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Coherent integration of 0.5 GHz spectral holograms at 1536 nm
using dynamic biphase codes

Z. Cole, T. Böttger, R. Krishna Mohan, R. Reibel, W. R. Babbitt, R. L. Cone,
and K. D. Merkela)

Spectrum Lab and Physics Department, Montana State University, Bozeman, Montana 59717

~Received 5 June 2002; accepted 9 September 2002!

Spectral hole-burning-based optical processing devices are proposed for coherent integration of
multiple high-bandwidth interference patterns in a spectral hole-burning medium. In this
implementation, 0.5 GHz spectral holographic gratings are dynamically accumulated
in Er31:Y2SiO5 at 4.2 K using a 1536 nm laser frequency stabilized to a spectral hole, along
with commercial off-the-shelf components. The processed data, representing time delays over
0.5–2.0ms, were optically read out using a frequency-swept probe; this approach makes possible
the use of low-bandwidth, large-dynamic-range detectors and digitizers and enables competitive
processing for applications such as radar, lidar, and radio astronomy. Coherent integration dynamics
and material advances are reported. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1518152#

Analog optical signal processing devices based on spec-
tral hole-burning techniques in rare-earth-doped crystals
have been proposed and demonstrated, providing instanta-
neous bandwidths over 10 GHz, correlation time lengths of
several microseconds, millisecond integration times, and
large dynamic range. Applications, to date, include optical
storage,1,2 processing,3,4 true-time delay,5 rf spectrum
analysis,6 and quantum computing,7 among others. In previ-
ous processing demonstrations, spatial–spectral holographic
gratings were recorded and then coherently probed to stimu-
late the emission of an optical coherent transient signal rep-
resenting the processed output. This letter proposes and dem-
onstrates a spectral holographic processor, where signal
processing occurs during the recording stage of a spectral
hologram and readout of the processed data is accomplished
using a frequency-swept probe and low bandwidth detection.

This approach enables spectral hole-burning-based pro-
cessing applications including radar~discussed here!, lidar,
and radio astronomy. In radar range and Doppler processing,
a coded rf waveform is transmitted, reflected by a target, and
then received along with additive noise after a delay,tD .
The delay can be accurately determined by modulating the
transmitted and returned rf waveforms onto an optical carrier
and illuminating a spectral hole-burning material, which acts
as a correlative signal processor. For a single processing
shot, two time-ordered waveforms resonantly interfere in a
frequency selective inhomogeneously broadened transition,
resulting in a frequency dependent population grating~i.e., a
spectral holographic grating! that includes the spectral prod-
uct of the waveforms modified by a 1/tD periodic
component.1 The processed information persists for and may
be readout within the transition lifetimeT1 . For multishot
processing, with pulse repetition frequency of 1/tRep, up to
T1 /tRep shots may be coherently integrated by the medium,
given sufficient laser frequency stability overT1 , resulting in

an accumulated spectral grating.8 For N coherent shots, all
having a common delay, the primary 1/tD grating component
accumulates as;N2a, wherea&1 for small N. For large
N, the integration gain saturates due to population dynamics.
For agile radar processing applications, where each transmit-
ted waveform is a unique code, the material coherently inte-
grates the processing sequence, recording a dynamically ac-
cumulated spectral grating.9 The primary 1/tD component
accumulates while the changing spectral features of the dy-
namic codes and additive noise are averaged. Coherent inte-
gration of spectral gratings is achieved with low optical input
power at pulse repetition frequencies of 1 kHz to 1 MHz
with presently available materials near 1550 nm and 800 nm.
Further, Doppler processing is achieved by introducing mul-
tiple optical frequency shifted copies of the transmitted
waveform into different spatial channels of the material and
parallel processing the returned signal~nonshifted! in all
channels. Accumulation of the 1/tD grating component oc-
curs only when the frequency shift closely matches the Dop-
pler shift on the return signal.10 The reconfiguration of a
spectral grating in a single spatial location is limited byT1 .

In this letter, we experimentally demonstrate coherent
integration of up to 800 shots over 0.5 GHz bandwidth at
1536 nm in an Er31:Y2SiO5 crystal maintained at 4.2 K.
Each transmit waveform was a 200-bit long binary-phase-
shift-keyed code. The code time-bandwidth product is a fac-
tor of ;7 higher than previous spectral holographic process-
ing efforts.3 A frequency-swept probe measured processed
time delays ranging from 0.5 to 2.0ms. We report coherent
integration dynamics and material parameters under these
conditions. This demonstration utilized technologies devel-
oped through Montana State University collaborations, in-
cluding a laser, frequency stabilized to a transient spectral
hole11 and a rare-earth-doped spectral hole-burning crystal,12

along with commercial components. In the processing se-
quence, a shot consisted of a randomly generated zero-mean
waveform S1

n(t) and its time-delayed replicaS2
n(t)5S1

n(t
2tD), emulating a radar transmit and return waveform pair

a!Author to whom correspondence should be addressed; electronic mail:
merkel@spectrum.montana.edu
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without additive noise. Shots were introduced at a repetition
intervaltRep, with a fixed delaytD for n51,2,...N. To avoid
coherent beating between consecutive shots, we settRep

