks in ppm, and T is the actual sample 

temperature in Kelvins. Equation (2-17) may be transformed to calculate the 

temperature in Celsius as shown below, 

     29.5387.23130.00C)T( 2                           (2-18)34 

where again   is the distance in ppm between the two peaks.  After one compiles a 

number of data points for   at varying readout temperatures into a table (being very 

careful to allow adequate equilibration time, vide infra), a graph may be constructed 

of the “true” sample temperature (TSample) vs. the instrumental “readout” temperature 

(TReadout) using either of the interpolation formulae shown above (equation (2-17) was 

used to calculate values in Table 2.5 and then Figure 2.23). 

 If the VT control had no flaws, the “true” vs. “readout” temperature line 

would have a slope of one and a y-intercept of zero. In real cases, a best-fit equation 

of the line allows a very accurate sample temperature for any for any given readout 

temperature to be obtained over the calibrated range. The VT calibration curve 

created for the 500 MHz Varian NMR spectrometer and “ONE” probe used in the 

work is shown in Figure 2.23 (see also Table 2.5). 
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Table 2.5 Instrumental readout temperatures and the actual sample temperatures 

calculated using equation (2-17) from the VT calibration plot, as seen in Figure 2.23, 

and selected 95% confidence intervals (based on 5 replicate measurements). 

°C K °C K
-10.00 263.15 -11.92 261.23 --
0.00 273.15 -1.90 271.25 --
10.00 283.15 9.34 282.49 --
15.00 288.15 14.75 287.90 0.06
20.00 293.15 20.16 293.31 0.12
25.00 298.15 25.40 298.55 0.17
30.00 303.15 31.82 304.97 0.11
35.00 308.15 37.30 310.45 0.10
40.00 313.15 42.11 315.26 0.05
50.00 323.15 51.48 324.63 0.15
55.00 328.15 56.05 329.20 0.17

Instrument Readout 
Temperature

Calculated 
Temperature, Avg

95% 
Confidence 

Interval
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Figure 2.23 The temperature calibration curve obtained over the range of 263.15 K 

(-10°C) to 328.15 K (55°C) using the standard 100% methanol sample provided by 

Varian and applying equation (2-17) to the experimental   values to generate 

“TSample”.  The 95% confidence intervals shown for selected data points are taken 

from the entire data set listed in Table 2.5.  
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The thermocouple calibration data listed in Table 2.5 are plotted in Figure 

2.23.  The rough regression line which can be used to estimate the actual temperature 

of a given sample in the NMR TReadout (in the linear approximation) was found to be, 

62.18T )06.1(T ReadoutActual                                      (2-19) 

where TActual is now much closer to the temperature of the sample (in Kelvins). A 

graph of the error at each examined TReadout of the VT control system is shown Figure 

2.24. Applying the indicated (or visually interpolated) error increment (TSample – 

TReadout) to TReadout anywhere in this calibrated range will then give the most accurate 

TSample possible based on our calibration work (interpolation being assisted by 

referencing the dotted line in the figure). 
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Figure 2.24 The instrument readout temperature error as the increment (TSample – 

TReadout) over the temperature range 263.15 K (-10°C) to 328.15 K (55°C). From this 

graph, TSample at any given TReadout can be obtained by adding the interpolated error 

increment value to TReadout (or more approximately by using equation (2-19)). 
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In our subsequent work on temperature dependent kinetics difficulties were 

encountered relating to the temperature equilibration times of the system. It was 

discovered that even though the readout temperature had stabilized at some constant 

temperature, not all of the components of the system, most importantly the sample, 

were fully equilibrated at the “true” temperature which would be inferred from the 

readout T.  We found that very careful temperature calibration of the instrument as 

well as equally careful (and slow) thermal equilibration of the probe and sample were 

crucial to the collection of valid, reproducible activation parameter data. An 

equilibration time of about 15 minutes was initially recommended by Varian as the 

wait period between experiments to be done at different sample temperatures. This 

value was found to be too short leading to irreproducible results.  Additionally, we 

found that if the probe and sample are not allowed to fully equilibrate after a change 

in temperature, it becomes impossible to shim the magnetic field correctly and thus 

accurate line-widths are unobtainable (due to temperature gradients within the sample 

and probe leading to an additional source of inhomogeneous line-broadening).  After 

extensive testing, the minimum equilibration time was found to be 25 minutes 

between experiments after any changes in temperature (after even a very modest 3ºC 

change).  It is important to note, however, that D2O is notoriously slow to equilibrate, 

so the 25 minute equilibration time should not be taken as a global value; organic 

solvents may behave more according to the Varian recommendation (but caution is 

advised). 
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2.7  Experimental Methodology used in Measuring Kinetic Salt Effects 

 In all the NMR kinetic experiments done here all simple salts, sodium 

dicarboxylic salts, and metallic hexacyanide salts were added as concentrated (small 

volume) salt solutions directly to the NMR tube containing the verified equimolar 

mixture of [(NH3)5RuIItfmp]Cl2 and [(NH3)5RuIIItfmp]Cl3 reactants in 2.00 mL D2O. 

The 50:50 RuII:RuIII mixture was verified by noting the 19F peak heights on the 

[(NH3)5RuIItfmp]2+ and [(NH3)5RuIIItfmp]3+ resonances at -29547 Hz (-59 ppm) and   

-32010 Hz (-64 ppm), respectively. The stock salt solutions were prepared as 

described previously, and the volume of the added salt solution was calculated based 

on the desired total GP value. The salt solutions were added to the reactant solution 

using p-2, p-20, p-100, and p-200 micropipets. The total volume added to the 2.00 

mL reactant solution was never larger than 8% of the volume of the reactant solution. 

The smallest volume added was never smaller than 0.08 μL.  

In a typical experiment, the [(NH3)5RuIItfmp]Cl2  complex was added to an 8 

inch, 5 mm NMR tube so that a concentration in the range between 0.10 mM and    

5.00 mM (for T2 spin-echo determination) was established in 2.00 mL of 99.9% D2O 

(Sigma Aldrich, CAS 7789-20-0). After proper temperature equilibration was 

attained, a well-shimmed 19F NMR spectrum was acquired at the default running 

temperature of 26°C (vide supra). For the lower-concentration range work, T2 spin-

echo sequence was then loaded with the proper parameters as previously described 

for 19F T2 relaxation measurement on the [(NH3)5RuIItfmp]2+ species in D2O. A new 

solution was then prepared with equimolar amounts of [(NH3)5RuIItfmp]Cl2 and 
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[(NH3)5RuIIItfmp]Cl3 and the T2 was then re-measured on the exchanging mixture. 

Upon completion a specified amount of the given salt solution was then carefully 

added to the reactant solution (vide supra) and the solution was mixed in the NMR 

tube by inverting the tube a minimum of 20 times to ensure that the concentration of 

salt was uniform throughout the sample. After thermal equilibration and careful 

shimming (very important at higher ionic strengths), the T2 of the exchanging 

solution was measured again. This procedure was repeated until all salt dependent 

rate data were collected. We found that the reactant solutions used here had an 

operational lifetime of 6 hours before measured rates would begin to drift due to 

sample degradation.  

For exchanging mixtures with reactants concentrations less than 5.00 mM, the 

simple line-broadening method could not be used because the change in line-width 

due to ET exchange was too small to measure, but rates obtained via line-broadening 

checked well against T2 rates collected at 5.00 mM as will be discussed further on. 

This experiment was performed using simple salts (KF, NaCl, and KBr), 

dicarboxylate salts (Na2muc, Na2tere, Na2adip, and Na2(1,4-dcch)), and hexacyano 

salts (K4FeII(CN)6, K4OsII(CN)6, and K4RuIICN)6). This procedure was also repeated 

for the salt Na2muc using H2O (running unlocked) instead of D2O.  

 
2.8   Sample Degassing 

In general we found that degassing was not necessary in order to arrive at 

valid and reproducible rates. It was important however to carefully check into this 

since air-saturated D2O contains about 5x10-4 M paramagnetic O2 gas, and this can, in 
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some cases,25,35 lead to shortened T1 and T2 values and thus “paramagnetic 

broadening” which can invalidate chemical exchange rate measurements.  

 
2.8.1 Degassing with argon 

 O2 gas can be readily removed from a sample by a simply bubbling high-

purity argon (or nitrogen) gas through the solution. We used scientific grade (grade 6) 

ultra high purity, UHP, argon gas (Airgas, CAS 7440-37-1, UN1006). All sample 

tubes which were degassed were placed in a 125 mL erlenmeyer flask for stability 

(with a layer of kimwipes on the bottom in order to protect the NMR tube from 

damage).  A 12 inch, 18 gauge stainless steel needle was then attached to the gas line 

and placed well down into the solution in the NMR tube.  The gas line was then 

turned on slowly, using a gas manifold to regulate the rate at which argon gas bubbles 

were allowed to come up through the solution (a rate of 1-3 bubbles per second was 

found to be ideal). This process was monitored for 20 minutes. The gas was then 

turned off slowly, and the needle was removed quickly and carefully followed by 

rapid placement of the tube cap on the Ar filled tube.  As an added measure, a band of 

parafilm was then wrapped/stretched around the cap to prevent any O2 gas from 

entering. If one seals the NMR tube using an oxygen/butane torch the degassed 

sample will not be exposed to air indefinitely.   

 
2.8.2 Degassing by vacuum 

 The alternative, and generally superior, method of degassing is to employ the 

“freeze-pump-thaw” cycle wherein the sample is chilled to freezing, the headspace 
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gases are removed by brief exposure to vacuum, and the solution is thawed (vacuum 

off) so that dissolved gases now boil into the headspace.  While this works well for 

organic solvents (after 2-3 cycles), it is impractical with D2O since the tubes tend to 

break upon freezing. We were able to implement a modified version of this approach, 

however, by simply skipping the freezing step and keeping the evacuation step to a 

period of 4 seconds initially (the vacuum being delivered by inserting a sterile 5/8 

inch, 25 gauge aluminum needle (Monoject 200, part # 8881-200466, Lot # 163791) 

through enough of a 5 mm white rubber septa (Aldrich, Catalog # Z10070-6) so that a 

vacuum can be applied).  By gating the vacuum off quickly, vigorous solvent boiling 

was avoided and only the dissolved gases bubble out of the solution during 

equilibration. In order to achieve this level of control, the vacuum line from the 

manifold was attached to a 250 mL vacuum flask with a stop-cock, with the second 

line out of the vacuum flask being attached to the needle inserted into the headspace 

of the 8 inch, 5 mm NMR tube containing the reactant solution.  The vacuum initially 

(first cycle) was turned on for 4 seconds using the gas line stop cock to control the 

vacuum. Bubbles containing “air” formed in the solution during this time. The 

solution was allowed to stand and outgas for 45 seconds, and then the headspace air 

was again evacuated another 4 seconds. This process was repeated until no air 

bubbles formed in the reactant solution upon standing after vacuum exposure. The 

vacuum was then applied to the sample for a final 25 seconds and the sample was 

allowed to stand for 1 minute.  This process was repeated about 10 times over a 
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period of 20 minutes. Upon completion the needle was removed from the septum and 

the entire septum cap was quickly covered with multiple layers of stretched parafilm. 

 
2.8.3 Saturation with oxygen 

 As part of our investigations into catalysis by muconate in particular a few 

such exchanging samples were saturated with O2 by bubbling industrial grade 

compressed oxygen (Praxair, CAS #7782-447, UN1072), again using an 8 inch, 5 mm 

NMR tube containing the reactant solution and was placed in a 125 mL erlenmeyer 

flask with delicate kimwipes to prevent tube damage.  A 12 inch, 18 gauge stainless 

steel needle was used to slowly bubble the O2 gas up through the solution at a rate of 

1-3 bubbles per second.  This process was continued for 20 minutes and the gas was 

turned off, the needle was removed, the tube was capped with a polypropylene NMR 

tube cap, and finally wrapped with parafilm to further impede any gas exchange.  

 
2.9   Methods for Assessing the Effects of Degassing on the  19F T2 Spin-Echo  

ET Kinetics Measured with added Sodium Muconate 

The T2 spin-echo sequence was executed as described previously on the 

[(NH3)5RuIItfmp]2+ species by itself. A new solution was then prepared with 

equimolar amounts of [(NH3)5RuIItfmp]Cl2 and [(NH3)5RuIIItfmp]Cl3 at a 

concentration of 0.10 mM in D2O. A volume of 1.00 mL of this solution was inserted 

into an NMR tube and the T2 value corresponding to the RuII peak was obtained as 

described previously.  A 2.00 mL 0.125 M solution of sodium muconate in D2O was 

then prepared and added to the reactant solution #1 so that the concentration of 
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sodium muconate in the reactant solution was 0.004 M (well up into the catalytic 

region in Figure 2.5) and the T2 value was obtained corresponding to the RuII peak on 

this solution.  A separate 1.00 mL solution was inserted into an NMR tube using the 

same solution as was prepared for solution #1.  A T2 value corresponding to the RuII 

peak was obtained for this new solution, solution #2, which contained reactants only.  

During this time, solution #1 was vacuum degassed and a T2 value corresponding to 

RuII peak was obtained immediately after completion of degassing. During this time, 

solution #2 was vacuum degassed and a T2 value corresponding to RuII peak was 

obtained immediately after completion of degassing. Next, solution #1 was argon 

degassed and a T2 value corresponding to RuII peak was obtained immediately after 

completion of degassing. After, solution #2 was argon degassed and a T2 value 

corresponding to RuII peak was obtained immediately after completion of degassing. 

Lastly, solution #1 was saturated with oxygen and a T2 value corresponding to RuII 

peak was obtained immediately after completion of saturation. Solution #2 was 

saturated with oxygen as well and a T2 value corresponding to RuII peak was obtained 

immediately after completion of saturation. It should be noted that the time of this 

experiment was well below the known aging time of our reactant solutions (about 6 

hours at room temperature).  
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2.10 NMR Temperature Dependent Kinetic Experiments 

 
2.10.1  Line-broadening measurements 

In a typical experiment, the [(NH3)5RuIItfmp]Cl2 complex was added at a 

specified concentration to an NMR tube, and a well shimmed 19F 1-D spectrum was 

obtained at 26°C.  The line-width of the 19F peak of the [(NH3)5RuIItfmp]2+ complex 

was then measured and recorded.  An equimolar amount of the [(NH3)5RuIIItfmp]Cl3 

complex was then added (as a solid) such that a 50:50 mixture of [(NH3)5RuIItfmp]Cl2 

and [(NH3)5RuIIItfmp]Cl3 was created. A new 1-D 19F spectrum was then recorded 

and the new (exchanging) line-widths and peak positions corresponding to the 

[(NH3)5RuIItfmp]2+ and [(NH3)5RuIIItfmp]3+ complexes were measured and recorded. 

A mixture of dry ice and chilled isopropanol (Sigma-Aldrich, CAS 67-63-0) was then 

added to the VT-dewar attached to the NMR probe assembly and dry air was driven 

through so as to allow precise temperature control of the probe and sample.  For low 

temperature work, the temperature of the sample was lowered to 10°C (or sometimes 

4°C) and allowed to equilibrate for a minimum of thirty-five minutes prior to 

initiating the temperature ramp to come.  A 1-D 19F spectrum was then acquired at 

10°C (or 4°C), and the line-width of the [(NH3)5RuIItfmp]2+ peak was measured and 

recorded. Spectra were then obtained at the following temperatures in this specific 

order: 26°C, 4°C, 7°C, 10°C, 15°C, 20°C, 26°C, 31°C, 37°C, (and 42°C, 48°C, and 

53°C in some cases), and back to 26°C. The equilibration times were a minimum of 

twenty-five minutes for each change in temperature excluding the initial change in 

temperature which equilibrated for a minimum of thirty-five minutes due to the large 
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change in temperature. Solutions containing equilmolar concentrations of 

[(NH3)5RuIItfmp]Cl2 and [(NH3)5RuIIItfmp]Cl3 in D2O were studied in this manner at 

concentrations of 5.00 mM, 5.30 mM, 5.50 mM, 6.50 mM, and 8.00 mM.  

 
2.10.2 19F T2 spin-echo measurements 

 These experiments were done analogously to the 19F NMR line-broadening 

experiments but on samples at the low-end of the reactants concentration range where 

line-broadening is too small to allow for accurate rate measurement (any 

concentration below 5.00 mM).  The 19F T2 spin-echo sequence was used to obtain 

rates at varying temperatures in the same manner as described above using a smaller 

set of temperatures.  Temperature data were obtained in this specific order: 26°C, 

10°C, 15°C, 20°C, 30°C, and 26°C.  The concentrations of reactants studied using 

this technique were 3.00 mM, 1.00 mM, 0.50 mM, and 0.10 mM. Fewer temperatures 

were used here than in the line-broadening case because acquisition of precise T2 

values required longer experiment times. The final determination at 26°C was used as 

a necessary consistency check throughout the entire experiment (significant change 

compared to the initial determination would be a sign of sample decomposition).  The 

upper end of the temperature range was truncated in the T2 work because we found 

that Erying plots were of sufficiently high quality over this smaller range.   

 Temperature dependent kinetic experiments were also completed with varying 

concentrations of added salts (KF, KBr, Na2muc, Na2adip, K4FeII(CN)6, K4RuII(CN)6, 

and K4OsII(CN)6) with a concentration of reactants being 0.10 mM (to match the 

conditions of the previous stopped-flow work6,9).   
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2.11 Validation of the 19F T2 Spin-Echo Experiment   

The T2 spin-echo NMR experiment is a common technique used in a variety 

of ways including MRI17 and allows, in our case, for rates of ET (or other) chemical 

exchange processes to be measured (vide supra).  Implementation of the technique in 

this work first required method validation in order to establish full confidence in the 

accuracy and precision of it for measuring our ET self-exchange rates. The 19F 

nucleus has not been previously used in this lab for measuring T2 relaxation rates, 

therefore a variety of samples and tests were conducted in the validation of the spin-

echo pulse sequence over a broad range of conditions.  

The T2 spin-echo sequence itself was first validated using the 1H nucleus as 

the observe nucleus in order to ensure the pulse sequence and data analysis routines 

were functioning properly. The Autotest sample (Varian, Lot # 9E-252-G), which 

consists of 1% H2O, 99.8% D2O, 0.1% 13C-Methanol, 0.1% 15N-Acetonitrile, and 

0.30 mg/mL GdCl, was used as the experimental standard. Our test value for T2 

relaxation of the CH3 group on the methanol in the Autotest sample is presented in 

Table 2.6 along with the 0.0580 sec reference value given by the research NMR 

division at Agilent (formerly Varian) at the standard sample temperature of 299 K 

(26ºC). Over fifty T2 measurements on the Autotest sample were taken to compare 

with the Varian number. The T2 measured with our instrument was found to be 

0.0580 ± 0.0005 sec at 299 K, in perfect agreement with the accepted value.   
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Table 2.6 The T2 value of the proton of the methyl group on the methanol in the 

Autotest sample.  

Sample T2 
(a) (sec) T2 

(b) (sec)

Autotest Sample 0.0580 ± 0.0005 0.0580  

(a) Obtained experimentally in this lab. (b) The reference T2 value supplied by the NMR research 

division at Agilent. 

 

 The next step in our method validation was to apply the T2 spin-echo 

sequence to a molecule containing the 19F nucleus. The molecule used to initially 

validate the method was the free-ligand 3-trifloromethylpyridine (tfmp) at a 

concentration of 5.00 mM in 2.00 mL of D2O.  Tfmp was chosen because it would 

later be present on both of the redox reactants shown in reaction (2-2) where changes 

in the T2 values would then be used to measure the rate of ET self-exchange.  Over a 

hundred T2 relaxation measurements of this sample were obtained and the T2 

relaxation value of the fluorine substituent on the free ligand was determined to be 

2.304 ± 0.003 sec at a temperature of 299 K (26°C) as shown previously in Table 2.3.  

As part of our validation and control program, we undertook investigations of 

dissolved oxygen, shim settings, the pre-pulse relaxation delay time, and temperature 

effects on the measured T2 value of the free ligand. The T2 value was not affected by 

degassing the sample with Ar gas, which suggested that oxygen paramagnetic 

relaxation effects would most likely be insignificant when using the 19F resonance 

line to measure ET rates, but further testing of this question was also carried out with 

respect to the complexes themselves and in the context of the “muconate effect” 

(these details will be described later. When examining how the shim settings (which 
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ensure the best-possible homogeneity of the magnetic field around the sample) affect 

the T2 relaxation value, the magnetic field was intentionally made inhomogeneous by 

first establishing the best shims and then essentially degrading the condition by 

changing the z1 through z4 shims well away from the optimum setting.  This was 

done in order to assess the degree that imperfect shims would affect the measured 

line-shape, but presumably not the T2 relaxation value (on account of the cancellation 

of inhomogeneous broadening built into the T2 CPMG sequence). We observed that 

the T2 relaxation value was not affected to any significant degree by homogeneity of 

the magnetic field, even in cases where the measured line-width went from an 

optimized value 3 Hz to 6 Hz.  

The relaxation delay time, D1, was then distorted such that it was no longer 

5xT1.  Shortening D1 from 10 seconds down to 5 seconds (D1 << 5xT1) did indeed 

result in “invalid” T2 relaxation values due to a “smooth” decay curve no longer being 

present for purposes of fitting and analysis. It was also established that as the delay 

time was increased to a value much longer than 5xT1 (on the order of ~9xT1) the 

observed T2 value diverged from the optimized value.  

Temperature effects were investigated by both raising and lowering the 

temperature of the sample and then measuring the T2 value. The T2 was found to 

change with temperature as does the line-width, thus these free-ligand results suggest 

temperature dependent experiments can be conducted with high accuracy (using the 

T2 method for measuring rates in order to obtain the necessary activation parameters, 

vide infra).  
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 The T2 relaxation values of both the RuII and RuIII reactant species in reaction 

(2-2) alone and in conditions of ET self-exchange with each other were then 

measured in a similar manner as the tfmp sample (now adjusting the necessary 

experimental parameters in order to obtain valid T2 values, vide infra). The rates 

obtained using the T2 spin-echo experiment were then compared to rates obtained by 

line-broadening utilizing equation (2-9).  In order to ensure a meaningful comparison, 

the concentrations of the reactants had to be large enough in order create measurable 

line-width increases under exchange conditions. We found that this required a 

minimum reactants concentration of 5.00 mM. Over fifty measurements of each 

reactant alone, [(NH3)5RuIItfmp]2+ and [(NH3)5RuIIItfmp]3+, in D2O were obtained and 

the 19F T2 relaxation values of the trifluoromethyl substituent of the RuII and RuIII 

redox species alone were found to be 1.375 ± 0.006 sec and 0.101 ± 0.003 sec, 

respectively, at a temperature of 299 K (as reported previously in Table 2.3). The T2 

for the [(NH3)5RuIItfmp]2+ complex in exchange with a reactants concentration of 

5.00 mM was found to be 0.0181 ± 0.0002.  The [(NH3)5RuIIItfmp]3+ was not used to 

measure rates due to the paramagnetic nature of the RuIII complex resulting in T2 

relaxation values which are too fast to measure at high concentrations of both 

reactants and added salts.  

The line-widths of the same resonances measured by T2 were also obtained in 

order to compare the exchange rates calculated from the two NMR based methods. 

The logarithm of the observed rate of ET obtained using the T2 values, employing 

equation (2-16), was found to be 4.04 ± 0.05 for equimolar reactants in reaction (2-2) 
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with concentrations of 5.00 mM at 299 K. The logarithm of the observed rate of ET 

obtained using line-widths and employing equation (2-9) was found to be 4.12 ± 0.05 

(see Table 2.7 below). While not identical, the kex values are nearly within error of 

each other and thus the two approaches are clearly convergent under these conditions.  

The calculated rate using T2 was found to be consistently “smaller” at a reactants 

concentration of 5.00 mM than when using the line-broadening technique due to 

systematic errors that lie in line-width measurements and are not present in the T2 

measurement. This problem stems from homogenous and inhomogenous broadening 

(in the absence of chemical exchange) which does not affect measured T2 values 

directly (vide supra). Therefore, the T2 spin-echo method is a more accurate, precise, 

and broadly-applicable method for measuring exchange rates and offers the major 

advantage that when kex is slow enough (at reactants concentrations below about    

5.00 mM in this work), then kinetic effects on the observed Δν1/2 will become 

unmeasurably small whereas changes in T2 are still able to yield valid exchange rates. 

On this basis, we proceeded to then “push” the T2 method to both the slow and fast 

exchange rate regions so as to accurately determine kex by NMR with reactant 

concentrations in the stopped-flow concentration region and all the way into the very 

fast exchange region which occurs in the presence of highly-active ET catalysts like 

FeII(CN)6
-4.  

When measuring the T2 values of quickly exchanging samples (large reactants 

concentrations or strongly catalytic added salts), the time “tau” (as labeled in the 

Varian T2 pulse sequence illustrated in Figure 2.20) was adjusted to a much shorter 
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time.  In order to reassign this value, one must shorten the “Tau” value and array the 

“BigTau” in such a way that it captures the observed T2 relaxation curve. This is done 

by typing the following in the command line: 

BigTau array:(“number of points in array”, “starting value of array (sec)”,  

“ending value of array (sec)”, tau value (sec)) 

DO NOT SET A VALUE FOR TAU SHORTER THAN 0.0005 sec OR YOU WILL 

DAMANGE YOUR SPECTROMETER. DO NOT RUN EXPERIMENTS WITH 

SMALL VALUES FOR TAU OVER AN EXTENDED AMOUNT OF TIME. IF 

THE LOCK SIGNAL OF YOUR SAMPLE BEGINS TO CHANGE STOP 

ACQUISTION AND REMOVE SAMPLE IMMEDIATELY.  THIS SHOULD NOT 

BE ATTEMPTED WITHOUT THE LABORATORY MANAGER OF THE NMR 

PRESENT AND AWARE.  

 

Table 2.7 The measured ET self-exchange rates obtained for reaction (2-2) at 

different equilmolar reactant concentrations through the T2 spin-echo method, T2, and 

the line-broadening method, Δν1/2.
a,b 

T2 Method Δν1/2 Method(b)

5.00 4.04 ± 0.05 4.12 ± 0.05
1.00 3.71 ± 0.02 N/A
0.50 3.58 ± 0.04 N/A
0.10 3.32 ± 0.05 N/A

logkexConcentration 
(mM)

 
a) [RuII] = [RuIII] in D2O at 299 K. b) See equation (2-9) 
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2.12 Reactant Concentration Effects on the Rate of ET (Self-Salting) 

Due to the well-characterized added-salt and self-salting effects measured by 

Sista, Inagaki, and Mehmood in the stopped-flow ET work,6,9,36 we undertook 

investigation of whether the effect of changing the equimolar concentration of the two 

reactants on the T2-derived ET rate constant, exk , for reaction (2-2) over the reactant 

concentration range from 0.10 mM (the same as much of the prior stopped-flow 

work) all the way up to 5.00 mM (where T2  and 1/2  derived rates converge) would 

show the same “self-salting” pattern as seen previously.  We also used ΔΔν1/2 

(linebroadening) rates from 5.00 mM to 8.00 mM reactants since kobs = 

kex[RuII][RuIII] in this region was too fast to measure by T2.  The resulting logkex vs. 

GP data are listed in Table 2.8 and illustrated in Figure 2.25. This now allows for 

comparison between our T2-based “self-salting” curve (over a large concentration 

range) against both the classically-predicted Debye-Hückel behavior11 and the 

previous body of stopped-flow data for reaction (2-1) collected in this lab6,8 (see 

chapter 1, section 1.7). The previous stopped-flow data are listed in Table 2.9 and are 

also shown in Figure 2.25 (the upper red triangles).  
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Table 2.8 Rates of reaction (2-2) at various concentrations of equimolar reactants 

showing the “self-salting” rate increase due to ionic strength of the reactants 

themselves.   

Concentration (mM) μ GP logkex

0.10 (a) 0.0009 0.0291 3.318 ± 0.051

0.50 (a) 0.0045 0.0629 3.580 ± 0.039

1.00 (a) 0.0090 0.0866 3.708 ± 0.024

3.00 (a) 0.0270 0.1410 3.934 ± 0.071

5.00 (a) 0.0450 0.1750 4.039 ± 0.052

5.00 (b) 0.0450 0.1750 4.097

5.30 (b) 0.0477 0.1793 4.100

5.50 (b) 0.0495 0.1820 4.124

6.50 (b) 0.0585 0.1948 4.176

8.00 (b) 0.0720 0.2116 4.255  
(a) Measured using the T2 spin-echo method (with 95% confidence intervals as shown). (b) Measured 

by 19F NMR line-broadening (of the Ru(II) peak) in the slow-exchange region (see Figure 2.4). 

