
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Physics and Astronomy College of Arts and Sciences

1989

Inverse Ac Josephson Effect at Terahertz
Frequencies
W C. Danchi

William Golightly
University of San Francisco, wjgolightly@usfca.edu

E C. Sutton

Follow this and additional works at: http://repository.usfca.edu/phys

Part of the Physics Commons

This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center. It has been accepted for inclusion in Physics and Astronomy by an authorized administrator of USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
W. C. Danchi, W. J. Golightly and E. C. Sutton. Inverse Ac Josephson Effect at Terahertz Frequencies. J. Appl. Phys. 65, 2772 (1989).

http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/phys?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/artsci?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/phys?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.usfca.edu%2Fphys%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu


Inverse ac Josephson effect at terahertz frequencies
W. C. Danchi, W. J. Golightly, and E. C. Sutton 
 
Citation: Journal of Applied Physics 65, 2772 (1989); doi: 10.1063/1.342768 
View online: http://dx.doi.org/10.1063/1.342768 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/65/7?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Inversion of complex V(z) at high frequencies for acoustic microscopy 
Rev. Sci. Instrum. 67, 2656 (1996); 10.1063/1.1147187 
 
Critical radius, size effects and inverse problems for composites with imperfect interface 
J. Appl. Phys. 79, 8964 (1996); 10.1063/1.362628 
 
Soliton return effect in an annular Josephson junction and nonzero minimum voltage and current in the current
step 
J. Appl. Phys. 71, 1014 (1992); 10.1063/1.350437 
 
Theoretical investigations of microwave‐driven Josephson junctions in a large frequency range 
J. Appl. Phys. 66, 735 (1989); 10.1063/1.343547 
 
Josephson effect above 77 K in a YBaCuO break junction 
Appl. Phys. Lett. 51, 540 (1987); 10.1063/1.98392 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

138.202.1.112 On: Tue, 30 Jun 2015 20:58:50

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/876956846/x01/AIP-PT/JAP_ArticleDL_070115/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=W.+C.+Danchi&option1=author
http://scitation.aip.org/search?value1=W.+J.+Golightly&option1=author
http://scitation.aip.org/search?value1=E.+C.+Sutton&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.342768
http://scitation.aip.org/content/aip/journal/jap/65/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/67/7/10.1063/1.1147187?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/79/12/10.1063/1.362628?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/71/2/10.1063/1.350437?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/71/2/10.1063/1.350437?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/66/2/10.1063/1.343547?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/51/7/10.1063/1.98392?ver=pdfcov


Inverse ac Josephson effect at terahertz frequencies 
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The inverse ac Josephson effect occurs when a Josephson junction driven by a microwave 
source of frequency f produces constant-voltage steps at integer multiples of hi /2e. For low­
leakage current hysteretic junctions driven at microwave frequencies below about 100 GHz, 
some of these steps can cross the zero dc bias current axis. These zero-crossing steps allow 
modern series array voltage standards to operate without individually biasing the junctions in 
the array. We reexamine the theory behind these steps and show that they can exist at 
frequencies much higher than thought previously. The Riedel singularity in the supercurrent 
response allows this effect to exist even up to terahertz frequencies. We describe a set of 
an~lytical calculations which provide limits on the amount of rounding of the Riedel peak 
WhICh can be permitted while still allowing these zero-crossing steps to occur. We also discuss 
practical considerations such as microwave power levels required and parameters for device 
fabrication. This analysis is supported by numerical frequency-domain computations and time­
domain simulations for a number of realistic J- V curves with rounded Riedel singularities and 
with quasiparticle subgap leakage currents. 

