Torn between two diseases: Alteration in TGFβ Signaling Prevents Diabetes but Promotes Neuropathy

VASALYA PANCHUMARTHI
UNIVERSITY OF SAN FRANCISCO
BIOLOGY MAJOR & NEUROSCIENCE, CHEMISTRY MINORS
CREATIVE ACTIVITY & RESEARCH DAY, APRIL 22ND 2016
What is Type 1 (Juvenile-Onset) Diabetes?

- Autoimmune disease where the pancreatic beta cells are destroyed by autoreactive T and B cells
  - Results in lack of insulin production and high glucose in blood
- Patients must take exogenous insulin for the remainder of their lives
- Associated with severe complications: cardiovascular, kidney, nerve damage
- Generally considered a disease of childhood
  - Approximately 3 million Americans have type 1 diabetes
  - Prevalence is increasing every year
Lymphocytes destroy pancreatic islets in T1D

Leukocytes (White blood cells)
Dysregulation between regulatory and effector mechanisms precipitates autoimmunity.
The non-obese diabetic (NOD) mouse models human type 1 diabetes

NOD mouse
“Wild type (WT)”

Foxp3-Cre x TGFβRII Δ/Δ
“Flox”

Cell type specific deletion of TGFβ receptor
**MEANS** – there is no TGFβ signaling in regulatory T cells
WT and Flox mice seem to develop opposing either diabetes OR neuropathy.
What is neuropathy?
Does the loss of TGFβ signaling in Tregs affect or lead to inflammation in different tissues?

- Pancreas
- Sciatic Nerve
- Salivary gland
- Thyroid
- Heart
- Ovary
- Kidney
- Small intestine
- Liver
- Lung
Inflammation observed in Flox islets similarly to WT NOD islets.
Is neuropathy associated with inflammation in the sciatic nerve?

WT - uninflamed

Flox – heavily inflamed (score 2)
Less inflammation in Flox submandibular gland than WT NOD mice
Novel thyroid inflammation in Flox mice compared to WT NOD mice
Conclusions: Loss of TGFβ signaling in Tregs leads to inflammation in different tissues

<table>
<thead>
<tr>
<th>Organ</th>
<th>WT</th>
<th>Flox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic Islets</td>
<td>+ ((Db)↑</td>
<td>+ (Db)↓</td>
</tr>
<tr>
<td>Sciatic Nerve</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Submandibular Gland</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Thyroid</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Future Directions

Short term:
- Finish analyzing the rest of the organs – any other autoimmune diseases present in these mice
- Analyze more WT NOD mice for confirmation of the phenotypes

Long term:
- Describe the mechanism of disease development in these different NOD mouse models
Acknowledgements

Qizhi Tang
Allyson Spence
Joanna Klementowicz
Janice Tam
Jeffrey Wang
Jen Kim
Gaetano Faleo
Vinh Nguyen
Susanna Cheng

Mom & Dad for listening to a practice talk

Thank you all for listening!
Questions?