 
 
Table 2.9 Previous rates obtained by stopped-flow at various concentrations of 

equimolar reactants showing the self-salting acceleration of reaction (2-1) and their 

respective 95% confidence intervals.6 

Concentration (mM) μ GP logkex

0.10 0.0291 0.0291 3.656 ± 0.010

0.12 0.0318 0.0318 3.667 ± 0.030

0.14 0.0343 0.0343 3.695 ± 0.060

0.20 0.0407 0.0407 3.713 ± 0.010

0.25 0.0453 0.0453 7.807 ± 0.030

0.30 0.0494 0.0494 3.835 ± 0.040

0.35 0.0531 0.0531 3.856 ± 0.040

0.40 0.0566 0.0566 3.914 ± 0.040  
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Figure 2.25  The measured logkex vs. GP behavior found for reaction (2-2) as 

measured by the T2 spin-echo method (black circles) and NMR line-broadening data 

(blue stars) with error bars representing the 95% confidence intervals. The upper line 

(red triangles) is taken from stopped-flow data of Sista6 (see reaction (2-1)) and the 

central dashed line is the theoretical rate behavior predicted from the Debye-Hückle-

Bronsted equation (see equation (1-40)).  
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Table 2.10 Self-salting slopes taken from Figure 2.25 for the various 

concentration ranges of reactants. 

Slope
Concentration Range of 

Reactants 

Stopped-flow Slope(a) 9.36 ± 0.70 0.10 mM - 0.40 mM

NMR, T2 Early Slope (b) 7.75 0.10 mM - 0.50 mM

NMR, T2 Late Slope (b) 3.58 ± 0.41 1.00 mM - 5.00 mM

NMR, Δν1/2 Slope (c) 4.46 ± 0.23 5.00 mM - 8.00 mM  
(a) Using stopped-flow data (0.10 – 0.40 mM) 6, (b) T2 (0.10 – 5.00 mM), (c) and line-broadening 

(5.00 – 8.00 mM) techniques. 

 

When compared to the rates obtained by T2, we see that all of the rates are 

significantly larger in the stopped-flow case. This is expected due to the stopped-flow 

reaction being a “pseudo” (i.e. low-driving force) self-exchange reaction while the 

reaction studied by NMR is a “true” self-exchange reaction and has zero-driving 

force. In low-driving force reactions, the offset between the potential energy surface 

minima upon going from the reactants ( AAH ) surface to the products ( BBH ) surface 

slightly lowers the activational barrier for the stopped-flow reaction, and this accounts 

for their higher rates (since the reorganizational energy, λ, is effectively equal in these 

two closely-related types of ET reactions, see chapter 1, section 4). 

 In Table 2.10 we summarize the logkex vs. GP dependencies seen in Figure 

2.25. The figure shows that the logkex vs. GP behavior measured by stopped-flow 

(hairline dotted) over the reactants concentration range of 0.10 mM to 0.40 mM 

matches fairly well with the low-concentration NMR data (dash-dot-dash line) with 

the slopes being 9.36 ± 0.70 and 7.75 by NMR (no error is stated with the low-
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concentration NMR slope due to only 2 points being used).  Interestingly, both sets of 

low concentration data show slightly steeper than theoretical behavior (note the heavy 

dashed Debye-Hückel reference line with a slope of 6.12 as produced by equation (1-

40)). Looking at the full range of NMR data, we see that there are two identifiable 

slopes with the value dropping to 3.58 ± 0.41 in the higher reactants concentration 

range of 1.00 mM to 5.00 mM (as measured by T2, dotted line). The point at which 

the equimolar reactants concentration is equal to 1.00 mM would appear to be near 

the transition region from one slope region to the other. The dependence over the 

entire range also has some resemblance to the more-obviously curved dependences 

seen upon addition of “inert” salts at some constant reactants concentration as will be 

discussed in detail in later sections. The slightly smaller slope from the low-

concentration T2 measurements (as compared to stopped-flow rates) may simply be 

due to our having only two points to fit the T2 data as well as the imperfect match to 

the stopped-flow data collection range (0.10 mM – 0.40 mM).  The “late” self-salting 

slope from 1.00 mM – 5.00 mM as measured by T2 is found to be 3.58 ± 0.41. When 

compared with the self-salting slope of 4.46 ± 0.23 obtained using line-broadening 

measurements from 5.00 mM – 8.00 mM (dashed line), we see that the two slopes are 

nearly within error of each other. The aggregate high concentration slope is clearly 

lower than the expected slope of 6.12 from Debye-Hückel theory and possible 

reasons for this effect will be discussed further on.11,37 
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2.13 Kinetic Salt Effects at Various (Constant) Reactant Concentrations 

The rate of exchange for reaction (2-2) was measured by the 19F T2 spin-echo 

at constant reactant concentrations of 0.10 mM, 0.50 mM, 1.00 mM, and 5.00 mM as 

a function of the concentrations of various added “simple” (and supposedly inert) 

salts (KF, NaCl, KBr) and the disodium dicarboxylate salts Na2muc, Na2adip, 

Na2tere, Na2(1,4-dcch) as shown in Table 2.1. The early stopped-flow work has 

shown that Na2muc and Na2tere clearly act as catalytic for ET reaction (2-1) as 

studied by stopped-flow.6,9,36 The NMR kinetic results are listed in Tables 2.11 

through 2.14 and illustrated in Figures 2.26 through 2.32.  

The ET self-exchange reaction was first studied at a concentration of reactants 

of 0.10 mM so as to compare the NMR data against the largest body of previous 

stopped-flow6 data regarding salt effects on reaction (2-1). These results are presented 

in Table 2.11 and Figures 2.26 and 2.27. When compared to data obtained by NMR, 

the preliminary rates observed by stopped-flow (before any salt has been added) are 

significantly larger than those measured by NMR due to the accelerating effect of the 

non-zero driving force in the stopped-flow experiment (vide supra). In order to most 

informatively compare data between the two techniques, we must look at the change 

in the measured logkex as the concentration of added salt is increased; this is done by 

examining the resulting plots of logkex vs. GP. It should be noted that all of our 

experimentally derived logkex vs. GP salt curves were normalized to an average logkex 

starting value (reactants only) which was multiply-determined by a larger number 

(typically N = 5) of experiments. This was done by adjusting all the measured logkex 
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values for a given salt run so that the initial point coincides with the highly-

determined starting point (these minor, typically 2-5% adjustments were necessary to 

correct for jitter from run-to-run in the first point resulting from inevitable variations 

in reactant concentration and purities).  
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Table 2.11  The effect of various added salts on kex for reaction (2-2) at a reactants 

concentration of 0.10 mM displaying (a) raw logkex values and (b) logkex values 

normalized to the averaged (total N = 7) logkex starting value obtained across all trials 

for the initial no added salt point (with 95% confidence intervals as shown).  

[KF] GP kex logkex 
(a) logkex 

(b)

0 0.0291 2060 3.313 3.318 ± 0.051
0.0005 0.0361 2270 3.356 3.361
0.0010 0.0418 2550 3.407 3.412
0.0020 0.0511 2770 3.442 3.447
0.0050 0.0713 3680 3.565 3.570
0.0120 0.1020 3820 3.582 3.587
0.0200 0.1263 4270 3.630 3.635  

[NaCl] GP kex logkex 
(a) logkex 

(b)

0 0.0291 2450 3.388 3.318 ± 0.051
0.001 0.0418 3110 3.492 3.422
0.002 0.0511 5000 3.698 3.628
0.005 0.0713 9590 3.982 3.912
0.012 0.1020 19250 4.284 4.214
0.020 0.1263 29510 4.470 4.400  

[KBr] GP kex logkex 
(a) logkex 

(b)

0 0.0291 2060 3.315 3.318 ± 0.051
0.001 0.0418 3610 3.557 3.560
0.002 0.0511 5630 3.751 3.754
0.005 0.0713 11130 4.047 4.050
0.012 0.1020 30580 4.485 4.488
0.020 0.1263 46960 4.671 4.674  

[Na2muc] GP kex logkex 
(a) logkex 

(b)

0 0.0291 2540 3.404 3.318 ± 0.051
0.00028 0.0400 6230 3.794 3.708
0.00083 0.0550 9620 3.983 3.897
0.00180 0.0735 14250 4.154 4.068
0.00400 0.1020 20690 4.316 4.230
0.00600 0.1209 24650 4.392 4.306  
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[Na2adip] GP kex logkex 
(a) logkex 

(b)

0 0.0291 2610 3.417 3.318 ± 0.051
0.00083 0.0550 7240 3.860 3.761
0.00180 0.0735 11780 4.071 3.972
0.00400 0.1020 17320 4.239 4.140
0.00600 0.1200 18910 4.277 4.178  

[Na2tere] GP kex logkex 
(a) logkex 

(b)

0 0.0291 1900 3.279 3.318 ± 0.051
0.00028 0.0400 3460 3.539 3.578
0.00083 0.0550 7020 3.846 3.885
0.00180 0.0735 12070 4.082 4.121
0.00400 0.1020 18080 4.257 4.296
0.00600 0.1209 21170 4.326 4.365  

[Na2(1,4-dcch)] GP kex logkex 
(a) logkex 

(b)

0 0.0291 1540 3.187 3.318 ± 0.051
0.00028 0.0400 2990 3.476 3.607
0.00083 0.0550 4240 3.628 3.759
0.00180 0.0735 5830 3.766 3.897
0.00400 0.1020 9440 3.975 4.106
0.00600 0.1209 11040 4.043 4.174  
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Figure 2.26 The effect of added KF (blue circles), NaCl (green circles), and KBr 

(red circles) on the measured kex for reaction (2-2) at 0.10 mM reactants. Only the 

“low” GP end of the KF data (slope = 5.9 ± 0.3) behaves in accordance with the 

predicted Debye-Hückel-Bronsted slope of 6.12.  
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Figure 2.27 The effect of added Na2muc (black triangles), Na2adip (grey triangles), 

Na2tere (yellow triangles), Na2(1,4-dcch) (green triangles), KF (blue circles), and KBr 

(red circles) on the kex for reaction (2-2) at 0.10 mM reactants.   

 



 
 

157 
 

The F- ion data were unique in that they exhibited linear behavior with a slope 

in agreement with classical Debye-Hückel theory over the range from [KF] = 0 M to 

0.005 M (GP = 0.0291 to 0.0713). Our slope was 5.9 ± 0.3, which is within error of 

both the theoretical Debye-Hückel-Bronsted slope of 6.12, as well as the slope arrived 

at by previous stopped-flow work which was 6.2 ± 0.1.6,11   

This now doubly-verified agreement with theory (by both stopped-flow and 

by NMR) is important because it establishes that the reactant concentration of       

0.10 mM and the added-salt ranges of 0.50 mM to 5.00 mM with fluoride appears to 

behave in a way which matches the assumptions underlying the Debye-Hückel 

treatment and Guggenheim approximation (see chapter 1, section 7). This will now 

serve as the foundation from which we will describe our measured systematic 

deviations from theory observed with other (non-fluoride) supposedly “inert” salts. 

From here, we will go on to show salt effects on kex that also progressively deviate 

from theory upon increasing the reactants concentrations (even in the case of 

fluoride).11 

As we move to added Cl- and Br- salts, the logkex vs. GP plots become 

obviously curved, but we can still quantitate the “early” and “late” slopes for these 

anions for purposes of comparison. For chloride the early slope (as taken from the 

first four points in Figure 2.26) is 14.6 ± 1.4 and for bromide the early slope (first 

three points) is 19.8 ± 0.5. In the previous stopped-flow work,6 the early slopes for Cl- 

and Br- were 14.4 ± 0.5 and 20.6 ± 1.2, so we see again that the agreement between 

the two techniques is very good. 
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The rate effect data for the addition of the dicarboxylate salts (structures 

shown in Table 2.1) are also listed in Table 2.11 and are displayed in Figure 2.27 

(with KF and KBr data still displayed as a visual reference). From the figure, we see 

that the dependences again give curved lines with the accelerations due to added 

adipate and 1,4-dicarboxycyclohexane falling somewhat below the muconate and 

terephthalate data. The differences over the entire range of GP, however, are just 

barely larger than the combined error limits, and none are as catalytic as bromide 

after GP > 0.09.  These data were also compared to the stopped-flow data collected at 

the same reactants concentration.6,7,9  The early slopes for plots of logkex vs. GP 

(taken from the first 3 to 4 points) were found to be in good agreement for the adipate  

(adip2-), terepthalate (tere2-), and 1,4-dicarboxylcyclohexane (1,4-dcch2-) anions.9 By 

NMR, the early slope for the adip2- anion was 14.9 ± 0.9, and by stopped-flow it was 

15.4 ± 0.5.9  The early slope for the tere2- anion was 21.8 ± 1 by NMR and was 27.8 ± 

5.7 by stopped-flow.  This would suggest less catalytic activity for tere2- in the NMR 

case. For the 1,4-dcch2- anion the early slope was 26.5 by NMR, but this was only in 

fair agreement with the stopped-flow work which yielded an early slope of 19.5 (no 

error is reported regarding the early slopes of the Na2(1,4-dcch) data due to only the 

first two points being used to fit the data).  

 In the previously-unique case of muconate however, the rate acceleration 

measured by NMR deviated very strongly downward from the strong catalysis which 

was observed previously by stopped-flow (see Figure 2.4). For the muconate anion 

(muc2-), the early slope measured by NMR was 35.8 while the early slope obtained by 
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stopped-flow was nearly three times as large at 102.9. This striking difference does 

not invalidate the NMR data presented here, nor does it cast doubt on the stopped-

flow data (since the dramatic rate acceleration caused by muconate in the stopped-

flow context has now been measured by multiple workers6,12,36,38,39).  Rather, this 

difference appears to point toward an interesting and surprising role being played by 

the magnetic field itself, and this development will be discussed in more detail further 

on.  

These early-slope calculations will be used here simply as a quick index of a 

given salt’s level of catalytic efficacy towards our ET reaction and are thus only 

useful as a crude guide. In a later section we will show how a detailed kinetic analysis 

and fitting of the entire logkex vs. GP curve using an extended kinetic model allows us 

to access directly the extent to which a particular anion modulates the quantity “kETX” 

(vide infra), which is the anion-enhanced version of the kET rate constant for electron-

transfer now inside of a presumed tertiary-molecular encounter complex rather than 

the simple precursor complex as discussed previously in chapter 1.  

Salt effects on reaction (2-2) were also studied at an equimolar reactant 

concentration of 0.50 mM, and these rate data are listed in Table 2.12 and displayed 

in Figures 2.28 and 2.29. As was done in the 0.10 mM reactants concentration case, 

the early slopes of the logkex vs. GP plots were measured and compared. As in our 

treatment of the added-salt data in the 0.10 mM reactants case, the experimentally 

measured logkex values from each run were normalized to the average logkex values 

obtained (N = ~5) with no salt added. 
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Table 2.12 The effect of various added salts on kex for reaction (2-2) at a reactants 

concentration of 0.50 mM displaying (a) raw logkex values and (b) logkex values 

normalized to the averaged (total N = 5) logkex starting value obtained across trials 

for the initial, no-added salt point (with 95% confidence intervals as shown). 

[KF] GP kex logkex 
(a) logkex 

(b)

0 0.0629 3660 3.563 3.580 ± 0.039
0.001 0.0690 3960 3.598 3.615
0.005 0.0888 4290 3.632 3.649
0.010 0.1075 4960 3.696 3.713
0.030 0.1566 6420 3.807 3.824
0.060 0.2025 7850 3.895 3.912  

[NaCl] GP kex logkex 
(a) logkex 

(b)

0 0.0629 3490 3.543 3.580 ± 0.039
0.001 0.0690 4080 3.610 3.647
0.005 0.0888 7650 3.884 3.921
0.010 0.1075 12120 4.084 4.121
0.030 0.1566 31530 4.499 4.536
0.060 0.2025 59330 4.773 4.810  

[KBr] GP kex logkex 
(a) logkex 

(b)

0 0.0629 3870 3.588 3.580 ± 0.039
0.001 0.0690 5420 3.734 3.726
0.005 0.0888 13840 4.141 4.133
0.010 0.1075 23750 4.376 4.368
0.030 0.1566 59210 4.772 4.764
0.060 0.2025 100470 5.002 4.994  

[Na2muc] GP kex logkex 
(a) logkex 

(b)

0 0.0629 4250 3.628 3.580 ± 0.039
0.00035 0.0693 6200 3.792 3.744
0.00160 0.0880 11070 4.044 3.996
0.00330 0.1071 14460 4.160 4.112
0.01000 0.1566 21620 4.335 4.287
0.02000 0.2025 29540 4.470 4.422  
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[Na2adip] GP kex logkex 
(a) logkex 

(b)

0 0.0629 3770 3.577 3.580 ± 0.039
0.00035 0.0693 4550 3.658 3.661
0.00160 0.0880 7160 3.855 3.859
0.00330 0.1071 8640 3.937 3.940
0.01000 0.1566 13060 4.116 4.119
0.02000 0.2025 15420 4.182 4.186  
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Figure 2.28 The effect of added KF (blue circles), NaCl (green circles), and KBr 

(red circles) on the measured logkex for reaction (2-2) at 0.50 mM reactants. 
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Figure 2.29 The effect of added Na2muc (black triangles), Na2adip (grey triangles) 

on the measured logkex for reaction (2-2) at 0.50 mM reactants (with KF (blue 

circles), and KBr (red circles) included for visual reference).   
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At this reactants concentration, we found that no anion exhibited a slope (in 

the early and presumably most-ideal part of the curve) which agreed with the 

theoretical Debye-Hückel-Bronsted slope of 6.12, and the early slopes all decreased 

significantly with this 5-fold increase in reactants concentration for F- and Cl-. The 

early slope for fluoride decreased from 5.9 ± 0.3 (0.10 mM reactants concentration) to 

2.8 ± 0.3.   For chloride, the early slope fell from 14.6 ± 1.4 (0.10 mM reactants 

concentration) to 12.4 ± 0.3. Bromide was unique in that it showed a slight increase 

from 19.8 ± 0.5 (0.10 mM reactants concentration) to 21.1 ± 0.7 (with the two slopes 

being essentially within error of each other).  

The salt effects due to added sodium muconate and its saturated analog 

sodium adipate, also decreased as in the simple salt cases. For Na2muc the early slope 

diminished from 35.8 (at 0.10 mM reactants) to 15.9 ± 2.5, and the early slope for 

Na2adip curve also decreased from 14.9 ± 0.9 to 11 ± 0.4.  

In order to further explore the effect of the reactants concentrations, reaction 

(2-2) was next studied at a reactants concentration of 1.00 mM. The rate data are 

listed in Table 2.13 and displayed in Figure 2.30. Again, all experimentally derived 

logkex values were normalized to the average (N = 5) logkex starting value (no salt 

added).  Here we found that the kinetic salt effects were indeed further diminished 

upon doubling the reactants concentration to 1.00 mM (which can again be illustrated 

by taking the early slopes of the logkex vs. GP plots).  
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Table 2.13 The effect of various added salts on kex for reaction (2-2) at a reactants 

concentration of 1.00 mM displaying (a) raw logkex values and (b) logkex values 

normalized to the averaged (total N = 5) logkex starting value obtained across all trials 

for the initial no-added salt point (with 95% confidence intervals as shown).  

[KF] GP kex logkex 
(a) logkex 

(b)

0 0.0866 4890 3.689 3.708 ± 0.024
0.006 0.1091 6310 3.800 3.819
0.030 0.1649 8280 3.918 3.937
0.100 0.2482 10960 4.040 4.059
0.200 0.3137 13500 4.130 4.149  

[NaCl] GP kex logkex 
(a) logkex 

(b)

0 0.0866 5480 3.739 3.708 ± 0.024
0.002 0.0949 6630 3.822 3.791
0.006 0.1091 8440 3.926 3.895
0.010 0.1211 11990 4.079 4.048
0.030 0.1649 22540 4.353 4.322
0.060 0.2080 39850 4.600 4.569
0.100 0.2482 68220 4.834 4.803  

[KBr] GP kex logkex 
(a) logkex 

(b)

0 0.0866 4940 3.694 3.708 ± 0.024
0.006 0.1091 12919 4.110 4.124
0.030 0.1649 53031 4.725 4.739
0.100 0.2482 150530 5.178 5.192  

[Na2muc] GP kex logkex 
(a) logkex 

(b)

0 0.0866 5110 3.709 3.708 ± 0.024
0.0007 0.0953 7320 3.865 3.864
0.0020 0.1091 9170 3.963 3.962
0.0033 0.1209 11430 4.058 4.057
0.0100 0.1649 13600 4.133 4.132
0.0200 0.2080 16300 4.212 4.211  
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Figure 2.30 The effect of added KF (blue circles), NaCl (green circles), KBr (red 

circles), and Na2muc (black triangles) on the measured logkex for reaction (2-2) at 

1.00 mM reactants.  
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As was the case at reactants concentrations of 0.10 mM and 0.50 mM, the 

fluoride ion exhibited linear behavior over a significant range (see Figures 2.26 and 

2.28), but now it was only in the latter part. The early slope for fluoride which had 

been 2.8 ± 0.3 (0.50 mM reactant concentration) decreased to 1.8 ± 0.2.  For chloride 

the early slope fell from 12.4 ± 0.5 (0.50 mM reactant concentration) to 9.5 ± 0.8, and 

for bromide it reduced from 21.1 ± 0.7 to 12.8 ± 1.7.  In the case of Na2muc, the early 

slope decreased from 15.9 ± 2.5 to now 9.7 ± 1.4. 

Lastly, salt effects on reaction (2-2) were measured at 5.00 mM reactants 

(again using the 19F T2 spin-echo method) and the results are listed in Table 2.14 and 

displayed in Figures 2.31 and 2.32.  As will be shown and discussed later, previous 

data obtained by 19F NMR line-broadening8 studies of reaction (2-2) at this 

concentration are also available, and these will allow for direct comparison between 

rate behaviors mapped out using both methods.  
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Table 2.14  The effect of various salts on kex for reaction (2-2) at a reactants 

concentration of 5.00 mM displaying (a) raw logkex values and (b) logkex values 

normalized to the averaged (total N = 5) logkex starting value obtained across all trials 

for the initial no-added salt point (with 95% confidence intervals as shown). 

[KF] GP kex logkex 
(a) logkex 

(b)

0 0.175 10500 4.021 4.039 ± 0.052
0.03 0.215 12250 4.088 4.106
0.07 0.253 12800 4.107 4.125
0.14 0.301 13330 4.125 4.143
0.40 0.400 14240 4.154 4.172

 
[NaCl] GP kex logkex 

(a) logkex 
(b)

0 0.175 10530 4.022 4.039 ± 0.052
0.03 0.215 26850 4.423 4.440
0.07 0.253 35030 4.544 4.561
0.14 0.301 69470 4.842 4.859

 
[KBr] GP kex logkex 

(a) logkex 
(b)

0 0.175 10240 4.010 4.039 ± 0.052
0.03 0.215 37700 4.576 4.605
0.07 0.253 64220 4.808 4.837
0.14 0.301 159980 5.204 5.233

 
[Na2muc] GP kex logkex 

(a) logkex 
(b)

0 0.175 10380 4.016 4.039 ± 0.052
0.01 0.215 16920 4.228 4.251
0.02 0.245 18880 4.276 4.299
0.05 0.306 20120 4.304 4.327
0.13 0.397 25460 4.406 4.429

 
[Na2adip] GP kex logkex 

(a) logkex 
(b)

0 0.175 8560 3.932 4.039 ± 0.052
0.01 0.215 11320 4.054 4.161
0.02 0.245 12640 4.102 4.208
0.05 0.306 14010 4.146 4.253
0.13 0.397 15790 4.198 4.305
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Figure 2.31 The effect of added KF (blue circles), NaCl (green circles), and KBr 

(red circles) on the measured logkex for reaction (2-2) at 5.00 mM reactants. 
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Figure 2.32 The effect of added Na2muc (black triangles), Na2adip (grey triangles), 

KF (blue circles), and KBr (red circles) on the measured logkex for reaction (2-2) at 

5.00 mM reactants. 
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Here we see that the kinetic salt effects decrease again as the concentration of 

reactants is quintupled to 5.00 mM from 1.00 mM.  Both the fluoride and chloride 

data exhibit linear behavior in their latter ranges, while all the ions continue to follow 

the same qualitative ranking in catalytic effect size as was observed at the reactant 

concentrations (F- < adip2- ~ muc2- < Cl- <Br-).  The fluoride slope from 1.8 ± 0.2 

(1.00 mM reactants) to now 0.52 ± 0.14.  We note that the slope of the previous 

fluoride ion data gathered from 19F NMR line-broadening (also with an equimolar 

reactant concentration of 5.00 mM)8 was 0.92 ± 0.05, thus the measured early slopes 

are almost within error of each other.  

The slope across the linear range of the chloride data drops from 9.5 ± 0.8 at 

1.00 mM reactants concentration to now 5.92 ± 0.4, which is within error of the 

Debye-Hückel-Bronsted slope of 6.12.11 However, we see that the “early” slope using 

the first two points is 10.0.  The previous chloride data gathered by 19F NMR line-

broadening at this concentration had an early slope of 8.2 ± 0.6 The larger slope in the 

case of the 19F NMR line-broadening data is due to the slight curvature the chloride 

data obtained by line-broadening (and therefore only the first few points were used to 

obtain the early slope).  This deviation is probably due to the lesser accuracy and 

precision of the line-broadening method in this case. This is the only other case 

besides F- at 0.10 mM in which a significant linear range in logkex vs. GP is observed 

in quantitative agreement with the Debye-Hückel-Bronsted slope, but given the non-

linearity at the start, it is impossible to interpret as actually “following” the Debye-

Huckle-Bronsted prediction.  
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The early slope for bromide drops from 12.8 ± 1.7 (1.00 mM reactants) to 

10.2 ± 2.3 at 5.00 mM reactants. This slope is also within error of the previous 

bromide ion data gathered through 19F NMR line-broadening which was 10.7 ± 0.7.  

Sodium muconate and its saturated analog sodium adipate exhibited similar 

decreases in rate acceleration found with the simple salts. The early slope of Na2muc, 

dropped from 9.7 ± 1.4 (1.00 mM reactant concentration) to 3.8 ± 1.0 at 5.00 mM 

reactants (the line-broadening study gave an early slope of 3.8 ± 0.5). The early slope 

of Na2adip which had been 11.0 ± 0.4 at 0.50 mM reactants fell to 2.5 ± 0.4 at 5.00 

mM reactants. The early slope found using line-broadening was 2.6 ± 1.0.  

The generally close agreement between results acquired by the T2 and line-

broadening based measures of these kinetic salt effects systematic deviations from 

Debye-Hückel-Bronsted theory appear to start around an equimolar reactant 

concentration between 0.10 mM and 1.00 mM.  

To summarize the foregoing results, we have listed the observed early slopes 

of the plots of logkex vs. GP for the various salts in Table 2.15. We focus on these 

since, as we will show in later sections, deviations upwards from the Debye-Huckle-

Bronsted prediction of 6.1 correlate with the degree of “ET catalysis” exhibited by a 

given salt. One explanatory hypothesis we will discuss later for the drop in salt effects 

with increased reactants concentrations is that the progressive decrease in distance 

through which the RuII and RuIII species must diffuse in order to form the ET 

precursor complex somehow invalidates the assumptions underlying the Debye-

Hückel-Bronsted equation (see equation (1-40)). Even so, all added salts showed 
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significant and measureable catalytic effects on the rate of reaction (2-2) even at 5.00 

mM reactants. 

 

Table 2.15 A summary of the measured early slopes for plots of logkex vs. GP for 

reaction (2-2) due to added inert salts at the various reactant concentrations 

investigated. 

0.10 mM 0.50 mM 1.00 mM 5.00 mM
KF 5.9 ± 0.3 2.8 ± 0.3 1.8 ± 0.2 0.52 ± 0.14

NaCl 14.6 ± 1.4 12.4 ± 0.3 9.5 ± 0.8 5.92 ± 0.4
KBr 19.8 ± 0.5 21.1 ± 0.7 12.8 ±1.7 10.2 ± 2.3

Na2muc 35.8 15.9 ± 2.5 9.7 ± 1.4 3.8 ± 1

Na2adip 14.9 ± 0.9 11.0 ± 0.4 - 2.5 ± 0.4

Salt
Early Slopes from logex vs.  GP

 

 
2.14 Sodium Muconate Effects on the Rate of ET as Established by NMR  

As already mentioned, previous stopped-flow work1,6,7 has reproducibly 

shown sodium muconate, in particular, to possess a uniquely-large catalytic effect on 

the rate of ET for reaction (2-1) at reactants concentration ranges in the region near 

0.10 mM (which is where stopped-flow has optimum applicability in this case). The 

higher reactants concentrations of reactants (e.g. 1.00 – 8.00 mM) cannot by probed 

conventionally by stopped-flow due to its limited temporal resolution (kex < ~103 s-1). 