t INTRODUCTION 

The inverse ac Josephson effect is the occurrence of 
quantized dc voltages Vn = nmu/2e for a Josephson junction 
driven by a microwave source. I Levinsen et aU have shown 
that for hysteretic junctions constant-voltage steps can cross 
the zero-current axis. In this paper we will refer to these 
steps as zero-crossing steps. Kautz3 and Niemeyer, Hinken, 
and Kautz4 have shown experimentally that zero-crossing 
steps can be used with series arrays of 1474 junctions at 90 
GHz to produce voltages as high as 1.2 V. More recently the 
National Bureau of Standards5 has made voltage standards 
of up to 10 V using series arrays of up to 14 184 junctions. 
From the usual theoretical point of view, that of the Stewart­
McCumber model,6 also known as the resistively shunted 
junction (RSJ) model, it is expected that zero-crossing steps 
can exist only at voltages (or frequencies) up to about one­
half the energy gap of the superconducting tunneljunction. 3 

Experimental work by Hamilton,7 McDonald et al., g Weitz, 
Skocpol, and Tinkham,9 Danchi, Habbal, and Tinkham,!() 
and Habbal, Danchi, and Tinkham, It shows that the simple 
RSJ model of the tunnel junction is not appropriate at high 
frequencies. Rather one must use the full theory of the junc­
tion, as developed by Werthamer, 12 for understanding their 
behavior at such frequencies. This theory includes two im­
portant effects left out ofthe Stewart-McCumber model: the 
presence of photon-assisted quasiparticle tunneling steps 
discovered experimentally by Dayem and Martin, 13 and ex­
plained by Tien and Gordon,!4 and the Riedel peak 's in the 
supercurrent response. 

In this work we show from the Werthamer theory of the 
superconducting tunnel junction that zero-crossing ac Jo­
sephson steps can occur at frequencies much higher than 
thought possible previously. We begin with a review of the 
conventional picture ofthe Josephson junction voltage stan­
dard3 derived from the RSJ model in Sees. II A and II B. 
Following this we review the Werthamer theory 12 of the Jo­
sephsonjunction in Sec. II C. This review allows us to devel-

op the tools necessary for our picture of zero-crossing steps 
at high frequencies, which is the main thrust of this work. 
Readers who are knowledgeable about the RSJ model and 
Werthamer theory may wish to skip over Sees. II A-II C. In 
Sec. II D we analyze the condition for the zero crossing of 
the Josephson steps based on the Werthamer picture in the 
frequency domain. This treatment is novel in that it takes 
into account the rounding of the Riedel peak and the pres­
ence of quasiparticle photon-assisted tunneling steps, for a 
junction driven by a microwave voltage source. Next, in Sec. 
II E, we extend this analysis to an ac current source by find­
ing the equivalent voltage source for a particular shunt ca­
pacitance. This unites the conventional low-frequency RSJ 
expressions with expressions that do not rely on any low­
frequency assumptions. We describe some of the practical 
considerations involved in experimental verification of this 
work in Sec. III. In Sec. IV A we report numerical computa­
tions based on the voltage-bias theory ofSecs< II D and II E. 
Preliminary results from numerical simulations based on 
Harris'sI6.17 time-domain formulation of the Werthamer 
theory are discussed in Sees. IV B and IV C. These simula­
tions support the analytical calculations derived ear1ier. 

II. INVERSE AC JOSEPHSON EFFECT 

A. RSJ picture 

The simplest and most commonly used picture in the 
analysis of the behavior of the Josephson junction is the 
Stewart-McCumber model6 or RSJ model. In this model the 
Josephson junction is represented by the parallel combina­
tion of a resistor R to approximate the flow of quasiparticle 
currents, a capacitor C, and a current source of magnitUde 
Ie sin cp to represent the flow Qfpair currents. Here cp is the 
phase difference across the junction and leis the critical 
current. In the ideal zero-temperature case the product of Ie 
and the normal state resistance RN is given by 

IcR N=1T!:J.(O)/2e. (1) 
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The Josephson relation, I 

V= fl¢/2e, (2) 

connects the voltage across the junction to the derivative of 
the phase difference with respect to time. 

