
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Business Analytics and Information Systems School of Management

2014

gpusvcalibration: A R Package for Fast Stochastic
Volatility Model Calibration Using GPUs
Matthew Dixon
University of San Francisco, mfdixon@usfca.edu

Sabbir Ahmed Khan

Mohammad Zubair

Follow this and additional works at: http://repository.usfca.edu/at

Part of the Business Commons, and the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the School of Management at USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. It has been accepted for inclusion in Business Analytics and Information Systems by an authorized administrator of
USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
Dixon, Matthew Francis and Khan, Sabbir and Zubair, Mohammed, gpusvcalibration: A R Package for Fast Stochastic Volatility Model
Calibration Using GPUs (February 11, 2014). R/Finance, Chicago, 2014.

http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/management?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.usfca.edu%2Fat%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu

gpusvcalibration: A R Package for Fast Stochastic Volatility Model Calibration
using GPUs

Matthew Dixon1, Sabbir Ahmed Khan2, and Mohammad Zubair2

1Department of Analytics, School of Management, University of San Francisco, San Francisco, CA 94117.
2Department of Computer Science, Old Dominion University, Norfolk, VA 23529.

Keywords: Software, R, GPGPU Computing, Stochastic
Volatility, Calibration

Abstract
In this paper we describe the gpusvcalibration R pack-
age for accelerating stochastic volatility model calibration on
GPUs. The package is designed for use with existing CRAN
packages for optimization such as DEOptim and nloptr.
Stochastic volatility models are used extensively across the
capital markets for pricing and risk management of exchange
traded financial options. However, there are many challenges
to calibration, including comparative assessment of the ro-
bustness of different models and optimization routines. For
example, we observe that when fitted to sub-minute level mid-
market quotes, models require frequent calibration every few
minutes and the quality of the fit is routine sensitive.

The R statistical software environment is popular with
quantitative analysts in the financial industry partly because
it facilitates application design space exploration. However,
a typical R based implementation of a stochastic volatility
model calibration on a CPU does not meet the performance
requirements for sub-minute level trading, i.e. mid to high
frequency trading. We identified the most computationally in-
tensive part of the calibration process in R and off-loaded that
to the GPU. We created a map-reduce interface to the compu-
tationally intensive kernel so that it can be easily integrated
in a variety of R based calibration codes using our package.
We demonstrate that the new R based implementation using
our package is comparable in performance to a C/C++ GPU
based calibration code.

1. INTRODUCTION
Parallel computing in R The R statistical software pack-
age is an easy to use modeling environment and programming
language. It is becoming increasingly popular with the finan-
cial industry, especially for advanced financial modeling and
analytics which requires a significant amount of model design
space exploration. The R environment is single threaded. To
overcome this limitation, a number of shared and distributed
parallel programming libraries already exist for R [14]. Most
notably, snowfall [10] provides a thread safe abstraction
layer by hiding the communications details and operates over
MPI, PVM or sockets. The parallel package provides a

way of running parallel computations in R on machines with
multiple cores or CPUs. There has been recent effort in pro-
viding R packages that take advantage of GPGPU computa-
tions in the R environment [4]. However, most of these pack-
ages support a limited set of basic functions. There is a need
for GPU optimized functions at a higher level that can be eas-
ily integrated in a programming environment such as R.

Stochastic Volatility modeling In this paper, we focus on
the problem of how to effectively calibrate stochastic volatil-
ity option pricing models to exchange listed option prices,
which is a topic of great interest to practitioners who re-
quire pricing models for building volatility surfaces to fit the
market. A primary reason for this is that the volatility sur-
face is used to price and measure the risk of more exotic op-
tions which may be traded over the counter. Of the range of
stochastic volatility models favored by practitioners, the He-
ston stochastic volatility [8] has drawn the most widespread
usage for its ability to capture the volatility smile and skew
due to, for example, leverage effects. But option markets may
move precipitiously and we’ve observed a need to frequently
recalibrate the model which in turn creates the need for high
performance financial computations in a statistical modeling
environment.

Implementation gap The availability of the Heston model,
or any option pricing model, within an R environment has
several advantages. Most prominently R users can leverage
the extensive set of R libraries to calibrate and easily back-test
the model against historical prices to assess the ’best’ option
pricing model. The authors’ experience has been that this is
not only useful for research and development but also for test-
ing and diagnosing production grade applications. However,
there is a performance penalty in implementing financially
intensive computations in the R programming language com-
pared to C/C++. We demonstrate later in this paper the perfor-
mance gain from simply reimplementing the Heston model in
C/C++ and making it available in R through a wrapper func-
tion. Migrating stable code from R into an efficiency language
also mitigates the implementation gap between prototype R
applications and their productionized counterparts by provid-
ing a shared library for both prototypes and production grade
applications to use.

Calibration The calibration of a stochastic volatility model
is performed over M option data points (referred to as a
”chain”) which remains fixed during the calibration computa-
tion. The calibration algorithm starts with an initial guess of
the model parameters and iteratively improves the guess us-
ing an optimization algorithm until it meets the convergence
criteria. A typical organization of this computation involves
calling an optimization routine with a pointer to ErrorFunc-
tion(), which estimates the error between market observed op-
tion prices and prices calculated using the stochastic volatility
model for the current guess of the parameter set.

