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ABSTRACT: This paper uses regression analysis to examine the relationship between
today’s implied volatility on AMD and OEX options with tomorrow’s return on the
underlying. An economic analysis of the options markets’ microstructure is discussed to
establish the intuition and the basis behind this relationship. Four separate models are
developed to examine its statistical significance and the ability of options’ prices to
accurately forecast returns on the underlying security.

I find that today’s call implied volatility has a significantly positive relationship with
tomorrow’s returns on AMD stock. Also, today’s put implied volatility has a
significantly negative relationship with tomorrow’s returns on AMD stock. These
statistical relationships are not evident between OEX returns and implied volatility on
OEX options.

The hypothesis of the paper is that daily changes in implied volatility can be used to
earn higher than expected returns on AMD stock. Two time-series models of AMD
returns and actual sample returns generated by the forecasting models are used to test the
validity and reliability of the models. I find that implied volatility can be used to increase
forecasting accuracy and may provide a means by which the Efficient Markets
Hypothesis can be refuted.

The main purpose of the paper is not to provide a method in which abnormal returns
can be made possible, but to illustrate how it is possible for information to enter the
options market before it enters the market for the underlying. Information contained in
the options market microstructure, which can be quantified by analyzing implied
volatility, may provide insight into the overall market’s perception and expectation of
future returns on the underlying.



Chapter 1: Introduction

From the Trading Floor to Academic Research

“Hey, Sampson! You know those calls you bought yesterday.”

“Yeah?”

“News came out and the stock looks up two bucks. Your customer is a crook!”
“Sorry?”

I was a rookie options floor broker at the Pacific Exchange. The day prior to my
above confrontation with a market-maker, [ was buying Advanced Micro Devices (AMD)
call option contracts for one of my customers. Throughout the day, the customer placed
five separate orders to buy AMD November 30 calls. I purchased a total of 500
contracts. At the time AMD was at thirty dollars per share in quiet, low price activity
trading. With each trade, the market-makers raised their offer on the November 30 calls
from an initial price of two dollars up to 2 %. Seeing that the price of the underlying
stock remained constant, the rise in price was what the market-makers affectionately refer
to as a “fish on-line”; a customer willing to trade on their market with no regard to price.
I assumed that each order would be the last, because the price of the calls appeared to me
to be exorbitantly high and thus the customer would be forced to back away. But he kept
coming.

The next day AMD opened at 32 V4. It was then apparent, as the verbal abuse I
received from the market-maker made clear, that the customer must have known some
kind of “inside information”. This accounted for why he was willing to continue buying

calls despite their “high” price. Confident that the stock would gap up the next day, the

high premium was of little concern to him.



I relayed my “discussion” with the market-maker to my boss after the closing bell. He
responded that I better become accustomed to that kind of verbal tirade because “our
customers tend to be right”. I took that as meaning that some of our customers were in
fact crooks privileged to information about certain stocks that the options market-makers
were not. During my three years on the options floor, I have seen several examples of
off-floor traders taking advantage of unsuspecting on-floor traders. As a prospective
proprietary trader myself, I became fascinated with these events. In this thesis I have set
out to attempt to quantify these events and develop a statistical relationship between
options and future movements in the underlying security. In so doing I hope to highlight
the existence of a certain type of market inefficiency in the options market, that in turn

might lead to a practical trading strategy.

Market Efficiency and Information

Simply stated, a market is efficient when past prices cannot be used to forecast future
prices. On an intuitive level the Efficient Markets Hypothesis (EMH) seems quite logical
and reasonable. If investors know that the price of a stock will go up next week, then
they will undoubtedly buy the stock today pushing its price up to the future expected
level immediately. Investing is an inherently selfish act where participants are intent on
serving and increasing their own wealth. Competition among numerous traders allows
financial markets to adjust quickly to any new information. The price of a security
should therefore reflect all information at all times, making profitable forecasts not only

difficult but also impossible.



Market efficiency implies that security prices follow a random path. Under EMH the
best possible guess for tomorrow’s price is today’s closing price. The divergence in price
from day to day is thus random and uncorrelated. However, historical stock market data
suggests that financial markets do have a positive drift rate. Investors who have bought
and held a diversified portfolio of stocks have reaped considerable rewards in the past
decade. By stating the market is random, it is not academia’s intention to assert that
consistent, long-term profits are not possible, only that short-term profits based on some
kind of forecasting model are. This is a difficult notion for many, especially high paid
Wall Street executives, to accept. If it is impossible to achieve higher than expected
profits by employing countless hours of technical analysis and research, then why should
investors pay high commissions to brokerage houses for their services?

A technical analyst is a type of trader who disagrees with the theory of unforecastable
changes. These traders, or “chartists”, analyze patterns in historical price graphs to
forecast stock prices. They would probably look at the following chart of XYZ and
determine that when it trades down to ten dollars, the next day it bounces up providing a

significant buying opportunity.
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The financial economist would look at the graph and argue that the best guess for
tomorrow’s price is simply today’s price of ten dollars. There is no reason to believe past
behavior is indicative of future behavior. Even though such techniques receive
considerable media coverage, they have little if any statistical credibility.

This discussion of market efficiency places us in an awkward situation. As a student
of financial economics, I believe in the random nature of security prices and while the
intent of my paper is to develop models designed to forecast short-term changes. The
Efficient Markets Hypothesis is just that, a hypothesis. It must therefore be tested and
continually challenged in order to prove its value and relevance. Given the widespread
academic acceptance of the hypothesis it would be foolish of me to expect to find
overwhelming evidence against it. The paper, in its examination of the derivatives
market as a basis of the tests, does however provide a different and unique way of
exploring market efficiency that may provide results that are in disagreement with

traditional tests.

Traditional Market Efficiency Tests Vs. Derivatives Based Tests

Traditional tests of market efficiency range from the statistical time-series analysis of
past prices to more complex models such as the Capital Asset Pricing Model (CAPM)
and the Arbitrage Pricing Model (APT). These tests focus on past prices of assets, the
introduction of information to the market (i.e. news regarding dividends or stock splits),
and the relationship between a stock and an index of stocks. This paper presents a

different tool in testing EMH and thus a new tool in forecasting equity returns: options.



Options by definition are forward-looking. EMH implies a stock’s price incorporates
all past and current information while an option’s price must also incorporate all possible
future information and events associated with the stock until expiration. This fact, even
with complex pricing formulas, makes accurate pricing of options an inexact science at
best. The paper assumes and relies on certain situations in the market where the pricing
of options incorporates information about future directional movement in the underlying
asset, hereafter referred to as the “underlying”. If these situations do occur with some
regularity, the paper’s models can be used in a statistically significant way to
systematically predict returns on a stock. Even though the trader’s information in my
AMD story constitutes a violation of market efficiency, it would not be detected by
traditional tests that focus on historical prices of the underlying only. The paper is forced
to implicitly assume that the market is exhibits a certain type of inefficiency (the three
types of market efficiency will be defined in Chapter 2), because it relies on the inside

knowledge of others for its own accuracy and statistical strength.

Options Market Dynamics: Supply and Demand

The options trading-pits are one of the purest forms of free market capitalism. Buyers
and sellers come together in an effort to maximize their own utility, ascertain a price
agreeable to both parties, and enter into a binding, legal bargain. Derivatives are maybe
the most complex and least understood financial product. Yet, the price of an option is
dependent on the same principles of supply and demand and on the same kind of market-

manipulating forces, as is the price of gasoline.



The options market is comprised of market-makers standing in trading-pits and off-
floor traders who place buy and sell orders via a broker. The vast majority of trades
occur between these two parties. Off-floor traders are dependent on the market-makers
for not only the displayed quotes, but for market liquidity. In the AMD example there
was an increase in demand for call options. The trading crowd, knowing they had an
aggressive buyer of their options who made it clear he would pay any price for them,
acted in their own self-interest. As experienced traders with considerable gamesmanship,
they took full advantage of the situation by raising the price in order to enhance their own
competitive position and in doing so were able to increase the supply to meet the increase
in demand of the desired call option.