>2T2 , whereT2 is the coherence time of the transition.
We implemented a frequency-swept readout technique to

probe the grating structure by frequency dependent
transmission,13 rather than using the traditional brief pulse to
stimulate a photon echo. The transmitted signal can be de-
tected, digitized, and postprocessed to extract the processed
delay~s!. Frequency-swept probing enables practical system
development, with the following advantages:~1! use of cur-
rently available low bandwidth, large dynamic range detec-
tors (;1 MHz and ;120 dB), and digitizers (;2.5 MS/s
and ;16 bit) to extract delay information from high band-
width gratings, and~2! use of low power lasers with electro-
optic frequency tuning elements14 to provide reproducible,
high-bandwidth frequency-swept probes. The frequency-
sweep rate should be less than 1/(tDmax

)2 to ensure sufficient
temporal resolution, wheretDmax

is the maximum resolvable
delay limited byT2 . The required bandwidth of detection is
just 1/tDmax

rather than the signal bandwidthB. The required
sweep duration is@B•(tDmax

)2#. For example, if tDmax

51.0 ms, a sweep rate of 1.0 MHz/ms and a detection band-
width of 1 MHz!B is sufficient.

Experiments were performed in a 2 mm thick 0.005
at. % Er31:Y2SiO5 crystal grown by Scientific Materials
Corporation, withaL51.8 at the 1536.14 nm line center.
The 4I 15/2(1)→4I 13/2(1) transition of site 1 had a 0.5 GHz
absorption profile. The integration time for the holographic
processor is set byT1511 ms, the population lifetime of the
excited state of the Er31 ions.15 Material studies determined
the optimum direction for an applied magnetic field to mini-
mize the effects of spectral diffusion on the holographic
grating.15 When a 3.0 T external field was applied parallel to
the D1 axis, operation was practical at 4.2 K, a temperature
that can be provided by closed-cycle cryocooler technology.
The external cavity diode laser was stabilized to a regenera-
tive spectral hole in a different spatial region of the same
crystal.11 The stabilization occurs at the required wavelength
and provides the required stability overT1 . Thus, the pro-
cessing and stabilization techniques can be transferred to
other hole burning materials.12 The spectral hole was nomi-
nally 30 kHz wide and frequency stability of;1 kHz ~Allan
deviation over an integration time of 10 ms! was achieved.
Both processing and stabilization beams propagated parallel
to the crystalb axis and were polarized alongD2 .

Figure 1 depicts the main experimental components. The
stabilized laser—tuned to the absorption line center—was
fiber coupled and split into a processing and probing beam.

The processing beam was continuously biphase-shift-keyed
modulated by an electro-optic phase modulator driven by a
pulse pattern generator and then amplified. EachSn was
modulated at 0.5 Gb/s. Between allSn, the light was square
wave modulated~...101010...! at 1 Gb/s. A chopper created a
4 ms off window in the processing beam to allow for probing
0.5 ms into this window. The probing beam was amplified
and frequency swept by an acousto-optic modulator. The
beams were made collinear and focused to a;50mm (1/e2

diameter! spot in the crystal. The transmitted probe was de-
flected toward a 125 MHz bandwidth,;50 dB dynamic
range photodetector.

For all experiments, each waveform was 400 ns long
~200 bits at 2 ns/bit! with tRep55 ms. The probe pulse was
10 mW and swept over;15 MHz, shifted 165 MHz from
the carrier at a sweep rate of 0.2083 MHz/ms. Postprocessing
of the transmitted probe consisted of filtering to minimize the
low-frequency components of the unabsorbed probe enve-
lope, performing a fast Fourier transform, and calculating its
magnitude squared. Figure 2 plots postprocessed data forN
5800 shots, wheretD was varied from 0.5 to 2.0ms in
0.1 ms increments using a 25 mW programming beam. The
primary peak of each trace was normalized to the 0.5ms
peak. Analysis of the peaks, representing the extracted time
delays, showed an arrival time accuracy of;3 ns. The inset
of Fig. 2 shows corresponding traces of the filtered transmit-
ted probe, revealing the periodic 1/tD structure and reduced
grating strength with increasing delays due to coherence de-
cay. For 25 mW and 40 mW excitation, a first-order fit of the
non-normalized peaks to exp(22tD /T2) results in aT2 value
of 0.8260.03ms for these conditions.