Using GPUs for calibration To improve the performance
of this calibration approach, Aichinger, Binder, Fürst and
Kletzmayr [1] implement a shared memory parallelization of
the Heston model calibration routine on a multicore CPU SGI
Altix 4700 and a GPU server with two C1060 cards and a
GTX260 card. The authors compare the stability and perfor-
mance of various off-the-shelve global optimizers before con-
cluding that the best performance can be obtained by using
a hybrid composed of one of a variety of global optimizers
with a Levenberg-Marquardt unconstrained local optimizer.
The global optimizers that the authors consider include the
differential evolution (DE) algorithm and simulated anneal-
ing (SA), both of which have been employed elsewhere in
the quantitative finance literature [2]. Dixon and Zubair [6]
consider the calibration of a Bates model, a slightly more
generalized form of the Heston model which includes jumps,
using python and compare the performance tradeoffs of us-
ing the mpi4py and multicore python packages to par-
allelize computations on a multi-core CPU cluster. Here, in
this paper, we depart from both of these works by presenting
a R package for off-loading a variety of stochastic volatility
model computations onto the GPU. The performance is eval-
uated for a range of single-name equity option chains traded
on the NYSE.

Parallel design The package is designed to hide the paral-
lelism from the R user and be used in a variety of calibration
and other optimization functions. We employ the map-reduce
parallelization design pattern to accelerate the computation-
ally intensive component of the calibration process. This ap-
proach is conceptually similar to the Split-Apply-Combine
Strategy for Data Analysis [16], although the calibration is
compute intensive rather than data intensive.

Performance benchmarks We demonstrate the use of
package in the calibration of a Heston model and obtain a
factor of up to 760x improvement over the R sequential im-
plementation by off-loading the ErrorFunction() on a system
with Intel Core i5 processor and NVIDIA Tesla K20c (Ke-
pler architecture) consisting of 2496 cores. Note that not all

the performance gain is due to GPU, partly this is due to the
reduction in overhead of R for the Heston model calculation.
For comparison we also implemented the calibration code us-
ing C/C++. We observed a speed up of up to 230x for the
GPU based implementation over the C/C++ indicating that
a 3.4x improvement is due to avoiding the R overhead for the
Heston model calculation.

Paper overview The remainder of the paper is organized
as follows- Sections 2. and 3. introduce the stochastic volatil-
ity model calibration problem, option pricing formulation and
numerical approximation. Section 4. provides an overview
of the gpusvcalibration package and is intended for
a reader who is less concerned with the details of the par-
allel implementation1. Section 5. describes the serial imple-
mentation of the ErrorFunction() and the optimization rou-
tines. Section 5.1. describes the GPU implementation of Er-
rorFunction() with a focus on the parallel implementation of
the stochastic volatility pricing model. Section 6. describes
the experimental performance results of the GPU off-loaded
ErrorFunction() applied to six datasets. Section 7. concludes.

2. CALIBRATION
Calibration of an option pricing stochastic volatility model

involves finding the parameters which minimize the error
function - the error between the model prices and the ob-
served prices across a set of options on the same underly-
ing instrument, but whose contract maturities T and strikes
K differ. This is formulated as a constrained non-linear least
squares optimization problem of the form

min
z

f (z) =

(
|K |

∑
i=1

|T |

∑
j=1

wi j[V (S0,Ki,τ j;z)−V̂i j]
2

)1/2

, (1)

subject to the bound constraints ai ≤ zi ≤ bi (an additional
non-linear constraint may be imposed by specific models).
V (S0,Ki,τ j;x) denotes the model option price and V̂i j de-
notes the quoted mid-price of the option with an underlying
price S0, maturity Ti and strike K j. The overall quality of fit
is sensitive to the choice of weights. An intuitive choice is to
emphasize the most liquid contracts in the chain by choos-
ing the weights to be the reciprocal of the bid-ask spread
wi j = 1/(V̂ ask

i j −V̂ bid
i j).

3. HESTON MODEL
The above calibration and pricing problem is presented for

a wide range of stochastic volatility models, although the pa-
rameters and constraints are model dependent. However, to

1For the reader who is interested in learning more about GPGPU pro-
gramming, Section A provides a brief introduction to GPUs and the CUDA
programming environment

fix notation and detail the model which shall be used for
benchmarking the GPU implementation, a brief introduction
to the Heston stochastic volatility model is provided here.
Please note that other stochastic volatility models are pro-
vided by the gpusvcalibration package and are de-
tailed in Appendix B.

The Heston model describes the evolution of a stock price
St whose variance Vt is given by a mean reverting square root
process:

dSt

St
= µdt +

√
VtdW 1

t , (2)

dVt

Vt
= κ(θ−Vt)dt +σ

√
VtdW 2

t , (3)

A key characteristic of the model is that the Wiener processes
are correlated dW 1

t · dW 2
t = ρdt. This feature enables the

model to exhibit the ’leverage effect’. In the notation of Equa-
tion 1, the parameter set z := [θ,σ,κ,ρ,v0] and the additional
non-linear constraint (the Feller condition) 2κθ−σ2 > 0 is
imposed during the calibration to ensure that Vt is positive.

3.1. Pricing
With marginal loss of generality, we will restrict the scope

of this section to European equity options. Stochastic volatil-
ity models permit semi-analytical closed-form solutions for
computing risk neutral European option prices. The price can
be represented as a weighted sum of the delta of the European
call option P1 and P2 - the probability that the asset price will
exceed the strike price at maturity. Adopting standard option
pricing notation, the call price of a vanilla European option is

C(S0,K,τ;z0) = S0P1−K exp{−(r−q)τ}P2, (4)

P1 and P2 can be expressed as:

Pj =
1
2
+

1
π

∫
∞

o
Re
[

exp{−iulnK}φ j(S0,τ,u;z0)

iu

]
du, j = 1,2.