The market dynamics associated with AMD options are not universal. The OEX is an
index option whose underlying security is a basket of stocks, the S&P 100. It is the
largest options market in terms of volume and number of market-makers (approximately
200 versus only 10 in AMD). The driving force behind the change in market price for
AMD November 30 calls does not exist to the same extent in the OEX. A purchase of
500 calls in the OEX would not significantly alter pricing because of the larger number of
traders and thus greater overall liquidity. It is also safe to assume that competitive
pressures make it difficult for a large group of self-interested traders to collectively agree
to raise prices in order to bait a customer into paying too high of a premium. While the
AMD options market demand/supply dynamics may allow for some forecasting accuracy,
these same dynamics do not exist for the OEX.

These dynamics are simple in nature, but they are critical to the paper’s assumptions

and expectations. The paper assumes that these basic demand/supply dynamics in certain



less heavily traded equity options markets do have an effect on prices. These changes in
prices lead in turn to the expectations that they contain information about future returns

on the underlying.

Calls and Puts: Hedging and Speculating

A call option gives the buyer the right, but not the obligation, to buy an asset for a
prescribed price (the strike price) within a prescribed time period. The right to sell an
asset is a put option and has payoffs opposite to those of a call. Whereas the holder of a
call wants the price of the underlying asset to rise — the higher the asset price at
expiration the greater the profit — the holder of a put option wants the asset price to fall.
A rise in the price of the stock above the strike price gives the call holder the ability to
buy stock below current market value. A fall in the price of stock below the strike price
gives the put holder the ability to sell stock above market value.

Calls and puts serve investors needs in two ways: 1. Hedging 2. Speculating. As a
hedging tool, options allow investors to protect their assets. The seller (or “writer”) of a
call immediately receives a premium, the market price of the option. This premium then
reduces the downside the liability of owning a stock. For example, if an investor
purchases stock for $50 per share and sells an equivalent number of calls with strike price
of 55 for a premium of $2 per option, he will not incur losses as long as the stock stays
above $48 per share. As with all things, protection does not come free. Selling calls
limits upside potential. If the stock trades above the strike price (55), the stock will be
“called” away forcing the investor to sell at $55 per share regardless of current market

value. This strategy may be attractive to many traders, because if the stock is called away



at a price far below current value, the trader still profits $7 per share. ($2 received for
selling call + sell stock at $55 - $50 original price paid for stock = $7 profit)

Buying a put can limit stock losses to a specific amount. If I were to buy stock for
$50 per share, I could hedge the position with the purchase of a put with a 50 strike price.
This strategy guarantees me the right to sell stock at $50 regardless of how low the stock
itself trades. The price of protection and the reduction of possible profit is the price of
the put. Like car insurance, you never want to use it but it allows risk averse individuals
to sleep easier.

Options also allow investors to speculate on short-term movements in a stock or
index. Since the prices of calls and the underlying are positively correlated, the trader
who believes a stock will rise can purchase a call now instead of the stock itself. The
purchase of a put alone without holding underlying allows investors to profit from
downward movements in the market. This strategy is popular among traders who try to
“time” the market. Buying a call is less expensive than buying the underlying and buying
a put generates a “short” position. The term “short” means the selling of an asset by an
investor who does not already own the asset. This strategy is profitable when the price of

the asset falls.

Expectations and Hypothesis

The introduction so far is intent on giving the reader enough background market
knowledge to understand the intuition behind the paper’s expectations and abilities to
refute the EMH. Supply and demand affect the prices of all financial instruments

regardless of how complicated their pricing structure is. In the case of options, these



effects can be calculated by deriving implied volatility from the Black-Scholes pricing

formula. An increase in demand for an option causes its implied volatility to rise while a

decrease in supply causes it to fall. Today’s implied volatility is then related to returns

on the underlying on the same day and perhaps to returns on the underlying tomorrow.

Hypothesis:

1.

Call implied volatility is negatively correlated with returns on the underlying when
compared on the same trading day. Investors hedge the purchase of stock by selling
calls. When there are more buyers than sellers at the current price, the price rises
until the two are equated. More stock buyers mean more call sellers. Result: when
the price of an asset rises the price of calls and implied volatility falls.

Put implied volatility is positively correlated with returns on a stock when compared
on the same trading day. Investors hedge the purchase of stock by buying puts.
Excessive simultaneous demand in both markets at the current price level causes the
prices and put implied volatility to all rise.

Today'’s call implied volatility has a positive relationship with tomorrow’s returns on
a stock. High speculation today about future rises in a stock’s price causes excessive
demand in the calls raising their price and call implied volatility. The expectation is
dependent on the accuracy of these speculators.

Today’s put implied volatility has a negative relationship with fomorrow’s returns on
a stock. High speculation today about future falls in a stock’s price causes excessive
demand for puts raising their price and their implied volatility. As with the calls, if
these speculators are correct in their forecast, a rise in put volatility today will result
in negative returns on the underlying tomorrow.

The expected relationships hold only for an individual equity and not for an index due
to options market dynamics.

The thesis attempts to provide a method to forecast movements in stock prices. 1

hypothesize that the prevalence of options traders who have inside knowledge regarding

directional movement in the underlying is strong enough for Hypothesis 3 and 4 to hold.

Due to the forward looking nature of options, this information can then be used to

forecast stocks and earn higher than expected returns by removing a portion of the day-



to-day randomness in stock prices. By modeling the relationship between implied
volatility and stock returns in a particular way, signals to buy and sell the stock will
emerge. A buy signal today will then result in significantly positive stock returns
tomorrow. A sell signal today will result in significantly negative returns tomorrow. The
models will also increase the overall statistical forecasting accuracy of the stock in

comparison to time-series models.

The paper is structured as follows: Chapter 2 presents a more thorough discussion of the
Market Efficiency Hypothesis, a discussion of the Black-Scholes pricing formula and
how it is used to calculate implied volatility, interpretations of implied volatility’s
strength and weaknesses associated with its use as a tool to forecast stock returns, and
summary statistics for all data. Chapter 3 details and gives the rationale for the
regression models and presents the statistical significance of the forecasting models. It
also presents evidence for the forecasting accuracy and the ability of the models to be

used as a successful trading strategy. Chapter 4 contains concluding comments.
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Chapter 2: The Details

The financial world, once exclusive to, and dominated by a select group of firms and
wealthy individuals, is now open to a wide variety of investors. These investors range
from the traditional and powerful Wall Street institutional traders to middle income
families who trade stocks from home through the Internet. The common thread that ties
different investors together is a belief, or an assumption that they have the tools and
information necessary to profit from their trading strategies. Our society has become
fascinated with the countless riches that it seems possible to make in the stock market. A
quick glance at the finance section in a bookstore will show just how popular this new
“national pastime” has become. Thousands of books and articles, written by self-
described “investment professionals”, tout sure-fire ways to “beat the market”. Methods
range from complex (yet, easy to understand if you rcad their book) charting tcchnignes
to advanced neural network computer programs that assimilate vast amounts of data to
produce market forecasts.

One of the most pressing, and fascinating, questions facing financial economists is
whether or not one or more of these many trading strategies can be used to predict market
movements and earn higher than expected profits. The underlying assumption or null
hypothesis is that it is not possible and the stock market is efficient. The logic behind this
assertion is that any price discrepancy that allows for risk-less profit will be acted upon
until it no longer exists.

In this chapter I will expand on the previous chapter’s discussion of market efficiency

and also explore possible causes of inefficiencies and their relation to the many

11



predominant “beat the street” trading techniques. Implied volatility is defined along with
its strengths and weaknesses as a means to forecast market returns. A brief discussion of
the Black-Scholes options pricing model and how it is used to derive implied volatility is
also presented. Chapter 2 contains a statistical summary and the method used for

calculating the data sets contained in the forecasting models that follow in Chapter 3.