Surprisingly, even upon pushing the limits (of signal to noise) for T2 based NMR 

kinetics measurements on reaction (2-2) down to the stopped-flow concentration 

range of 0.10 mM, the loss of ET catalysis by muconate first documented by 

Inagaki36 and then verified by Qin8 using NMR line-broadening at equimolar 

reactants concentrations of 5.00 mM was found to persist. The magnitude of this 
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striking discrepancy between stopped-flow and T2 NMR based measurements of the 

“muconate effect” at 0.10 mM reactants is illustrated in Figure 2.33.  

We note also that while the data shown in Figure 2.27 leaves open the 

possibility for a very slight rate acceleration by tere2- as compared to dcch2- and   

adip2-, it is at or near the noise level.  In the stopped-flow work, however, it has been 

amply demonstrated6,36 that tere2- is also significantly catalytic towards ET, though 

considerably less-so than muc2-. 
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Figure 2.33 The catalytic effect of added Na2muc on the rate of ET for the pseudo 

self-exchange reaction (2-1) as measured by stopped-flow6 (red circles) compared to 

its relatively-muted “normal salt” effect on the rate of reaction (2-2) measured using 

T2 spin relaxation. Both experiments executed at the equimolar reactants 

concentration of 0.10 mM. The offset between the origin points at 0.0291 GP is due 

to the 65 mV driving force in reaction (2-1).   



 
 

176 
 

It was originally thought that the diminished catalytic effect of muconate 

observed by NMR 5.00 mM reactants was due to how the 50x concentration 

difference of the reactants changed the details of inter-reactant diffusive encounter to 

form a presumably tertiary-molecular encounter/precursor complex relevant to the 

catalyzed reaction. It was hypothesized that the “rod-like” shape of muconate might 

lead to especially-slow diffusion in solution and hence an early “drop out” of its 

catalytic effect on ET (thought to operate via quantum super-exchange mediation) at 

high reactant concentrations where the bimolecular encounter frequency between RuII 

and RuIII naturally increases (by 3 50  fold upon going from 0.10 mM to 5.00 mM 

reactants).  Importantly, using the T2 spin-echo technique, we have recovered here the 

same “nominal” muconate salt effect as was found using 19F NMR line-broadening8 

at a reactants concentration of 5.00 mM.  The T2-based rate data rate data at 0.10 mM 

reactants show conclusively that the robust catalytic efficacy of sodium muconate 

seen by stopped-flow at 0.10 mM reactants is not regained (this comparison having 

only been possible due to careful optimization and validation of the T2 spin-echo 

experiment). Therefore, we are forced to abandon our prior hypothesis implicating 

details of reactants concentration on diffusive encounter frequency as a possible basis 

for the “missing muconate effect” when the kinetic are probed by NMR.  

After eliminating the reactant concentrations as a possible source of the loss of 

catalytic efficacy by muconate in the NMR work, we examined other possible factors 

which might explain it. These included solvent isotope and dissolved oxygen effects. 

To check for the former possibility, Eskanadari12 had already studied reaction (2-1) 
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by stopped-flow in both H2O and D2O and it was determined that D2O had no affect 

on the strong catalytic efficacy of sodium muconate. There was no difference found 

in either the starting point or the effect on the rate of exchange when using D2O 

instead of H2O as the solvent. Even though no isotopic effect was found by stopped-

flow the possibility of an isotope effect still had to be investigated as a possible factor 

in the puzzle presented by the NMR work. In Table 2.16 and Figure 2.34 the observed 

rates of reaction (2-2) in H2O at various concentrations of added sodium muconate 

are compared to the rates obtained in D2O. From the figure we see that while the rate 

acceleration may be marginally faster in H2O, the rates at a given GP are still within 

error; therefore we conclude that solvent isotope effects are unrelated to the loss of 

the catalytic effect of muconate.  

 

Table 2.16 The rates of ET for to reaction (2-2) at a reactants concentration of 

0.10 mM using the 19F T2 spin-echo method.  

[Na2muc] GP logkex (H2O) (a) logkex (H2O) (b) logkex (D2O) (c) 

0 0.0291 3.340 3.318 ± 0.051 3.318 ± 0.051
0.00028 0.0400 - - 3.708
0.00083 0.0550 4.024 4.002 3.897
0.00180 0.0735 4.170 4.148 4.068
0.00400 0.1020 4.324 4.302 4.230
0.00600 0.1209 - - 4.306

 
(a) Raw logkex values obtained in H2O and (b) normalized H2O logkex values shifted to match the 

average logkex starting value in D2O (with 95% confidence intervals). This is then compared with (c) 

normalized logkex values to the average (total N = 5) logkex starting value with 95% confidence 

intervals in D2O.  
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Figure 2.34 The effect of sodium muconate on the rate of ET for reaction (2-2) as 

measured by T2 at 0.10 mM reactants in D2O (blue triangles) and H2O (green circles). 

In this plot the H2O data have been normalized to match up with the highly-

determined D2O starting point indicated by the black circle for purpose of 

comparison.  
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A second possible reason for the divergence between the stopped-flow and 

NMR kinetic behaviors hinged on the paramagnetic relaxation effects of dissolved O2 

which are known to sometimes contaminate T2 measurements by accelerating spin-

spin relaxation (and even line-widths, vide supra).10  Since the concentration of O2 in 

air-saturated H2O is 5x10-4 M  at 25°C (and presumably very close to that in 

D2O),25,35 we hypothesized that some unknown paramagnetic effect might be 

specifically affecting the NMR relaxation-based kinetic measurements in a way 

which would not be operative in the stopped-flow work. It is not immediately obvious 

why this would show up specifically in the case of muconate, and systematically 

interfere with it, but not the other salts, but we nevertheless performed experiments to 

test this idea. We did this by studying reaction (2-2) both with and without added 

muconate in D2O under conditions of air-saturation, vacuum degassing, Ar degassing, 

and 1.0 atm oxygen gas saturation. The data presented in Table 2.17 and Figures 2.35 

and 2.36 show the rates of ET (measured by T2) obtained upon degassing 0.10 mM 

reactant solutions alone as well as solutions containing Na2muc at a concentration of 

0.004 M (corresponding to GP = 0.102 which places the system well up into the 

catalytic region shown in Figure 2.33).  
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Table 2.17 The effects of various degassing methods on the rate of ET exchange 

reaction (2-2) at a reactants concentration of 0.10 mM with Na2muc concentrations of 

0 M and 0.004 M.  

[Na2muc] GP logkex 
(a) logkex 

(b)

0 0.0291 3.309 3.318 ± 0.051
0.004 0.102 4.242 4.251

0 0.0291 3.322 3.318 ± 0.051
0.004 0.102 4.180 4.176

0 0.0291 3.187 3.318 ± 0.051
0.004 0.102 4.110 4.241

0 0.0291 3.230 3.318 ± 0.051
0.004 0.102 4.027 4.115

No Degassing     
(air-saturated)

Vacuum Degassing

Ar Degassing

O2 Saturated
 

 

(a) Raw logkex values and (b) logkex values normalized to the study aggregate (total N = 5) averaged 

logkex starting value (with 95% confidence intervals as shown).  
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Figure 2.35 Degassing and O2-saturation effects on the rate of reaction (2-2) in 

D2O at a reactants concentration of 0.10 mM using raw logkex values for the effects of 

air-saturation (red circles), vacuum degassing (green circles), Ar degassing (blue 

circles), and O2 saturation (yellow circles). The black cross marks are taken from the 

Na2muc data previously presented in Table 2.11 and Figure 2.26.  
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Figure 2.36 Degassing effects on reaction (2-2) at a reactants concentration of 0.10 

mM using logkex values normalized to the average logkex starting value (with a 95% 

confidence interval, black circle) in D2O for air-saturation (red circle), vacuum 

degassing (green circle), Ar degassing (blue circle), and 1.0 atm O2 saturation (yellow 

circle). The black cross marks are taken from the Na2muc data previously presented 

in Table 2.11 and Figure 2.26.  
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While Figure 2.35 does indicate some (typical) run-to-run jitter in the first 

point, when normalized together in Figure 2.35 we see that the ET rates in all cases 

fall within error of the air-saturated values, therefore ruling out the presence of 

oxygen (or not) as being a contributing factor to the puzzling loss of muconate’s 

catalytic efficacy as probed by NMR (the solutions for each experiment were freshly 

prepared).  

The negative results coming from the H2O vs. D2O and O2-purged vs. air-

saturated experiments force us to conclude that the loss of sodium muconate’s 

catalytic efficacy has to be attributed to some factor not previously considered. This 

striking and unique loss of sodium muconate’s catalytic efficacy specific to NMR is 

now taken as necessarily being due to some specific aspect of the technique/ 

instrumentation/physical environment relevant to our kinetic investigations of 

reaction (2-2).  The most obvious such possibility is at this point narrowed down to 

the magnetic field itself.  This improbable-seeming idea was applied in previous 

stopped-flow work wherein a somewhat strong magnetic field was applied to the 

optical flow cell containing the reacting mixture through use of a stack of strong 

external disk magnets situated directly above the cell. No magnetic field effect was 

observed,6,9 but at the time this was considered inconclusive since the magnetic field 

present in an NMR is so much more powerful than the magnetic field that could be 

applied during the stopped-flow experiments.  

The mechanism whereby the powerful magnetic field inside of the NMR 

might nullify the otherwise very strong “muconate effect” remains unclear at this 
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point. One speculation involves a possible field-dependent hindering of muconate’s 

ability to freely diffuse through solution. The basis of this idea derives from the two 

negative charges on either end of muconate (see Table 2.1) and the possibility that the 

structured hydration spheres around them might interact in some unique way with 

similar qualities to diamagnetic ring currents (like those in benzene rings) in these 

“rod-tip” regions. If large-scale cooperative vibrational and nuclear tunneling effects 

were of sufficient magnitude, one can envision a way in which the magnetic moments 

at the rod “ends” might bring about an anisotropic ordering effect in the powerful 

NMR magnetic field so as to render the muconate dianion essentially “locked” into a 

specific orientation which might then constrain its diffusive behavior. Presumably, 

any such effect which impeded muconate’s ability to freely diffuse through solution 

would severely hinder its ability to enhance the rate of ET via quantum super-

exchange since it would have less of a chance to get in between the two reactants. A 

second possibility is that there may be a problem with our assumed mode of operation 

regarding the super-exchange mechanism. Previous workers measuring stopped-flow 

kinetics6,9,36 have invoked the typical “hole” + “electron” transfer pathways used in 

conceptualizing this fairly well-known phenomenon.22 Since the virtual “hole” and 

“electron” transfer quantum super-exchange states involve di-radical character in both 

cases, there may be some which as yet unknown magnetic fields effect attenuating 

quantum super-exchange. Importantly, the stopped-flow work done by Pan38 has 

shown that the same (NH3)5RuIII(tfmp)3+ species used in our NMR work exhibits the 

very same catalysis by muconate as the (NH3)5RuIII(3-fpy)3+ oxidant when used in 
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reaction (2-1), thus we know that this small difference in oxidant structure is 

immaterial to the quenching of the catalysis. 

Whatever the eventual explanation, this observed effect is a real, verified, 

NMR-specific kinetic effect which can now only be attributed to the magnetic field 

itself.  Further investigation will be needed to explore the possibilities regarding the 

mechanism of the surprising quenching of muconate’s catalytic activity in magnetic 

field.  

 
2.15 Effect of Added Group VIII Metal Hexacyano Salts on the Rate of ET 

The catalytic rate effects arising upon addition of the group-VIII metal 

hexacyano salts K4FeII(CN)6, K4RuII(CN)6, and K4OsII(CN)6 (structures shown in 

Table 2.2) greatly exceed even those of muconate, and they strongly catalyze ET even 

when present at very low concentrations in the reactant solution.8,9,40,41  Reaction (2-

1) has been studied in this lab by stopped-flow9 at a reactants concentration of 0.10 

mM and reaction (2-2) has been studied by NMR line-broadening8 at a reactants 

concentration of 5.00 mM. Both the 19F T2 spin-echo method at 0.10 mM reactants 

and 19F NMR line-broadening at 5.00 mM reactants have been used here to study 

reaction (2-2) so as to verify the previous 5.00 mM rate data and once again to extend 

the reach of NMR down to the stopped-flow concentration range.  

The magnitude of the hexacyano-complex catalysis measured for reaction (2-

2) 5.00 mM reactants was found to decay with time when using the line-broadening 

method in this work (only very small amounts of MII(CN)6
4-, 0.01 mM salt, were 

present in these reactant solutions. This decay in kex (all the way back to the value 
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obtained with no added hexacyano salt) took place over a period of about 25 minutes 

as shown in Table 2.18 and Figure 2.37. When the concentrations of added hexacyano 

salts were higher (> 0.39 mM), measured kex values held constant for periods up to 4-

6 hours as shown in Table 2.19 and Figure 2.38. The decay presumably relates to 

reaction of the essentially trace amounts of catalyst in the former case to form 

inactive cyanide-bridged species.  
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Table 2.18 Kinetic data showing time-related decay of kex over a period of 25 

minutes in the presence of K4FeII(CN)6 at a concentration of 0.01 mM (calculated 

employing the “slow” rate equation (2-9)) for reaction (2-2) at an equimolar reactants 

concentration of 5.00 mM. 

Time (min) Δν1/2 (Hz) Δν1/2' (Hz) kex logkex

4 3 28.92 16280 4.21
6 3 28.28 15880 4.20
9 3 25.60 14190 4.15

10.5 3 25.12 13890 4.14
12 3 24.38 13430 4.13
13 3 24.78 13680 4.14
15 3 23.76 13040 4.12
19 3 23.29 12740 4.11
22 3 23.14 12650 4.10
25 3 22.57 12290 4.09  

 

Table 2.19 Kinetic data showing stability of catalyzed kex over a period of 25 

minutes in the presence of K4FeII(CN)6 at a concentration of 0.39 mM (calculated 

employing the “fast” rate equation (2-15)) for reaction (2-2) at an equimolar reactants 

concentration of 5.00 mM. 

Time (min) Δν1/2 (Hz) Δν1/2' (Hz) kex logkex

4 3 115.29 16963200 7.23
6 3 119.29 16379700 7.21
8 3 114.26 17120200 7.23
10 3 112.89 17363600 7.24
12 3 115.80 16886500 7.23
15 3 112.76 17354200 7.24
20 3 115.85 16879000 7.23
25 3 109.41 17900500 7.25  
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Figure 2.37 Data showing the temporal decay of the measured logkex over a period 

of 25 minutes for reaction (2-2) (calculated from Δν1/2 values using the “slow” rate 

equation (2-9)) at a reactants concentration of 5.00 mM with the addition of 

K4FeII(CN)6 at 0.01 mM. 
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Figure 2.38 Data showing stability of the measured logkex over a period of 25 

minutes for reaction (2-2) (calculated from Δν1/2 values using the “fast” exchange 

equation (2-15)) at a reactants concentration of 5.00 mM with the addition of 

K4FeII(CN)6 at 0.39 mM (note, the uncatalyzed rate is 4.04 ± 0.05). 
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The observed decay of kex at 5.00 mM reactants with the addition of 

K4FeII(CN)6 at 0.01 mM is at variance with the prior work by Qin under the same 

conditions.8  While the reason for the variance is unknown, this instability compels us 

to ignore all previous data points at 5.00 mM reactants with low concentrations of 

added metallic hexacyano salts (< 0.39 mM added salt).8  Previous results are 

reproduced, however, at a reactants concentration of 5.00 mM with the addition of 

metallic hexacyano salts at a concentration of 0.39 mM where the measured kex is 

stable, as listed in Table 2.20 and displayed in Figure 2.39.   

 

Table 2.20  The effect of added K4M
II(CN)6 on kex for reaction (2-2) at 5.00 mM 

reactants as measured by line-broadening (with rates calculated using the “fast” rate 

equation (2-15) for added K4FeII(CN)6 and the “slow” rate equation (2-9) for 

K4OsII(CN)6 and K4RuII(CN)6). Current rates (a) are the raw logkex values obtained by 

us and column (b) lists the rates previously obtained by Qin.8  

[K4FeII(CN)6] GP kex logkex 
(a) logkex 

(b)

0 0.1750 13180 4.120 4.120
3.90E-04 0.1811 17334000 7.239 7.300
5.30E-04 0.1832 40657000 7.612 -

 
[K4OsII(CN)6] GP kex logkex 

(a) logkex 
(b)

0 0.1750 12080 4.082 4.120
3.90E-04 0.1811 47280 4.675 5.430

 

[K4RuII(CN)6] GP kex logkex 
(a) logkex 

(b)

0 0.175 12890 4.110 4.120
3.90E-04 0.181 30870 4.489 4.980
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Figure 2.39 The effect of added K4FeII(CN)6 (red circles), K4OsII(CN)6 (yellow 

circles), and K4RuII(CN)6 (blue circles) on kex for reaction (2-2) at a reactants 

concentration of 5.00 mM along with previous results obtained by Qin (black, green, 

and grey triangles, respectively).8  
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 The rate of reaction (2-2) was also measured at a reactants concentration of 

0.10 mM (now using the 19F T2 spin-echo method) in the presence of K4M
II(CN)6    

(M = FeII, OsII, and RuII), and the results are listed Table 2.21 and illustrated in Figure 

2.40. This NMR data was compared with previous results obtained via stopped-flow 

by Mehmood9 (pertaining to reaction (2-1)).  At the time the when the current NMR 

rate data was collected (T2 method), the problem arising from time-dependent decay 

effects of kex as catalyzed by added K4M
II(CN)6 was unknown. Therefore, current rate 

data here can presumably provide only lower bounds on the actual catalytic effects of 

the hexacyano salts on the rates of ET.  The results obtained via stopped-flow should 

probably be considered a more accurate representation of these effects on kex since 

the solution standing time required for the stopped-flow measurement is much less 

than for determination using the T2 spin-echo method (a few minutes by stopped-flow 

vs. > 10 minutes by T2 spin-echo). 
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Table 2.21 The effect of added [K4M
II(CN)6] on kex for reaction (2-2) at 0.10 mM 

reactants as measured by T2 (with rates calculated using the relaxation-based rate 

equation (2-16)). Displaying (a) raw logkex values and (b) logkex values normalized to 

the averaged (total N = 5) logkex starting value obtained across trials for the initial, 

no-added salt point (with 95% confidence intervals as shown). 

[K4FeII(CN)6] GP kex logkex 
(a) logkex 

(b)

0 0.0291262 2140 3.331 3.318 ± 0.051
4.00E-09 0.0291268 2830 3.452 3.439
1.60E-08 0.0291287 3630 3.560 3.547
6.40E-08 0.0291363 3150 3.498 3.485
8.00E-07 0.0292516 52250 4.718 4.705
1.60E-06 0.0293764 137800 5.139 5.126

 

[K4OsII(CN)6] GP kex logkex 
(a) logkex 

(b)

0 0.029126 1900 3.279 3.318 ± 0.051
1.00E-07 0.029142 2290 3.360 3.399
4.00E-07 0.029189 5380 3.731 3.770
8.00E-07 0.029252 25340 4.404 4.443
1.60E-06 0.029376 93460 4.971 5.010
3.20E-06 0.029624 268000 5.428 5.467

 

[K4RuII(CN)6] GP kex logkex 
(a) logkex 

(b)

0 0.029126 1860 3.269 3.318 ± 0.051
4.00E-07 0.029189 2660 3.426 3.475
1.60E-06 0.029376 13460 4.129 4.178
3.20E-06 0.029624 25920 4.414 4.463
6.40E-06 0.030113 79100 4.898 4.947
1.28E-05 0.031066 195350 5.291 5.340
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Figure 2.40 The effect of added K4FeII(CN)6 (red circles), K4OsII(CN)6 (yellow 

circles), and K4RuII(CN)6 (blue circles) on kex for reaction (2-2) at a reactants 

concentration of 0.10 mM along with previous results obtained via stopped-flow 

(reaction 2-1) by Mehmood (black, green, and grey triangles, respectfully).9  
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2.16 Temperature Dependent Kinetic Studies 

As the temperature of a typical reacting chemical system and surroundings 

increase, the rates of any chemical reactions of the system will increase as well.11,42,43 

This is due to a larger number of reactant molecules in solution possessing the 

necessary Boltzman activation energy such that, in the case of bimolecular reactions, 

there will be both more frequent collisions between reactant molecules as well as a 

greater fraction of these collisions possessing the necessary threshold (or activational) 

energy required for reaction. The influence of temperature on the rate of reaction was 

originally noted and quantitatively assessed by Arrhenius, and his detailed analyses of 

the available data led him to propose the following empirical expression, 

RT/EaAk  e                                                    (2-20)18,19,44  

where k is a measured “rate constant”, A is the pre-exponential factor or “frequency” 

factor ( T/hkA B  in the classical transition theory45), Ea is the “activation” energy 

which is the energy input required for the reactants to surmount the activation barrier 

of the reaction, R is the universal gas constant, and T is the temperature in Kelvins.  

Much later, a more “first principles approach known as ”transition state theory” (TST 

or also “activated rate theory”) was developed, and this allowed reaction rates and 

mechanisms to be more fully analyzed in the context of the now separable “activation 

parameters” associated with a particular reaction; those being the enthalpy of 

activation, H , and the entropy of activation, S .19,44,46,47  From the transition 

state theory of activated rate processes, the rate constant, kex, is most compactly given 

by the Eyring equation, 
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








  

 RT

G

B
ex h

Tk
k e                                           (2-21)11,19,44,46,47 

where Bk is Boltzmann’s constant, h is Plank’s constant, and ΔG  is now the Gibbs 

free energy of activation which formally corresponds to the free energy difference 

between reactants and the “transition state” through which the system must pass on its 

way to products. The Gibbs free energy of activation can be apportioned into both 

enthalpic (~work against forces) and entropic (~statistical improbability of the 

transition state configuration) “barriers” using the Gibbs equation, 

  STHG                                            (2-22)44,47 

Therefore, by substitution of equation (2-22) into (2-21), the rate expression can be 

expressed as, 







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
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 R

S

RT

H

B
ex h

Tk
k ee                                         (2-23) 

In order to experimentally determine the activation parameters for a particular 

reaction, the Eyring formalism48 is typically applied, wherein equation (2-23) is 

divided by T and the natural log is taken of both sides,  


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
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S
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H

h

k
ln

T

k
ln Bex                              (2-24) 

Equation (2-24) is known as the Eyring equation, and a plot of experimental kinetic 

rates in the form of )/Tkln( ex  vs. T/1 is known as an “Eyring plot”.19,47  The enthalpy 

of activation is thus derived from the slope of the curve and the entropy of activation 

is derived from the y-intercept as shown below, 
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R

H
Slope


                                               (2-25) 
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k
lnintercept-y B                                  (2-26) 

 For bimolecular ET reactions in the pre-equilibrium limit, such as the 

reactions studied in this work (see Chapter 1), the overall second-order ET rate 

constant, kex, can be more informatively expressed as,  

ETAex kKk                                                  (2-27)11 

where KA is the encounter pair equilibrium association constant as defined by 

equation (1-40) in chapter 1 (see section 1.8), and ETk  is a first-order rate constant of 

electron exchange within the associated pair (as defined previously in equation (1-18) 

in chapter 1, section 1.5.4).  Expanding KA and replacing ETk  with equation (1-21), 

equation (2-27) becomes,  
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             (2-28) 

Where we have now replaced the   superscript of absolute rate theory with the more 

general   superscript as is required by the non-standard pre-exponential we are using 

here.  If the Debye-Hückel work of association, ),( aw , is broken down into its 

enthalpic and entropic components which are then merged into *H  and *S , 

equation (2-28) becomes, 



 
 

198 
 


































 









  

R

S

RT

H3
A

ex   
3

 N 4000
k ee

a
eln 

                         (2-29)

 

If it is assumed that h / T k  Bn  and the reaction is adiabatic (meaning that electron 

tunneling is facile and 1  el , see chapter 1.5), then equation (2-29) further simplifies 

to, 
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Now the Erying formalism can be applied to equation (2-30) as was done in equation 

(2-24), and equation (2-30) becomes, 
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A plot of )/Tkln( ex  vs. T/1  can in principle then yield the model-specific enthalpy of 

activation, *H , and entropy of activation, *S , as was explained previously (vide 

supra).  

 
2.16.1 Reactant concentration effects on activation parameters 

Due to the good agreement of our data presented in section 2.12 with the 

similar kinetic “self-salting” effects previously reported by Eskandari12 and Sista6, we 

undertook experiments to see if any insight into the mechanism of this effect might be 

gained by measuring the activation parameters for reaction (2-2) at various reactant 

concentrations with no other added salt (utilizing both the 19F T2 spin-echo and 19F 

NMR line-broadening methods for measuring rates of ET). The TST activation 
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parameters were derived from standard plots of ln(kex / T) vs. 1/T, utilizing equations 

(2-25) and (2-26). Temperature-dependent rate data obtained using the 19F T2 spin-

echo method at equimolar reactant concentrations of 0.10 mM, 0.50 mM, and 3.00 

mM are listed in Table 2.22 and displayed in Figure 2.41.  Line-broadening rate data 

at 5.00 mM, 5.30 mM, 5.50 mM, 6.50 mM, and 8.00 mM reactants are listed in Table 

2.23 and displayed in Figure 2.42. The Erying activation parameters at all reactant 

concentrations are presented in Table 2.24.  

It should be noted that all values of ln(kex / T) obtained in a given 

experimental run were normalized so as to match the average kex value obtained at 

that reactant concentration at the intermediate temperature of 299 K (this was 

necessary to account for the small run-to-run variations in starting point rates due to 

unavoidable small errors (< 10%) in reactant concentrations and purities).  In order to 

do this, the following relationship was applied to all measured kex values of a given 

temperature variation experiment, 











(measured)k

(average)k
 (measured)k)normalized(k

299K
ex 

299K
ex T

ex
T
ex                 (2-32) 

where  (measured)kT
ex  is the experimental kex value at a given temperature in that 

series, (average)k299K
ex  is the average kex value (N ≥ 5)  with no salt added at 299 K at 

a given reactants concentration, and (measured)k299K
ex is the experimentally derived kex 

value at 299K obtained in that particular set of measurements.  The set of normalized 

T
exk values are then used to calculate the set of ln( T

exk / T) values used in constructing 

the final Erying plot.  This normalization procedure was only applied to T2 rate data 
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where we had multiple measurements to work with at 299 K. Because of the 

inherently better S/N and less jitter, line-broadening temperature studies were 

conducted using only 1 trial. 
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Table 2.22 Temperature dependent T2 rate data obtained at 0.10 mM, 0.50 mM, 

and 3.00 mM reactants. Column (a) lists the values of ln(kex / T) obtained from the 

raw kex values, and (b) shows the same data after normalizing all runs to the average 

kex value at each reactant concentration (where the average T
exk is taken from ≥ 5 

measurements at 299 K).  

0.10 mM (GP = 0.0291)

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 1520 1.68 1.65
288 0.00347 2190 1.84 1.80
293 0.00341 1810 1.81 1.77
299 0.00334 1930 1.98 1.94± 0.12
303 0.00330 2690 2.18 2.14
299 0.00334 2450 2.10 2.06  

 
0.50 mM (GP = 0.0628)

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 2670 2.25 2.23
288 0.00347 2960 2.33 2.32
293 0.00341 3330 2.43 2.42
299 0.00334 3850 2.56 2.54 ± 0.09
303 0.00330 4520 2.70 2.69
299 0.00334 3900 2.57 2.56  

 
3.00 mM (GP = 0.1411)

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 5250 2.92 3.05
288 0.00347 6120 3.06 3.19
293 0.00341 7060 3.18 3.32
299 0.00334 7520 3.23 3.36 ± 0.06 
303 0.00330 9390 3.43 3.57
299 0.00334 7460 3.22 3.35  
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Table 2.23 Temperature dependent rate data obtained via NMR line-broadening at 

5.00 mM, 5.30, mM, 5.50 mM, 6.50 mM, and 8.00 mM reactants, showing values of 

ln(kex / T) obtained from raw kex values. Only one trial was executed at these reactants 

concentrations. 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T)

277 0.00361 7130 3.248
280 0.00357 7170 3.243
283 0.00353 7210 3.238
288 0.00347 8070 3.333
293 0.00341 9370 3.465
299 0.00334 12520 3.734
304 0.00329 15390 3.924
310 0.00323 20100 4.172
315 0.00317 22390 4.264
321 0.00312 24590 4.339

5.00 mM (GP = 0.1750)

 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T)

283 0.00353 7630 3.294
288 0.00347 8830 3.423
293 0.00341 10500 3.579
299 0.00334 12600 3.741
304 0.00329 15300 3.919
310 0.00323 17900 4.056

5.30 mM (GP = 0.1793)

 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T)

283 0.00353 8150 3.360
288 0.00347 9390 3.484
293 0.00341 10900 3.616
299 0.00334 13300 3.795
304 0.00329 15200 3.912
310 0.00323 18300 4.078

5.50 mM (GP = 0.1820)
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Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T)

277 0.00361 7360 3.280
280 0.00357 7700 3.314
283 0.00353 8380 3.388
288 0.00347 9680 3.515
293 0.00341 11600 3.679
299 0.00334 15000 3.915
304 0.00329 18800 4.125
310 0.00323 22700 4.294
315 0.00317 25500 4.394
321 0.00312 28900 4.500

6.50 mM (GP = 0.1948)

 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T)

280 0.00357 7700 3.314
283 0.00353 8380 3.388
288 0.00347 9680 3.515
293 0.00341 11600 3.679
299 0.00334 15000 3.915
304 0.00329 18800 4.125

8.00 mM (GP = 0.2116)
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Figure 2.41 Erying plots of the data in Tables 2.21 and 2.22 at equimolar reactants 

concentrations of 0.10 mM, 0.50 mM, 3.00 mM (using T2 spin-echo ; black, grey, and 

blue circles, respectively); and at 5.00 mM, 5.30 mM, 5.50 mM, 6.50 mM, and 8.00 

mM (using line-broadening; red, yellow, green, light blue, and dark red triangles, 

respectively).  
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Table 2.24 The best-fit TST activation parameters, ΔH≠ and ΔS≠, for reaction (2-

2) at the various equimolar reactant concentrations taken from the Erying plots shown 

in Figure 2.41.  