(5)
where φ j are Heston analytic characteristic functions and z0 is
the vector of Heston model parameters. Following Fang and
Oosterlee [7], the entire inverse Fourier integral in Equation
5 is reconstructed from Fourier-cosine series expansion of the
integrand to give the following approximation of the call price

C(S0,K,τ;z0)≈ Ke−rτ ·Re{
N−1

∑
k=0

′
φ

(
kπ

b−a
;z0

)
eikπ

x−a
b−a Uk},

(6)
where x := ln(S0/K) and φ(w;z0) denotes the Heston char-
acteristic function of the log-asset price, Uk the payoff series
coefficients and N denotes the number of terms in the cosine
series expansion (typically 128 will suffice). For this approx-
imation of the Heston model call price, the Fourier-Cosine
approach is shown to be superior in convergence properties
to other FFT and quadrature based methods in [6].

4. GPUSVCALIBRATION
The gpusvcalibration accelerates stochastic volatil-

ity model calibration by off-loading the error function on
to the GPU. The package is designed for use with existing
non-convex optimization CRAN packages such as DEoptim
and nloptr. The library currently supports European
option pricing under four different stochastic volatility
models and more models are planned for the future. The
library is currently available as a development version at
https://github.com/mfrdixon/gpusvcalibration

and has only been tested on Linux with Tesla generation
GPU architectures.

1. Initialization: The option chain data must be loaded into
a class and then copied on to the GPU device memory.
This step also involves passing some other parameters to
the model, including specification of the model type and
other model constants.

2. Execution: Error_function is called with a partic-
ular model parameter instance p and returns the error
estimate. For each model calibration, this function will
typically be called hundreds or even thousands of times
by an optimization solver.

3. Deallocation: Once the calibration is complete, the
memory address pointers for the device and host data
structures, storing the option chain data, must be deallo-
cated.

Table 1 summarizes the core functions in the library. It
is convenient to refer to source Listing 1 to understand how
these functions correspond to the above three steps. Lines 4
and 5 set model constants for the short rate and the dividend
yield respectively. These are assumed to be fixed across all
option contracts. Line 9 calls a default Load_Chain func-
tion to load a snapshot of exchange quoted option chain data
from a csv file into a chain object. This function assumes a
specific format of exchange data and the user should imple-
ment their own code for populating a chain from a differ-
ent data file format. The specification of the chain class is
provided later in this Section. Line 10 calls the Copy_Data
which flattens the chain, passes arrays and parameters via a
C/C++ interface to C pointers and primitives, then copies the
arrays and parameters from the host to the GPU device mem-
ory referenced by CUDA pointers. Lines 11 and 12 show the
use of the Set_Model to set the stochastic volatility model
and the Set_Block_Size to set the number of terms in
the Fourier Cosine approximation respectively. The current
choice of model types are {’Heston’,’Bates’,’VG’,’CGMY’}.
We’ve found 256 to be an adequate number of Fourier Cosine
terms in each case. This completes the initialization step.

The Error_Function interface enables model cali-
bration to be executed using numerical optimization rou-

tines provided in the R packages DEoptimand nloptr.
DEOptim is an evolutionary computation package which
provides a Differential Evolution (DE) algorithm for global
optimization [12]. DEoptim performs a global search in
which candidate parameter sets are randomly generated and,
through a selection criterion, independently evolved at each
iteration of the algorithm until either ErrorFunction is below
a threshold or the number of iterations exceeds a limit. The
resulting best parameter set can be subsequently used to ini-
tialize a local optimizer which will generally refine the solu-
tion using more information about the error function and the
constraints.

Lines 22-25 show the call to the DEoptim package for
a given set of algorithm parameter choices. Specifying the
appropriate constraints on the stochastic volatility model pa-
rameters is part of the challenge of calibration. The choice of
box constraints shown on Lines 15 and 16 is model dependent
and just provided as an example. However, all constraints,
except on ρ should be positive and ρ ∈ [−1,1]. Because of
small rounding errors introduced by the solver, we recom-
mend reducing the absolute value of each bound by ε << 1.
The best parameter set is returned to the user as accessed un-
der DEres$optim$mem.

Lines 28 to 33 show the output of the global optimizer be-
ing used to initialize the solution parameter vector in the call
to nloptrwhich is a R interface to the NLopt - a library for
non-linear programming which implements a number of al-
gorithms. The listing shows an example calling the COBYLA
(Constrained Optimization BY Linear Approximations) algo-
rithm [13]. This algorithm is a derivative free non-linear op-
timizer which is able to incorporate the non-linear inequality
constraint required for the calibration to enforce the Feller
condition. Lines 17 to 20 implement the non-linear inequal-
ity constraint function. nloptr terminates if either the norm
of the difference between successive iterations of the parame-
ter vector (relative error) is within a specified tolerance or the
number of function evaluations exceeds a limit. We refer the
reader to the documentation on DEoptim and nloptr for
further details of argument specification and diagnostic fea-
tures. The final step is to call Dealloc_Data in order to
deallocate memory referenced by C pointers to host memory
and CUDA device pointers.