Three Types of Market Efficiency
The Efficient Markets Hypothesis is divided into three categories: Weak, Semi-

Strong, and Strong Form Efficiency.

Weak Form Market Efficiency Hypothesis

Weak form efficiency states that past prices and stock movements cannot be used to
predict future prices. It is a direct attack on technical analysis. According to this
hypothesis, changes in a stock’s price from day to day are random. Wall Street traders,
who spend countless hours staring at intricate graphs of past stock prices, looking for
trends and patterns, are simply wasting their time and the money of investors who pay for
their advice. Random daily stock price changes lead to the most basic of conclusions
regarding future prices: the best guess for tomorrow’s stock price is today’s closing price.
Any and all variation is random and thus not predictable. This is termed a random walk

in the stock’s price.

12



Weak efficiency is thus statistically defined by “The Random Walk”. Econometric
analysis of daily returns on a stock yield three types of random walks that are all in

agreement with the Weak Form Efficiency Hypothesis.

The Random Walk Hypothesis and Weak Form Market Efficiency

“Random walk” is a term used to describe the behavior of a certain type of time-series
random variable. It also captures the behavior of stock prices that conform to the Weak
Form Efficiency Hypothesis. The first property of a random walk is the property that the
best guess for tomorrow’s price, given information available today, is today’s price or
E[Pw1 | I"] = P.. Where I™; = “information” regarding the price of the stock and in the
case of weak form efficiency the information that is of concern only involves past prices
and returns (i.e. “charts”). E[Pw; | I"y] = P is then defined as tomorrow’s expected stock
price given today’s information about past stock prices is equal to today’s stock price.
Since the weak form does not disagree with the notion of a market that can drift in a long-
term direction, this expected price change can be included in the equation as p.. The last
component is the error term (g1). The error term is also unforecastable under weak form
efficiency or E[gw | If] = 0. The dynamics of a random walk with a drift in a stock’s
price Py are thus given by the following equation:

Py =P+ i+ &

By the definition of weak efficiency, the error term, or daily, unexpected change in price,
should be random. The Random Walk Hypothesis breaks down the statistical nature of

the error term into three types.
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Random Walk 1 (RW1) entails an error term that is independently and identically
distributed (IID). IID is equivalent to complete randomness, or white noise, in that the
error term is normally distributed with mean of zero and a constant variance (8%). White
noise error terms by definition cannot be forecasted with available information and thus a
stock with this property is not completely predictable using past prices. If the error terms
are IID and normally distributed, then there is a positive probability that Py will be less
than zero. It is obviously not possible for a stock’s price to be negative. This is why this
thesis, and financial research of the same type, uses the lognormal of stock price time-
series data.

In Random Walk 2 (RW2) the assumption in RW1 that the daily, unexpected change
in price is IID is relaxed. RW?2 is probably more realistic for the case of financial data.
The notion that the variability of stock returns is constant over long periods is not
realistic. Error terms that are independent but not identically distributed (INID) allow for
the possibility of unconditional heteroskedasticity in the time-series. This is a
particularly useful feature when dealing with stock returns. When viewing the daily
volatility of a stock’s price as a scatter diagram, it often appears that some periods exhibit
greater volatility than others do. This unequal scatter (heteroskedasticity) allows for
differing volatility while maintaining the property that €., is unforecastable with I,.

Random Walk 3 (RW3) is the most general of the three versions. RW3 relaxes the
assumptions on RW2 by allowing for pricing data not to be independent. Daily returns
can therefore have dependent but uncorrelated error terms. Under RW3 the data is

uncorrelated in that the covariance between g, and €. is zero for all k but the covariance

between squared error terms (g and €, °) is not independent in that their covariance does

14



not equal zero. As we will see in the discussion of the Black-Scholes options pricing
formula, the ability to forecast volatility is a vital component of accurately priced
derivative securities. Under the Weak Form Efficiency Hypothesis, even though

volatility may be predictable to a certain degree, actual prices are still not predictable.

Semi-Strong Form Market Efficiency Hypothesis

Semi-strong efficiency builds on the weak form by allowing all published information
to be used in forecasting future price changes. In the equation describing the dynamics of
Pt+1, I*, is replaced by I**. I*; is now defined as all information regarding past prices and
all published information about the stock. Fundamental analysts are traders that perform
research on, and publish information about, the inner workings of a publicly held
company. Traders then use this public information, ranging from price-earnings ratios to
product inventory levels, to make investment decisions. Semi-strong efficiency claims
that the price of a security reflects this information at all times and thus it cannot be used
to forecast short-term price fluctuations. No matter how hard you try to analyze past
price performance along with all publicly available news and information about a
company, you will be unable to forecast future returns if the market is semi-strong

efficient.

Strong Form Market Efficiency Hypothesis
The strong view of market efficiency is the most direct: nothing — not even
unpublished (“inside”) information — can be used to predict stock returns. The restrictive

nature of this hypothesis makes it the easiest to refute, which is normally the case in

15



studies pertaining to the subject. There are an abundance of stories about people on the
“inside” of a company who use their (private) information to generate trading profits.
For example, a corporate lawyer who is hired to negotiate a merger between two
companies may be able to use this information to predict the movements in the associated
stocks. A government agency, the SEC, was established in part to punish and attempt to

prevent such illegal trading activity.

Implied Volatility and the Black-Scholes Options Pricing Formula

The Black-Scholes formula (1973) revolutionized the financial industry by providing
an easy-to-use model that adequately prices derivative securities. The model assumes
stock prices follow a lognormal random walk (geometric Brownian motion). It has been
shown that stock prices exhibit more complicated behavior which has led to more
complicated pricing formulas. The ease in which Black-Scholes can be applied to real-
time trading situations, however, more than makes up for its less-than-perfect description
of asset behavior. The ease of Black-Scholes can be seen by the fact that only one
parameter, future volatility, is not directly observable in the market. The other
parameters (stock price, time to expiration and the interest rate) are always known with
certainty.

We know that an asset’s volatility tends to exhibit heteroskedasticity. From the RW3
discussion we also know that it may be possible to infer with some accuracy what
tomorrow’s volatility will be based on today’s volatility. The ability to adequately make

these types of assertions regarding daily changes in volatility allows traders to implement

16



the Black-Scholes model even though actual future volatility is not known with certainty.
This does not undermine the overall importance of volatility in the accurate pricing of an

option. The following graph of stock prices is presented to illustrate this point.

25
204-"

15.
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Both stocks ABC and XYZ have an initial price and a price at expiration (day 15) of
$20. But a call option with strike price of 25 will trade for a higher price on stock XYZ
than on ABC. Assuming all other parameters constant, the reason for this is volatility or
variance in the price of the two stocks. From the graphs, it is visually obvious that XYZ
has a greater variance and thus greater probability of trading in-the-money (above $25).
If the correct volatility is not used to price the options in the marketplace, investors could
trade options and earn a higher than expected return.

This discussion leads back to the principles of market efficiency. If the market is in
fact efficient, then the volatility parameter used in the options market should not only
contain information about current changes but also information about future changes in
the stock’s price. It is already assumed then that the volatility used to price an option

gives information regarding the size of future changes. It does not necessarily mean,
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however, it gives information regarding the direction of these changes. Thus it may not

contain information useable in the forecasting of returns.

Implied Volatility

As noted above, the one parameter in the Black-Scholes model that is not directly
observable is volatility. Volatility can be estimated using historical trends in the stock
price. An alternative approach is implied volatility or the volatility of the underlying
“implied” by an option price.