Concentration (mM) Slope y-intercept ∆H≠         

(kJ/mol)
∆S≠           

(J/K mol)
∆G≠

298 

(kJ/mol)

0.10 (GP = 0.0291) -2000 ± 390 8.7 ± 1.3 16.6 ± 3.2 -125 ± 11 53.9

0.50 (GP = 0.0628) -1880 ± 150 8.9 ± 0.5 15.7 ± 1.3 -124 ± 4 52.7

3.00 (GP = 0.1411) -1860 ± 310 9.6 ± 1.0 15.5 ± 2.6 -118 ± 9 50.7

5.00 (GP = 0.1750) -2550 ± 190 12.3 ± 0.6 21.2 ± 1.5 -95 ± 5 49.5

5.30 (GP = 0.1793) -2530 ± 70 12.2 ± 0.2 21.0 ± 0.6 -96 ± 2 49.6

5.50 (GP = 0.1820) -2340 ± 50 11.9 ± 0.2 19.5 ± 0.4 -98 ± 2 48.7

6.50 (GP = 0.1948) -2690 ± 100 12.9 ± 0.3 22.4 ± 0.8 -90 ± 3 49.2

8.00 (GP = 0.2126) -2790 ± 150 13.4 ± 0.5 23.2 ± 1.3 -86 ± 4 48.8
 

Derived from linear least-squared fits of the kinetic data in Tables 2.22 and 2.23 utilizing equation    
(2-24). 

 

The activation parameters in Table 2.24 show that the largest (most positive) 

enthalpy of activation, ΔH≠ = 23.3 ± 1.3 kJ/mol, occurs at the high end of the “self-

salting” reactants concentration range studied, 8.00 mM. Interestingly, the largest 

(meaning “least negative”) entropy of activation, ΔS≠, with a value of -86 ± 4 J/K mol 

occurs at 8.00 mM reactants as well. Correspondingly, both the smallest ΔH≠ and 

most negative ΔS≠ values occurred at 0.10 mM reactants, the low end of the 

concentration range studied. The respective values are ΔH≠ = 16.6 ± 3.2 kJ/mol and 

ΔS≠ = -125 ± 11 J/K mol. All reactants concentrations studied between these two 

extremes follow the trend with both ΔH≠ and ΔS≠ becoming more positive/less 
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negative as the concentration of reactants is increased. ΔH≠ as a function of GP is 

displayed in Figure 2.42 and ΔS≠ as a function of GP is illustrated in Figure 2.43.  
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Figure 2.42 The approximately linear relationship between ΔH≠ vs. GP (reactant 

concentrations ranging from 0.10 mM to 8.00 mM) for reaction (2-2) as taken from 

Table 2.24. The equation of the regression line is y = 37.9 (±10.9) x + 14 (± 2). 
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Figure 2.43 The approximately linear relationship between ΔS≠ vs. GP (reactant 

concentrations ranging from 0.10 mM to 8.00 mM) for reaction (2-2) as taken from 

Table 2.24. The equation of the regression line is y = 222.4 (± 33.7) x + 137 (± 5). 
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The positive slope of the regression line between ΔH≠ and GP as the reactants 

concentration is increased (Figure 2.42) implies that the energy required to drive the 

reactants to the transition state increases as the reactant concentrations become larger. 

This is a surprising result since one might expect the enthalpic barrier to not change 

much, or perhaps even to become smaller as the reactants concentration is increased 

due to the presumably higher interreactant coulombic screening which would be 

expected at higher GP (since the total ionic strength is higher; see also section 2.12). 

From the linear fit of the data in Figure 2.42 over the experimental GP range 

of 0.0291 to 0.2126 (ΔGP = 0.1835) we see a change in ΔH≠ of +6.6 kJ/mol. Over the 

same range, Figure 2.43 shows that ΔS≠ decreases from -125.3 to -86.0 J/K mol (a 

change of +39.3 J/K mol).  

 Figure 2.44 shows a plot ΔH≠ vs. ΔS≠ at the various reactant concentrations. 

In this case, a positive and more-obviously linear relationship is found.  Activational 

data often lead to such “enthalpy-entropy compensation” or “isokinetic” relationships 

when activational barriers are compared for closely related reactions and much has 

been written on this topic in the literature.43,49  The molecular origins of these 

relationships are notoriously difficult to establish, but the fact that we arrive at this 

particular one using two different NMR techniques over an uncommonly-large range 

of reactants concentrations supports its validity (as does the strongly-confirming 

nature of related temperature-dependent stopped-flow studies conducted by Sista and 

Mehmood.6,9  
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Figure 2.44 ΔH≠ vs. ΔS≠ for reaction (2-2) at reactant concentrations ranging from 

0.10 mM to 8.00 mM showing evidence for enthalpy-entropy compensation.43 The 

equation of the regression line is y = 0.18 (± 0.02) x + 39 (± 2).  
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In this case the slope of the plot gives an isokinetic temperature of ~187 K, which is 

well-away from the experimental temperature range. We will return to our discussion 

of these observations in a later section. 

 
2.16.2 The effects of added salts on activation parameters  

The temperature dependent kinetic work was next extended to study the 

effects of the added salts KF, KBr, Na2muc, and Na2adip on the entropic and 

enthalpic barriers of reaction (2-2) using T2 at the constant reactants concentration of 

0.10 mM. The effects of these salts were first studied at modest added salt 

concentrations which we consider as being the “non-forcing” condition with a total 

solution GP of 0.0494 (the initial GP of 0.0494 being due to the 0.10 mM reactants 

with the rest coming added salt concentrations of 1.80 mM for KF and KBr, and from 

added concentrations of Na2muc and Na2adip equal to 0.60 mM). The results are 

listed in Table 2.25 and illustrated in Figure 2.45. The activation parameters derived 

from the linear fit of the data plotted in Figure 2.45 are listed in Table 2.26.  As was 

done for the previous temperature-dependent rates acquired using T2 at various 

equimolar reactants concentrations, equation (2-32) was applied to all experimental 

runs in order to normalize the starting point jitter in the ln(kex / T) data sets. 
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Table 2.25 Temperature dependent T2 rate data at 0.10 mM reactants in the 

presence of various added salts making a total GP = 0.0494 (0.0018 M salt for KF 

and KBr, and 0.0006 M salt for Na2muc and Na2adip). Column (a) lists the values of 

ln(kex / T) obtained from raw kex values, and (b) shows the same data after 

normalizing all runs to an average kex value at a reactants concentration of 0.10 mM 

with no salt added (where the average T
exk is taken from ≥ 5 measurements at 299 K).  

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 1940 1.93 1.94
288 0.00347 2840 2.29 2.30
293 0.00341 3130 2.37 2.38
299 0.00334 3110 2.34 2.35 ± 0.12
303 0.00330 4510 2.70 2.71

KF (0.0018 M)

 
 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 3640 2.56 2.38
288 0.00347 4070 2.67 2.49
293 0.00341 4580 2.75 2.57
299 0.00334 5650 2.94 2.76 ± 0.12
303 0.00330 6100 3.00 2.83

KBr (0.0018 M)

 
 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 6890 3.19 3.05
288 0.00347 8750 3.41 3.27
293 0.00341 10450 3.57 3.43
299 0.00334 12550 3.74 3.59 ± 0.12
303 0.00330 14000 3.83 3.69

Na2muc (0.0006 M)
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Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 7070 3.22 3.19
288 0.00347 7540 3.32 3.29
293 0.00341 8080 3.34 3.31
299 0.00334 8830 3.47 3.44 ± 0.12
303 0.00330 9320 3.76 3.73

Na2adip (0.0006 M)
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Figure 2.45 Temperature dependent normalized rate data for reaction (2-2) at 0.10 

mM reactants with no added salt (green squares), added KF (1.80 mM, blue circles), 

KBr (1.80 mM, red circles), Na2muc (0.60 mM, black triangles), and Na2adip      

(0.60 mM, grey triangles). This equates to a total solution GP of 0.0494 (“non-forcing 

conditions”) for all but the bottom line.   
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Table 2.26 The activation parameters, ΔH≠ and ΔS≠, for reaction (2-2) at 0.10 mM 

reactants in the presence of added electrolytes at “non-forcing conditions” (constant 

solution GP = 0.0494, except for the no-salt case) derived from the linear fit of the 

normalized temperature-dependent rate data presented in Table 2.25 (illustrated in 

Figure 2.45). 

Electrolyte Slope y-intercept ∆H≠            

(kJ/mol)
∆S≠                

(J/K mol)
∆G≠

298 

(kJ/mol)

No Salt -2000 ± 390 8.7 ± 1.3 16.6 ± 3.2 -125 ± 11 53.9

KF -2640 ± 750 11.3 ± 2.5 22.0 ± 6.2 -103 ± 21 46.4

KBr -1990 ± 120 9.1 ± 0.4 16.5  ± 1.0 -120 ± 3 52.3

Na2muc -2720 ± 160 12.7 ± 0.5 22.7 ± 1.3 -92 ± 5 50.1

Na2adip -2020 ± 550 10.3 ± 1.9 16.8 ± 4.5 -112.0 ± 15.5 50.2
 

 

Previous temperature-dependent stopped-flow work6 on reaction (2-1) at 0.10 

mM reactants upon addition of the same salts in the same amounts (total solution GP 

= 0.0494) showed a very similar pattern. The stopped-flow data are compared with 

the current T2 data in Figure 2.46, and the activation parameters derived from linear 

fits of these data as well are presented in Table 2.27. 
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Figure 2.46 Temperature dependent rate data for reactions (2-1) and (2-2) 

measured by stopped-flow and T2, respectively, at 0.10 mM reactants with added KF 

(1.80 mM, blue circles = NMR, blue diamonds = stopped-flow), Na2muc (0.60 mM, 

black triangles = NMR, black diamonds = stopped-flow), and Na2adip (0.60 mM, 

grey triangles = NMR, grey diamonds = stopped-flow) such that the total solution GP 

was 0.0494 (“non-forcing conditions”).  
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Table 2.27 The activation parameters, ΔH≠ and ΔS≠ derived from the regression 

lines in Figure 2.46 for reactions (2-1) and (2-2) at 0.10 mM reactants in the presence 

of added salt at “non-forcing conditions” (constant solution GP = 0.0494, except for 

the no-salt case).  

Reaction    

(2-2)(a) 

Reaction    

(2-1)(b) 

Reaction    

(2-2)(a) 

Reaction    

(2-1)(b) 

No Salt N/A 16.6 ± 3.2 20.1 ± 2.3 -125 ± 11 -106 ± 8

KF 1.80 22.0 ± 6.2 21.2 ± 0.9 -103 ± 21.2 -100 ± 3

KBr 1.80 16.5 ± 1.0 16.6 ± 0.9 -120 ± 3 -111 ± 3

Na2Muc 0.60 22.7 ± 1.3 28.3 ± 4.9 -92 ± 5 -49 ± 17

Na2Adip 0.60 16.8 ± 4.5 23.5 ± 3.9 -112 ± 16 -85 ± 13

Electrolyte

∆H≠ (kJ/mol) ∆S≠(J/K mol)
Conc. Salt    

(mM)

 
 

(a) For reaction (2-2) as measured by T2 relaxation. (b) For reaction (2-1) as measured by stopped-

flow.6 

 

 Comparing the activation parameters obtained by stopped-flow and NMR in 

Table 2.27, we see that the ΔH≠ values are identical within error for added KF and 

KBr.  For Na2muc and Na2adip, we see a consistent upwards bias in the stopped-flow 

data, but the difference is not rigorously above experimental error.  The ΔS≠ values 

for KF and KBr are again very close, but for muc2- and adip2- we see a consistently 

lower entropic barrier by stopped-flow (especially for muc2- where the difference is 

43 J/ mol K).  The higher rate for the stopped-flow pseudo self-exchange reaction (2-

1) (which has a 69 mV driving force) as compared to the true self-exchange  reaction 

(2-2) (with zero driving force) is to be expected on the basis of the following equation 

from Marcus-Hush theory, 
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                                         (2-33) 

which shows how *G  (a key component of G ) decreases when 0G   .  Given 

that the H  values are larger for the no-salt, muc2-, and adip2- cases by stopped-

flow, however, the form of equation (2-33) would suggest that the “driving force 

effect” speeding up the stopped-flow rates must be due to more-than-compensating 

decrements in the entropic barriers for these cases.  While the data in the last two 

columns of Table 2.27 do bear this out, the very surprising implication for this subset 

of cases is that the driving force manifests primarily in the entropic barrier.  To our 

knowledge this is a novel finding, especially for the “no-salt” case where no 

possibility of anion-specific mediation exists (though we must again note the “not 

quite 95%” confidence level of the difference).  These observations present us with a 

fundamental question regarding how to interpret the activation barriers derived from 

the Erying/TST formalism and how compatible this (necessarily approximate) 

formalism is with even our relatively simple ET reaction. 

If we look closely at the fluoride anion data in Figure 2.46 (blue circles = 

NMR, and blue diamonds = stopped-flow) we see that the slopes (dotted-line) arrived 

at by both methods are identical while the y-intercepts slightly differ (ie. ΔS≠ values, 

although still within error).  The drop in the entropic barrier is even more pronounced 

for bromide, muconate, and adipate anion data (best seen in Table 2.27).  

 The most striking difference between stopped-flow and NMR data was in the 

measured entropic barrier due to added sodium muconate: ΔS≠ is more positive by 43 
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J/K mol as measured by stopped-flow (where the “muconate effect” is relevant) 

compared to that measured by NMR (see Table 2.27). The exceptionally-low entropic 

barrier (multiply-verified)6,9,36 for added muconate in the context of reaction (2-1) has 

been attributed to its ability to ET by virtue of quantum super-exchange mediation.22 

While our NMR data does show a slightly smaller entropic barrier for muconate (as 

compared to KF and KBr), the relative sizes of the deviations further support the 

earlier observations of muconate reverting to a “normal” (or “inert”) salt behavior 

when observed by NMR.8  

As was done for the activation parameters obtained at differing reactants 

concentrations as measured by NMR, we have constructed a plot of ΔH≠ vs. ΔS≠ in 

Figure 2.47.  We have included both the current NMR-derived activational 

parameters and the corresponding ones from Sista using stopped-flow in the non-

forcing condition case.6 The very similar isokinetic43,49,50 (ΔH≠ vs. ΔS≠) correlations 

obtained using both techniques supports the idea of a common salt-induced rate effect 

underlying the enthalpy-entropy compensation in both cases.  
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Figure 2.47 Enthalpy-Entropy compensation at a 0.10 mM reactants in the 

presence of KF (0.0018 M), KBr (0.0018 M), Na2Muc (0.0006 M), and Na2Adip 

(0.0006 M) ( non-forcing conditions, GP = 0.0494) for reaction (2-2) studied by 

NMR (red circles) compared with the entire halide series and dicarboxylate salts for 

reaction (2-1) studied by stopped-flow6 (blue circles). The error bars represent the 

standard deviations associated with the linear fits of the temperature dependent data 

(see Table 2.27). 
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 When we compare the slopes of the isokinetic plots shown in Figure 2.47 

arrived at by NMR and stopped flow, we find the slopes of the halide series to be 333 

K  and 412 ± 32 K as measured by NMR and stopped-flow, respectively. These 

slopes can be considered identical given the large relative errors because only two 

points being used to fit the NMR data. When we compare the two-point slopes 

arrived at using the dicarboxylate data however, we find slopes of 291 K and 133 K 

by NMR and stopped-flow respectively. Although only two points are used to fit 

these data the slope arrived at by NMR closely resembles that of the halides while 

that found by stopped-flow deviates strongly. Importantly, muconate as measured by 

stopped-flow appears to occupy a separate region of the graph, and this again 

supports the idea that the muconate effect seen by stopped-flow is lost when 

measured by NMR.  

Temperature dependent rate measurements were repeated at 0.10 mM 

reactants but now with larger concentrations of added salts with the intention of 

mimicking the more “forcing” conditions (0.006 M salt, total GP = 0.0767) used in 

the stopped-flow work conducted by Sista.  Both the fluoride and bromide anions 

were studied at these conditions and these data are presented in Table 2.28 and 

illustrated in Figure 2.48. The activation parameters derived from Figure 2.49 are 

listed in Table 2.29. As in the “non-forcing” conditions case, equation (2-32) was 

applied to all experimental kex values in order to normalize experimental ln(kex / T) 

values. 
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Table 2.28 Temperature dependent rate data at 0.10 mM reactants in the presence 

of various added salts making a total GP = 0.0767 (0.006 M salt). Column (a) lists the 

values of ln(kex / T) obtained from raw kex values, and (b) shows the same data after 

normalizing all runs to an average kex value at a reactants concentration of 0.10 mM 

with no salt added (where the average T
exk is taken from ≥ 5 measurements at 299 K). 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 3730 2.57 2.59
288 0.00347 4630 2.78 2.80
293 0.00341 5560 2.94 2.97
299 0.00334 5740 2.95 2.98 ± 0.12
303 0.00330 8650 3.35 3.37

KF (0.006 M)

 

 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 15610 4.01 3.95
288 0.00347 17410 4.10 4.04
293 0.00341 19200 4.18 4.12
299 0.00334 21030 4.25 4.20 ± 0.12
303 0.00330 23500 4.35 4.29

KBr (0.006 M)
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Figure 2.48 Temperature dependent normalized rate data for reaction (2-2) at 0.10 

mM reactants with no added salt (green squares, GP=0.0291), added KF (6.00 mM, 

blue circles), and KBr (6.00 mM, red circles) such that the total solution GP was 

0.0767 (“forcing conditions”) for all but the bottom line. 
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Table 2.29  The activation parameters, ΔH≠ and ΔS≠, for reaction (2-2) at 0.10 mM 

reactants in the presence of added electrolytes at “forcing conditions” (constant 

solution GP = 0.0767, except for the no-salt case) derived from the linear fit of the 

normalized temperature-dependent rate data presented in Table 2.28 (illustrated in 

Figure 2.48). 

Electrolyte Slope y-intercept ∆H≠            

(kJ/mol)
∆S≠                

(J/K mol)
∆G≠

298 

(kJ/mol)

No Salt -2000 ± 390 8.7 ± 1.3 16.6 ± 3.2 -125 ± 11 53.9

KF -2870 ± 640 12.7 ± 2.2 23.9 ± 5.3 -92 ±18 51.3

KBr -1400 ± 95 8.9 ± 0.3 11.6 ± 0.8 -124 ± 3 48.6
 

 

As in the non-forcing condition case, we also have previous temperature 

dependent stopped-flow work on reaction (2-1)6 at 0.10 mM reactants in the presence 

of the same added salts for comparison; the activation parameters arrived at by both 

methods are listed in Table 2.30.  

 

Table 2.30 The activation parameters, ΔH≠ and ΔS≠, for reactions (2-1) and (2-2) 

at 0.10 mM reactants in the presence of added salt at “forcing” conditions” (constant 

solution GP = 0.0767, except for no-salt).  

Reaction   

(2-2)(a) 

Reaction   

(2-1)(b) 

Reaction      

(2-2)(a) 

Reaction      

(2-1)(b) 

No Salt 16.6 ± 3.2 20.1 ± 2.3 -125 ± 11 -106 ± 8
KF 23.9 ± 5.3 24.5 ± 2.1 -92 ±18 -86 ± 7
KBr 11.6 ± 0.8 13.3 ± 3.3 -124 ± 3 -115 ± 11

Electrolyte

∆H≠ (kJ/mol) ∆S≠(J/K mol)

 
(a) For reaction (2-2) measured via T2 spin-echo and (b) for reaction (2-1) measured via stopped-flow.6 
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 Similar to what we saw at “non-forcing conditions”, when comparing the 

activation parameters obtained by both NMR and stopped-flow, we find that the ΔH≠ 

values are consistently higher by stopped-flow but still within error of each other (see 

also Table 2.27). The ΔS≠ values arrived at by NMR differ in an opposite manner 

with the entropic barrier being consistently lower decreasing in the stopped-flow case 

(where there is a driving force present). The significance relative to experimental 

error limits is again unclear due to the large extrapolation involved in assessing ΔS≠.  

Specific to the data in Table 2.30, we see that upon going from the “no salt” 

case (at 0.10 mM reactants) to the forcing condition of 6.00 mM of added F- (total 

solution GP = 0.0767) causes ΔH≠ as measured by NMR to increase by 44% (going 

from 16.6 to 23.9 kJ/mol). In the non-forcing case (see Table 2.27) the increase was 

only 33%. On the other hand, ΔS≠ becomes less negative by 33 J/K mol in the forcing 

conditions case (a 27% drop in the barrier which corresponds to 10 kJ/mol using -T 

ΔS≠ with T = 299 K). These compensating changes, ΔΔH≠ = +7.3 kJ/mol and -ΔΔS≠ 

(299 K) = - (33 J/ mol K)(299K) = -10.0 kJ/mol, mirror the changes seen in the 

stopped-flow data upon adding fluoride. The change in the F- vs. no-added salt 

barriers at non-forcing (0.0018 M F-) conditions (see Table 2.27) were ΔΔH≠ = +5.4 

kJ/mol and -ΔΔS≠ (299 K) = - (+22 J/mol K)(299 K) = -6.7 kJ/mol thereby 

confirming the progressive change with increasing [F-]. The NMR data then clearly 

confirm Sista’s conclusion6 that the rate acceleration due to added F- vs. no-added salt 

is due to the dominating (and compensating) decrease in the entropic barrier. 
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 Upon going from no-added salt to added Br-, we find ΔΔH≠ = -5.5 kJ/mol and 

-ΔΔS≠ = +5 J/mol K. At 299 K this equates to ΔΔG≠ =  -1.5 kJ/mol, meaning that the 

modest rate increase for Br- is due to a small, drop in the entropic barrier. At forcing 

conditions of added Br- we find ΔΔH≠ = -4 kJ/mol and –(ΔΔS≠)(299 K) = +9.6 

kJ/mol. While this pattern is rather confusing it does at least agree with Sista’s results, 

in that the dominating source of the rate increase due to Br- at forcing conditions is in 

the enthalpic term.6  These results suggest that the dominating kinetic factor in the 

salt effect on the reaction rate can vary from primarily entropic (F-) to primarily 

enthalpic (Br-) depending on the nature of the salt. Overall, we find that the trends 

observed previously by stopped-flow on reaction (2-1)6 are validated by this NMR 

work on added fluoride and bromide.  

As was done in our analysis of the non-forcing data, we have constructed an 

isokinetic plot of ΔH≠ vs. ΔS≠ in Figure 2.49. Again we have included both the current 

NMR-derived activational parameters and the corresponding ones from Sista’s 

stopped-flow work.6 The very similar isokinetic43,49,50 (ΔH≠ vs. ΔS≠) correlation again 

observed by both techniques supports the idea of a common mechanism underlying 

the salt-induced rate effects. There is clearly a very strong enthalpy-entropy 

compensation at work in both cases.  

In Figure 2.50 we present a too busy, but nonetheless instructive view of the 

aggregate NMR and stopped-flow salt-specific activational data. The resulting 

isokinetic plot clearly shows the overall agreement in the salt-specific trends at 
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similar conditions between the two techniques except for added muconate as 

measured by stopped-flow. 
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Figure 2.49 Enthalpy-Entropy compensation at 0.10 mM reactants in the presence 

of KF and KBr (forcing conditions, [X-] = 0.006 M) for reaction (2-2) studied by 

NMR (red circles) compared with kinetic data for the entire halide series obtained in 

studies of reaction (2-1) by stopped-flow6 (blue circles). The error bars represent the 

standard deviations associated with the linear fits of the temperature dependent data 

(listed in Table 2.30).  
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Figure 2.50 Enthalpy-Entropy compensation at 0.10 mM reactants in the presence 
of the halides and dicarboxylate salts for reaction (2-2) studied by NMR (red circles) 
compared with kinetic data for the entire halide series and dicarboyxlate salts 
obtained in studies of reaction (2-1) by stopped-flow6 (blue circles) at both non-
forcing conditions (GP = 0.0494) and forcing conditions (GP = 0.0767). The error 
bars represent the standard deviations associated with the linear fits of the 
temperature dependent data (listed in Tables 2.27 and 2.30). 
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When we compare the slopes of the plots generated in Figure 2.49 arrived at 

by NMR and stopped-flow, we find essentially identical isokinetic temperature slopes 

of 380 K and 382 ± 7 K, respectively. This observation supports the tentative 

explanation previously proposed on the basis of the stopped-flow work that the 

known variations in the hydration energies of the halide ions (due to the progressive 

change in radii) may be playing a dominate role in modulating how the entropic and 

enthalpic barriers of the ET reaction responds to added halide salts. Clearly the two 

closely-related reactions (2-1) and (2-2) are behaving similarly upon addition of salt.6   

The decrease in solvation (as reflected in dropping hydration energies)51 of the 

halides as we move from F- to Br-, would imply that during the formation of an ion-

pair between the anion and the 3+ oxidant (the ruthenium(III) complex) fewer and/or 

less tightly-bound waters of hydration would be lost in the process of forming that 

ion-pair. The same logic would apply to the step in which the (presumed) ternary 

precursor complex which leads to ET (see Chapter 1, section 1.2). The enthalpically-

unfavorable dehydration at X- would be lower in magnitude for the larger (and less 

hydrated) halide ions like Br- and I-, and this would logically be expected to show up 

as a decrement in the overall ΔH≠. At the same time, the smaller entropy gain upon 

desolvation of I- and Br- (as compared to the strongly-hydrated F-) ion would provide 

less compensation for the typically-large entropic barrier expected in a bimolecular 

reaction which requires association of like-charged reactants (and possibly specific 

orientation) to reach the transition state.  
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2.16.3 Effects of added Group VIIIb hexacyano salts on reaction (2-2) activation  

parameters 

The temperature-dependent NMR kinetic work conducted by Qin8 on reaction 

(2-2) using NME line-broadening (at 5.00 mM reactants) showed that added iron(II), 

ruthenium(II), and osmium(II) hexacyano salts (see Table 2.2) catalyze ET reaction 

(2-2) to an extent even far beyond muconate with respect to reaction (2-1) observed 

by stopped-flow. Their profound catalytic activity increased in the order RuII(CN)6
4- < 

OsII(CN)6
4- < FeII(CN)6

4-. A similar pattern was found by Mehmood9 in his stopped-

flow investigations (including temperature-dependent rate measurements) of reaction    

(2-1) by stopped-flow. The ordering of the catalytic efficacy was explained on the 

basis of a redox-potential dependent virtual “hole-transfer” super-exchange 

mechanism since the MII/III(CN)6
4-/3- redox potentials decrease in the order Fe < Os < 

Ru.41 In the current work, we have sought to verify Qin’s measurements at 5.00 mM 

reactants under the same conditions using the same 19F NMR line-broadening method 

as she did ( although now using a Varian 500 MHz NMR spectrometer rather than the 

previous Bruker 400 MHz spectrometer). We have also extended the NMR work to 

probe the catalysis at 0.10 mM reactants using T2 relaxation. The 5.00 mM reactants 

results are presented in Table 2.31 and illustrated in Figure 2.51. The concentrations 

of the added potassium hexacyano salts in the exchanging solutions were held 

constant at [MII(CN)6]
4- = 3.9x10-4 M, which was sufficiently enough to be well up 

into the “catalytic region” (see Figure 2.40). This catalyst concentration was also 

helpful in minimizing any tendency towards decay in the ET catalytic effect simply 
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due to standing (vide supra, section 2.15). The line-broadening derived rates listed in 

Table 2.30 were calculated using the “fast-exchange” equation (2-13) for the 

K4FeII(CN)6 salt and the “slow exchange” equation (2-7) for the K4OsII(CN)6 and 

K4RuII(CN)6 salts (see Figure 2.9).  