The Load_Chain provides a default file parser for popu-
lating a chain class. The package provides example chain
data taken as a single snapshot of AAPL option prices on
the NYSE from the ISE/Hanweck Premium Hosted Database.
These prices have been filtered for the most liquid contracts.
The listing below defines the chain class for storing the option
chain data at a single snapshot.

Finally, Listing 3 shows example code for performance
benchmarking Error_Function against a R implemen-
tation Test_Error_Function. Further details of perfor-

mance benchmarks are provided in Section 6..

5. IMPLEMENTATION
For calibrating the option price model we consider a sam-

ple chain of n option data ch[n], where the ith chain data has
the following key information:

• ch[i].u: Underlying asset price

• ch[i].s: Strike price

• ch[i].m: Time to maturity

• ch[i].p: Option price2

The calibration algorithm starts with an initial guess of the
model parameters and iteratively improves the guess using an
optimization algorithm until it meets the convergence crite-
ria. A typical organization of this computation involves call-
ing an optimization routine with a pointer to the ErrorFunc-
tion() given by Equation 1, which estimates the error be-
tween market observed option prices and prices calculated
using the model, SVModel(), for the current guess of the pa-
rameter set z. More specifically, the ErrorFunction(z) com-
putes option prices using the option model for a list of tuples
< ch[i].s,ch[i].m >, 0 ≤ i < n using the current estimates of
the five parameters z and compares it with the correspond-
ing data in ch[i].p. In our discussion, we focus on the parallel
implementation of the ErrorFunction(z) as it dominates the
overall computation.

A high level description of the sequential version of the
ErrorFunction(z) for computing the root mean square error
(RMSE) is given in Algorithm 1. Note that for reasons of
keeping the description simple, we have avoided some sub-
tleties of the implementation.

Algorithm 1 SEQUENTIAL-ERRORFUNCTION(z)
1: rmse← 0
2: for i = 0 to n−1 do
3: vp← SVMODEL(ch[i],z)
4: di f f ← ch[i].p− vp
5: rmse← rmse+di f f ×di f f
6: end for
7: rmse← SQRT(rmse/n)
8: return rmse

We implemented Algorithm 1 together with the
Fourier-Cosine method and model pricing function
using R (v3.0). This is made available through the
Test_Error_Function. For calibration, we used
DEoptim (v2.2-2) and nloptr (v0.9.3).

2We use the average price of the bid and ask (mid-price) as the option
price.

Function Description
Copy_Data Copy the chain object on to the GPU device memory
Dealloc_Data Delete memory allocated on the GPU device and the host for data structures
Error_Function Off-loads the weighted root mean square error calculation on to the GPU device
Load_Chain Default file parser for populating a chain object
Set_Block_Size Set the number of terms in the Fourier-Cosine series approximation
Set_Model Set the stochastic volatility model type
Test_Error_Function Calculates the weighted root mean square error and prices in R for testing purposes

Table 1. This table provides a summary of the core functions and interface provided for testing in the gpusvcalibration library.

Listing 1. Source listing from demonstrating how to use the gpusvcalibration package.
1 library("gpusvcalibration")
library("DEoptim") # http://cran.r-project.org/web/packages/DEoptim/DEoptim.pdf

3 library("nloptr") # http://cran.r-project.org/web/packages/nloptr/vignettes/nloptr.pdf
r0 <- 0.01 # The iannual short rate as a percentage, i.e. 0.01 = 0.01%

5 q0 <- 0.0 # The annual dividend yield
eps <- 1e-8 # Protection against rounding error in the boundary constraints

7 fileName <-’AAPL-Chain.csv’ # The filename containing the option chain exchange snapshot

9 chain <- Load_Chain(fileName) # Load a snapshot of the option chain quotes on the exchange
Copy_Data(chain) # Copy the chain data on to the GPU device memory

11 Set_Model(’Heston’) # Specify the stochasic vol. model {"Heston","Bates","VG",CGMY"}
Set_Block_Size(256) # Set the number of terms in the Fourier-Cosine series approximation

13

15 l <- c(eps,eps,eps,-1.0 + eps, eps) # Specify lower bound on solution
u <- c(5.0-eps,1.0-eps,1.0-eps,1.0-eps,1.0-eps) # Specify upper bound on solution

17 eval_g_ineq <- function (x) { # Implement the non-linear inequality constraint
grad <- c(-2.0*x[2],-2.0*x[1],2.0*x[3],0,0) # Jacobian of the Feller condition

19 return(list("constraints"=c(x[3]*x[3] - 2.0*x[1]*x[2]), "jacobian"=grad))
}

21 # Call DEoptim to perform direct search
DEres <- DEoptim(fn=Error_Function, # Call the error-function

23 lower=l,
upper=u,

25 control=list(NP=100, itermax=25)) # Set pop. size to 100, max iter to 25

27 # Call nloptr to solve the constrained
res <- nloptr(x0=as.numeric(DEres$optim$bestmem), # non-convex optimization problem.