Since all other Black-Scholes parameters are known with certainty, along with the
price of an option, through an iterated process the correct volatility can be found within
the Black-Scholes pricing model’s framework such that the resulting calculated option
price equals the option price found in the marketplace. This process allows for the
implied volatility to reflect not only the market’s opinion of actual and future volatility
but since it is dependent on the price of the option it is also dependent on, and therefore
must also reflect, outside forces affecting the options’ pricing structure. These forces are
demand/supply market dynamics or the “microstructure” of the market. To illustrate
these points assume a stock’s price remains constant along with all observable
parameters. As was the case in my AMD experience, a large trade occurring in the
options market affects its pricing structure causing implied volatility to change. This
change is not due to changes in stock volatility but rather to reactions to demand or
supply (microstructure inefficiencies). These are the types of changes that must be
quantified in order to achieve successful forecasting models. The main advantage in

using implied volatility as a forecasting tool is its implicit forward-looking nature.
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Implied volatility is a parameter defined to indicate future dispersion in price. The goal
of the models is then to find events in the data that provide not only information about the

size of future movements, but also about the direction of these movements.

The Data

The forecasting models use three types of time-series data: daily returns on the
underlying security, call implied volatility and put implied volatility in the corresponding
option class.

The stock and equity index data to be analyzed is AMD and OEX respectively. AMD
or Advanced Micro Devices, is a Silicon Valley based company that produces computer
chips. AMD is currently Intel’s main rival in the chip industry. AMD stock trades on the
New York Stock Exchange while its options trade on the Pacific Exchange. “OEX” is
the option ticker symbol for the Standard and Poor’s 100 index. The index is comprised
of one hundred of the largest capitalized companies in the United States. It is intended to
be representative of all major industries and thus its movement should be indicative of the
strength or weakness in the entire market. OEX options trade on the Chicago Board
Options Exchange.

As discussed earlier, daily changes in the securities are calculated using natural
logarithms. The notations used for daily natural logarithmic returns are R(AMD) and
R(OEX). The following formula is used for their calculation:

R(AMD), = In (AMD, / AMDy.,)
R(OEX); = In (OEX, / OEX,.,)
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Stock splits and dividends complicate any calculation of daily returns on financial time-
series. During the course of the sample period (one year or 252 trading days) AMD did
not incur a split in price nor a dividend. The OEX also did not split but since it is an
index it has what is known as a “dividend-yield”. This is as annualized number that
incorporates the return associated from paid dividends on all hundred stocks.

Dividends have the effect of reducing the stock price on the ex-dividend date. For tax
reasons the reduction is not one-for-one. It is generally assumed for statistical analysis
that if a stock goes ex-dividend for $1 per share, the stock’s price will be reduced by
$0.80 or 80% of the dividend amount. To avoid problems associated with continually
adjusting the index price in accordance with paid dividends, the OEX changes a stocks
divisor when it goes ex-dividend in order to keep the index value unchanged. The
“divisor” is the percentage of the total index value that a single stock accounts for. By
reducing this number for an ex-dividend stock (and raising the percentage composition of
the other stocks), the index price remains constant. This continual, yet very minor,
tinkering of the index allows for the above formula to be an accurate calculation of daily
returns.

The call and put implied volatility data is calculated based on the daily closing option
price for each series. Each individual option price is then fixed in the Black-Scholes
pricing model and through the process of iteration, each option’s implied volatility is
determined. The implied volatility number is an annualized percentage based on 252
trading days in a year. If a stock is said to have a price volatility of 50, it equates to the

maximum dispersion of price over one year to be fifty percent of the current price in both
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directions. For example, the annual price range for a ten-dollar stock with a fifty
volatility is expected to be between five and fifteen dollars.

In order to generate a single call and put implied volatility for each trading day, a
weighted-average system based on trading volume is used. The weighting factor is the
volume of each call or put series divided by the total number of call or puts traded during
a single day. The weighting factor is then multiplied by each option’s implied volatility.
The sum of all calls and puts volume weighted implied volatility is used as Call IV and
Put IV. The daily change in implied volatility is calculated in the same manner as the
daily returns on the underlying.

Call IV, = 3. (weighting factor;; x Call IV;y)
R(Call IV); = In (Call IV, / Call I'V,)

Since at-the-money options (options whose strike price is close to the actual price on
the underlying) generally have larger trading volumes than deep in-the-money or out of —
the-money options, this method allows for them to carry more weight in the total
calculation of implied volatility. This fact is important since the pricing of at-the-money
options are more sensitive to changes in supply and demand. Deep in-the-money options
move tick for tick with the stock. Their time premium is limited to the current interest
rate (i.e. the time value or opportunity cost associated with using dollars to purchase
stock) and thus their price is not affected by demand/supply dynamics in the options
market. Out of-the-money options have minimal price movements due to their small
value and delta and thus their pricing structure does not exhibit significant changes due to
demand/supply dynamics. (Delta is defined as the change in an options price per change
in the stock’s price. Deep in-the-money options have a delta close to 100 or their

movements are 100% the movement of the stock. Out of-the-money options may have a
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delta around 5. If a stock’s price rises one dollar, the out of-the-money call option will
only rise in value by five cents.) The change in pricing due to trading patterns is the
focus of this study and since the price of at-the-money options have a greater chance of
being significantly affected by these situations, this type of weighting structure is the
most relevant and useful.

Summary statistics for daily returns, call and put implied volatility:

AMD

Mean  Std. Dev.  Skew Kurt Max Min Jarque-Bera Norm. Prob.
Summary Statistics
AMD 31.55 9.062 -0.027 1.515 47.375 17125 na na
R(AMD) -0.0025 0.0449 -0.1019  7.284 0.1744  -0.2208 192.4 0%
AMD Call IV 62.71 11.29 0.487 2972 105.25 384 na na
R(AMD Call Iv) 0.0006 0.1261 -0.0521 7.043 0.5546 -0.5371 175.2 0%
AMD Put IV 62.58 11.23 0.533 2.818 101.41 43.28 na na
R(AMD Put V) -0.0008 0.1129  0.0447 6.681 0.5319 -0.4249 149.9 0%
OEX

Mean Std. Dev. Skew Kurt Max Min Jarque-Bera  Norm. Prob.
Summary Statistics
OEX 487.69 40.08 0.472 1.743 576.24 417.6 na na
R(OEX) 0.0015  0.0091 -0.323 3.299 0.0214  -0.0301 3.03 22%
OEX Call IV 19.519 2.579 0.788 3.681 27.02 14.5 na na
R(OEX Call 1V) -0.0023 0.0725 0.459 3.658 0.2263 -0.1679 7.66 2%
OEX Put IV 19.846 2.744 0.793 5.282 29.71 10.09 na na
R(OEX Put IV) -0.0017 0.1052  -0.333 14.57 0.512 -0.584 805 0%

From the Jarque-Bera statistic it can be seen that the returns on the two data sets have a
0% probability of being normally distributed. The fact that the returns do not exhibit a
normal distribution is evidence of an inherent flaw in the Black-Scholes pricing formula.
The paper is dependent on this model for its calculations of implied volatility and thus it

may incur a similar weakness or bias in its forecasting models. However, since a vast
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majority of professional traders use and have confidence in the Black-Scholes models, it
will be assumed here that any flaws are small enough as to not significantly affect any
possible conclusions.

A quick glance at the tables will also show a dramatic difference in the mean and
standard deviation of AMD implied volatility and that of the OEX. A single stock,
especially a stock involved in high-tech products is more likely to exhibit higher and
more dramatic changes in volatility than that of a diversified index of stocks. This too
may account for why the models work for AMD and not for the OEX. The models are
dependent on sudden and large shifts in implied volatility for its trading signals. If these
events do not occur with regularity, as is the apparent case with the OEX, the models are
less valid if not worthless.

The graphs shown on the following page are presented as “eyeball” evidence for the
relationship between AMD’s stock price, implied volatility and actual AMD price
volatility. The first graph is actual daily values. As expected, it shows how implied
volatility mirrors movements in actual volatility. Implied volatility appears almost to be
a moving-average of volatility, following the same path yet unable to account for sudden
and dramatic changes. This is in fact how the option price parameter is routinely
calculated. The second graph illustrates the daily logarithmic changes in the volatility
data.