 

Table 2.31  Temperature dependent rate data at 5.00 mM reactants in the presence 

of the three hexacyano salts making a total GP = 0.181 (3.9x10-4 M salt). Column 

(a) shows values of ln(kex / T) obtained from raw kex values compared with (b) 

previously obtained values of ln(kex / T).8  

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 4.503x106 9.67 9.79

288 0.00347 6.546x106 10.03 10.19

293 0.00341 1.146x107 10.57 10.75

299 0.00334 2.095x107 11.16 11.13

304 0.00329 2.095x107 11.66 11.62

K4Fe(CN)6  (3.9x10-4 M)

 
 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 2.967x104 4.65 5.50

288 0.00347 3.480x104 4.79 5.67

293 0.00341 4.253x104 4.98 5.77

299 0.00334 4.983x104 5.12 6.05

304 0.00329 7.281x104 5.48 6.34

K4Ru(CN)6  (3.9x10-4 M)
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Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 3.270x104 4.75 5.88

288 0.00347 6.509x104 5.42 5.98

293 0.00341 9.682x104 5.80 6.56

299 0.00334 1.213x105 6.01 6.73

K4Os(CN)6  (3.9x10-4 M)
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[(NH3)5RuII/IIItfmp]2+/3+ = 5 mM, (Previous8)

 
Figure 2.51 Temperature dependent line-broadening data for reaction (2-2) 

obtained at 5.00 mM reactants with no added salt (this work, black squares; Qin, grey 

stars; GP = 0.171), and 3.9x10-4 M added K4FeII(CN)6 (red circles), K4RuII(CN)6 

(green circles), and K4OsII(CN)6 (yellow circles) such that the total solution GP = 

0.181. The corresponding data obtained previously by Qin are plotted as red, green, 

and yellow triangles, respectively.8  
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Table 2.32  The activation parameters, ΔH≠ and ΔS≠, for reaction (2-2) at 0.10 mM 

reactants in the presence of added electrolytes at 3.9x10-4 M (constant solution GP = 

0.181, except for the no salt case) derived from linear fits of the temperature-

dependent rate data presented in Table 2.31 (illustrated in Figure 2.51). 

Electrolyte Slope y-intercept ∆H≠            

(kJ/mol)
∆S≠                

(J/K mol)
∆G≠

298 

(kJ/mol)

No Salt -2550 ± 190 12.3 ± 0.6 21.2 ± 1.5 -95 ± 5 49.5

K4Fe(CN)6 -8300 ± 350 38.9 ± 1.2 68.9 ± 2.9 126 ± 10 31.4

K4Os(CN)6 -6600 ± 1300 28.1 ± 4.5 54.7 ± 10.8 36 ± 27 44.0

K4Ru(CN)6 -3400 ± 430 16.6 ± 1.5 28.2 ± 3.6 -59.7 ± 12.3 46.0
 

 

In Figure 2.51 we see that there is good agreement between the two studies for 

added ferrocyanide and no-added salt cases, but for added rutheno- and 

osminocyanide the current results deviate downwards from Qin’s.8  Table 2.33 below 

compares the two studies. 

 
Table 2.33  The activation parameters, ΔH≠ and ΔS≠ derived from the regression 

lines in Figure 2.51 for reaction (2-2) at 5.00 mM reactants in the presence of the 

added hexacyano salts (constant solution GP = 0.0181, except for the no-salt case).  

Reaction   

(2-2)(a) 

Reaction   

(2-2)(b) 

Reaction      

(2-2)(a) 

Reaction      

(2-2)(b) 

No Salt 21.2 ± 1.5 20.8 ± 0.8 -95 ± 5 -97 ± 3

K4Fe(CN)6 68.9 ± 2.9 59.5 ± 1.1 126 ± 10 94 ± 4

K4Os(CN)6 54.7 ± 10.8 46.3 ± 1.9 36 ± 27 15 ± 6

K4Ru(CN)6 28.2 ± 3.6 33.3 ± 1.3 -60 ± 12 -35 ± 5

Electrolyte

∆H≠ (kJ/mol) ∆S≠(J/K mol)

 
(a) Values obtained by this work using a 500 MHz NMR spectrometer compared with (b) those 

previously obtained by Qin on a 400 MHz NMR spectrometer.8 
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When comparing the activation parameters from the two studies side by side 

in Table 2.32, we see that both the ΔH≠ and ΔS≠ values are within error of each other 

for the first row (no added salt) but somewhat divergent for the catalyzed reactions. In 

both studies, however, we see that added K4Fe(CN)6 had the largest catalytic effect 

and that the origin appears to be in the profound reduction in the entropic barrier 

(from -95 J/mol K to +126 J/mol K) since ΔH≠ actually increases by 47.7 kJ/mol  

compared to the no-salt case (this work).  In fact, this remarkable change in the 

entropic “barrier” from -95 J/K mol with no catalyst to +126 J/K mol (+ 97 J/K mol 

in Qin’s work8) indicates that there is no entropic barrier at all and when FeII(CN)6
4- 

is present there actually is an entropic “payoff” to forming the transition state. This 

situation occurs, though to a less extreme degree, with added osiminocyanide where 

once again the rate goes up due to large, positive δΔS≠ in spite of a significant 

positive δΔH≠ with respect to no catalyst. With added ruthenocyanide we see an 

entropic barrier again, but it is 35.6 J/K mol more favorable than the no-salt reference 

case (62 J/K mol less unfavorable in Qin’s work). In the now-familiar trend, this 

positive δΔS≠ due to catalysis over-shadows the modest δΔH≠ of +7 kJ/mol (+13 

kJ/mol, Qin8). 

We note the rate acceleration afforded by these catalysts, even the “weakest” 

one (rutheniumcyanide), far surpassed any simple GP effect as was seen with added 

simple salts. While the addition of 3.9x10-4 M K4M(CN)6 salt to 5.00 mM reactants 

increases the solution GP from GPrcts = 0.171 to a new value of GPtotal = 0.181, this 

increment in GP would have negligible Debye-Hückle-Bronsted type kinetic 
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consequences (see, for example, Figure 2.40). Thus we know that the origin of the 

catalysis must lay elsewhere. Since the sizes of the hexacyanide ions are roughly the 

same (see Table 2.36), the spectacular variation with central metal ion implies that 

some aspect of electronic structure and/or redox thermodynamics must be involved.    

As was done in our analysis of the halide and dicarboxylate temperature data, 

we have constructed an isokinetic plot of ΔH≠ vs. ΔS≠ in Figure 2.52. Again we have 

included both the current NMR-derived activation parameters and the corresponding 

ones from Qin.8 The very similar isokinetic43,49,50 (ΔH≠ vs. ΔS≠) correlation again 

observed by both trials validates both previous and current work.  
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Figure 2.52 Enthalpy-Entropy compensation at 5.00 mM reactants in the presence 

of the hexacyano salts (at 3.9x10-4 M) for reaction (2-2) (red, green, and yellow 

circles, dotted line) compared with previous data obtained by Qin (red, green, and 

yellow triangles, dashed line).8 The error bars represent the standard deviations 

associated with the linear fits of the temperature dependent data (listed in Table 2.33).  
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When the slopes of the plots generated in Figure 2.52 are compared, we find 

slopes of 223 ± 19 K for the current work and 206 ± 12 K for Qin’s work.8 These 

slopes, and hence isokinetic temperatures, are within error of each other and are both 

well-removed from the experimental temperature range. It is surprising that the no 

added salt points line up so well with the hexacyano series since the presumed 

mechanism and transition states are so different.  

Temperature dependent kinetic measurements of reaction (2-2) with added 

K4M(CN)6 salts (at 8x10-6 M salt) were also conducted at 0.10 mM reactants using 

T2. These data are presented in Table 2.34 and illustrated in Figure 2.53. The 

K4Fe(CN)6 salt was not studied at this reactants concentration due to the rate 

enhancement being too large to observe in the “stable” region (vide supra section 

2.15). As in all the previous activation parameter work acquired by T2, equation (2-

32) was applied to all experimental kex values in order to normalize the run-to-run 

jitter in the ln(kex / T) datasets. 
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Table 2.34 Temperature dependent rate data at 0.10 mM reactants in the presence 

of K4Ru(CN)6 and K4Os(CN)6 making a total GP = 0.0295 (8x10-6 M salt). Column 

(a) lists the values of ln(kex / T) obtained from raw kex values, and (b) shows the same 

data after normalizing all runs to an average kex value at a reactants concentration of 

0.10 mM with no salt added (at 299 K based off 5 measurements at this temperature). 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 3.686x104 4.87 4.69

288 0.00347 4.623x104 5.08 4.90

293 0.00341 6.280x104 5.37 5.19

299 0.00334 7.864x104 5.57 5.39 ± 0.12

304 0.00329 9.174x104 5.71 5.53

K4Ru(CN)6  (8x10-6 M)

 
 

Temperature (K) 1/T (K-1) kex (M
-1 s-1) ln(kex / T) (a) ln(kex / T) (b)

283 0.00353 1.190x104 3.74 3.83

288 0.00347 1.649x104 4.05 4.14

293 0.00341 2.341x104 4.38 4.47

299 0.00334 3.590x104 4.79 4.88 ± 0.12

K4Os(CN)6  (8x10-6 M)
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Figure 2.53  Temperature dependent rate data for reaction (2-2) at 0.10 mM 

reactants with no added salt (black squares, GP = 0.0291), added K4RuII(CN)6            

(8x10-6 M, green circles), and K4OsII(CN)6 (8x10-6 M, yellow circles) making a total 

solution GP = 0.0295. 
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Table 2.35  The activation parameters, ΔH≠ and ΔS≠, for reaction (2-2) at 0.10 mM 

reactants in the presence of added hexacyano salts at a concentration of 8x10-6 M 

(constant solution GP = 0.0295, except for no-salt) derived from linear fits of the 

temperature-dependent rate data presented in Table 2.34 (illustrated in Figure 2.53). 

Electrolyte Slope y-intercept ∆H≠            

(kJ/mol)
∆S≠                

(J/K mol)
∆G≠

298 

(kJ/mol)

No Salt -2000 ± 389 8.7 ± 1.3 16.6 ± 3.2 -125 ± 11 53.9

K4Os(CN)6 -5560 ± 152 23.5 ± 0.5 46.2 ± 1.3 -2.5 ± 4.3 46.9

K4Ru(CN)6 -3390 ± 433 17.6 ± 0.6 30.4 ± 1.5 -51 ± 5 45.6
 

 

As was observed by line-broadening at 5.00 mM reactants, both the entropy 

and enthalpy of activation become larger (more positive) as we go from K4RuII(CN)6 

to K4OsII(CN)6. The enthalpy of activation with added K4OsII(CN)6 is 46.2 ± 1.3 

kJ/mol and 30.4 ± 1.5 kJ/mol with K4RuII(CN)6. Interestingly, the entropy of 

activation with added K4OsII(CN)6 is -2.5 ± 4.3 J/K mol, now a just-finite “barrier” 

again, and it is -51.1 ± 5.2 J/mol in the presence of added K4RuII(CN)6.
14  The values 

of ΔH≠ and ΔS≠ obtained for added K4M
II(CN)6 salts support the notion that quantum 

super-exchange is still the source of the observed rate enhancement at extremely low 

concentrations of salt, but the effects are less dramatic and clearly supportive of the 

quantum super-exchange picture than in the 5.00 mM reactants work.  
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2.17 Kinetic Modeling  

 As noted in previous sections, the measured salt effects on the rate of 

bimolecular ET between our like-charged complexes diverge significantly from what 

the Debye-Hückel-Bronsted theory would predict11 for all salts studied except for 

added KF at 0.10 mM reactants (as shown by the logkex vs. GP plots in Figures 2.27 

through 2.33). To develop a deeper understanding of this surprising range of behavior 

in the observed kinetic salt effects, we have applied a simple extension of the “pre-

equilibrium” kinetic model based on assumed ionic associations followed by first-

order (intramolecular) ET reactive steps inside three identifiable reactive 

intermediates.  In this section we will explain the details of the model and our results 

thus far in using it to fit our salt-dependent rate data.  We will show how this model 

substantially succeeds in explaining the “classical” Debye-Hückel behavior observed 

for added fluoride (see equation (1-35)11,37) and how we can at least partially account 

for the observed divergences for other salts. These modeling studies of kinetic salt 

effects will be compared with those arrived at previously using the same formalism 

(and effectively equivalent mathematical methods) already employed by Sista6, 

Inagaki7, and Mehmood9 using stopped-flow, and by Qin8 using line-broadening.  

 Our approach is to consider the simplest-plausible mechanistic scheme which 

might capture the bases of the measured kinetic salt effects. We postulate two 

fundamental types of reaction steps which would respond to the presence of added 

electrolytes and thereby modulate the rate of reaction (2-2). The first and simplest of 

these steps consist of the second-order associative encounter of reactants to form, and 
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the first-order dissociation to destroy, the ET “precursor complex” (PC) as explained 

in chapter 1, section 1.3.  Studying equations (1-40) to (1-42) in chapter 1 (see section 

1.8), and looking at the expression for the electrostatic “work term”, w(r,μ) , defined 

by equation (1-43), we see that an added salt would ease the work of association 

between RuII and RuIII (for convenience, the two rutheniumpentaammine pyridyl 

reactants in reaction (2-2) will be denoted by RuII and RuIII, respectively) simply on 

the basis of the corresponding increments in ionic strength μ (and also the 

corresponding GP function from Debye-Hückel theory, see equation (1-37)11,52). We 

will explicitly consider ionic strength effects on the rates of association/dissociation 

relevant to PC as well as on association/dissociation rates to form various ion-paired 

reactive species such as RuIII٠X, which become important at higher [X-] (see 

equations (1-41) to (1-42)). The second category of reactive steps are those which 

involve the fundamental first-order act of activated ET from donor to acceptor within 

the PC or some higher-order assembly such as “PCX” (see Channel 1, step (1a) 

below).  Here, our salt-specific predictive capability is minimal and in fact the major 

goal of our modeling work was to discover what can be inferred about specific anion 

differences on these elementary steps. 

The first and simplest kinetic pathway contributing to kex for reaction (2-2) 

will be denoted below as Channel 1. It involves the RuII and RuIII reactant ions 

diffusive encounter to form the precursor complex, PC (this is a reversible step 

favoring the non-associated reactants due to the high coulombic repulsion between 

the like-charged reactants; see also equations (1-41) to (1-42) in section 1.8). After 
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formation of the precursor complex, activated ET occurs (see equations (1-18) to (1-

26) in section 1.5.4) to form the successor complex which then dissociates into 

products on a timescale fast compared to the reverse ET reaction (which is simply 

another manifestation of the “pre-equilibrium” kinetic limit discussed in section 1.3, 

equations (1-2) to (1-6)). 

Channel 1: Reactive Flux Through “PC” 

         

Channel 1 can be expected to predominate the reactive flux at low (or no) 

added-salt conditions where ion-pairing between reactants and salt anions, X, will be 

negligible. In this case, we model the kinetic salt effects under the assumptions that 

ka1 and kd1 will respond to changes in ionic strength as predicted by equations   (1-41) 

and (1-42) and that “spectator” salt effects on the magnitude of kET taking PC on to 

products are negligible (we will return to and discuss this latter assumption later in 

this chapter). 

 When the concentration of added salt is sufficient however, ion-pairing can 

no longer be neglected and the second kinetic pathway (denoted below by Channel 2) 

becomes operative. This opens up the possibility for anion-specific rate effects to 

arise since the amounts of reactive flux being carried through the transient, ternary 

PCX species would be expected to depend on the identity of X at least in principle. 

When this occurs, Channel 1 and Channel 2 operate simultaneously at low [X], but 

then there will be a shifting competition regarding how the reactive flux partitions 
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between the channels in establishing the measured kex at a particular reactants 

concentration and added salt concentration. In our treatment of Channel 2, all ion-

pairing between RuII and X has been neglected due to the higher charge on the RuIII 

complex with its more lewis-acidic nature making it the more favorable partner for 

association with X at modest [X].53  Any finite equilibrium concentration of the ion-

pair RuIII٠X is assumed by the model to reversibly associate with a free RuII complex 

and form the ternary, anion-containing precursor complex, PCX as shown in step 

(2a). A competing route to PCX is also considered in this Channel via step (2b), 

which requires association of the precursor complex formed in Channel 1, PC, with a 

free salt anion, X.  Analogous to Channel 1, precursor complex formation is followed 

by activated ET within PCX (with rate kETX) to form the successor complex which 

then dissociates to products, PRD. 

Channel 2: Reactive Flux Through “PCX” 

         

At still higher salt concentrations, Channel 3 becomes active as shown below. 

Now associative equilibria to form the quaternary reactive intermediate, PCXX, are 

assumed to be a necessary source of the reactive flux leading to our observed rates at 

high [X] (which topped out at 0.14 M in the bulk of our experiments). It can now be 

considered that there will be shifting contributions among Channels 1, 2, and 3 in 

carrying the overall ET reactive flux giving rise to our measured kex.  In Channel 3 we 
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have considered multiple associative routes to formation of the precursor complex, 

PCXX. These include the possibility of two anions associating with the RuIII complex 

to form the ion-pair RuIII·2X (as in step (3a)), as well as the association of X twice 

with the precursor complex formed in Channel 1, PC, making the ion-pair PCXX 

(note step (3c) below).  At sufficiently large [X] in the exchanging solution, the 

association of the RuII complex with X must be considered in this channel as well 

(note the lower entering branch for (3b) below). As was assumed in both Channel 1 

and Channel 2, once the precursor complex has formed, activated ET occurs as a first-

order process and the successor complex then dissociates to products. 

Channel 3: Reactive Flux Through “PCXX” 

          

In order to apply the kinetic model developed here to our system some 

simplifying assumptions are required. Channel 1 is assumed to respond to added salt 

only through the ka1 and kd1 associative/dissociative rate constants due to the presence 

of the solution ionic strength in the w(σ, μ) expression as presented in chapter 1 (see 

section 1.8; equation (1-43)). We will further assume that kET has no or only 

negligible dependence on the ionic strength therefore making it the only “adjustable” 
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parameter in our kinetic simulation of Channel 1 (the validity of this simplification 

will be addressed further on).  In Channels 2 and 3, “ion-pairing” events are 

sequentially incorporated, with first one and then two of the added salt anions.  Here, 

equations (1-41) and (1-42) (and the ionic radii taken either from the literature or 

computed from calculated reactant volumes, vide infra) was applied in order to 

compute values of the various kai and kdi as ionic strength increases.  As in the case 

for Channel 1, the only adjustable parameters are kETX and kETXX and these are the 

key “fit-parameters” altered in bringing the simulated kinetic rates into agreement 

with our experimentally-determined logkex vs. GP curves (with our kETX and kETXX 

also assumed to be independent of ionic strength). 

In the typical model for bimolecular ET, it is usually assumed that the 

pathway we are calling Channel 1 carries the entire reactive flux and that the 

observed rate constant in the “rapid pre-equilibrium” limit can be expressed as 

follows, 

ET
d

a
ETAex k

k

k
kKk                                         (2-33) 

where KA is defined by equation (1-40) in chapter 1 (see section 1.8) and kET is the 

first-order rate of ET (see also equations (1-41) and (1-42) regarding computation of 

the component ka and kd values at a given ionic strength). As we show, equation (2-

33) becomes secondary to more complex expressions for the reactive flux at high [X] 

when  Channels 2 and 3 “turn on” and must be incorporated in the overall rate 

calculation to account for the observed rate, kex (vide infra).  



 
 

249 
 

We have calculated the various kai and kdi values using the slightly-simplified 

work term expression, ),( rw , as shown below, 

(J)  
)r r(1 D  4

  
) ,(

2







 s

DA eZZ
rw                             (2-34)54 

where AZ  and BZ  are the charges of the two associating ions (for ion assemblies), e  

is the elementary charge of an electron,   is the permittivity of free space, sD  is the 

dielectric constant, r is the center-center distance of the ions in solution,   is Debye-

inverse length defined by equation (1-33), and   is the ionic strength defined by 

equation (1-30). When the values of the elementary charge of an electron, the 

permittivity of free space, and the dielectric constant of water are inserted into 

equation (2-33), the following expression is obtained, 

(J)  
) s s(1

  
109384.2) ,( 20





  DA ZZ

sw                           (2-35) 

where s is expressed in Å.   

In order to implement the three-channel kinetic model developed above, a rate 

expression specific to each channel was derived using the steady-state approximation 

(for the separate fluxes through intermediates PC, PCX, and PCXX).50  These rate 

expressions were then simply added together at each experimental value used in the 

concentration range of added X (and hence total solution μ and GP), to arrive at a 

calculated best-fit value, kex (calc.), to the experimental rate, kex (measured).  

To account for the progressive shift in reactive flux away from Channel 1 thru 

“PC” and toward Channel 2 thru “PCX” as [X] increases, the previous rate expression 
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for Channel 1 defined by equation (2-33) was adjusted at low-to-moderate [X] in 

order to account for the formation of the ion-pair RuIII·X. The initial reactive flux 

through PC (formed from [RuIII]) is now replaced by flux through PCX which is 

formed from [RuIII·X] as Channel 2 opens up.  In this limit, equation (2-33) becomes, 

 [X])K-(1Kkk A2A1ET1                                         (2-36) 

where KA1 = ka1/kd1 and KA2 = ka2/kd2 (see (2a) of Channel 2 and (3a) of Channel 3 

above). The steady-state derived rate expressions (vide infra) become significantly 

more complex as we account for the reactive fluxes thru Channels 2 and 3. The rate 

expression for reactive flux thru PCX of Channel 2 (which still retains an aspect of 

Channel 1 in (2b) and also accounts for loss of [RuIII·X] due to the formation of the 

ion-triplet RuIII·2X in (3a)) is found to be, 













d4d3

A2A1a4A5A2a3
ETX2 kk

[X])K-(1Kk[X])K-(1Kk
[X]kk               (2-37) 

where all variables have been previously defined. The rate expression for reactive 

flux through PCXX of Channel 3, now accounts for rates of all the pre-steps in 

Channels 1 and 2, leading to PC, PCX and RuIII·X, written as, 

Y[X]kk 2
ETXX3                                            (2-38) 

where Y is defined by, 
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The full details of these steady-state deviations are derived in Appendix 1. 

Equations (2-36) to (2-38) were then used to calculate the overall rate constant for 

reaction (2-2) as a function of added-salt concentration (and hence total ionic strength 

and solution GP) as the sum of reactive fluxes thru the PC, PCX, and PCXX reactive 

intermediates. The values of the adjustable constants kETX and kETXX were iteratively 

varied to achieve best-fit to the experimentally logkex vs. GP curves.  All the various 

kai and kdi calculations were completed using MathCad 14.0 (Parametric Technology 

Corporation).  The radii used are listed in Tables 2.36 and 2.37. In all cases, all 

variables associated with distance/length which are defined in units of meters in the 

literature-sourced expressions used were converted into units of Angstroms in our 

calculations. Any constants in the relevant rate expressions were adjusted to reflect 

this as well. 
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Table 2.36 The experimental(a) and calculated radii of the various added-salt and 

reactant ions used in kinetic simulations.  

Ion Radius (Å)

F- 1.50 (a), 3.89 (c)

Cl- 1.90 (a), 4.41 (c)

Br- 2.61 (b), 4.08 (c)

muc2- 3.86 (b)

adip2- 3.97 (b)

tere2- 4.13 (b)

1,4-dcch2- 4.11 (b)

FeII(CN)6
4- 4.24 (b)

RuII(CN)6
4- 4.38 (b)

OsII(CN)6
4- 4.35 (b)

[(NH3)5RuIItfmp]2+ 4.55 (b)

[(NH3)5RuIIItfmp]3+ 4.48 (b)
 

 

(a) The crystallographic radii values were obtained from Kielland55, (b) calculated using B3LYP, 6-

311+(2d.p)/sdd level using the “genecp” ad “volume=tight” keywords along with the PCM solvation 

model in Gaussian 09 W56, and (c) the approximate hydrated radii of the halides were calculated at the 

same level but including six explicit waters in the primary shell. 

 

The radii of the various ion-pairs and associated precursor species (PC, PCX, 

and PCXX) which were used in subsequent calculations are listed in Table 2.37. 

These were calculated using the component radii listed above to compute and add up 

the component volumes followed by a computation of the radius of a sphere of equal 

volume to the relevant composite species.11 For example, the sphere of equivalent 

volume for the ion-pair RuIII·F- is calculated as follows, 

54.4r)50.148.4(
3

4
)rr(

3

4
V

F Ru

3333

F Ru III
-FIIIRu

III   
          (2-40) 
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where  F RuIIIV  is the simple sum volume of the ion-pair RuIII·F- at contact and the 

4.54 Å radius results from the calculation of the radius of a (presumed) single sphere 

of equal volume to that of the merged constituents.11  

 

Table 2.37 The calculated radii of various ion-pairs using values of bare radii 

listed in Table 2.36 and employing equation (2-40).  

Ion Radius (Å) Ion Radius (Å)

RuII·F- 4.60 (a), 5.35 (b) RuIII·2 F- 4.59 (a), 5.92 (b)

RuIII·F- 4.54 (a), 5.30 (b) RuIII·2 Cl- 4.70 (a), 6.39(b)

RuII·Cl- 4.66 (a), 5.65 (b) RuIII·2 Br- 5.01 (a), 6.09 (b)

RuIII·Cl- 4.59 (a), 5.60 (b) RuIII·2 muc2- 5.90 (a)

RuII·Br- 4.82 (a), 5.45 (b) RuIII·2 adip2- 5.99 (a)

RuIII·Br- 4.76 (a), 5.40 (b) RuIII·2 tere2- 6.13 (a)

RuII·muc2- 5.33 (a) RuIII·2 (1,4-dcch)2- 6.12 (a)

RuIII·muc2- 5.28 (a) RuIII·2 [K4FeII(CN)6] 6.23 (a)

RuII·adip2- 5.39 (a) RuIII·2 [K4RuII(CN)6] 6.37 (a)

RuIII·adip2- 5.34 (a) RuIII·2 [K4OsII(CN)6] 6.34 (a)

RuII·tere2- 5.48 (a) RuII·RuIII·F- 5.72 (a), 6.24 (b)

RuIII·tere2- 5.43 (a) RuII·RuIII·Cl- 5.76 (a), 6.46 (b)

RuII·1,4-dcch2- 5.47 (a) RuII·RuIII·Br- 5.75 (a), 6.32 (b)

RuIII·1,4-dcch2- 5.42 (a) RuII·RuIII·muc2- 6.27 (a)

RuII·FeII(CN)6
4- 5.54 (a) RuII·RuIII·adip2- 6.23 (a)

RuIII·FeII(CN)6
4- 5.50 (a) RuII·RuIII·tere2- 6.34 (a)

RuII·RuII(CN)6
4- 5.63 (a) RuII·RuIII·(1,4-dcch)2- 6.33 (a)

RuIII·RuII(CN)6
4- 5.58 (a) RuII·RuIII·FeII(CN)6

4- 6.39 (a)

RuII·OsII(CN)6
4- 5.61 (a) RuII·RuIII·RuII(CN)6

4- 6.45 (a)

RuIII·OsII(CN)6
4- 5.56 (a) RuII·RuIII·OsII(CN)6

4- 6.43 (a)

RuII·RuIII 5.69 (a)
 

(a) with no waters of hydration and (b) with waters of hydration included in the halide ion radii. 
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One aspect of the fitting strategy used to arrive at the optimum set of kET, 

kETX, and kETXX values for a given salt, radii set, and anion was to first postulate that 

kET, the uncatalyzed first-order rate constant inside the [RuII, RuIII] precursor 

complex, PC, should be common to all runs and invariant with ionic strength (to 

within our experimental precision) across our dataset collected at 26⁰C. The well-

defined experimental second-order kex value at 0.10 mM reactants with no added salt  

of kex = 2080 ± 1.12 M-1 sec-1 was used to calculate kET (using equation (2-36)) which 

gave a value of kET = 8.60x104. Please note that the value of kET is only as accurate as 

the ka and kd values in equation (2-33) are and hence, in the modeling work to follow 

everything was contingent on this one “foundational” rate, but in an absolute sense its 

value could easily be off by a factor of 5 or even 10.11  

 
2.17.1 Application of our model to self-salting data 

An immediate complication which our model encounters is in how predictions 

made using it (and also the simple Debye-Huckle-Bronsted model) compare with the 

reactants-concentration only “self-salting” rate variations documented in Table 2.10 

and Figure 2.25. In Figure 2.54 we plotted our experimental reactants-only logkex vs. 