29 eval_f=Error_Function, # Call the error-function
eval_g_ineq=eval_g_ineq,

31 lb = l,
ub = u,

33 opts=list("algorithm"="NLOPT_LN_COBYLA", "xtol_rel" = 1.0e-7))

35 print(paste("Solution: ", res$solution))
print(paste("RMSE: ", res$objective))

37 Dealloc_Data() # Deallocate the date from GPU device memory

Listing 2. Definition of the chain class used to represent an option chain.
1 repr <- representation(size = "integer", # The number of option contracts in the chain

prices="numeric", # The chain price vector
3 types="character", # The chain type vector, i.e. Put (’P’) or Call (’C’)

strikes="numeric", # The chain strike vector
5 taus = "numeric", # The chain maturity vector

s = "numeric", # The underyling price
7 weights = "numeric") # The normalized weights used in the error_function
setClass("chain", repr) # Declaration of the chain class

Listing 3. Sample code for performance benchmarking the GPU error function off-loading.
library("gpusvcalibration")

2 r0 <- 0.01 # The iannual short rate as a percentage, i.e. 0.01 = 0.01%
q0 <- 0.0 # The annual dividend yield

4 fileName <- ’AAPL-Chain.csv’ # The filename containing the option chain exchange snapshot
m <- ’Heston’ # Specify the stochasic vol. model {"Heston","Bates","VG",CGMY"}

6 p0 <- c(0.5,0.5,0.2,0.3,0.5) # Initial model parameter values kappa, theta, sigma, rho, v0
nInt <- 256 # Specify the number of terms in the Fourier-Cosine series approximation

8 chain <- Load_Chain(fileName) # Load a snapshot of the option chain quotes on the exchange
Copy_Data(chain) # Copy the chain data on to the GPU device memory

10 Set_Model(m)
Set_Block_Size(nInt)

12

print("==GPU==")
14 ptm <- proc.time()

RMSE <- Error_Function(p0)
16 ptm <- proc.time() - ptm

print(paste("Model:", m))
18 print(paste("Data:", fileName))

print(paste("RMSE:", RMSE))
20 print(paste("Elapsed time(s):",ptm[3]))

print("==R==")
22 ptm <- proc.time()

RMSE <- Test_Error_Function(p0)
24 ptm <- proc.time() - ptm

print(paste("Model:", m))
26 print(paste("Data:", fileName))

print(paste("RMSE:", RMSE))
28 print(paste("Elapsed time(s):",ptm[3]))

Dealloc_Data() # Deallocate the date from GPU device memory

5.1. GPU Implementation of ErrorFunction()
The main computation for ErrorFunction() is the cal-

culation of an option price using the stochastic volatility
model for a given set of parameters and an input option data
point(<K,T>). Once the option price is calculated on the
GPU the RMSE value, which now basically involves taking
a difference and squaring it for an option data point, can be
calculated on the CPU. The number of option data points, M,
we are considering are in the range of 1024, and there will
be no benefit of performing the RMSE calculation, which is a
very small portion of the overall computation, on the GPU.

We map the stochastic volatility model computation on M
blocks of the GPU. A block computes the option price for one
data point. The number of threads N in a block is determined
by the number of terms in the cosine series expansion. A typ-
ical value of N is 128. A high level description of the code
executed by each thread of the GPU is shown in Algorithm 2.

In Algorithm 2, a thread of a block computes one co-
sine term of the Fourier Cosine series approximation to the
stochastic volatility model price (line 6). This series approxi-
mation is given in Equation 6. The 128 terms computed by
threads in a block are aggregated to give the option price
(up to a multiplicative factor) for a single data point (line 6
to line 12). Observe that in line 6 we keep the result of the
stochastic model calculation in shared memory. This is to
avoid the overhead of using the global memory for the ag-
gregation. The aggregation is performed using shared mem-
ory and multiple cores of the streaming processor with a tree
like structure (line 6 to line 11). Note that the <K,T> val-
ues for option data points are stored on the device memory.
The option price computed by a block is stored on the de-
vice memory from where it is transferred to the host mem-
ory for RMSE calculation. Algorithm 2 is implemented in
the source file gpusvcalibration.cu for each of the
stochastic volatility functions.

6. EXPERIMENTAL RESULTS
All performance results reported in this section are ob-

tained using an Intel Core i5 processor and NVIDIA Tesla
K20c (Kepler architecture) consisting of 2496 cores. The
CUDA compiler nvcc is release 5.0, V0.2.1221. The perfor-
mance results for the four implementations are summarized in
Tables 2 to 6. In the first four of these tables, we list timings
for various components of the Heston model code applied to
six different single-name equity option chains. Each option
chain is a snapshot of tick-by-tick option prices taken over a
30 second interval and varies in size based on the number of
liquid contracts over the interval. AAPL is the largest option
chain at M = 1024.

The four versions of the calibration code are denoted: (a)
R, (b) RGPU , (c) C, and (d) CGPU . The first implementa-
tion, R, is the base level implementation and runs sequentially

Algorithm 2 PARALLEL-FOURIER-COSINE(z)
1: shared memory smem[]
2: tx← threadIdx.x
3: bx← blockIdx.x
4: bd← blockDim.x
5: j← bd
6: smem[tx]← CHARACTERISTICFUNCTION(T [bx],z)
7: for i = 1 to log2(bd) do
8: j← j/2
9: if tx < j then

10: smem[tx]← smem[tx]+ smem[tx+ j]
11: end if
12: end for
13: if tx = 0 then
14: V [bx]← K[bx]× exp(−r0×T [bx]× smem[0])
15: end if
16: return V [bx]

on a CPU. The second implementation, RGPU , is the version
which off-loads the ErrorFunction() computation to the GPU.
The third version is in C and, by comparison with the base
level implementation, is used to measure the overhead of R in
a sequential environment. The final version of the implemen-
tation, CGPU , is the C based code where the ErrorFunction()
computation is off-loaded to the GPU.