The “eyeball” evidence to be noticed in the second graph is the occurrences where
changes in call and put implied volatility diverge from each other. Under the Black-
Scholes pricing model the volatility parameter is and should be the same for both call and

put options. This is generally true but then why do the two implied volatility parameters
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differ significantly on certain trading days? The paper hypothesizes that this difference is

caused by changes in demand/supply dynamics of the two option series.
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The following chapter will define and explain the forecasting models and how they
attempt to quantify specific changes in implied volatility, such as a significant difference
in call and put implied volatility, and the intuition behind why certain changes may lead

to stock price forecasting accuracy.
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Chapter 3: The Models

Chapter 3 presents four different “Forecasting Models”. These linear regression
models are developed with the intent of finding a statistically significant relationship
between today’s call and/or put implied volatility with tomorrow’s change in the
underlying price. The existence of such a relationship could be used to earn higher than
expected returns and provide evidence against the Weak Form Market Efficiency
Hypothesis.

As current or potential traders, we are not necessarily concerned with significant
coefficients or goodness-of-fit values. True interest and value lies with a model that
explicitly tells us when to buy or sell a security. So in addition to the statistical data from
the regression models, buy and sell “signals™ are developed. These signals are then used
to examine the “real world” outcome of the trading strategies il they were employed
during the sample period. The thesis hypothesizes that the AMD forecasting models not
only have significant estimated regression coefficients, but the next day returns on AMD
are significantly different from expected returns and in agreement with expectations: a
buy signal today results in positive returns tomorrow while a sell signal today results in a
decrease in the price of AMD stock tomorrow. The thesis also hypothesizes that because
these results depend on microstructure inefficiencies in the market they are less likely to
be evident for the case of the OEX.

Chapter 3 is divided into two sections. The first section looks at the relationship
between call/put implied volatility and returns on the underlying for the same trading day.

Correlation matrices are used to give evidence for the assumptions regarding the role of
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demand/supply dynamics in the AMD options market and also how these assumptions are
not evident in the OEX market. The second section details the four regression models
used to forecast returns. These “Forecasting Models” relate today’s call/put implied
volatility to tomorrow’s return on the underlying. Corresponding trading strategies are
then developed along with an evaluation of their statistical significance and of their

ability to accurately forecast next day returns.

Same Day Relationship

As outlined in Chapter 1, it is expected that changes in call and put implied volatility
have a statistical relationship with changes in the price of an equity for the same trading
day. These changes in implied volatility are caused by demand/supply dynamics and are
independent of changes in the options’ price caused by other Black-Scholes price
determinant variables. This relationship and thus this market microstructure are not the
same for the case of options on the OEX.

Options are a tool used by investor to hedge positions in the underlying. When
investors buy stock they can hedge their purchase by either selling calls or buying puts.
From the discussion of demand/supply dynamics, it follows that an increase in the
number of call sellers, resulting from an increase in the number of buyers of the
underlying, reduces the price of call options independent of other factors and thus a
corresponding decrease in call implied volatility will occur. For the case of puts, an

increase in buyers will increase the implied volatility when a corresponding increase in
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demand for the stock exists. An opposite movement in the implied volatility of calls and
puts is evident when the price of the stock decreases.

The price of calls is positively correlated with the price of the underlying. However,
the implied volatility of call options on AMD is negatively correlated with the price of
AMD stock during the same trading day. This is an important distinction to be made. It
is possible for the price of the option to increase while its implied volatility. This is
because there are two forces at work here: the Black-Scholes variables that affect the
price of the option and the specific, irregular occurrence of microstructure market
inefficiency in AMD options that affect the implied volatility.

The notion of a volatility smile can be used to gain insight into the assumptions
regarding the role of demand/supply dynamics in affecting implied volatility. As shown

below, a volatility smile is a plot of implied volatility as a function of its strike price.

Implied
Volatility
Strike Price

Stock' Price
The smile has been developed by traders as a way to account for imperfections in the
Black-Scholes model. In-the-money and out of-the-money options tend to exhibit greater
implied volatility than do at-the-money options.

From the volatility smile, as the price of the stock increases, more call option series
move in-the-money and thus their implied volatility would tend to increase. But this

result is counter to the demand/supply dynamics assumption regarding changes in
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implied volatility in relation to changes in the price of a stock during the same trading
day. However, this fact does not counter the thesis’ assumptions. It can be viewed as
evidence for the strength of demand/supply dynamics in the options when the data is
viewed on a daily basis.

If we assume the volatility smile to exist, then the demand/supply forces that affect the
same day relationship must be strong enough to counter the relationship defined by the
volatility smile. These microstructure dynamics may only occur for a brief period of time
(i.e. one trading day) and then over the long-term (i.e. until the option expires) the
relationship can be defined by the smile. Shown below is the correlation between returns
on the underlying and call/put implied volatility. The implied volatility data is calculated
in the same manner as it is in the forecasting models. A complete description of the data

is in the following section.

Correlation
Implied Volatility Data

Call IV, Put IV, C H-V; P H-Iv, C>h P> Gy C ARy P AR;
R(AMD) -0.179 0.103 -0.261 0.217 -0.175 0.353 -0.323 0.245

R(OEX) -0.065 -0.012 -0.087 -0.002 0.001 -0.015 -0.091 0.002

Forecasting Models

The forecasting models analyze the relationship between today’s option implied
volatility and tomorrow’s return on the underlying. Four separate regression models are
presented to give evidence for and to define the nature of this statistical relationship

which will then be used to forecast returns on the underlying.
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The models’ assumptions are generated based on the idea that options can be used as a
speculative tool. An investor with “inside” knowledge regarding a stock and thus
knowledge about near term movements in the price of the stock can utilize and profit
from this information by buying or selling options today. If an investor knows that a
stock’s price will rise tomorrow, he can purchase calls or sell puts today. If the increase
in demand for calls and/or supply of puts if great enough to affect their pricing structure,
a model may be developed to quantify these types of changes caused by the market’s
microstructure. In the regression analysis today’s call and put implied volatility are the
independent variables and tomorrow’s return on the underlying is the dependent variable.

The estimated coefficient for the call implied volatility variables is expected to be
significantly greater than zero. An increase in call demand can be viewed as information
entering the market regarding future changes in the price of the underlying. If this
information does not enter the actual market for the stock, rather only the options market,
then the options’ price reflects information not contained in the stock’s price. Under the
Efficient Markets Hypothesis, a stock’s price incorporates all information at all times.
But if we can extract information about the stock’s price that is not currently incorporated
into it, an inefficiency may be found. For the case of call implied volatility, a positive
coefficient implies that the stock is currently undervalued and once the information
contained in the options’ price enters the stock market, the price of the stock will
increase.

The same logic also implies to the relationship of today’s put implied volatility with
tomorrow’s returns on the underlying. If information enters the options market and not

the stock market through an increase in demand for puts, this may lead to the possibility
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that the stock is currently overpriced. The absence of this information in the stock market
may lead to a decrease in the price of the stock once the “new” information is revealed.
A corresponding increase in put implied volatility might then allow for a forecast of
future decreases in the price of the stock. A significantly negative coefficient on the put
implied volatility independent variable quantifies this relationship and is thus expected in
the subsequent regression models.

The hypothesis regarding the statistical significance of the implied volatility
coefficients is in accordance with the speculative and forward-looking nature of options.
It also illustrates how the thesis is force to assume not only a violation in the Strong Form
Efficient Markets Hypothesis, but in the widespread occurrence of such illegal trading
activity. The forecasting models attempt to capitalize on information that is not currently
incorporated in the price of the stock but is incorporated in the price of the options. The
following four regression models attempt to capture and quantify market information by
modeling implied volatility in such a way that the independent variable data reflects

changes in the demand/supply dynamics of the options market.