If the junction is driven by the combination of a dc cur­
rent source 10 and microwave source of magnitude 11 at fre­
quency 0) L' then the differential equation describing the time 
evolution of the voltage across the junction is 

C ~ + ; + Ie sin f/J = 10 + I I cos U) L t , (3 ) 

where this equation is derived from current conservation. 
For ease of mathematical analysis it is conventional to nor­
malize currents to the critical current, voltages to the feR 
product, and angular frequencies to 2eI eR Ifl. Typically R is 
interpreted as the quasiparticle leakage resistance RL for 
voltages below the gap voltage 2/l/ e and as the normal state 
resistance R N for voltages above the gap voltage. Therefore, 
we introduce the normalized quantities 

io = IoIIe' i l = I/lc , 

v = VileR, n = (JJL (fl/2elcR) , 

l' = t(2e1cR /fl) . 

The Josephson relation (2) is rewritten as 

d¢ =v=¢. 
dr 

(4) 

(5) 

The equation of motion for the junction phase after some 
manipulation of Eq. (3) is 

ri¢ + ~ + sin ¢ = io + i \ cos 01' . ( 6) 

The quantity f3 is 
{3 = 2e1e R 2C 1ft, (7) 

and the derivatives with respect to normalized time l' are 
denoted by the dots over ¢. This /3 is the well-known 
McCumber parameter6 describing the damping in the junc­
tion. In the limit where the phase excursions are small, the 
junction has a resonant response at a frequency n = {3- 1/2 

with quality factor Q - f3 1/2. This resonant frequency is also 
called the plasma frequency and is written 

(Up = (2elclftC) 1/2 

in conventional units. In the linearized picture of the junc­
tion, the Josephson element appears as an inductor L J with 
inductance 

L J = fz/2ele , (8) 

which can be derived from Eqs. (2) and (3) in the limit of 
small phase excursions. In this case the current through the 
Josephson element is proportional to the time integral of the 
voltage, as with any inductor: 

2efc J I} =--:r;- Vdt. (9) 

When a junction is driven by a microwave source of 
frequency U) L' the junction phase can be locked to the phase 
of the source, resulting in ac current steps at voltages 
V" = n(11{t)1/2e) for integer values of n. In the simplest 
case, the junction can be viewed as driven by a dc voltage ~) 
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and rf voltage VL cos U)IJ. If the junction has zero capaci­
tance, and if it is driven by voltage sources only 
(Io = II = 0), then from Eq. (3), as shown first by Shapiro, 
Janus, and Holly, I the time-averaged or dc current in the 
junction is given by 

(1) = (VoiR) + leJ _II (2a)sin(f/Jo) if Vo = nwL /2e 

= V;/ R otherwise. (10) 

In this equation a=:::eVl /1UuL> I n is the nth-order Bessel 
function and <Po is the initial junction phase. By varying the 
phase f/Jo' one finds that the step extends from -lcJn (2a) 
to + leJ" (2a) from the ohmic line ~lR. 

A somewhat more complicated situation occurs when 
the Josephson junction is driven by dc and ac current sources 
as in Eqs. (3) or (6). If the reactance of the Josephson ele~ 
ment wI.LJ is much greater than the resistance R or the 
capacitive reactance 1/ U) l. C, then most of the current passes 
through the capacitor or resistor, and it can be shown that 
the Josephson steps have a Bessel function dependence. 3 If 
the drive current is large in comparison to the current 
through the Josephson element, Bessel function amplitUdes 
have been shown to occur as weB. 3 In normalized form these 
conditions are written3 

!l> I, 

n>/3 -1/2, (11) 

i l > 1. 

In this limit one can derive3
,lg from Eq. (6) an equation for 

the junction voltage 'v = ¢. 
v = (v) + (i/.[f -+ fP7.rr)cos(llr + ¢'d) , (12) 

and by integration one can obtain the junction phase 

f/J=f/Jo+ (v)1' + UI/nJT+n2fl2)sin(Hr+¢d) (13) 

where 

rPd = tan- l 
( - OP) 

is the phase of the voltage relative to the phase of the drive 
current. If we define 

- '-'-~">1 
iJ = i,/H.J 1 + 0"/3 , (14) 

then the current through the junction is given by 

",0 

= L J_ n(fl)sin[<po-n<Pd + C{v) -nn)l']. (15) 
n,;;...- - 00 

From Eqs. ( 15) and (6) we obtain an equation analogous to 
that of (10) for the time-averaged current through the junc­
tion when the junction is locked to the drive frequency 
(v) = nn, 

io = <v} + <iJ ) 