As mentioned in Section 5., initially we use the R imple-
mentation of the differential evolution algorithm, DEOptim
[12] to perform a global search to estimate the calibration pa-
rameters. In the next stage, we feed this as the initial guess
to a local optimizer (nloptr [9]). Both optimizers call the
same ErrorFunction() routine during the optimization pro-
cess. The population size in DEOptim is set to 100 and the
algorithm is set to perform a single iteration. The relative tol-
erance in the COBYLA routine is set to 1.0× 10−7 and the
maximum number of iterations is set to 50.

For the Heston model, we observe that the COBYLA rou-
tine always converges in under 50 iterations and that the
number of ErrorFunction() evaluations performed by the
COBYLA routine does not vary across the datasets. While
nloptr is simpy a wrapper to a C++ implementation of
NLopt, the DEOptim library provided in R is only loosely
based on version 4.0 of the original C implementation by
Storn and Price [15]. We therefore observe slight variations
in timings and numerical results between the R and C ver-
sions of DEOptim, which we have tried to minimize dur-
ing performance benchmarking by just performing one iter-
ation of the DE algorithm. Table 2 shows the overall timing
of the R base level implementation of the calibration code
for each of the six option chains. We observe that the cali-
bration is dominated by the ErrorFunction(), constituting at
least 99.0% and takes up to 441 seconds for the AAPL chain.

AAPL AMZN BP CSCO GOOG MSFT
DEoptim 293 111 69 62 255 70
nloptr 148 56 35 32 130 36
ErrorFunction 1.46 0.55 0.34 0.31 1.28 0.35
Total ErrorFunction 440 166 103 93 385 105
Total Time 441 167 104 94 386 106
% ErrorFunction 99.8% 99.4% 99.1% 99.0% 99.7% 99.1%

Table 2. Performance results for the R code in seconds. Each
columns represents a different option chain.

AAPL AMZN BP CSCO GOOG MSFT
DEoptim 88 33 21 18 76 22
Nlopt 44 17 10 9 38 11
ErrorFunction 0.44 0.17 0.1 0.1 0.38 0.11
Total ErrorFunction 131 49 30 27.6 113 32
Total Time 132 50 31 27 114 33
% ErrorFunction 99.2% 98.0% 96.8% 99.9% 99.1% 97.0%

Table 3. Performance results for the C code in seconds.

Table 3 shows the performance results of the RGPU imple-
mentation. The overall time falls to less than 0.5s and the Er-
rorFunction() now only accounts for up to 72.4%. In Table
4, the performance results of the C implementation show that
the overall calibration time is reduced by up to 3.4x compared
to the R base level implementation. As previously indicated,
the DEOptim time between the R and C implementations is
not strictly comparable due to variations in implementations,
but the factor reduction in the total time in the error function
is more consistent across datasets. The CGPU implementa-
tion performance results provided in Table 5 show that Er-
rorFunction() only constitutes up to 67.7% and the overall
calibration time is up to 0.62s.

These comparative results of the ErrorFunction timings are
summarized for each option chain in Table 6. The first row
shows the speedup by off-loading the ErrorFunction to the
GPU, which is up to 1042x for the AAPL option chain. The
second row compares the C implementation with the RGPU
implementation and the third row compares the CGPU im-
plementation with the RGPU version. We observe here and
by comparing the overall timings in Tables 3 and 5 that the
overhead of the R wrapper is marginal and hence any benefit
of the CGPU code, in practical terms, is offset by the conve-
nience of using the R environment and off-loading the Error-
Function() to the GPU.

7. CONCLUSIONS
This paper has described the gpusvcalibration pack-

age for accelerating stochastic volatility model calibration on

AAPL AMZN BP CSCO GOOG MSFT
DEoptim 0.31 0.12 0.08 0.074 0.29 0.08
nloptr 0.16 0.063 0.044 0.041 0.15 0.044
ErrorFunction (ms) 1.41 0.56 0.36 0.33 1.25 0.36
Total ErrorFunction 0.42 0.17 0.11 0.1 0.38 0.11
Total Time 0.53 0.23 0.17 0.16 0.44 0.18
% ErrorFunction 79.2% 73.9% 64.7% 62.5% 86.3% 61.1%

Table 4. Performance results for the RGPU code. Timings
are shown in seconds unless stated otherwise.

AAPL AMZN BP CSCO GOOG MSFT
DEoptim 0.38 0.18 0.14 0.13 0.4 0.14
Nlopt 0.16 0.06 0.04 0.04 0.16 0.04
ErrorFunction(ms) 1.4 0.56 0.364 0.34 1.24 0.36
Total ErrorFunction 0.42 0.17 0.11 0.1 0.37 0.11
Total Time 0.54 0.24 0.18 0.17 0.56 0.18
% ErrorFunction 77.7% 70.8% 61.1% 58.8% 66.1% 61.1%

Table 5. Performance results for the CGPU code. Timings
are shown in seconds unless stated otherwise.

AAPL AMZN BP CSCO GOOG MSFT
R/RGPU 1042 992 971 933 1024 961
C/RGPU 313 297 288 278 303 297
CGPU/RGPU 1 1 1 1 1 1

Table 6. Relative performance of the RGPU code.