Figure 3~a! plots two examples of signal strength~log
scale! versus extracted time delay~linear scale! when tD

50.5 ms andN5200 for 25 mW~thin line! and 40 mW
~bold line! programming powers. In addition to the primary
delay, there are nonlinear terms, or spurs, resulting in har-
monics of each delay~and intermods if there are multiple

FIG. 1. Experimental schematic is shown: EOM—electro-optic modulator;
EDFA—erbium-doped fiber amplifier; and AOM—acousto-optic modulator.

FIG. 2. Normalized traces of extracted time delay data are shown for pro-
cessed time delaytD values ranging from 0.5–2.0ms, after 800 shots using
a 25 mW processing beam. The inset shows traces of the frequency-swept
probe, which map the corresponding accumulated spectral gratings.
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delays!. The second-harmonic observed here accumulates as
N4b. The grating strength anda and b depend onN, the
optical programming power, coherence loss
@}exp(22tD /T2)# during each shot, and population decay
@}exp(2tRep/T1)# between shots. In Fig. 3~a!, the primary
peak and its second harmonic can be clearly observed and as
expected increase with input power. Figure 3~a! is divided
into four regions: I contains the primary peak representing
the time delaytD ; II contains the right temporal correlation
sidelobes; III contains the second harmonic of the primary
peak; and IV contains the system background noise. There
are residual low-frequency components due to imperfect
postprocessing of the unabsorbed probe, limiting absolute
comparison between the regions in this demonstration; we
are, therefore, not including the left temporal sidelobe re-
gions in our analysis. The peak temporal width of;65 ns
~full width at half maximum! is set by the probe bandwidth.

Figures 3~b! and 3~c! plot the root-mean-square~rms!
values for regions I–IV~log scale! versusN ~log scale! for a
fixed tD50.5 ms with ~b! 25 mW or ~c! 40 mW program-
ming power. In Fig. 3~c!, the higher programming power
exhibits larger grating strength and stronger nonlinearities, as
expected. Region I peaks of both Figs. 3~b! and 3~c! increase

as 2a;1.8 for the first 100 shots. The second harmonics in
region III of Fig. 3~b! and 3~c! rise above the noise floor at
N570 and N530, respectively, and both grow~for N
<200) as 4b;2.4. The relatively flat nature of region II,
particularly for the first 100 shots of Fig. 3~b!, highlights the
effects of coherent integration with dynamic codes. Im-
proved performance is expected with wider bandwidth
frequency-swept sources,14 detectors with larger dynamic
range, and materials with higher bandwidths and longer co-
herence times.

Adoption of these techniques offers the following for
analog signal processing applications:~1! high bandwidth,
large time–bandwidth product, and large dynamic range op-
eration without high-bandwidth detectors and digitizers,~2!
the ability to process waveforms that change from shot to
shot,~3! coherent integration of up to;T1 /tRep shots, or of
two continuous signals correlated over aT2 window for a
time T1 , and~4! Doppler processing.

In summary, dynamic accumulation of spectral holo-
graphic gratings by coherent integration of up to 800 shots
was demonstrated. The signal processing bandwidth was 0.5
GHz, limited by the crystal used, but could exceed 10 GHz
using currently available crystals and modulators. Time de-
lays of 0.5 to 2.0ms were processed and extracted with 3 ns
accuracy. The demonstration used a stabilized diode laser,
1550 nm telecom components, and a frequency-swept probe.
Successful processing and frequency stabilization in crystals
at 4.2 K make possible the use of closed-cycle cryocoolers,
and enable practical, high performance, multi-GHz, analog
correlative processors using spectral holography.

This collaboration was supported by AFOSR~Grants
F49620-00-1-314 and F49620-00-1-0313!, NASA Ames
~Grant NAG2-1323!, and by the University of Colorado
MURI program ~Grant N00014-97-1-1006!. The authors
thank Kelvin Wagner at the University of Colorado, for
many helpful discussions.
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FIG. 3. ~a! Traces of the extracted time delay are shown~log scale! for
processed time delaytD50.5ms afterN5200 shots for 25 mW pulses~thin
trace! and 40 mW pulses~bold trace!. The data has four regions of interest:
~I! the primary peak;~II ! the right-hand side sidelobe region;~III ! the second
harmonic of the primary peak; and~IV ! the background noise of the system.
rms values of regions I–IV vsN are shown in~b! for 25 mW and~c! for 40
mW programming pulses over a 4 msintegration time.
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