GP data and compared them with predictions based on the simple Debye-Huckle-

Bronsted model (equation (1-36), red dotted line), and the simplest case of equation 

(2-33) where only the ionic strength dependencies of ka and kd are accounted for (see 

the blue line). For the linear plots we have used the experimental logkex value at 0.10 

mM with no salt added as the anchor point from which equation (1-36) and (2-33) 

were applied. 



 
 

255 
 

GP

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

lo
gk

ex

3.4

3.6

3.8

4.0

4.2

logkex Experimental Values

logkex Debye-Huckle-Bronsted Values 

logkex Calculated Values Using Equation (2-36)

 3.146.12(GP)(DBH)logk ex

)02.0(22.3GP *)21.0(22.436))-(2(Equation logk ex 

Figure 2.54 The experimentally measured logkex values vs. GP data compared with 

calculated values of logkex theoretically predicted by both the Debye-Hückle-

Bronsted equation (1-38) and equation (2-36).  
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From the Figure we see that neither the simple Debye-Huckle-Bronsted linear 

plot with slope 6.1 or the equation (2-33) plot with slope 4.2 ± 0.21 adequately fits 

the data. This difference in slopes appears to derive from a small systematic deviation 

in the Debye-Smoluchowski/Debye-Eigen treatments of ka and kd (see equations (1-

41) and (1-42)) and the older Debye-Hückle-Bronsted equation. The blue squares 

calculated from equation (2-36), however, do match the qualitative curve of the 

experimental data, but a consistent offset remains. In order to address this deviation in 

the salt-specific modeling work to follow at reactant concentrations > 0.10 mM, we 

modeled our experimental rate data by using the kex values (plotted as logkex values) 

generated using our constrained kET value at the anchor points (kex values at each 

reactants concentration with no salt added) from which to then model our 

experimental salt-specific rate data. Therefore, there is small offset in the initial 

starting point when comparing our modeled data with experimental data. Following 

this, we obtained an initial value for kETX by adjusting it such that the calculated rate 

using only Channels 1 and 2 (equations (2-36) and (2-37), respectively) matched the 

early part of the logkex vs. GP experimental curve. Inclusion of Channel 3 then 

allowed a first-pass attempt at modeling the entire experimental curve in the initial 

(crude) limit of kETXX = kETX. This computed curve typically rises too quickly in the 

early portion, therefore kETX was decreased and kETXX was adjusted iteratively until 

stable and best-fit values were obtained.  The best-fit rate constants calculated using 

equations (2-36) to (2-38) as a function of self-salting are listed in Table 2.39 along 

with the experimental data for comparison. Figure 2.55 illustrates the level of 
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agreement between the simulated and actual logkex vs. reactants curves obtained over 

our studied reactants concentration range.   

 

Table 2.38 Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. the self-salting curve over the 

reactants concentration range of 0.10 mM to 5.00 mM). These optimized values lead 

to the model-calculated rates listed in Table 2.39. The kETX/kET and kETXX/kETX ratios 

are listed in the final two columns.  

kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

8.6x104 1.5x105 1.0x105 1.7 0.7
 

 

(a) Estimated uncertainty±5%, (b) Estimated uncertainty of ±5-10%, (c) estimated uncertainty of 

±30%, (d) estimated uncertainty of ±7-10%, and (e) estimated uncertainty of ±12%. 

 

Table 2.39 Experimental and model-calculated rate constants for reaction (2-2) as 

a function of GP arrived at using the three-channel model summarized in equations 

(2-36) through (2-38) and the best-fit rate constants listed in Table 2.38. The data 

fitted curves are illustrated in Figure 2.55. 

Reactants  
conc.      
(mM)

GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.10 0.0291 3.32 ± 0.05 3.32 3.34 3.34
0.50 0.0629 3.58 ± 0.04 3.48 3.57 3.57
1.00 0.0866 3.71 ± 0.02 3.58 3.71 3.72
5.00 0.1800 4.04 ± 0.05 3.87 4.15 4.18  
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Figure 2.55 Experimental data and kinetic modeling results for the self-salting 

curve (reactants concentration 0.10 mM – 5.00 mM). The T2 NMR data (black 

squares) are compared with modeling results using Channel 1 (yellow circles), 

Channels 1 + 2 (green circles), and Channels 1 + 2 + 3 (red circles).  
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 Through the application of our model to our self-salting data (reactants only) 

we are able to better understand why a linear curve is found with a slop of 6 as would 

be predicted from the Debye-Huckel-Bronsted equation.11  The kET and kETX values 

necessary to fit the data were 8.6x104 and 1.5x105, respectively, giving a ratio of 

kETX/kET equal to 1.74. This result suggests ion-pairing with the Cl- ions is occurring 

in the reactant solution and this result will be discussed further on. 

 
2.17.2 Salt-specific kinetic modeling at [RuII] = [RuIII] = 0.10 mM  

Kinetic simulations of reaction (2-2) based on our three-channel model were 

first carried out at the relatively-low (stopped-flow equivalent) reactants 

concentration of 0.10 mM in the presence of progressively increasing concentrations 

of added simple salts, dicarboxlylate salts, and the ferro-, osmino-, and rutheno-

hexacyano species. The kET, kETX, and kETXX values necessary to fit the data are listed 

in Table 2.40 along with the best-fit kETX/kET and kETXX/kETX ratios. The best-fit rate 

constants calculated using equations (2-36) to (2-38) as a function of added-salt 

concentration are listed in Table 2.41 along with the experimental data for 

comparison. Figures 2.56 to 2.65 illustrate the level of agreement between the 

simulated and actual logkex vs. [salt] curves obtained at 0.10 mM reactants.   

One of our primary concerns for measuring and interpreting the ET catalytic 

effect of the various added-salt anions investigated was to see how kETX for catalyzed 

ET compared to the kET for uncatalyzed rate of ET inside the more typical RuII·RuIII 

bimolecular precursor complex, PC (note the kETX/kET ratio listed in the fifth column 

of Table 2.40).  In the case of F- only Channels 1 and 2 were required to fit the data at 
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0.10 mM reactants and in all other cases Channels 1 to 3 were necessary.  In all cases 

beyond F- we found that the best-fit values for kETX were not very sensitive (showing 

only small variations of < ~5-10%) to whether the kETXX values were in fact varied to 

optimize fit in the high [X] region or simply kept at kETXX ~ kETX (even when 

optimized to best-fit, the kETXX values themselves were considered to be too uncertain 

for detailed interpretation). In Table 2.41 (and the subsequent ones like it at higher 

reactant concentrations) we have listed the best-fit logkex (calc.) values resulting from 

fits calculated assuming reactive flux thru Channel 1 only and from fits using the sum 

of the fluxes thru Channels 1 and 2 as applied to the early (GP < ~0.0713) part of the 

experimental curves (see the fourth and fifth columns in Table 2.41). The most-

informative kETX/kET ratios listed, however, are the ones in the fifth column of Table 

2.40 which were arrived at using the “full” model based on the sum of the computed 

reactive fluxes through Channels 1-3 (see the last column in Table 2.41, except for 

fluoride).  
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Table 2.40 Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

[RuII] = [RuIII] = 0.10 mM for the halide and dicarboxylate anions studied). These 

optimized values lead to the model-calculated rates listed in Table 2.41. The kETX/kET 

and kETXX/kETX ratios are listed in the final two columns.  

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

F-                   

(r = 1.50 Å)
8.6x104 8.2x104 - 0.9 -

F-                   

(r = 3.89 Å)
8.6x104 5.1x104 - 0.6 -

Cl-                  

(r = 1.90 Å)
8.6x104 4.6x105 5.1x105 5.3 1.1

Cl-                  

(r = 4.41 Å)
8.6x104 2.5x105 1.5x105 2.9 0.6

Br-                  

(r = 2.61 Å)
8.6x104 7.5x105 1.2x106 8.7 1.6

Br-                  

(r = 4.08 Å)
8.6x104 4.3x105 7.1x105 5.0 1.6

muc2-               

(r = 3.86 Å)
8.6x104 6.0x104 1.0x104 0.7 0.2

adip2-               

(r = 3.97 Å)
8.6x104 4.2x104 5.0x103 0.5 0.1

tere2-                

(r = 4.13 Å)
8.6x104 6.6x104 1.8x104 0.8 0.3

   (1,4-dcch)2-      

(r = 4.11 Å)
8.6x104 5.6x104 3.0x104 0.7 0.5

 
 

(a) Estimated uncertainty±5%, (b) Estimated uncertainty of ±5-10%, (c) estimated uncertainty of 

±30%, (d) estimated uncertainty of ±7-10%, and (e) estimated uncertainty of ±12%. 
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Table 2.41 Experimental and model-calculated rate constants at 0.10 mM for 

reaction (2-2) as a function of GP arrived at using the three-channel model 

summarized in equations (2-36) through (2-38) and the best-fit rate constants listed in 

Table 2.38 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The data 

fitted curves are illustrated in Figures 2.56 and 2.65. 

KF

r = 1.50 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 -
0.0361 3.361 3.352 3.365 -
0.0418 3.412 3.380 3.403 -
0.0511 3.447 3.422 3.464 -
0.0713 3.570 3.507 3.590 -
0.1020 3.587 3.617 3.762 -
0.1263 3.635 3.689 3.881 -  

 
KF

r = 3.89 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 -
0.0361 3.361 3.352 3.365 -
0.0418 3.412 3.379 3.403 -
0.0511 3.447 3.421 3.465 -
0.0713 3.570 3.504 3.590 -
0.1020 3.587 3.611 3.759 -
0.1263 3.635 3.679 3.874 -  
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NaCl

r = 1.90 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0361 - 3.352 3.423 3.423
0.0418 3.422 3.379 3.504 3.506
0.0511 3.628 3.422 3.628 3.635
0.0713 3.912 3.505 3.862 3.885
0.1020 4.214 3.614 4.143 4.199
0.1263 4.400 3.685 4.321 4.407  

 
KBr

r = 2.61 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0361 - 3.352 3.470 3.472
0.0418 3.560 3.379 3.581 3.587
0.0511 3.754 3.422 3.740 3.757
0.0713 4.050 3.506 4.018 4.065
0.1020 4.488 3.614 4.332 4.434
0.1263 4.674 3.685 4.524 4.673  

 
KBr

r = 4.08 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0361 - 3.352 3.457 3.460
0.0418 3.560 3.379 3.560 3.570
0.0511 3.754 3.421 3.711 3.734
0.0713 4.050 3.504 3.977 4.045
0.1020 4.488 3.610 4.279 4.428
0.1263 4.674 3.677 4.463 4.681  
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Na2muc

r = 3.86 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0400 3.708 3.358 3.591 3.592
0.0550 3.897 3.407 3.831 3.835
0.0735 4.068 3.458 4.032 4.040
0.1020 4.230 3.519 4.239 4.254
0.1209 4.306 3.551 4.339 4.359  

 
Na2adip

r = 3.97 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0550 3.761 3.408 3.742 3.744
0.0735 3.972 3.460 3.925 3.930
0.1020 4.140 3.524 4.120 4.130
0.1209 4.178 3.556 4.215 4.229  

 
Na2tere

r = 4.13 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0400 3.578 3.360 3.610 3.612
0.0550 3.885 3.410 3.860 3.866
0.0735 4.121 3.463 4.065 4.079
0.1020 4.296 3.529 4.277 4.303
0.1209 4.365 3.563 4.378 4.412  
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Na2(1,4-dcch)

r = 4.11 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291 3.318 ± 0.051 3.318 3.318 3.318
0.0400 3.738 3.360 3.579 3.581
0.0550 3.890 3.410 3.813 3.819
0.0735 4.028 3.463 4.013 4.025
0.1020 4.237 3.529 4.218 4.242
0.1209 4.305 3.563 4.318 4.351  
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Figure 2.56 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added KF (presumed crystallographic F- radius of 1.50 Å). The T2 NMR data 

(black squares) are compared with modeling results using Channel 1 (yellow circles) 

and Channels 1 + 2 (green circles). Also shown are Sista and Mehmood’s stopped 

flow data for added NaF (red triangles)6 and KF (blue triangles)9 with their initial 

points normalized along y to the starting logkex value of the NMR data for purposes 

of comparison. In the Channel 1+2 fit the final two block squares data were ignored. 
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Figure 2.57 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added KF now using the hydrated F- radius of 3.89 Å. The T2 NMR data (black 

squares) are compared with modeling results using Channel 1 (yellow circles) and 

Channels 1 + 2 (green circles). Also shown are Sista and Mehmood’s stopped flow 

data for added NaF (red triangles)6 and KF (blue triangles)9 with their initial points 

normalized along y to the starting logkex value of the NMR data for purposes of 

comparison. In the Channel 1+2 fit the final two block squares data were ignored. 
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Figure 2.58 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added NaCl using the crystallographic Cl- radius of 1.90 Å. The T2 NMR data 

(black squares) and stopped-flow data (blue triangles)6 are compared with modeling 

results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.59 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added NaCl now using the hydrated Cl- radius of 4.41 Å. The T2 NMR data 

(black squares) and stopped-flow data (blue triangles)6 are compared with modeling 

results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red circles). 
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Figure 2.60 Experimental data and kinetic modeling results at 0.10 mM reactants 

with KBr (presumed crystallographic Br- radius of 2.61 Å). The T2 NMR data (black 

squares) and stopped-flow data (blue triangles)6 are compared with modeling results 

using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.61 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added KBr now using the hydrated Br- radius of 4.08 Å. The T2 NMR data 

(black squares) and stopped-flow data (blue triangles)6 are compared with modeling 

results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.62 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added Na2muc using the crystallographic muc2- radius of 3.86 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.63 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added Na2adip using the crystallographic adip2- radius of 3.97 Å. The T2 NMR 

data (black squares) and stopped-flow data (blue triangles)6 are compared with 

modeling results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red 

circles).  
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Figure 2.64 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added Na2tere using the crystallographic tere2- radius of 4.13 Å. The T2 NMR 

data (black squares) and stopped-flow data (blue triangles)9 are compared with 

modeling results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 (red 

circles).  
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Figure 2.65 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added Na2(1,4-dcch) using the crystallographic 1,4-dcch2- radius of 4.11 Å. The 

T2 NMR data (black squares) and stopped-flow data (blue triangles)9 are compared 

with modeling results using Channels 1 + 2 (green circles) and Channels 1 + 2 + 3 

(red circles).   
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To assess the sensitivity of our model to variations in inputted ionic radii, we 

applied it to the experimental logkex vs. GP curves for reaction (2-2) using both 

hydrated and crystallographic radii for the F-, Cl-, and Br- anions as noted in Table 

2.36.  Previous kinetic modeling studies on the stopped-flow data6,9 on reaction (2-1) 

used only the unhydrated or “bare” crystallographic radii55 of the various halides ions 

(these data were modeled using the SpecFit program to predicatively model stopped-

flow absorbance vs. time-kinetic data according to the same kinetic scheme used 

here). Therefore, our conclusions are only directly comparable using the common set 

of crystallographic radii for the F-, Cl-, and Br-.  

Figure 2.55 shows the data and fit based on the crystallographic fluoride ion 

with r = 1.50 Å at 0.10 mM reactants. We note that while the very early part of the 

data exhibit linear behavior and give a slope of 6 (in good agreement with the Debye-

Huckel-Bronsted slope), the full-range is clearly curved downwards. The stopped-

flow data shown here were normalized to the NMR starting logkex value to allow for 

direct comparison of the salt effect on rate (this is necessary since stopped-flow 

reaction (2-1) is a pseudo self-exchange reaction with a 69 mV driving force and thus 

starts off with a slightly higher rate; about +0.34 logkex units at 0.10 mM reactants).  

We find that reactive fluxes through both Channel 1 and Channel 2 were necessary in 

order for the modeled rates to match the experimental data, as was previously shown 

to be the case in modeling the stopped-flow data.6  The kET and kETX values necessary 

to fit the data using the crystallographic fluoride radius were 8.6x104 and 8.2x104, 

respectively, giving a ratio of kETX/kET equal to 0.9.  A similar result was also found 
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by Sista for reaction (2-1) where kET and kETX were 2.7x105 and 2.5x105, respectively 

(giving a ratio of kETX/kET equal to 0.9 as well). From the computed values of ka2 and 

kd2 at an intermediate GP of 0.0713 ([F-] = 0.005 M) were 2.61x1010 and 2.34x109, 

and from KA2 = ka2/kd2 = 11.19 we conclude that significant ion-pairing must be 

occurring over most of the GP range even for this “simplest” and most ideal behaving 

case of added fluoride-the only one which quantitatively agrees with the Debye-

Hückel-Bronsted equation (1-38) at the low [F-] end. The nearly-identical NMR and 

stopped-flow kinetic salt effect with F- validate the presumed close relationship 

between the true self-exchange and the pseudo self-exchange ET energy barriers 

governing the two reactions. 

A similar comparison holds between our modeling work for the salt effects 

using unhydrated radii for the Cl- and Br- ions and the earlier SpecFit modeling work 

on reaction (2-1). When comparing the kET, kETX, and the (now necessary) kETXX 

values for the Cl- and Br- ions listed in Table 2.38 (and shown in Figures 2.57 to 

2.60), we now see that the kETX values of 4.6x105 and 7.5x105 are significantly larger 

than the “anchor” kET value of 8.6x104. This indicates that Pathway 2 (using Channels 

2 and 3) is the predominating pathway early on in the experimental range for the 

added halides beyond F-. The computed ion-pair formation constants, KA2, at a GP = 

0.0713 ([X] = 0.005 M) using the crystallographic radii for Cl- and Br- are 11.68 and 

11.56 respectively.  These magnitudes mean that ion-pairing is both important in the 

solution as well as, evidently, catalytic towards, ET in a manner which transcends the 

simple Debye-Huckle-Bronsted model.  We again find a sequential increase in the 
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kETX/kET ratio which now goes from 5.3 to 8.7 for Cl- and Br- respectively. Sista’s 

work on reaction (2-1) yielded ratios of 5.06 for Cl- and 10.09 for Br-, which is again 

in very good agreement with our NMR results. This trend in kETX/kET ratios for the F-, 

Cl-, Br- series might be due to an unaccounted for increase in the thermodynamic 

favorability for ion-pairing (beyond what the computed KA values would predict) 

along the series.  However, prior work using ion-pair charge-transfer absorption 

studies have shown that the KIP values formation of the [(NH3)5RuIIIpy٠Cl]2+ and 

[(NH3)5RuIII3Fpy٠Br]2+ ion-pairs are 15.9 ± 0.6 and 10.3 ± 0.8 which are 

approximately within error of each other and the Fuoss equation predictions of 14 and 

11 (based on crystallographic radii).57  The similarity in the measured KA2 (same as 

KIP) values for both Cl- and Br-, and their closeness to theory would then support the 

idea that electron-transfer inside the ternary PCX assembly is somehow catalyzed 

such that kETX is larger (more influential) than simply kET inside the bimolecular 

encounter complex, PC. 

Upon fitting NMR data using the hydrated radius of 3.89 Å for F-, we obtain 

Channel 2 ka2 and kd2 values (at a GP = 0.0713, [F-] = 0.005 M) of 1.57x1010 and 

1.29x109 respectively, which yields an ion-paring constant KA2 of 12.17. Now the 

best-fit kETX value is 5.1x104, which is significantly smaller than the “anchor” kET 

value of 8.6x104. This smaller ratio suggests that Pathway 1 is the predominate 

pathway with higher [F-] than was found for the “naked” or unhydrated F- ion. The 

slightly smaller value of the kETX relative to kET is a bit surprising, but it is necessary 

to account for the downward curvature of the logkex vs. GP plot in Figure 2.56 in the 
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case of the more realistic, larger radius for hydrated fluoride (which is known to 

strongly bind waters of hydration in solution).2,58  Interestingly, even though ion-

pairing and flux through Channel 2 (PCX) is necessary to obtain the best-fit of the 

experimental data, we see that the fluoride ion itself is not acting as a catalyst to the 

ET event in sharp contrast to Cl- and Br-.  Therefore, the full range of fluoride’s effect 

on ET rate can only be explained by a combination of the ion-atmosphere type model 

proposed by Debye and Hückel11,59 as it affects kex through ionic strength at very low 

[F-] and the formation/reaction of ion-pairs and impeded ET within PCX at large [F-].  

That ET in the ternary [RuII, F-, RuIII] encounter complex would actually be slower 

than it is in the simple [RuII, RuIII] precursor complex is not unreasonable given its 

strong hydration and the energetic unavailability of hole-transfer virtual states for 

quantum super-exchange mediation (as will be discussed in a later section). 

For the hydrated Cl- (r = 4.41 Å) and Br- (r = 4.08 Å) ions progressive 

increases in the anion catalysis and the best-fit kETX values were again found upon 

going from chloride to bromide. The implied kETX values were significantly larger 

than the uncatalyzed kET value (or the GP-matched fluoride rates) further indicating 

that Channels 1 and 2 (at least) must be taken into account in modeling the reaction in 

the presence of these anions.  The best-fit kETX/kET ratios for the hydrated chloride 

and bromide ions are 2.9 and 5.0 respectively (see Table 2.40), whereas those 

obtained using the unhydrated radii were somewhat greater at 5.3 and 8.7 respectively 

(which is similar to the observed trend for F- as well).  This result is non-intuitive and 
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will be discussed further on.  Looking at Table 2.40, we see that the same trends with 

halide radii are also obtained for the implied kETXX values. 

 With the dicarboxylate anions (muc2-, adip2-, tere2-, and 1,4-dcch2-), we find 

quite different behavior.  Now the best-fit kETX values are on the order of about 75% 

of kET, as seen in the kETX/kET ratios listed in Table 2.40.  This implies a return to the 

fluoride case of ET “un-catalysis” by the anion, where Channel 2 through the PCX 

triplet is slower than what the ionic strength - and hence GP - enhanced flux thru 

Channel 1 would suggest.  When we contrast our kETX/kET ratios with those obtained 

previously for reaction (2-1) (with the current ratios from this thesis shown in 

parenthesis), the comparative ratios for adip2-, tere2- and 1,4-dcch2- are 0.6 (0.5), 1.2 

(0.8), and 0.3 (0.7) respectively.6,9 The best-fit kETX value for muconate was the only 

one which significantly deviated in our work from what was seen previously for 

reaction (2-1).6,9  The stopped-flow work yielded kETX/kET = 6.7, but in our NMR (T2) 

work the ratio dropped to 0.7 which is exactly in the range of the other ones measured 

for the other dicarboxylate salts and thus showing no sign of any special “muconate 

effect” on the ET rate. This divergence in the kETX/kET ratio specific to muconate as 

probed by NMR further validates the surprising and dramatic loss of catalytic efficacy 

for muconate already discussed on the basis of the salt curves and the isokinetic 

analysis.   

The first observation of muconate’s collapse to a “simple-salt” behavior when 

studied by NMR was in Qin’s line-broadening ET rate measurements at 5.00 mM 

reactants.1,8  She also noted very shallow Debye-Hückel-Bronsted slopes upon adding 
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various simple salts including the halides.  An initial hypothesis regarding the 

divergence from the stopped-flow work held that the 50-fold difference in reactants 

concentration was the probable reason. To explore this idea, we undertook detailed 

kinetic modeling of our measured salt effects on reaction (2-2) at reactants 

concentrations of 0.50 mM, 1.00 mM, and 5.00 mM with the added simple and 

dicarboxlylate salts. In order to fit our experimental data with the model developed 

here, we again iteratively determined the optimum kETX and kETXX values for each 

specific added electrolyte at each specific reactants concentration while holding kET 

constant at the value determined from the multiply-determined 0.10 mM reactants 

only “anchor point” (which gave a kET = 8.6x104). 

 
2.17.3 Salt-specific kinetic modeling at [RuII] = [RuIII] = 0.50 mM  

  The best-fit kET, kETX, and kETXX values and the kETX/kET and kETXX/kETX 

ratios arrived at for 0.50 mM reactants are listed in Table 2.42. The experimental and 

best-fit calculated rate constants obtained using equations (2-36) to (2-38) are listed in 

Table 2.43 and the fits are illustrated in Figures 2.66 to 2.73.  

As was noted previously, when applying our model to the reactants-only 

concentrations above 0.10 mM, the calculated logkex value with no added salt 

obtained using equation (2-33) (while keeping kET constant  at 8.6x104) deviates not 

only from experiment, but also from what is predicted by the Debye-Hückel-Bronsted 

equation. In order to fit our experimental curves at these larger reactants 

concentrations, we split the difference between the implied starting logkex value (no 

added salt) arrived at using equation (2-33) and our experimentally measured logkex 
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value. For example, at 0.50 mM reactants the calculated logkex value found is 3.49 

while our experimental logkex value is 3.58 ± 0.04, therefore, when fitting our 

experimental data we adjusted all calculated logkex values by adding 0.045 log units 

to the calculated values (3.58-3.49 = 0.09, 0.09/2 = 0.045 log units) after all 

adjustments were applied to the kETX and kETXX values while keeping kET constant.  

The reported values in Table 2.43 contain only the adjusted logkex values (+0.045 log 

units from what would be obtained solely using equation (2-36) while keeping kET 

constrained).  
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Table 2.42   Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

[RuII] = [RuIII] = 0.50 mM for the halide and dicarboxylate anions studied. These 

values lead to the model-calculated rates listed in Table 2.43. The kETX/kET and 

kETXX/kETX ratios are listed in the final two columns.  

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

F-                    

(r = 1.50 Å)
8.6x104 1.6x103 - 0.02 -

F-                    

(r = 3.89 Å)
8.6x104 2.4x103 - 0.03 -

Cl-                   

(r = 1.90 Å)
8.6x104 3.9x105 2.6x105 4.5 0.7

Cl-                   

(r = 4.41 Å)
8.6x104 2.0x105 1.0x105 2.3 0.5

Br-                  

(r = 2.61 Å)
8.6x104 8.0x105 2.0x104 9.3 0.03

Br-                  

(r = 4.08 Å)
8.6x104 5.5x105 4.0x103 6.4 0.1

muc2-               

(r = 3.86 Å)
8.6x104 4.0x104 1.0x103 0.5 0.03

adip2-               

(r = 3.97 Å)
8.6x104 2.0x104 1.0x103 0.2 0.05

 
(a) Estimated uncertainty of ±5%, (b) Estimated uncertainty of ±2%, (c) estimated uncertainty of ±5%, 

(d) estimated uncertainty of ±3%, and (e) estimated uncertainty of ±2.5%. 
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Table 2.43 Experimental and model-calculated rate constants at 5.00 mM 

reactants for reaction (2-2) as a function of GP arrived at using the three-channel 

model summarized in equations (2-36) through (2-38) and the best-fit rate constants 

listed in Table 2.42 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The 

data and fitted curves are illustrated in Figures 2.66 to 2.73.  

KF

r = 1.50 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 -
0.0690 3.615 3.561 3.561 -
0.0888 3.649 3.634 3.636 -
0.1075 3.713 3.695 3.699 -
0.1566 3.824 3.824 3.832 -
0.2025 3.912 3.903 3.916 -  

 
KF

r = 3.89 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 -
0.0690 3.615 3.560 3.563 -
0.0888 3.649 3.631 3.642 -
0.1075 3.713 3.690 3.708 -
0.1566 3.824 3.806 3.844 -
0.2025 3.912 3.858 3.914 -  

 
NaCl

r = 1.90 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0690 3.647 3.561 3.645 3.646
0.0888 3.921 3.633 3.914 3.924
0.1075 4.121 3.693 4.104 4.128
0.1566 4.536 3.818 4.462 4.529
0.2025 4.810 3.892 4.690 4.805  
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NaCl

r = 4.41 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0690 3.647 3.560 3.643 3.644
0.0888 3.921 3.630 3.906 3.921
0.1075 4.121 3.688 4.091 4.126
0.1566 4.536 3.799 4.426 4.532
0.2025 4.810 3.840 4.614 4.813  

 
KBr

r = 2.61 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0690 3.726 3.561 3.731 3.731
0.0888 4.133 3.633 4.115 4.115
0.1075 4.368 3.693 4.349 4.350
0.1566 4.764 3.817 4.751 4.755
0.2025 4.994 3.886 4.994 5.001  

 
KBr

r = 4.08 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0690 3.726 3.560 3.738 3.738
0.0888 4.133 3.631 4.128 4.131
0.1075 4.368 3.690 4.361 4.368
0.1566 4.764 3.804 4.752 4.772
0.2025 4.994 3.852 4.970 5.009  
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Na2muc

r = 3.86 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0693 3.744 3.551 3.676 3.676
0.0880 3.996 3.590 3.932 3.933
0.1071 4.112 3.623 4.095 4.096
0.1566 4.287 3.678 4.347 4.351
0.2025 4.220 3.683 4.481 4.486  

 
Na2adip

r = 3.97 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0629 3.580 ± 0.039 3.536 3.536 3.536
0.0693 3.661 3.552 3.618 3.619
0.0880 3.859 3.591 3.795 3.796
0.1071 3.940 3.626 3.923 3.925
0.1566 4.119 3.684 4.134 4.140
0.2025 4.186 3.693 4.248 4.258  
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Figure 2.66 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added KF using the crystallographic F- radius of 1.50 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channel 1 (yellow circles) 

and Channels 1 + 2 (green circles).   
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Figure 2.67 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added KF now using the hydrated F- radius of 3.89 Å. The T2 NMR data (black 

squares) is compared with modeling results using Channel 1 (yellow circles) and 

Channels 1 + 2 (green circles).   
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Figure 2.68 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added NaCl using the crystallographic Cl- radius of 1.90 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.69 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added NaCl now using the hydrated Cl- radius of 4.41 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.70 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added KBr using the crystallographic Br- radius of 2.61 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.71 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added KBr now using the hydrated Br- radius of 4.08 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.72 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added Na2muc using the crystallographic muc2- radius of 3.86 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.73 Experimental data and kinetic modeling results at 0.50 mM reactants 

with added Na2adip using the crystallographic adip2- radius of 3.97 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Kinetic simulations of the data measured for reaction (2-2) at 0.50 mM 

reactants were again first conducted using the crystallographic radii of r = 1.50 Å, r = 

1.9 Å, r = 2.61 Å (see also Table 2.36) for F-, Cl-, and Br- respectively.  The kETX/kET 

ratios found for F- at 0.1 mM and 0.5 mM reactants were 0.95 and 0.03 respectively. 