Forecasting Model 1: “Simple”
R(Underlying) = a + ; R(Call 1V); + 5 R(Put IV)y; + &

The Simple Model is just that. It contains daily changes in the data for the entire
sample period. Tomorrow’s (day t) returns on the underlying is regressed against today’s
(day t-1) change in call and put implied volatility. Since all the data is incorporated and
there is no attempt to find irregular periods of implied volatility caused by market

microstructure, the model is expected to and is the weakest in terms of statistical
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significance. However, the estimated coefficients (f; and £) are opposite in sign to what
the correlation is for call/put implied volatility and returns on the same day. The fact that
pi is positive and f is negative (though not statistically significant) in the Simple Model
is an indication that the assumptions regarding the information contained in options,
when used as a speculative tool, may be justified. These preliminary results lead to the
idea that if the independent variables can be correctly specified, the signs on their
estimated coefficients will not only be in line with expectations but will be significant

which then may lead to forecasting accuracy.

Forecasting Model 2: “High-Implied Volatility”
R(Underlying); = a + g; R(Call H-1V)¢; + > R(Put H-1V); + &

The High-Implied Volatility Model allows for an analysis of the relationship between
tomorrow’s returns on the underlying and only with specific episodes of high-implied
volatility today. “High” is defined as a trading day where the change in implied volatility
is greater than one standard deviation above its sample mean. A dummy variable
regression model is used so that the defined events retain their value in the estimation
process while all other events are assigned a value of zero and thus have no impact on the
calculations.

It is expected that the estimated coefficients are in accordance with the hypothesis
(positive for call IV and negative for put I'V) and also, more importantly, their absolute
values should be greater than the corresponding coefficients in the Simple Model. If the
pricing of the options is affected to a greater degree (i.e. greater daily change) then so

should the price of the underlying change by a greater amount. The weakness in the
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model lies in the fact that these larger changes in implied volatility may not necessarily
be caused by market microstructure. It may be more reasonable to assume that the high-
implied volatility changes are caused by an increase in actual volatility in the price of the
underlying. Implied volatility by definition is an estimate of volatility. Therefore if stock
price volatility is high, so will be implied volatility. Even though the results are in line
with expectations, since increased actual volatility only indicates greater price dispersion
(up or down) and not a one directional change, the forecasting results may and should be

weaker and less reliable than the subsequent models.

Forecasting Model 3: “Call vs. Put”

R(Underlying); = a + f; R(Call H-IV vs. Put); + 8, R(Put H-IV vs. Call); + &

The weakness in the previous model leads to the intuition behind the Call vs. Put
Model. By examining call and put implied volatility in terms relative to each other, it is a
safer assumption that the model is uncovering changes in options prices caused by
demand/supply dynamics and not by the volatility in the underlying.

By definition the implied volatility variable in the Black-Scholes model is the same
for both calls and puts in most circumstances.' © Volatility affects the price of calls and
puts in the same way and thus there is only one estimation of volatility (implied
volatility) which is thus used for the pricing models of both calls and puts. From this

definition it follows that if the volatility estimation is different in the two types of options

YA case where puts are priced higher than calls is when the underlying is difficult to borrow. If an investor is unable
to “short” a stock, the same position can be obtained by buying a put. Since the market-makers are in a similar
position, they are less willing to sell puts since they cannot hedge the position through a short sell of the underlying.
The net result is the price of puts is raised reflecting a reluctance of the market makers to sell them. This price disparity
between calls and puts should therefore not be inferred as an occurrence in line with the model’s definition of the
independent variables. Since AMD stock during the sample period was “easy to borrow”, this circumstance did not
occur and all pricing discrepancies are caused by the model’s overall assumptions
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it cannot reflect a difference in opinion about future volatility. It must therefore reflect a
force outside the pricing model’s variables that is affecting the market price of the
options. This force is assumed here to be the market microstructure. For example,
simple demand/supply dynamics dictates if an abundance of call buyers and put sellers
enter the market, the price of calls will go up and the price of puts will go down. This
fact will have the same result on implied volatility since all other pricing parameters are
the same for both calls and puts and as mentioned earlier are always known with
certainty. Since market microstructure can be the only cause for dispersion in call and
put implied volatility, this model is the best hope for quantifying such demand/supply
affects on the options market’s pricing structure. It is thus the best hope for uncovering
information from the options market that is not currently incorporated in the price of the
stock in its separate market.

The development of the model’s independent variables requires calculating the daily
difference between R(Call IV) and R(Put IV). The sample mean and standard deviation
of this new time-series is then calculated. “Call H-IV vs. Put” is defined as a trading day
where R(Call IV) minus R(Put IV) is greater than one standard deviation above its
sample mean. The change in call implied volatility on the trading day in which the
defined event occurred is then used in the regression using the dummy variable
technique. Similarly, “Put H-IV vs. Call” identifies episodes where the difference is
greater than one standard deviation below its sample mean. Once again, only the actual
put implied volatility change for the trading day is used when its disparity with call

implied volatility is in accordance with the above definition. Below is a table
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summarizing the statistics for the call and put implied volatility data incorporated in

Model 3.
AND ‘Model 3 Independent Variables _
Model 3 Data Summary Statistics for R(Call 1V) and R(Put IV)
«when Model 3 defined event occurs in.sample .
R(Call IV) - R(Put IV) R(Call V) -+ . . R(Putlv)
Mean 0.0032 HOATAS i SRR LY
Max 0.9796 o OIBBAB e LR 063191
Min -0.8792 .-0.0326.. " . Sl 200123
Std. Dev. 0.1872 04321 SOABAT
Count 252 28 il 1 . : :'18_

Forecasting Model 4: “AR Shocks”
R(Underlying); = a + f; R(AR Call H-1V)y; + 5; R(AR Put H-IV); + &

The AR Shocks Model assumes the two implied volatility time-series follow a first-
order autoregressive process or RAV); = a+ pR(IV)e + & The parameter p is the first-
order serial correlation coefficient. Since the paper focuses on the importance of daily
changes in implied volatility, this type of time-series estimation is a logical approach.
Also, from the discussion on random walks, simple time-series forecasting techniques
have a greater chance of accuracy when dealing with volatility of prices when compared
to the forecasts of actual prices. The following table shows that the AR(1) estimation

results are statistically significant.

AMD Call IV AMD Put IV OEX Call IV OEX Put IV
o -0.405 -0.403 -0.151 -0.338
Std. Error 0.058 0.059 0.083 0.079
t-stat -6.889 -6.783 -1.811 -4.274
Prob. p=0 0% 0% 7.23% 0%

While this estimation is not intended or assumed to be the best model to forecast

implied volatility, the results appear to be significant enough for the purpose of
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Forecasting Model 4. The results of the model appear to show that high-implied
volatility today predicts low-implied volatility tomorrow (p is significantly less than zero
at the %1 level for all time-series accept OEX Call IV).

Forecasting Model 4 uses the residuals from the AR(1) estimation process. The
residuals are viewed as “shocks” or unexpected changes in implied volatility. But what if
there are shocks large enough such that they were the result of changes in the options
demand/supply dynamics and not the result of changes in actual volatility in the
underlying? These are the types of daily changes in implied volatility that the model
attempts to uncover. “AR H-IV” is defined as a daily change in implied volatility where
the residuals from the corresponding AR(1) estimation are greater than one standard
deviation above their sample mean. The dummy variable technique is used once again so
that only specific R(Call/Put IV) data that corresponds to a day where the model’s
defined event occurs is used in the regression. Below is a table summarizing the statistics

for the AR(1) time-series estimation residuals and the implied volatility data used in

Model 4.
ANMD ‘Model 4 Indepiendent Variables- . -
Model 4 Data SummaryStaf:s!rcsforR(CalHWand R(PD?IIW. :
Call AR(1)  Put AR(1) when Model 4 defined event occurs in sample’ |
Residuals  Residuals CCR(Calllv) . R(Putlv)
Mean 0 0 e oY o I e S ) [ I
Max 0.4778 0.4333 2075846 LT R AU Gliaihang
Min -0.5712 -0.3595 - 10,0697 : ~ 0.0665
Std. Dev. 0.1193 0.1038 0.1174 0.1106
Count 250 250 25. 28

It is expected that the resulting estimated coefficients from the data defined by Model
4 have absolute values that are significantly larger than the corresponding values in the

Simple Model. This fact would support the data specification for it increases the

36



statistical relationship between returns on the underlying and implied volatility. It can
then be assumed that the data specification succeeds in uncovering market dynamics in
line with the thesis’ overall assumptions. Also, it should be noted that the mean values of
the independent variables in Model 4 are significantly larger at the 1% level than those in
Model 3. This fact represents greater daily change in the variables for the tested days and
thus may represent greater market microstructure dynamics that affect implied volatility.
This then may lead to Model 4 having greater forecasting accuracy do its increased

ability to uncover and analyze such affects in the options market.