GPUs. The package is based on a GPU optimized kernel for
error function evaluation which can be called by CRAN opti-
mization libraries such as DEOptim and nloptr for cal-
ibration of stochastic volatility models. For M = 1024 we
demonstrate a factor of 760x improvement in the overall cal-
ibration time over the R sequential implementation by off-
loading ErrorFunction() on a system with an Intel Core i5
processor and NVIDIA Tesla K20c (Kepler architecture) con-
sisting of 2496 cores. Note that not all the performance gain
is due to the GPU- partly it is due to the reduction in the
overhead of R for the stochastic volatility model calculation.
For comparison we also implemented the calibration code us-
ing C/C++ . We observed a speed up of 230x for the GPU
based implementation over the C/C++ indicating that a fac-
tor of 3.4x improvement is due to avoiding the R overhead for
the stochastic volatlity model calculation. However, the over-
all calibration time using R based optimization routines com-
bined with the GPU off-loaded ErrorFunction()— is compa-
rable to a C/C++ GPU based calibration code.

8. ACKNOWLEDGMENTS
The authors would like to gratefully acknowledge the sup-

port of Hanweck Associates and the International Securi-
ties Exchange in providing access to a data sample from the
ISE/Hanweck Premium Hosted Database.

REFERENCES
[1] M. Aichinger, A. Binder, J. Furst, and C. Kletzmayr. A

Fast and Stable Heston Model Calibration on the GPU.
In Euro-Par Proc. 2010 Conference on Parallel process-
ing, pages 431–438, 2010.

[2] D. Ardia, J. David, O. Arango, and N. Gomez.
Jump-Diffusion Calibration using Differential Evolu-
tion. Wilmott Magazine, 55:76–79, Sept. 2011.

[3] D. Bates. Jumps and Stochastic Volatility: Exchange
Rate Processes Implicit in Deutsche Mark Options. Re-
view of Financial Studies, 9:69–107, 1996.

[4] J. Buckner, J. Wilson, M. Seligman, B. Athey, S. Wat-
son, and F. Meng. The gputools package enables GPU
computing in R. Bioinformatics, 26(1):134–135, 2010.

[5] P. Carr, H. Geman, D. Madan, and M. Yor. The fine
structure of asset returns: An empirical investigation. J.
of Business, 75:305–332, 2002.

[6] M. Dixon and M. Zubair. Calibration of Stochastic
Volatility Models on a Multi-Core CPU Cluster. In Pro-
ceedings of the Sixth Workshop on High Performance
Computational Finance at SC13, 2013.

[7] F. Fang and C. W. Oosterlee. A Novel Pricing Method
for European Options based on Fourier-Cosine Series
Expansions. SIAM Journal on Scientific Computing,
31:826–848, 2008.

[8] S. Heston. A Closed-form Solution for Options with
Stochastic Volatility. Review of Financial Studies,
6:327–343, 1993.

[9] S. G. Johnson. The NLopt nonlinear-optimization pack-
age.

[10] J. Knaus, C. Porzelius, H. Binder, and G. Schwarzer.
Easier Parallel Computing in R with Snowfall and sf-
Cluster. The R Journal, 1:54–59, 2009.

[11] D. Madan, P. Carr, and E. C. Chang. The Variance
Gamma Process and Option Pricing. European Finance
Review, 2:79–105, 1998.

[12] K. Mullen, D. Ardia, D. Gil, D. Windover, and J. Cline.
DEoptim: An R Package for Global Optimization by
Differential Evolution. Journal of Statistical Software,
40(6):1–26, 2011.

[13] M. J. D. Powell. A Direct Search Optimization Method
that Models the Objective and Constraint Functions by
Linear Interpolation. Advances in Optimization and Nu-
merical Analysis, pages 51–67, 1994.

[14] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu,
L. Tierney, and U. Mansmann. State of the Art in Paral-
lel Computing with R. Journal of Statistical Software,
31(1):1–27, 8 2009.

[15] R. Storn and K. Price. Differential Evolution - A Sim-
ple and Efficient Heuristic for Global Optimization over
Continuous Spaces, Journal of Global Optimization.
11(4):341–â359.

[16] H. Wickham. The split-apply-combine strategy for data
analysis. Journal of Statistical Software, 40(1):1–29,
2011.

Biography
Matthew Dixon is a Term Assistant Professor in the MS
in Analytics Program at the University of San Francisco. He
is also a consulting director of risk for HedgeFacts, LLP,
a portfolio analytics and fund administration platform for
hedge funds. In addition to holding academic appointments
as Krener Assistant Professor at UC Davis and postdoctoral
researcher at Stanford University, Matthew has worked and
consulted for various investment banks and the Bank for In-
ternational Settlements on quantitative risk methodology. He
serves on the Global Association of Risk Professionals San
Francisco chapter committee and co-chairs the workshop on
high performance computational finance at SC, the Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis. Matthew holds a Ph.D. in
Applied Math (2007) from Imperial College and a M.Sc. in
Parallel and Scientific Computation with Distinction (2002)
from Reading University, UK.

Sabbir Ahmed Khan is a first year Ph.D. student in Com-
puter Science Department at Old Dominion University, Vir-
ginia. He is working with Dr. Zubair. His primary interest is
in the area of High Performance Computing. He did his BSc
from CSE department of Bangladesh University of Enginee-
ing and Technology (BUET). He also worked as a Software
Engineer at Uniqa software and Systems Ltd. and Beximco
Pharmaceuticals Ltd.