This large drop in best-fit kETX upon going to the higher reactants concentration 

suggests that there may be some inadequacy in our model or violation of a basic 

assumption; possible explanations will be addressed later.  A progressive increase in 

kETX is again found upon comparing the unhydrated chloride and bromide ion fits. 

Now the kETX/kET ratios are 4.5 and 9.3, respectively. At 0.10 mM reactants the ratios 

were 5.3 for Cl- and 8.7 for Br-. So for these two halides, the 0.10 mM and 0.50 mM 

ratios are essentially within error of each other.    

The model was next applied to reaction (2-2) using the hydrated radii for the 

F- (3.89 Å), Cl- (4.41 Å), and Br- (4.08 Å) ions. A progressive increase is again found 

in the kETX/kET ratios.  For the hydrated F-, Cl-, and Br- ions we obtain ratios of 0.1, 

2.3, and 6.4 respectively. Compared to the corresponding ratios 0.10 mM ratios of 0.6 

for F-, 2.9 for Cl-, and 5.0 for Br- we again find agreement within error except for 

fluoride.  When the ratios of kETX/kET for the hydrated radii are compared to those for 

the crystallographic radii it is again found that the ratios are consistently lower when 

the fitting is done using the hydrated radii.  

Applying our model to the rate effects from the dicarboyxlate anions (muc2- 

and adip2-) value significantly different results are again obtained as compared to the 

halides. The best-fit kETX/kET ratios found for the muc2- and adip2- anions are 0.5 and 
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0.2, respectively. While there is a slight drop as compared to the corresponding ratios 

at 0.10 mM reactants (0.7 for muc2- and 0.5 for adip2-) the pattern persists and “un-

catalysis” for the rate of ET through the Channel 2 intermediate PCX is again 

established. 

 
2.17.4 Salt-specific kinetic modeling at [RuII] = [RuIII] = 1.00 mM  

Continuing our program to map and understand the kinetic salt effects the 

model was again applied to the data obtained at 1.00 mM reactants. The resulting 

best-fit kET, kETX, and kETXX values arrived at are listed in Table 2.44. The 

experimental and best-fit calculated rate constants obtained using equations (2-36) to 

(2-38) are listed in Table 2.45 and illustrated in Figures 2.74 to 2.80. As noted 

previously, in order to fit our experimental curves at these larger reactants 

concentrations, we split the difference between the implied starting logkex value (no 

added salt) calculated using equation (2-36) and our measured logkex value, which 

resulted in adding +0.053 log units to our calculated logkex values at 1.00 mM 

reactants (3.708-3.602 = 0.106, 0.106/2 = +0.053 log units). 
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Table 2.44 Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

[RuII] = [RuIII] = 1.00 mM for the halide and dicarboxylate anions studied). These 

optimized values lead to the model-calculated rates listed in Table 2.45. The kETX/kET 

and kETXX/kETX ratios are listed in the final two columns.  

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

F-                     

(r = 1.50 Å)
8.6x104 2.0x104 9.0x103 0.2 0.5

F-                     

(r = 3.89 Å)
8.6x104 1.2x104 9.5x103 0.1 0.8

Cl-                    

(r = 1.90 Å)
8.6x104 1.8x105 2.5x105 2.1 1.4

Cl-                    

(r = 4.41 Å)
8.6x104 1.0x105 7.3x104 1.2 0.7

Br-                    

(r = 2.61 Å)
8.6x104 5.7x105 3.0x105 6.6 0.5

Br-                    

(r = 4.08 Å)
8.6x104 3.8x105 1.7x105 4.4 0.5

muc2-                

(r = 3.86 Å)
8.6x104 2.3x104 2.0x103 0.3 0.1

(a) Estimated uncertainty of ±5% (b) Estimated uncertainty of ±7-11%, (b) estimated uncertainty of 

±30-35%, (c) estimated uncertainty of ±9-11%, and (d) estimated uncertainty of ±14%. 
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Table 2.45  Experimental and model-calculated rate constants at 5.00 mM 

reactants for reaction (2-2) as a function of GP arrived at using the three-channel 

model summarized in equations (2-36) through (2-38) and the best-fit rate constants 

listed in Table 2.44 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The 

data and fitted curves are illustrated in Figures 2.74 to 2.80. 

KF

r = 1.50 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 3.819 3.727 3.745 3.746
0.1649 3.937 3.866 3.927 3.934
0.2482 4.059 3.961 4.087 4.121
0.3137 4.149 3.886 4.088 4.173  

 
KF

r = 3.89 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 3.819 3.724 3.743 3.745
0.1649 3.937 3.848 3.909 3.933
0.2482 4.059 3.861 3.988 4.122
0.3137 4.149 - - 4.162  

 
NaCl

r = 1.90 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 3.895 3.726 3.878 3.893
0.1649 4.322 3.860 4.251 4.350
0.2482 4.834 3.942 4.574 4.838  
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NaCl

r = 4.41 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 3.895 3.723 3.883 3.898
0.1649 4.322 3.841 4.241 4.352
0.2482 4.834 - 4.455 4.829  

 
KBr

r = 2.61 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 4.124 3.726 4.116 4.128
0.1649 4.739 3.859 4.640 4.705
0.2482 5.192 3.925 5.021 5.192  

 
KBr

r = 4.08 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.1091 4.124 3.724 4.119 4.135
0.1649 4.739 3.846 4.629 4.717
0.2482 5.192 3.847 4.939 5.201  

 
Na2muc

r = 3.86 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0866 3.708 ± 0.024 3.655 3.655 3.655
0.0953 3.864 3.668 3.763 3.764
0.1091 3.962 3.688 3.892 3.894
0.1183 4.057 3.700 3.959 3.962
0.1649 4.132 3.737 4.182 4.192
0.2080 4.211 3.733 4.298 4.315  
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Figure 2.74 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added KF using the crystallographic F- radius of 1.50 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channel 1 (yellow circles), 

Channels 1 + 2 (green circles), and Channels 1 + 2 + 3 (red circles).   
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Figure 2.75 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added KF now using the hydrated F- radius of 3.89 Å. The T2 NMR data (black 

squares) is compared with modeling results using Channel 1 (yellow circles), 

Channels 1 + 2 (green circles), and Channels 1 + 2 + 3 (red circles).   
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Figure 2.76 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added NaCl using the crystallographic Cl- radius of 1.90 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  



 
 

303 
 

GP

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

lo
gk

ex

3.6

3.8

4.0

4.2

4.4

4.6

4.8

NaCl T2 NMR Data

NaCl Calculated via Channel 1 + 2
NaCl Calculated via Channel 1 + 2 + 3

 
Figure 2.77 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added NaCl now using the hydrated Cl- radius of 4.41 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.78 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added KBr using the crystallographic Br- radius of 2.61 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.79 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added KBr now using the hydrated Br- radius of 4.08 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  



 
 

306 
 

GP

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

lo
gk

ex

3.6

3.8

4.0

4.2

Na2muc T2 NMR Data

Na2muc Calculated via Channel 1 + 2

Na2muc Calculated via Channel 1 + 2 + 3

 
Figure 2.80 Experimental data and kinetic modeling results at 1.00 mM reactants 

with added Na2muc using the crystallographic muc2- radius of 3.86 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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 The simulations for reaction (2-2) at 1.00 mM reactants were again first 

conducted using the crystallographic F-, Cl-, and Br- radii.  These kETX/kET ratios were 

0.2 for F-, 2.1 for Cl-, and 6.6 for Br- (at 0.50 mM reactants the ratios were 0.03, 4.5, 

and 9.3). It is interesting to note that Channel 3 is now required in order to model the 

F- data due to the significant fraction of reactive flux now carried by the PCXX 

intermediate. The apparent drop in kETX for both Cl- and Br- could be an indication 

that we are reaching the limits of the assumptions underlying of our model; this idea 

will be discussed in detail later on.   

Upon using the hydrated radii for F-, Cl-, and Br- the best-fit kETX/kET values 

were 0.14, 1.2, and 4.42, respectively.  So again we see a small decrease in kETX for 

the larger radii but the same progressive increase with halide ion identity.  

Fitting the muc2- data yielded kETX/kET = 0.3 which is only slightly lower than 

what was found at 0.10 mM and 0.50 mM reactants concentrations.   

 
2.17.5  Salt-specific kinetic modelling at [RuII] = [RuIII] = 5.00 mM  

Kinetic modeling of reaction (2-2) was concluded using the data collected at 

5.00 mM reactants upon addition of both halide and dicarboxlylate salts. The best-fit 

kET, kETX, and kETXX values arrived at are listed in Table 2.46.  The experimental and 

best-fit calculated rate constants obtained using equations (2-36) to (2-38) are listed in 

Table 2.47 and illustrated in Figures 2.81 to 2.88. As was done previously at both 

0.50 mM and 1.00 mM reactants, in order to fit our experimental logkex vs. GP plots 

at these larger reactants concentrations, we split the difference between the implied 

starting logkex value (no added salt) calculated using equation (2-33) and our 
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measured logkex value which resulted in adding +0.0475 log units to our calculated 

logkex values at 1.00 mM reactants (4.04-3.94 = 0.095, 0.095/2 = +0.0475 log units). 

 

Table 2.46  Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

5.00 mM reactants for the halide and dicarboxylate anions studied). These optimized 

values lead to the model-calculated rates listed in Table 2.47. The kETX/kET and 

kETXX/kETX ratios are listed in the final two columns.  

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

F-                       

(r = 1.50 Å)
8.6x104 1.0x104 6.0x103 0.1 0.6

F-                       

(r = 3.89 Å)
8.6x104 1.0x104 7.0x103 0.1 0.7

Cl-                     

(r = 1.90 Å)
8.6x104 1.8x105 1.6x105 2.1 0.9

Cl-                     

(r = 4.41 Å)
8.6x104 1.0x105 5.3x104 1.2 0.5

Br-                     

(r = 2.61 Å)
8.6x104 2.8x105 4.1x105 3.3 1.5

Br-                     

(r = 4.08 Å)
8.6x104 1.9x105 1.7x105 2.2 0.9

muc2-                  

(r = 3.86 Å)
8.6x104 9.0x103 1.4x104 0.1 1.5

adip2-                  

(r = 3.97 Å)
8.6x104 9.0x103 7.7x103 0.1 0.9

(a) Estimated uncertainty of ±7%, (b) Estimated uncertainty of ±8-12%, (c) estimated uncertainty of 

±30-35%, (d) estimated uncertainty of ±15%, and (e) estimated uncertainty of ±18% 
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Table 2.47 Experimental and model-calculated rate constants at 5.00 mM 

reactants for reaction (2-2) as a function of GP arrived at using the three-channel 

model summarized in equations (2-36) through (2-38) and the best-fit rate constants 

listed in Table 2.47 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The 

data and fitted curves are illustrated in Figures 2.81 to 2.88. 

KF

r = 1.50 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.106 4.045 4.067 4.069
0.2532 4.125 4.069 4.111 4.121
0.3008 4.143 4.045 4.116 4.146
0.4001 4.172 - - -  

 
KF

r = 3.89 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.106 4.027 4.063 4.073
0.2532 4.125 4.016 4.084 4.126
0.3008 4.143 - - 4.140
0.4001 4.172 - - -  

 
NaCl

r = 1.90 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.440 4.041 4.338 4.380
0.2532 4.561 4.058 4.529 4.638
0.3008 4.859 - 4.668 4.882  
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NaCl

r = 4.41 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.440 4.041 4.330 4.387
0.2532 4.561 4.058 4.475 4.639
0.3008 4.859 - 4.454 4.863  

 
KBr

r = 2.61 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.605 4.038 4.467 4.565
0.2532 4.837 4.049 4.689 4.914
0.3008 5.233 - 4.835 5.237  

 
KBr

r = 4.08 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.605 4.025 4.505 4.556
0.2532 4.837 4.009 4.655 4.903
0.3008 5.233 - 4.703 5.212  

 
Na2muc

r = 3.86 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.944 3.991 3.991
0.2150 4.251 - 4.094 4.135
0.2447 4.299 - 4.134 4.231
0.3063 4.327 - 4.130 4.389  
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Na2adip

r = 3.97 Å GP logkex (expt.)

logkex (calc.)    

Channel    
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.1750 4.039 ± 0.051 3.991 3.991 3.991
0.2150 4.161 - 4.094 4.117
0.2447 4.209 - 4.136 4.192
0.3063 4.253 - 4.133 4.296
0.3974 4.305 - 4.304  
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Figure 2.81 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added KF using the crystallographic F- radius 1.50 Å. The T2 NMR data (black 

squares) is compared with modeling results using Channel 1 (yellow circles), 

Channels 1 + 2 (green circles), and Channels 1 + 2 + 3.   
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Figure 2.82 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added KF now using the hydrated F- radius of 3.89 Å. The T2 NMR data (black 

squares) is compared with modeling results using Channel 1 (yellow circles), 

Channels 1 + 2 (green circles), and Channels 1 + 2 + 3.   
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Figure 2.83 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added NaCl using the crystallographic Cl- radius of 1.90 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.84 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added NaCl now using the hydrated Cl- radius of 4.41 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.85 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added KBr using the crystallographic Br- radius of 2.61 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.86 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added KBr now using the hydrated Br- radius of 4.08 Å. The T2 NMR data 

(black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.87 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added Na2muc using the crystallographic muc2- radius of 3.86 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  



 
 

319 
 

GP

0.15 0.20 0.25 0.30 0.35 0.40 0.45

lo
gk

ex

4.0

4.1

4.2

4.3

Na2adip T2 NMR Data

Na2adip Calculated via Channel 1 + 2

Na2adip Calculated via Channel 1 + 2 + 3

 
Figure 2.88 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added Na2adip using the crystallographic adip2- radius of 3.97 Å. The T2 NMR 

data (black squares) is compared with modeling results using Channels 1 + 2 (green 

circles) and Channels 1 + 2 + 3 (red circles).  
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Modeling of the 5.00 mM reactants data using the crystallographic halide radii 

again yield a progressive increase in kETX/kET with best-fit values of 0.04, 2.3, and 4.7 

for F-, Cl-, and Br-, respectively.  These results confirm what was previously found by 

Qin using a channel model to fit experimental kinetic data for reaction (2-2) as well 

and the previous ratios of kETX/kET were 0.08 for F-, 2.0 for Cl-, and 3.6 for   Br-.8  

When fitting the F- data however, only the first few points could be fit due to 

constraints of our model resulting in our model predicting lower rates at larger added 

salt concentrations than those predicted at smaller added salt concentrations.  

Using the hydrated radii for F-, Cl-, and Br- ions at 5.00 mM reactants, F- now 

gave an unchanged kETX/kET value of 0.04 and we again obtained somewhat lower 

kETX/kET ratios for Cl- at 1.6, and for Br- at 2.4.  Although the ratio of kETX/kET for the 

F- ion is equivalent for both the crystallographic and hydrated radii, a limit was 

reached for the maximum value of kETX in order to fit our experimental data.  

Our modeling of the kinetic for data fmuc2- and adip2- led us to ratios of 

kETX/kET equal to 0.1 for both muc2- and adip2-. This appears to reflect a limit which 

has been reached for the minimum value of kETX which can be used in order to fit our 

experimental data. This is due to a limitation of our model as well as equations (1-41) 

to (1-44) as will be discussed further on. 
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2.17.6  Kinetic modeling of added hexacyano’s at [RuII] = [RuIII] = 0.10 mM  

Kinetic simulations were continued in order to capture and assess the much 

more extreme ET catalysis of reaction (2-2) at 0.10 mM reactants which was 

observed upon adding the hexacyano salts: K4Fe(CN)6, K4Ru(CN)6, and K4Os(CN)6.  

The best-fit kET, kETX, and kETXX values arrived at are listed in Table 2.48.  The 

experimental and best-fit calculated rate constants obtained using equations (2-36) to 

(2-38) are listed in Table 2.49 and the best-fit curves are illustrated in Figures 2.89 to 

2.92.   

 

Table 2.48 Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

[RuII] = [RuIII] = 0.10 mM for the various hexacyano salts studied). These optimized 

values lead to the model-calculated rates listed in Table 2.49. The kETX/kET and 

kETXX/kETX ratios are listed in the final two columns. 

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

Fe(CN)6
4-             

(r = 4.24 Å)
8.6x104 5.0x105 9.0x106 5.8 18.0

Os(CN)6
4-            

(r = 4.35 Å)
8.6x104 9.0x104 4.3x1010 5.8 4.8x105

Ru(CN)6
4-            

(r = 4.38 Å)
8.6x104 5.0x104 1.2x108 0.6 2400

(a) Estimated uncertainty of ±7%, (b) Estimated uncertainty of ±5-10%, (c) estimated uncertainty of 

±30%, (d) estimated uncertainty of ±8-12%, and (e) estimated uncertainty of ±33%. 
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Table 2.49 Experimental and model-calculated rate constants at 0.10 mM 

reactants for reaction (2-2) as a function of GP arrived at using the three-channel 

model summarized in equations (2-36) through (2-38) and best-fit rate constants 

listed in Table 2.49 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The 

data and fitted curves are illustrated in Figures 2.89 to 2.91. 

K4Fe(CN)6

r =4.24 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291262 3.318 ± 0.051 3.318 3.318 3.318
0.0291268 3.439 3.318 3.368 3.368
0.0291287 3.547 3.318 3.492 3.492
0.0291363 3.485 3.318 3.791 3.791
0.0292516 4.705 3.314 4.725 4.725  

 
K4Os(CN)6

r =4.35 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291262 3.318 ± 0.051 3.318 3.318 3.318
0.0291419 3.399 3.318 3.498 3.534
0.0291890 3.770 3.316 3.802 4.028
0.0292516 4.443 3.314 4.025 4.444
0.0293764 5.010 3.311 4.280 4.943
0.0296243 5.467 3.303 4.553 5.488  

 
K4Ru(CN)6

r =4.38 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.0291262 3.318 ± 0.051 3.318 3.318 3.318
0.0291890 3.475 3.316 3.643 3.659
0.0293764 4.178 3.311 4.053 4.140
0.0296243 4.463 3.303 4.310 4.481
0.0301134 4.947 3.288 4.582 4.886
0.0310664 5.340 3.257 4.859 5.346  
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Figure 2.89 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added K4Fe(CN)6 (presumed crystallographic Fe(CN)6
4- radius of 4.24 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles). 
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Figure 2.90 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added K4Os(CN)6 (presumed crystallographic Os(CN)6
4- radius of 4.35 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.91 Experimental data and kinetic modeling results at 0.10 mM reactants 

with added K4Ru(CN)6 (presumed crystallographic Ru(CN)6
4- radius of 4.38 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles).  
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Previous kinetic modeling work had been completed on kinetic data obtained 

via stopped-flow9 for reaction (2-1) with these same added hexacyano salts using 

similar crystallographic radii to the ones used here (those data having been modeled 

using the SpecFit program which simulates and fits stopped-flow absorbance vs. time-

kinetic data). However, as was previously noted in section 2.15, our rate data 

obtained using T2 measurements deviated from the stopped-flow data due to the 

relatively extended duration of the T2 experiment and sample decomposition which 

resulted in an observed decay overtime in the rate of ET. Therefore, the results 

reported here have a large error (in the downward direction) associated with them. 

When we compare the ratio of kETX/kET for the three hexacyano salts with the halides, 

we find values for 5.8 (FeII(CN)6
4-), 5.8 (OsII(CN)6

4-), and 0.6 (RuII(CN)6
4-) – the first 

two of which resemble values found for Cl- (5.3). However, if we compare the ratio 

of kETXX/kETX with those of the halides, we find values of 18.0 (FeII(CN)6
4-), 4.7x105 

(OsII(CN)6
4-), and 2400 (RuII(CN)6

4-) which are much larger than any of the halides.  

These results, while inconclusive due to decomposition artifacts, still support the 

notion of added hexacyano salts facilitating ET via quantum super-exchange41,60 as 

was theorized previously by Mehmood.9  

 
2.17.7  Kinetic modelling of added hexacyano at [RuII] = [RuIII] = 5.00 mM  

Finally, we applied our model to the kinetic data for reaction (2-2) at 5.00 mM 

reactants in the presence of small amounts of K4Fe(CN)6, K4Ru(CN)6, and 

K4Os(CN)6.  The best-fit kET, kETX, and kETXX values arrived at are listed in Table 

2.50.  The experimental and model-calculated rate constants are listed in Table 2.51 
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and illustrated in Figures 2.92 to 2.94.  As noted previously, in order to fit our 

measured logkex vs. GP plots at these larger reactants concentrations, we split the 

difference between the implied starting logkex value (no added salt) calculated using 

equation (2-33) and our experimentally derived logkex value resulting in the addition 

of +0.09 log units to our calculated logkex values at 5.00 mM reactants (4.12-3.94 = 

0.176, 0.18/2 = +0.09 log units). 

 
Table 2.50 Best-fit kET, kETX, and kETXX rate constants for reaction (2-2) 

corresponding to first-order ET inside the presumed PC, PCX, and PCXX reactive 

intermediates (based on iterative fitting of the logkex vs. added salt curves measured at 

[RuII] = [RuIII] = 5.00 mM for the various hexacyano salts studied). These optimized 

values lead to the model-calculated rates listed in Table 2.51. The kETX/kET and 

kETXX/kETX ratios are listed in the final two columns. 

Ion kET
(a) kETX

(b) kETXX
(c) kETX/kET

(d) kETXX/kETX
(e)

Fe(CN)6
4-            

(r = 4.24 Å)
8.6x104 1.0x107 7x108 116 70

Os(CN)6
4-            

(r = 4.35 Å)
8.6x104 1.0x105 2.7x107 1.2 270

Ru(CN)6
4-            

(r = 4.38 Å)
8.6E+04 9.8E+03 9.8E+03 0.1 1.0

(a) Estimated uncertainty of ±7%, (b) Estimated uncertainty of ±8-12%, (c) estimated uncertainty of 

±30-35%, (d) estimated uncertainty of ±10-12%, and (e) estimated uncertainty of ±17%. 
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Table 2.51 Experimental and model-calculated rate constants at 5.00 mM 

reactants for reaction (2-2) as a function of GP arrived at using the three-channel 

model summarized in equations (2-36) through (2-38) and best-fit rate constants 

listed in Table 2.48 (the relevant ionic radii are taken from Tables 2.36 and 2.37). The 

data and fitted curves are illustrated in Figures 2.92 to 2.94. 

K4Fe(CN)6

r =4.24 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.17501 4.120 4.032 4.032 4.032
0.17543 - - 6.149 6.127
0.17607 - - 6.540 6.543
0.18109 7.239 - 7.268 7.435
0.18319 7.612 - 7.384 7.604  

 
K4Os(CN)6

r =4.35 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.17501 4.120 3.944 4.032 4.032
0.17543 - - 4.377 4.385
0.17669 - - 4.790 4.834
0.17915 - - 5.119 5.230
0.18112 5.430 - 5.266 5.425  

 
K4Ru(CN)6

r =4.38 Å GP logkex (expt.)

logkex (calc.)    

Channel     
1 Only

logkex (calc.)    

Channels    
1 and 2

logkex (calc.)    

Channels   
1, 2, and 3

0.17501 4.110 4.032 4.032 4.032
0.17543 - - 4.076 4.077
0.17669 - - 4.183 4.193
0.17915 - - 4.329 4.371
0.18112 4.489 - 4.414 4.485  
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Figure 2.92 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added K4Fe(CN)6 (presumed crystallographic Fe(CN)6
4- radius of 4.24 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.93 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added K4Os(CN)6 (presumed crystallographic Os(CN)6
4- radius of 4.35 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles).  
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Figure 2.94 Experimental data and kinetic modeling results at 5.00 mM reactants 

with added K4Ru(CN)6 (presumed crystallographic Ru(CN)6
4- radius of 4.38 Å). The 

T2 NMR data (black squares) is compared with modeling results using Channels 1 + 2 

(green circles) and Channels 1 + 2 + 3 (red circles).  
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 Our modeling of these data was impaired by the fact that we only collected 

two or three data points on account of the observed decay in rate enhance as was 

noted previously in section 2.15, therefore all values reported here have a slightly 

larger error associated with them. Previous kinetic modeling work completed on data 

obtained under the same conditions by Qin8 used similar values for radii as the ones 

used here (this data was modeled using a 2-Channel model which predicatively 

models NMR line-broadening data), therefore, the results are directly comparable. 

The best-fit kETX/kET ratios found in our work for the hexacyano salts were 116 for 

Fe(CN)6
4-, 1.2 for Os(CN)6

4-, and 0.1 for Ru(CN)6
4-. These values are in very good 

agreement with the line-broadening based rates and kETX/kET ratios obtained by Qin; 

126 for Fe(CN)6
4-, 1.5 for Os(CN)6

4-, and 0.5 for Ru(CN)6
4-.  

 
2.18 Discussion  

 The most basic signal of what we refer to here as “catalysis” of ET reaction 

(2-2) by added salt is an early, upwards curvature in the experimental logkex vs. GP 

plot as opposed to the strictly-linear behavior predicted by the DBH equation (1-36) 

or the slightly “convex” (over the full GP range) behavior predicted by equations (2-

36) to (2-38), even in the limit of no specific ion-pairing as given by equation (2-33) 

(see Figure 2.54).  

 The simplest approach to describing this observed catalysis was to report the 

approximate “early” and “late” logkex vs. GP slopes for a given anion and then regard 

any divergence between them as a sign of catalysis (where the most catalytic anions 

were those with the largest “early” slopes , see section 2.13). As shown in Table 2.15, 
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the most ideal-behaving kinetic salt effects were encountered at 0.10 mM reactants 

with added fluoride. This is the only anion exhibiting “simple” salt behavior and it 

alone yields the predicted Debye-Huckel-Bronsted slope of 6.1 (this only being true 

however over the most dilute portion of [F-] range investigated). After F- the levels of 

catalytic efficacy went as: 

F- < Cl- ~ dcch2- ~ adip2- < muc2- ~ tere2- < Br- << Ru(CN)6
4- < Os(CN)6

4- << Fe(CN)6
4- 

For the salts investigated as a function of reactants concentration, the shapes of the 

salt curves show decreased catalysis at all reactants concentration > 0.10 mM. For 

fluoride, the (still approximately linear) logkex vs. GP slope progressively drops all 

the way to 0.52 ± 0.14 at 5.00 mM (see Figures 2.28, 2.26, 2.30, and 2.31).  

 The kinetic modeling work was conducted as a way to quantitatively assess 

the degree of a given anion’s catalytic power under the assumption that the catalysis 

could be captured as an apparent increase in the intramolecular rate of ET, kETX, 

inside the ternary PCX intermediate. This would assume that the total rate of ET is 

greater than the inferred kET inside the classical precursor complex PC.  According to 

our model used, only in this way could an added anion increase the overall rate of ET 

beyond the ionic strength effects on the uncatalyzed rate predicted from the Debye-

Smolukowsky and Eigen-Fuoss equations (1-41) to (1-42). 