(16) 

otherwise when (v) ¥On!! then (v) = io. Therefore, the Jo­
sephson steps occur at voltages < v) = nD. and extend from 
+ J" ( 1) to - J" (i\), or in non-normalized units they ex­

tend from + I CJI1 ci \) to - Ie.}" (it). We observe also that 
there is a relation between the equivalent microwave voitage 
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across the junction and the normalized drive current given 
by 

(17) 

B. Zero-crossing steps in the RSJ picture 

In the RSJ picture, as has been noted by Levinsen et afo:' 
constant-voltage Josephson steps cross the zero-current axis 
when io = 0, or from Eqo (16) when 

nO. < !J" (1\ ) I ' (18) 

where we have used the fact that the voltage on the Joseph­
son step < v) = no.. Because I n is less than 0.58 for n) 1, Eg. 
( 18) suggests that there can be zero-crossing steps only for 
step voltages V'tep = w L /2e given by 

V'tep < 0.46 Vgap (R IR",) , (19) 

where we have taken n = 1, Vgap = 2!::.je, and we have con­
verted from normalized to conventional notation. We as­
sume that R > R N below the gap voltage and R - R]V above 
the gap. For junctions with realistic J- V curves in which 
R IRN - 5-10, Eq. (19) states that one can in principle have 
Josephson steps which cross the zero axis for voltages all the 
way up to the gap voltage. Above the gap voltage, 
V"ep > Vgap = 2/11 e and the resistance R ~ R N which pro­
duces a contradiction of Eq. (19); thus the zero-crossing 
condition cannot be satisfied. However, the possibility stm 
remains that zero-crossing steps could exist to voltages near­
ly equal to the gap voltage. It may be difficult to produce 
steps at voltages this high, because within the contcxt of the 
RSJ model there is a conflict between the conditions for the 
zero-crossing steps and the conditions for Bessel function 
step amplitudes. For example, the condition n ~ 1 is dearly 
inconsistent with zero-crossing steps [cf. Eg. (18) 1. The 
second condition states that f)}f3~ 1, so that if n < 1 then 
f3~ 1 and thus the junction must be quite hysteretic. Another 
problem, first pointed out by Kautz/ is that near the gap 
voltage the quasiparticle photon-assisted tunneling steps 
move the quasiparticle 1-V curve away from the current axis. 
We conclude that the RSJ model indicates that it may be 
difficult to obtain zero-crossing steps anywhere except at 
low frequencies and low voltages where the quasiparticle 1- V 
curve is close enough to the zero-current axis for the zero­
crossing condition to be fulfilled for relatively small step am­
plitudes. 

We shall show in Sec. II D that these conditions are not 
supported by an analysis within the framework of the 
Werthamer theory of the superconducting tunnel junction. 
We provide a capsule summary of the main aspects of the 
Werthamer theory and then analyze the zero-crossing be­
havior. 

c. Werthamer picture 

Some time ago Werthamner l2 derived expressions for 
the tunneling current given a time-dependent voltage source 
V(t) = ~) + Vet) where Vo contains the entire de compo­
nent. His expression includes both quasiparticle and pair 
tunneling in a natural way developed from the tunneling 
hamiltonian formalism. Harris 16, i7 developed a time-do­
main formulation of the tunneling current derived from a 
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slightly different form of Werthamer's frequency-domain 
expression. In order to maintain consistency with Harris and 
with other workers when we discuss numerical simulations 
done in the time domain, we begin our presentation with an 
expression equivalent to Harris's 16 Eq. (1) where we follow 
Werthamer's notation in separating the dc from the time­
dependent voltage 

I(t) = 1m f W

", d(tJ d{j)' 

X [W*(lU) W(o/)ei«U' - (o)l(!p «(u + ~ill()) 
+ W«(li)W((r)')e i("'+"")I-ih,,,'+ia"IJ«(I)+~(!l())]. 