Forecasting Models Regression Output and Analysis

Review of equations used in regression analysis:

1. Simple: R(Underlying), = e+ g; R(Call IV),, + £ R(Put IV).; + &

2. HighIV:  R(Underlying), = a + f; R(Call H-IV),, + £; R(Put H-IV).; + &

3. Call vs. Put: R(Underlying), = a+ £; R(Call H-IV vs. Put),, + £, R(Put H-IV vs. Call).; + &

4. AR Shock: R(Underlying),= a+ £ R(AR Call H-IV),.; + £ R(AR Put H-IV),.; +

In the tables on the following page, the estimated coefficients are shown for each of
the independent variables with the percentage probability of each estimated coefficient
equaling zero shown below. The goodness-of-fit value (R?) is shown for each model in
the far right column. The dependent variable in the models is the daily returns on the
underlying (AMD or OEX). The independent variables that coincide with each

forecasting model are shown on the top line.
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AMD

15.5% 52.5%

Call V4 Put Vi1 C H-IVii P H-IVi4 C > Py P> Cs4 C AR P AR+ R2

Forecast Models

Simple 0.031 -0.033 0.048

24.2% 23.9%
High IV 0.122 -0.086 0.059
217% 5.18%
Call vs. Put 0.097 -0.119 0.044
2.21% 2.13%
AR Shock 0.151 -0.135 0.064
0.11% 0.21%
OEX
CalllVge PutlVey CH-WVig PH-IViy C>Pyy P>Chi CARn1 P ARk R?

Forecast Models

Simple 0.028 -0.015 0.059

0.95% 4.56%
High IV 0.029 0.007 0.029
8.21% 53.8%
Call vs. Put 0.023 -0.001 0.033
2.93% 96.1%
AR Shock 0.024 0.008 0.022

For the case of AMD, the estimated coefficients’ signs are all in agreement with the
hypothesis. However, the Simple Model generates coefficients that are statistically
insignificant from zero (probability of equaling zero is 24.2% and 23.9% for call and put
implied volatility respectively). This result should not be surprising. The Simple Model
incorporates daily data for the entire sample period. Since any success in the forecasting
of stock returns is difficult at best, it is highly improbable if not impossible that success
could be achieved for every trading day. This fact highlights the importance of correctly
specifying changes in implied volatility in order to identify changes caused by market
microstructure.

The significance and sign (positive for Call IV and negative for Put IV) on the
coefficients in AMD Forecasting Models 2-4 suggests that certain changes in implied
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volatility today may contain information about the directional movement in the price of
AMD stock tomorrow. This information and statistical relationship between the data will
be the basis for refuting the Weak Form Market Efficiency Hypothesis.

The same results do not hold for the case of the OEX. All but one of the coefficients
(C > Py) are statistically insignificant from zero at the 5% confidence level. As
discussed in Chapter 1, the OEX example is included as contrary evidence for the
importance of a specific type of options market microstructure needed to affect implied
volatility in such a way that daily changes in the data may and can reflect an introduction

of information into the market.

Evaluation of AMD Forecast Models
Three different methods are presented in an effort to evaluate the Forecasting Models.
Evaluation is based on the models’ statistical accuracy and on their ability to provide a

profitable trading strategy.

1. Statistical Analysis

The first method is a statistical analysis of forecast errors. The mean absolute error
(MAE), the root mean squared error (RMSE), and the Theil Inequality Coefficient (TIC)
are used to test the accuracy of the models. In order to evaluate the results, the statistical
data is compared to the same tests performed on data form two time-series models of
AMD returns. The two time-series are a one period auto-regressive, AR(1), and a one

period auto-regressive moving average model, ARMA(1,1). If the market for AMD
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stock is efficient, then these two time-series models should be close to the best possible
means by which AMD returns can be forecasted. The time-series models then provide a

basis for which the thesis’ models can be judged in relative terms.

AMD
MAE RMSE TIiC

Forecasting Models

Simple 0.03089 0.04359 0.85984
High 11V 0.03058 0.04311 0.80822
Call vs. Put 0.03123 0.04353 0.82841
AR Shocks 0.03045 0.04258 0.79596
Time-Series Models

AR(1) 0.03021 0.44264 0.93572
ARMA(1,1) 0.03025 0.04425 0.94481

When different models are used to predict the same dependant variable, the one with
the smaller MAE, RMSE or TIC is judged to be superior for forecasting purposes. From
the table above, it can be seen that the implied volatility models provide more accurate
predictions of daily returns on AMD than do the time-series models. This fact in of itself
is not enough to refute the Weak Form Market Efficiency Hypothesis. However, it does
provide evidence that there is a significant link between today’s implied volatility and
tomorrow’s change in stock price and thus if nothing else it gives credibility to the

Forecasting Models inherent assumptions and to this type of financial research.

2. Mean Returns

The second method used to evaluate the accuracy and validity of the forecasting models
deals with actual returns on AMD and the hypothetical returns made possible by the
models. The defined events in the each of the models can be equated to a trade signal.

This signal can tell the trader when to buy or sell a stock in accordance with the thesis’
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hypothesis. For example, if the difference between daily change in call and put implied
volatility is greater than one standard deviation above its mean, a buy signal will result
and the trader can buy the stock on the close today with the expectation it will rise
tomorrow. If there is a “shock” in put implied volatility and not in the calls (reasons for
this are discussed later), a sell signal will result. This type of “real world” analysis of the
models can provide the best evidence for or against their usefulness and thus whether or
not they can be used as evidence against market efficiency.

The daily return on AMD following a buy or sell signal is compared to the mean daily
return on AMD over the entire sample period. The daily mean return on AMD is
considered here to be the expected daily return. Any statistically significant difference in
the return from its mean value can thus be considered to be unexpected. The table on the
following page reports the mean returns for the buy an sell signals for each of the
forecasting models. The number of trading signals for each model along with the number
of overlaps is also included. An overlap is defined as a day with both a buy and sell
signal. The High-Volatility Model has an inherent weakness in that it may only identify
events where actual volatility in the underlying is high. This weakness results in the
particularly large number (50% of total signals) of overlaps. Simultaneous buy and sell
signals are of obviously no use to a trader. For this reason, the mean return values for
this model and for the AR Shock Model are calculated only for the days where an overlap
does not occur. This process allows the test resuits to focus only on the days where
demand/supply dynamics are the probable cause of changes in implied volatility and not

actual stock price volatility.
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AMD
Forecast Model Mean Return # of Signals Overlap
High Volatility
CALL 0.00351** 46
PUT -0.01211 45
23
Call vs. Put
CALL 0.01148 25
PUT -0.02651 18
0
AR Shocks
CALL 0.01836 18
PUT -0.02379 21
7
AMD SAMPLE MEAN RETURN = -0.00249
CALL = Buy Signal PUT = Sell Signal
** Mean Return insignificantly different from AMD mean return at the 5% level

The mean return following a specific event in implied volatility is in agreement with
the thesis” hypothesis: modcl-spccificd cvents in call implied volatility torecast positive
returns while put implied volatility can be used to forecast negative returns. Only the
mean return for the Call High-Volatility model is insignificantly different from the AMD

sample mean return.