Mohammad Zubair is a Professor in the Computer Sci-
ence Department at Old Dominion University. Prof. Zubair
has more than twenty years of research experience in the area
of experimental computer science and engineering both at the
university as well as in Industry. His primary area of interest
is high performance computing and management of large in-
formation. His major industrial assignment was at the IBM
T.J. Watson Research center for three years, where his re-
search focus was in high performance computing and some
of his work was integrated into IBM products. His current
interests are in developing high performance algorithms for
multi-core architectures such as GPUs and Intel Multi-core
systems. He has been successful in obtaining funds to sup-
port his research work from NASA, NSF, DTIC, ARPA, Jef-
ferson Laboratory, Los Alamos, AFRL, NRL, JTASC, Sun
Microsystems, and IBM Corporation.

A CUDA PROGRAMMING ENVIRON-
MENT

A typical program on a system with a single GPU de-
vice is a C/C++ program with CUDA APIs to move data
between system memory and GPU device memory, and to
launch computation kernels on GPU. The data between sys-
tem memory and the device memory is moved using the PCI

Express (PCIe) bus. These transfers are costly and therefore
applications that have a higher computation to I/O ratio are
suitable for GPU computing. Also, if possible these transfers
should be minimized and it is desirable to leave the data on
the GPU if a subsequent kernel is going to use the same data.
A GPU device uses several memory spaces that differ in their
size, access latency, and read/write restrictions. These mem-
ory spaces include global, local, shared, texture, and registers.
Global, local, and texture memory have the greatest access
latency, followed by constant memory, registers, and shared
memory.

The GPU device works best for computations that can be
executed concurrently on multiple data elements. In general,
given an application one would like to partition the computa-
tional requirement into thousands of small computations that
can be executed simultaneously. These computations are as-
signed to thousands of threads of the GPU which are executed
concurrently on different cores. When implementing applica-
tions on a system with multiple GPU devices, the approach
for parallelization has to be adjusted. For this case, we parti-
tion the application in as many coarse-level chunks of com-
putation as the number of devices available on the system.
Next for each chunk, we partition the computation require-
ment as before into thousands of small computations that can
be executed simultaneously. CUDA provides an abstraction
of thread hierarchy to allow computation from different do-
mains to map to different cores of the underlying hardware.
The GPU hardware consists of a number of streaming mul-
tiprocessors which in turn consist of multiple cores. Threads
are organized in blocks, where one or more block runs on
a streaming multiprocessor. The threads in a block are fur-
ther partitioned into subgroups of 32 threads referred to as
’Warps’. A Warp, that is a sub block of 32 threads, runs on
eight or sixteen cores of a streaming multiprocessor in multi-
ple clock cycles.

B STOCHASTIC VOLATILITY MODEL
DESCRIPTIONS

The stochastic volatility models also implemented in the li-
brary are briefly listed here. This section is provided to briefly
describe the model parameters and is not intended as a self-
contained description of the models.

2.1. Bates Model
The Bates Jump-Diffusion model [3] is specified as the fol-

lowing set of coupled stochastic differential equations

dSt

St
= µdt +

√
VtdW 1

t +(Y −1)StdNt , (7)

dVt

Vt
= κ(θ−Vt)dt +σ

√
VtdW 2

t , (8)

describing the evolution of a stock price St whose variance
Vt is given by a mean reverting square root process which
ensures that the variance is always positive provided that
2κθ−σ2 > 0. Nt is a standard Poisson process with inten-
sity λ > 0 and Y is the log-normal jump size distribution with

mean µ j = ln(1 + a)− σ2
j

2 , a > −1 and standard deviation
σ j ≥ 0.

Both N(t) and Y are independent of the Wiener processes
W 1

t and W 2
t . A key characteristic of the model, which orig-

inates from the embedded Heston stochastic volatility dif-
fusion model, is that the Wiener processes are correlated
dW 1

t · dW 2
t = ρdt. This feature enables the model to exhibit

the leverage effect. Note that simply excluding the compound
Poisson term (Y −1)StdNt recovers the Heston model.

2.2. Variance Gamma Model
Following [11], the stock price dynamics may be general-

ized beyond the Brownian motion in the original geometric
Brownian motion model by a VG process. Under this model,
the stock price at time t is given by a three parameter Lévy
process L:

S(t) = S(0)exp(mt +L(t;θ,ν,σ)+ω(t)), (9)

where m is the mean rate of return on the stock under the
statistical probability measure and the Martingale correction
term is ω(t) = t

µ ln(1− θν−σ2ν/2). The parameters θ,ν,σ
only indirectly reflect the skewness and kurtosis of the re-
turn distribution. θ by itself determines the overall scale of
the volatility. The form of the characteristic function is pro-
vided in [11].

2.3. CGMY Model
The CGMY model [5] is a more general case of the Vari-

ance Gamma model. The parameters in the VG model can
be mapped to the CGM representation using the parameters
transforms

C =
1
ν

G =

(√
θ2ν2

4
+

σ2ν

2
− θν

2

)−1

M =

(√
θ2ν2

4
+

σ2ν

2
+

θν

2
)

)−1

The model parameters are restricted to C,G,M > 0 and an
additional parameter which controls the peakedness of the
probability density function is introduced Y < 2. The case
Y = 1 corresponds to the VG model. The form of the charac-
teristic function is provided in [5].

	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2014

	gpusvcalibration: A R Package for Fast Stochastic Volatility Model Calibration Using GPUs
	Matthew Dixon
	Sabbir Ahmed Khan
	Mohammad Zubair
	Recommended Citation

	tmp.1444851807.pdf.ikas4