From the foregoing discussions, we see that our model appears to work best at 

the lowest reactants concentration studied which was [RuII] = [RuIII] = 0.10 mM, but  

as the reactants concentration increased (even to 0.50 mM), we found that the results 

obtained using the model to simulate experimental data start to deviate from 
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predictions based solely on the Debye-Huckel-Bronsted equation (1-36)11 or the 

Debye-Eigen and Debye-Smoluchowski equations (equations (1-41) and (1-42), 

respectively)3 in the simple pre-equilibrium kinetic limit, equation (1-5).30  This 

deviation presented itself as a steady downward trend in the best-fit kETX/kET ratios 

(essentially due to a falling kETX), which were required at the higher reactants 

concentrations.  The model-inferred drop in kETX necessary to reproduce both the 

declining “simple salt” effect seen with F- and the drop in catalytic efficacy of the 

others at reactants concentrations greater than 0.10 mM is considered to be unlikely 

given that the intramolecular, first-order ET rate inside the PCX ion-triplet would 

only be expected to vary weakly with the ionic strength of the medium (via the small 

ion-atmosphere reorganizational energy identified by Ulstrup).1  

In order to analyze the salt-by-salt magnitude of this artifact in the model we 

have taken the kETX/kET ratios listed in Tables 2.40, 2.42, 2.44, and 2.46 and plotted 

them as a function of reactants concentration in Figure 2.95. The pattern of dropping 

kETX with increasing reactants concentration is most pronounced with bromide, 

followed by the (apparently) ET-obstructing fluoride ion which slows the reaction 

once reactive flux through PCX becomes important (at reactant concentrations > 0.10 

mM). 

Figure 2.95 displays the ratios of kETX/kET arrived at by Sista6 at 0.10 mM 

using SpecFit simulations of his stopped-flow data on reaction (2-1) (note the blue, 

green, and red squares).  Also shown are the ratios resulting from modeling of the 

NMR line-broadening data obtained by Qin8 at 5.00 mM reactants using a 2-Channel 
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model nearly equivalent to ours (note the blue, green, and red stars). Excellent 

agreement was found among the ratios in all cases of overlapping experimental 

conditions.  Given that the SpecFit modeling approach and our modeling using 

equations (2-36) to (2-38) represent very different implementations of a formally-

equivalent kinetic scheme, the excellent agreement supports the basic correctness of 

the execution of each respective model.       

One possible origin we have considered for the apparent downward trend in 

kETX/kET found by our model centers on the fact that the infinite integration limits 

typically used in applications of equations (1-36) and (1 44) may no longer work at 

reactants concentrations significantly above 0.10 mM. As shown in Figure 1.11 (see 

section 1.8), the center-center interreactant distance varies from 255 Å to 69 Å as we 

go from 0.10 mM to 5.00 mM in [RuII] and [RuIII] (using a cubic statistical “lattice 

model” the RuII-RuIII distance goes from 221 Å to 60 Å as calculated by equation (1-

48)).  Furthermore, using a common reactant radius of 4.5 Å, we find that the edge-

edge inter-reactant distance varies even more drastically from 212 Å to 51 Å.  

Qualitatively, it is easy to see that since added ionic strength eases association of our 

2+ and 3+ charged reactants by decreasing the Coulombic work terms (see equation 

(1-43), then the accelerating kai values in the model would decrease upon explicitly 

using the more realistic, finite separation values. In addition, in solutions where the 

concentration of added X- is greater than the concentration of RuIII, the appropriate 

maximum distance can be found using equation (1-48). To probe the possible 
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significance of these refinements, we have recomputed the necessary kai and kdi 

values and remodeled the data for F- and Br- at 0.10 mM and 5.00 mM reactants.  

 

Table 2.52 The ratios of kETX/kET arrived at for the F- and Br- anions (using the 

crystallographic radii found in Table 2.36) at 0.10 mM and 5.00 mM reactants using 

both explicit integration limit values and infinite integration limits (when applying 

equations (1-41) and (1-42)).  

Explicit int. 
Limits

Infinite Int. 
Limits

Explicit int. 
Limits

Infinite Int. 
Limits

0.01 mM 0.9 0.9 8.7 8.7
5.00 mM 0.04 0.04 3.3 3.3

kETX/kET

F- (r = 1.50 Å) Br- (r = 2.61 Å)Reactants 
Concentration

 

 

Table 2.52 shows the explicit integration limit values for the kET/kETX ratios as 

well as the previous ratios (using infinite integration limits) for comparison. This 

surprising negative result means that we must look elsewhere for the source of the 

model’s failure. 

A second possibility lies in the absolute reliability of the calculated kai and 

kdi values. For example, we when look at the computed kai and kdi values shown 

below in Table 2.53 for F- and Br- (using crystallographic radii) we find values 

approaching a so-called “speed-limit” violations as noted by Moore and Percin.61  

They noted that the fastest an ion-pair can associate is on the order of 5.3 x 1010. The 

values arrived at here are approaching this unrealistic speed limit which could be the 

source of our model’s failure. 
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Table 2.53 The computed kai and kdi values for the the F- and Br- anions (using the 

crystallographic radii found in Table 2.36) at 0.10 mM reactants with 0.0005 M added 

salt. 

F- (r = 1.50 Å) Br- (r = 2.61 Å)

ka2 2.92x1010 2.13x1010

ka4 4.36x1010 2.91x1010

kd3 1.26x1010 1.15x1010

 

Another puzzling result was an apparent offset between the ratios of kETX/kET 

arrived at using the crystallographic and hydrated radii opposite of what we would 

predict (larger radii giving slower rates of ET through PCX).  In Table 2.54 the ratios 

of kETX/kET are compared for the halides and dicarboxylates and these values are 

illustrated as a function of reactants concentration in Figures 2.95 to 2.97.  
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Table 2.54 The ratios of kETX/kET arrived at for the halides (using the radii found 

in Table 2.36) at the various reactants concentrations studied. 

0.10 mM 0.50 mM 1.00 mM 5.00 mM

F-                   

(r = 1.50 Å)
0.9 0.02 0.2 0.04

F-                   

(r = 3.89 Å)
0.6 0.03 0.1 0.0

Cl-                  

(r = 1.90 Å)
5.3 4.5 2.1 2.1

Cl-                  

(r = 4.41 Å)
2.9 2.3 1.2 1.2

Br-                  

(r = 2.61 Å)
8.7 9.3 6.6 3.3

Br-                  

(r = 4.08 Å)
5.0 6.4 4.4 2.2

muc2-               

(r = 3.86 Å)
0.7 0.5 0.3 0.1

adip2-               

(r = 3.97 Å)
0.5 0.2 - 0.1

tere2-                

(r = 4.13 Å)
0.8 - - -

   (1,4-dcch)2-      

(r = 4.11 Å)
0.7 - - -

kETX/kET
Ion
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F- (Sista, crystallographic radius)
Cl- (Sista, crystallographic radius)
Br- (Sista, crystallographic radius)
F- (Qin, crystallographic radius)

Cl- (Qin, crystallographic radius)
Br- (Qin, crystallographic radius)

 
Figure 2.95 The ratios of kETX/kET arrived at for the halides studied as a function of 

the reactants concentration (0.10 mM to 5.00 mM reactants).  The ratios of kETX/kET 

found using crystallographic radii (blue, green, and red circles) as listed in Table 2.36 

are compared with those values obtained previously by Sista6 (modeling reaction (2-

1), 0.10 mM reactants; blue, green, and red squares) and Qin8 (modeling reaction (2-

2), 5.00 mM reactants; blue, green, and red stars).  
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tere2- (r = 4.13 A)
dcch2- (r = 4.13 A)

 

Figure 2.96 The ratios of kETX/kET arrived at for the dicarboxylate salts studied at 

as a function of the reactants concentration (the radii used were arrived at using the 

“volume-tight” keyword in Gaussian 09 geometry optimizations as described in the 

experimental section, see Table 2.36). 
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From Table 2.54 and Figure 2.95, we see that increasing the reactants 

concentration decreases the kETX/kET ratios for the halides (using the crystallographic 

radii). The reason for this systematic error is unknown and further investigation is 

needed. As was found for the halides, the ratio of kETX/kET also drops for both muc2- 

and adip2- as the reactants concentration increased. This apparent drop in kETX could 

be due to a systematic error in the model’s ability to calculate KA for the formation of 

PCX is essentially not capturing the somewhat rod-like nature of these salts. This 

effect could also be a real effect due to anisotropic diffusion which would inhibit both 

dicarboxylate salts to “get in between” these salts at larger concentrations. 

 From Table 2.40, we see that upon comparing the best-fit kETX values arrived 

at for reaction (2-2) in the presence of added dicarboxylate salts at 0.10 mM reactants 

with those found previously for reaction (2-1) by stopped-flow6,9 good agreement was 

found in every case but muconate. The much lower kETX value for muc2- upon fitting 

the NMR kinetric data has been hypothesized to derive from either an inefficiency in 

its ability to form ion-pairs with the reactants or from the unique impact of the 

magnetic field on its ability to catalyze the exchange process via quantum super-

exchange mediation of ET.  We speculate that perhaps the strong magnetic field 

present in the NMR work might be locking muconate along the field axis and 

therefore impeding its ability to “freely” diffusive through solution.  

 In Figure 2.97 we have plotted the kETX/kET ratios for the halides using both 

the crystallographic and hydrated radii as a function of our equimolar reactants 

concentration.  
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Cl- (hydrated radius, r = 4.41 A)
Br- (crystallographic radius, r = 2.61 A)

Figure 2.97 The ratios of kETX/kET arrived at for the halides studied as a function of 

the reactants concentration (0.10 mM to 5.00 mM reactants).  The ratios of kETX/kET 

found using crystallographic radii (blue, green, and red circles) are compared with 

those found using the hydrated radii as listed in Table 2.36. 
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The ratios of kETX/kET arrived at using the hydrated halide radii to model our 

kinetic data, are found to be consistently lower when compared to those using the 

crystallographic radii to model our kinetic data. When using larger radii one might 

reasonably expect the association to form RuIII٠X ion pairs to occur with less affinity 

due to lower Coulombic attraction. The slower onset of Channel 2 would then require 

a higher kETX value (and therefore higher ratio of kETX/kET). Upon investigating this 

conundrum we have found that smaller kETX values inferred from our model when 

using larger radii (hydrated) to fit the data stems from variations in the excluded 

volume term (σ3, where σ is the sum of the radii, see equation (1-50)) in the equation 

for kd. This term makes the values arrived at for KA to form PCX larger when using 

the hydrated radii than those found using the crystallographic radii. This non-intuitive 

enhancement of the PCX pathway therefore requires kETX to be smaller when using 

hydrated radii to model kinetic data. In addition, the model-inferred decrease in kETX 

values as the concentration of reactants is increased is found in both cases. 

Upon applying our kinetic model to our ET reaction as catalyzed by the 

hexacyano salts, we could only reliably analyze the data obtained at 5.00 mM 

reactants due to the time-dependent decay of the hexacyano catalysis found at low 

concentrations of added hexacyano salt observed at 5.00 mM reactants, which was 

found after the 0.10 mM data was collected.  In Table 2.55 we have summarized the 

ratios of kETX/kET arrived for these hexacyano salts at 5.00 mM, as well as their 

corresponding E1/2 values, and plotted the log of these ratios vs. the ΔE1/2 (vs. SCE) 
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values between the (NH3)5RuII/IIItfmp couple (0.143) and each of the hexacyanos 

redox potentials values in Figure 2.98. 

 

Table 2.55  The ratios of kETX/kET found for the various hexacyano salts at              

5.00 mM reactants as well as their associated redox potentials (vs. SCE). The ratios in 

parenthesis are those found by Qin using a 2-Channel model.8,43 

Ion
Fe(CN)6

4-       

(r = 4.24 Å)
Os(CN)6

4-       

(r = 4.35 Å)
Ru(CN)6

4-       

(r = 4.38 Å)

kETX/kET 116 (126) 1.2 (1.5) 0.1 (0.45)

E1/2 0.2 0.4 0.7

ΔE1/2
(a) 0.1 0.3 0.6

 
 

(a) ΔE1/2 = E1/2 (M
II/III(CN)6) - E1/2 (RuII/III(NH3)5tfmp) where E1/2 (RuII/III(NH3)5tfmp) = 0.143 
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E1/2 (V vs. SCE)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

lo
g(

k E
T

X
/k

E
T
)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Fe(CN)6
4-

Os(CN)6
4-

Ru(CN)6
4-

Fe(CN)6
4- (Qin)

Os(CN)6
4- (Qin)

Ru(CN)6
4- (Qin)

 
Figure 2.98 The log of the best-fit kETX/kET ratios arrived at for the various 

hexacyano salts studied vs. the relevant ΔE1/2 (resulting from the difference of the 

hexacyanos redox potentials and the (NH3)5RuII/IIItfmp couple ,0.143; red, green, and 

blue circles) compared with previous results obtained by Qin (red, green, and blue 

triangles).8  
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 To probe the idea of the hexacyano salts catalyzing the ET process via “hole-

transfer” quantum super-exchange as illustrated in Figure 1.6, we have compared the 

kETX/kET ratios with the ΔE1/2 resulting from the difference in the redox potentials of 

the hexacyanos and the (NH3)5RuII/IIItfmp couple (0.143). When the MII/III(CN)6
4-/3- 

redox potential of a given added salt is closer to that of our reactant species the 

HOMO of the added salt species will lie closer in energy to that of  the “hole” or 

electron vacancy in the RuIII form of that partner of our ET reacting pair. Therefore, 

when the ternary association complex is formed, [A5RuIIL, MII(CN)6
4-, A5RuIIIL]+, 

super-exchange is progressively turned on as a function of the energy level of HOMO 

of our MII(CN)6
4- M = Ru → Os → Fe.  Figure 2.98 shows that as the redox 

potentials of each hexacyano salt studied lie closer to that of our reactant complex, 

super-exchange mediation is occurring with more ease (as shown by a rise in kETX/kET 

ratio). 

  It is possible that some aspect of this same process may be showing up in the 

halide data. This would be due to the low lying HOMO’s of the halides making it 

more difficult for the ET process to occur in the ternary association complex 

[A5RuIIL, X- A5RuIIIL]4+.  When the redox potentials are compared with the 

associated kinetic salt effects, the redox potential of the F- anion lies farthest away 

from our ruthenium complexes and that of Br- lies the closest therefore making Br- 

the most catalytic and F- the least by the same hole-transfer reasoning.  

 

 



 
 

347 
 

2.19 Conclusions 

By optimizing the T2 spin-echo sequence utilizing the 19F nucleus we have 

measured the kinetics of reaction (2-2) at the reactants concentration range of 0.10 

mM used in the earlier stopped-flow work.6,7,9 This, combined with line-broadening 

based work at 5.00 mM reactants8, has allowed us to broaden our measurements of 

kinetic salt effects, as well as self-salting effects, over a very broad reactants 

concentration range (spanning from 0.10 mM to 5.00 mM). This new adaptation of 

the very well established CPMG T2 spin-echo pulse sequence has thus linked the 

traditional methods for measuring the kinetics of pseudo- and true self-exchange 

reactions (stopped-flow at low reactants, and NMR line-broadening at high reactants). 

We find that upon increasing the reactant concentrations in our work on 

reaction (2-2), a non-linear trend in the rate of ET vs. solution GP is obtained. This 

behavior could be attributed to the excess Cl- ions in solutions catalyzing our reaction 

in a way which deviates from the Debye-Hückel-Bronsted equation (and this can be 

seen by a similar kET/kETX ratio arrive at for the self-salting modeling data and the 

added Cl- modeling data).  

At low reactants concentrations (0.10 mM reactants) good agreement was 

found with previous stopped-flow work6,9 on specific kinetic salt effects in all cases 

except that of muconate, therefore validating not only the stopped-flow data but also 

proving that the pseudo self-exchange reactions and this particular true self-exchange 

reaction indeed behave fundamentally the same for this family of complexes 

(meaning that the assumptions of ΔE1/2 << λtot and λtot = constant in the stopped-flow 
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cases are rigorously valid).11 This agreement was further underscored by comparing 

temperature dependent stopped-flow and NMR kinetic data. Here we found that 

essentially-identical salt-induced isokinetic plots for the added halides and 

dicarboxylates were reproduced for all salts except the unique case of muc2-.  

At high reactants concentrations (5.00 mM) all kinetic salt curves obtained by 

T2 relaxation matched very well with previous NMR line-broadening measurements 

which solidified our picture of salt effects in the faster exchange region (where the 

observed salt effects are very different than the classical Debye-Huckel-Bronsted 

prediction).8  At all reactants concentration ranges studied, the catalytic efficacies of 

the various anions went as noted below: 

F- < Cl- ~ dcch2- ~ adip2- < muc2- ~ tere2- < Br- << Ru(CN)6
4- < Os(CN)6

4- << Fe(CN)6
4- 

We have shown that some aspects of this trend lies in the anions abilities to catalyze 

ET by quantum super-exchange associated with the ionization potentials and E1/2 

values of the anions.6,8  This trend reflects the energetic cost of creating a “hole-

transfer” virtual bridge state because the closer the energy levels of the bridge (X) 

HOMO levels of these added salts are to the t2g e- vacancy of our (NH3)5RuIIItfpm 

oxidant complex the more readily ET will occur (with the closest lying HOMO to that 

of Fe(CN)6
4- and farthest to that of F-).  

 By a careful process of elimination the downward deviation seen here of 

muconate’s catalytic efficacy as compared to its catalysis of ET measured by stopped-

flow has been attributed solely to the presence of the magnetic field in the NMR 

work. This surprising result requires quenching of the quantum super-exchange 
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mechanism for muc2- by the field. Another instance of this effect may show up in the 

work associated with the hexacyano’s due to the downward deviations found here 

relative to the stopped-flow work9 at 0.10 mM reactants, but further investigation is 

needed because of decay effects observed at 5.00 mM reactants with small amounts 

of hexacyano salts present in solution. The broad outlines of the hexacyano salt 

curves at 5.00 mM reactants however, confirm that the quantum super-exchange 

catalysis is indeed occurring via the hole-transfer mechanism. 

 The three-channel kinetic model developed and applied here (see Appendix 

A) work well at 0.10 mM reactants supporting the notion that reactive flux thru PC, 

PCX, and presumably PCXX are all necessary to explain the observed kinetic salt 

effects over the full ranges of [X] studied. This model generally holds over a broad 

range of kETX/kET ratios spanning from 0.10 mM reactants to 5.00 mM reactants with 

slight downward deviations in kETX and kETXX. This model can therefore be assumed 

to be a good predictive tool for how these ET reactions occur in solution, however 

further investigation is still needed to determine how the underlying equations this 

model is based on break down at larger reactant concentrations (> 0.10 mM 

reactants). 
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Appendix A 

 Derivation of the Three-Channel Kinetic Model  

 
Channel 1 (Flux through the intermediate, PC) 

          

For formation of PC: 

[PC]k][Ru][Ruk
dt

dRu

dt

dRu
d1

III
0

II
0a1

III
0

II
0                          (A-1) 

The term ][RuIII
0  does not account for the following: 

          

In order to account for the formation of RuIII٠X we must first solve for [RuIII٠X] 

below, 

 0X][Ruk ][X][Ruk
dt

dX

dt

dRu III
d2

III
0a2

III
0                      (A-2) 

][X][RuKX][Ru III
0A2

III                                          (A-3) 

Now, we can rewrite equation (A-1) accounting for the formation of RuIII٠X, 

  [PC]k]X[Ru][Ru][Ruk
dt

dRu

dt

dRu
d1

III
0

III
0

II
0a1

III
0

II
0                 (A-4) 

When we substitute for [RuIII٠X] from equation (A-5) we obtain, 

  [PC]k]X][[RuK][Ru][Ruk
dt

dRu

dt

dRu
d1

III
0A2

III
0

II
0a1

III
0

II
0            (A-5) 
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  [PC]k]X[K1][Ru][Ruk
dt

dRu

dt

dRu
d1A2

III
0

II
0a1

III
0

II
0                (A-6)     

Equation (A-6) accounts for all pathways in Channel 1 for which II
0Ru  and III

0Ru  can 

react. We now must apply the steady state approximation to the intermediate 

precursor complex (PC). In order to simplify this task we can apply equation (A-6) to 

account for formation of PC from II
0Ru  and III

0Ru . We also need to account for the 

formation of products from PC; therefore the following equation is found, 

  [PC]k[PC]k]X[K1][Ru][Ruk
dt

dPC
ETd1A2

III
0

II
0a1                 (A-7) 

If we then apply the Steady-State approximation (SST) and solve for [PC] we obtain: 

  0[PC]k[PC]k]X[K1][Ru][Ruk
dt

dPC
ETd1A2

III
0

II
0a1              (A-8) 

   ]X[K1][Ru][Rukkk[PC] A2
III
0

II
0a1ETd1                           (A-9) 

 
ETd1

A2
III
0

II
0a1

kk

]X[K1][Ru][Ruk
[PC]




                               (A-10) 

Now we can solve for the rate of formation of the products, PRD. From this we obtain 

the following equation, 

 [PC]k
dt

dPRD
rate ET                                        (A-11) 

If we plug in values obtained for [PC] in equation (A-10) we obtain, 

 
ETd1

A2
III
0

II
0a1

ET kk

]X[K1][Ru][Ruk
krate




                               (A-12) 

If kd1 >> kET as is the case for our reaction, then the following equation is found, 
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 ]X[K1][Ru][RuKkrate A2
III
0

II
0A1ET                              (A-13) 

Equation (A-13) will be used to calculate the rate associated using Channel 1. 

 

Channel 2 (Flux through the intermediate, PCX) 

          

We will first focus on formation of PCX through Channel (2a). Through applying the 

same methodology as was done for Channel 1 we find, 

PCXk]X[Ru][Ruk
dt

dRu

dt

XdRu
d3

III
0

II
0a3

II
0

III
0 


                 (A-13) 

As in Channel 1 for the loss of III
0Ru  through Channel (2a), we must account for the 

formation of X2RuIII
0   Channel (3a) as illustrated below. 

           

When we solve for formation of X2RuIII
0   we obtain the following, 

0X]2[Ruk ][X]X[RukK
dt

dX

dt

XdRu III
d5

III
0a5A2

III
0 


          (A-14) 

][X]X[RuKX]2[Ru III
0A5

III                                     (A-15) 

Substituting for XRuIII
0   from equation (A-3) we obtain, 
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2III
0A5A2

III ]][X[RuKKX]2[Ru                                  (A-16) 

Now we can rewrite equation (A-13) accounting for the formation of X2RuIII  , 

  PCXk]X2[Ru]X[Ru][Ruk
dt

dRu

dt

XdRu
d3

III
0

III
0

II
0a3

II
0

III
0 


      (A-17) 

Applying the substitution for ]X2[RuIII
0   as defined by equation (A-16) we obtain, 

  PCXk]X][[RuKK]X[Ru][Ruk
dt

dRu

dt

XdRu
d3

2III
0A5A2

III
0

II
0a3

II
0

III
0 


  (A-18) 

When simplifying equation (A-18) and applying all necessary substitutions the 

following is found, 

   PCXk]X[K1]X][Ru][[RuKk
dt

dRu

dt

XdRu
d3A5

III
0

II
0A2a3

II
0

III
0 


          (A-19) 

Now that we have an expression for Channel (2a) we must apply the same 

methodology to Channel (2b) as follows, 

 PCXk[PC][X]k
dt

dX

dt

dPC
d4a4                                   (A-20) 

When we substitute for [PC] (as was defined in equation (A-10)) and assume           

kd1 >> kET we obtain, 

  PCXk[X]K-1][X]][Ru[RuKk
dt

dX

dt

dPC
d4A2

III
0

II
0A1a4            (A-21) 

Now we can apply the SST for PCX as shown below, 

 

  0]PCX[kPCXk[X]K-1][X]][Ru[RuKk                 

 PCXk]X[K1]X][Ru][[RuKk
dt

dPCX

ETXd4A2
III
0

II
0A1a4

d3A5
III
0

II
0A2a3




(A-22)                   
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   
 [X]K-1][X]][Ru[RuKk                               

]X[K1]X][Ru][[RuKkkkk]PCX[

A2
III
0

II
0A1a4

A5
III
0

II
0A2a3ETXd4d3




             (A-23) 

   
ETXd4d3

A2
III
0

II
0A1a4A5

III
0

II
0A2a3

kkk

[X]K-1][X]][Ru[RuKk]X[K1]X][Ru][[RuKk
]PCX[




  (A-24) 

If kd3 >> kETX and kd4 >> kETX then we can neglect kETX in the denominator in 

equation (A-24), 

   
d4d3

A2A1a4A5A2a3III
0

II
0 kk

[X]K-1Kk]X[K1Kk
]X][Ru][[Ru]PCX[




       (A-25) 

Now we can solve for the rate of formation for the products, PRD, through Channel 2. 

From this we obtain the following equation, 

 [PCX]k
dt

dPRD
rate ETX                                          (A-26) 

Substituting in for [PCX] (as defined in equation (A-25)) we obtain the rate equation 

associated with Channel 2, 

   
d4d3

A2A1a4A5A2a3III
0

II
0ETX kk

[X]K-1Kk]X[K1Kk
]X][Ru][[Rukrate




        (A-27) 

Equation (A-28) will be used to calculate the rate associated using Channel 2. 
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Channel 3 (Flux through the intermediate, PCXX) 

           

We will first focus on formation of PCXX through Channel (3a). Through applying 

the same methodology as was done for Channels 1 and 2 we find, 

PCXXk]X2[Ru][Ruk
dt

dRu

dt

X2dRu
d6

III
0

II
0a6

II
0

III
0 


             (A-28) 

When we apply the substitution for ]X2[RuIII
0   as was defined in equation (A-16) we 

obtain, 

PCXXk]X][[Ru][RuKKk
dt

dRu

dt

X2dRu
d6

2III
0

II
0A5A2a6

II
0

III
0 


       (A-29) 

Now that we have an expression for Channel (3a) we must apply the same 

methodology to Channel (3b) as follows, 

PCXXk]X[Ru]X[Ruk
dt

XdRu

dt

XdRu
d8

III
0

II
0a8

III
0

III
0 





          (A-30) 
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In order to account for the formation of ]X[RuII
0   we would apply the same 

methodology as was done when accounting for the formation of ]X[RuIII
0   as defined 

by equation (A-3), 

0X][Ruk ][X][Ruk
dt

dX

dt

dRu II
d7

III
0a7

II
0                       (A-31) 

][X][RuKX][Ru II
0A7

II                                        (A-32) 

When equations (A-3) and (A-32) are substituted into equation (A-30) we obtain,  

PCXXk][X][Ru][RuKKk
dt

XdRu

dt

XdRu
d8

2III
0

II
0A7A2a8

III
0

III
0 





     (A-33) 

Now that we have expressions for Channels (3a) and (3b) we must apply the same 

methodology to Channel (3c) as follows, 

PCXXk][PCX][Xk
dt

dX

dt

dPCX
d9a9                         (A-34) 

When we plug in the values for [PCX] which is defined by equation (A-25) we 

obtain, 

   

PCXXk                              

kk

[X]K-1Kk]X[K1Kk
]X][Ru][[Ruk

dt

dX

dt

dPCX

d9

d4d3

A2A1a4A5A2a32III
0

II
0a9






 (A-35) 

Now we can apply the SST for PCXX as follows, 

  0[PCXX]kkkkPCXX][W ]X][Ru][[Ruk
dt

dPCXX
ETXXd9d8d6

2III
0

II
0a9   (A-36) 













d4d3

A2A1a4A5A2a3
a9A7A2a8A5A2a6 kk

[X])K-(1Kk[X])K-(1Kk
kKKkKKkW  (A-37) 
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When we solve for [PCX] we obtain, 

Y]X][Ru][[Ruk]PCXX[ 2III
0

II
0a9                                 (A-38) 





































ETXXd9d8d6

d4d3

A2A1a4A5A2a3
a9A7A2a8A5A2a6

kkkk

kk

[X])K-(1Kk[X])K-(1Kk
kKKkKKk

Y  (A-39) 

When kd6 >> kETXX , kd8 >> kETXX , and kd9 >> kETXX then kETXX can be neglected in 

the dominator of equation (A-39). Now we can solve for the formation of products, 

[PCXX]k
dt

dPRD
rate ETXX                                 (A-40) 

Substituting in the values of [PCXX] defined in equation (A-38) we obtain the rate 

equation for Channel 3, 

Y]]X][Ru][[Rukk
dt

dPRD
rate 2III

0
II
0a9ETXX                       (A-41) 





































d9d8d6

d4d3

A2A1a4A5A2a3
a9A7A2a8A5A2a6

kkk

kk

[X])K-(1Kk[X])K-(1Kk
kKKkKKk

Y (A-42) 

When calculating the total rate for our three channel model we must add the rates 

calculated for each channel defined by equations (A-13), (A-27), and (A-41).  
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