3. Right or Wrong

The third method of evaluation looks at the number of correct signals. A correct buy
signal produces returns the following day that are greater than AMD’s mean return while
a sell signal is defined as correct when the following day’s returns are less than AMD’s
mean return. By using a simple binary calculation (correct = 1, incorrect = 0), a

“successful” trading strategy should have a mean signal value greater than 50%.
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AMD
# of Trades # Correct % Correct
(Signals -Overlaps)
Forecast Model
High Volatility

CALL 23 10 43.48%
PUT 22 11 50.00%

Call vs. Put
CALL 25 13 52.00%
PUT 18 14 77.78%

AR Shocks
CALL 18 10 55.56%
PUT 21 18 85.71%

The above results, relative to each other, are in line with what was expected based on
the results from the regression analysis. The High-Volatility Model is the weakest
performer. 50% correct may be the best possible and logical expected outcome since
results can only be associated with price dispersion and not directional movement in the
underlying. Since the AR Shocks Model identified periods of changes in implied
volatility that were significantly larger than those in the Call vs. Put Model, it was
assumed earlier that this may lead to better forecasting results due to possible greater
demand/supply dynamics in the options market. From the “% Correct” indicator, this
appears to be the case in this evaluation.

The buy signals are less reliable than the sell signals and appear to be too close to the
50% barrier to allow a trader to be confident in their overall performance abilities.
However, the sell signals appear not only to be accurate based on expected mean returns,
but also on the overall amount of times they are simply correct and thus may be the best

possible chance of refuting the Efficient Markets Hypothesis.
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Chapter 4: Conclusion

A Final Story

AMD stock began 1999 rising in price in anticipation of a positive earnings report for
the fourth quarter of 1998. From the graph below, it can be seen that when earnings were
announced the morning of January 14, they were far below expectations. This new
information entering the market caused AMD stock to suffer a one-day loss in value of

almost twenty percent.
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After the market assimilated this new information, the price of AMD stock traded in a
relatively small price range. Instead of around thirty dollars per share, the market (post-
earnings) valued AMD at around twenty-two dollars per share.

On Friday, January 29 a customer entered the options market and purchased five
thousand February 22 % calls for an average price of 1.875 dollars. During the course of
the trade (the customer placed five separate orders of one thousand contracts each), the

price of AMD stock actually moved down a quarter of a point. The massive increase in
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demand for calls caused their price to increase even though the price of the underlying
decreased. This irregular pricing dynamic resulted in the implied volatility of AMD calls
exploding to the upside from fifty to almost seventy while the put implied volatility
remained constant at fifty.

During a quiet, routine-filled day, a trade of five thousand, at-the-money, front month
contracts results in numerous questions and intrigue amongst the market-makers. “Why
is this guy buying so many calls?” “There is no news pending and AMD just came out
with earnings.” “I don’t know but the calls sure were a good sale at two bucks with the
stock below twenty-three.”

On Monday February 1, 1999 the AMD options traders awoke to the following
headline and story that answered their questions.

“Gateway to use AMD Chips on New PC”

NEW YORK, February 1 (Reuters) - PC maker Gateway Inc. will use

Advanced Micro Devices Inc. AMD computer chips, instead of those of

Intel Corp. INTC, on a new line of machines it plans to launch in March,

PC Week reported. The North Sioux City, S.D. company, a long-time Intel

loyalist, will use Advanced Micro Devices' K6-3 chip on the new line,

sources told the weekly computer trade publication. Gateway plans to

offer the new, AMD-equipped computer at a cheaper price than it could if

it used Intel chips, PC Week said.
This definitely positive news for AMD resulted in the stock’s price increasing over two
dollars per share. The stock market’s actions could hardly be deemed inefficient. On the
close of trading Friday, the stock’s price reflected all publicly known information and
once this new information entered the stock market the price of AMD reacted
accordingly. But if we were analyzing the options market using Forecasting Model 3 and

4, we would have noticed either a disparity in call and put implied volatility and/or a

“shock™ to the call implied volatility daily change time-series due to the sudden increase
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in demand. Using the tools provided by this thesis, the actual reason for AMD’s future
rise in price would not have be known, but a buy signal would have been generated that

did in fact result in significantly positive, higher than expected earnings.

Concluding Comments

Finding inefficiency in a financial marketplace is a difficult task. If anyone were
fortunate enough to find the perfect trading strategy, we would never hear about it. The
lucky individual would be lounging on the beach, enjoying a cool drink with an umbrella
sticking out the top and counting his millions of dollars. If inefficiency is found, it must
be kept a secret. Assume for a moment that my models are one hundred percent accurate.
As soon as the word gets out, everyone will be trading with them. But before you realize
it, the opportunity to profit will be gone. The stock market will begin to react to the
information in the options market immediately rather than some time in the future. When
any risk-less, profitable trading opportunity is acted upon by numerous individuals, the
market evolves and “learns” how to incorporate more information quicker resulting in a
more precise pricing of the underlying. Maybe someone will make a quick dollar, but
sustained risk-less profits are essentially impossible.

Take for example the case of Long-Term Capital. Long-Term Capital is a hedge fund
whose leaders (two Nobel Prize winners in economics) believed they developed a
forecasting model that generated guaranteed profits. In the beginning, their model
resulted in extremely high returns. But in the late 1998, market conditions changed

dramatically and the fund lost nearly four billion dollars (most of which was highly
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leveraged by banks and brokerage houses). Even the most gifted traders and economists
can fail miserably in attempts to find a foolproof trading strategy that provides higher
than expected profits over the “long-term”.

It was foolish and possibly arrogant of Long-Term Capital to rely so heavily on a
purely quantitative market analysis for its decisions. I would be even a bigger fool if I
did the same with my models. But from an academic standpoint they do appear to
provide evidence of a statistical link between information contained in today’s options
prices with tomorrow’s price on the underlying. The assumptions and the logic are quite
straightforward. Options by nature are forward looking. This combined with the fact that
equity options have become an increasingly popular investment tool leads to the
hypothesis that it is possible for options markets to contain information that the stock
market does not. The trick is to find a model that identifies and deciphers this subtle
information in the price of options.

The statistical significance and the signs on the estimated coefficients in the AMD
Forecasting Models regression analysis provide the best evidence that call and put
implied vblatility related to expected future price dispersion and to expected future
directional movements in the underlying. The OEX data is presented to illustrate that
even if all of the assumptions hold for AMD, they do not hold for all types of options
markets. The differentiating factor between the two markets is their microstructure. The
market must be such that the forces of supply and demand can significantly affect the
options pricing structure in ways that are independent of other Black-Scholes options’

price determinants.

47



In the mean return analysis of the Forecasting Models it did appear that they might
have the ability to provide consistent, higher than expected returns over the long run. A
buy signal resulted in returns higher than the sample mean AMD return and the sell
signal resulted in lower returns. The percentage of correct signals leads to the conclusion
that while profitable, the models remain a risky strategy. If the percentage correct is only
slightly higher than fifty percent, one extremely bad signal will wipe out all previous
gains. But how many times out of a hundred do you have to be right in order to deem a
trading strategy useful and thus refute the Market Efficiency Hypothesis? In the case of
Long-Term Capital, they might have been right the first ninety-nine trades and then on
the hundredth trade they lost everything and more.

If it is difficult to find a risk-less trading strategy, it may be even more difficult to
actually conclusively prove that a risk-less, profitable strategy actually refutes the
Efficient Markets Hypothesis. As soon as someone thinks they have all the answers, the
market changes and new theories must be formed. However, the models in this thesis do
provide some evidence against the Weak Form Market Efficiency Hypothesis. The weak
form states that past pricing data information cannot be used to forecast returns. The
assumption for the most part has been that “all past information” refers to information in
the stock market itself. Derivatives (options) are “derived” from the stock market. It
follows that data from this market should also be included in any test of stock market

efficiency.
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