(20) 

The Fourier transform of W( 0;) is related to the voltage 
V( t) by the following expression: 

exr( -file r .", V(t') dt') = Fe 00 dru W((u)e- i(ul. (21) 

We define the frequency (/)0 to be /uo=2eVol1i. while we de­
fine the phase a o to be the initial phase difference. 

The functions lqp and lJ are the complex-valued re­
sponse functions in the frequency domain. Iqp (0;) describes 
the response of the quasiparticles to a frequency 0), and 
IJ (ill) describes the response of the pair currents. The total 
current through the junction is the sum of these two contri­
butions. General expressions can be found for these response 
functions that include both finite (nonzero) temperature as 
well as quasiparticle lifetime and gap anisotropy effects. 19.20 

In the limit when T = 0, Werthamer '2 derived analytical 
expressions for these response functions. Here we display 
expressions for the case of identical gaps on both sides of the 
junction, 6. 1 = Ilz = Il, which we derived from Werthamer's 
Eq. (13): 

lqp (w) = ~(K(X) - 2E(x) +~) x<J 
eRN 2 

= e~N ({ 2X[ K (~ ) ~ E (~ )] ~ ~ K (~ ) 

+f} +isgno;{2XE[(1-- ~2y/2] 

- ~ K[(l- :2y/2]}) X>], (22) 

a 
I,((v) = ---K(x) x<l 

eRN 

/1 1 { (1 \. [( 1 )112]} = - --- K - I + 1 sgn mK I - 2" 
eRN x x} \ X 

(23) 

In these expressions, x= iw/2al, K and E are complete 
elliptic integrals of the first and second kind, respectivciy, 
and sgn (t) = + 1 for (t) > 0 and sgn 0; ~= - 1 for uJ < O. 
These functions can be understood physically by assuming 
the voltage source has only a dc component, V(t) = Vo. 
Equation (21) implies that W(o;) = o(co) under this cir­
cumstance. If this W((t}) is inserted into Eqo (20) and the 
resulting expression is integrated, then it can be shown that 

Danchi, Goiightly, and Sutton 2774 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

138.202.1.112 On: Tue, 30 Jun 2015 20:58:50



the dc 1- V curve of the junction is related to the imaginary 
part of the quasiparticle response function, i.e., 
Ide ( Vo) = Im [lqp ( /1;)] when Va is substituted for fuule. 
Similarly, the critical current Ie of the RSJ model is related 
to the real part of the Josephson response function in the 
frequency domain by Ie::::; Re [ I J ( e Vol Ii) ] for Vo ~ 26.1 e. 

The real and imaginary parts of the response functions 
are related by the Kramers-Kronig transform, as discussed 
by Harris,21 i.e., if we write Iyp = Iqpl + iIQp2 and 
IJ = In + iln' then 

_ 2 i oo w'lqp2 (w')dw' 
IqpI (w) --p ;2 2 ' 

rr 0 w - {v 
(24) 

. _ 2w [00 Iqpl (w')dw' 
Iqp2 (w) - - P 2 ,2 

rr ~O (t) - (j) 
(25) 

and similarly for IJ! and In. Here P denotes the principal 
value of the integrals. Because the real and imaginary parts 
of the frequency-domain response functions are related by 
Kramers-Kronig transforms. the time-domain response 
functions /J (t) and Iqp (t) must be real and causal, i.e., that 
I J (t) = Iqp (t) = 0 for t < O. The quasiparticle time-domain 
response function Iqp (t) can be found by Fourier transform­
ing the frequency-domain expression Iqp (w): 

I (t) = foo I (w)e -;w d(u 
qp' '1P 

- oc 

= roo 00 [Iqpl (w) + iI'lP2 (w) ]e- i,u' d(U, (26) 

and similarly for IJ (t). The reality and causality of Iqp (t) is 
evident if we insert Eq. (24) into this equation and perform 
the indicated contour integration in (;)'. 

We wish to compare the predictions of the Werthamer 
theory with those of the simpler RSJ model, in particular the 
effect of the Riedel peak. In deriving the step amplitudes we 
fonow a procedure similar to that used earlier for the RSJ 
modeL We assume that the sinusoidal driving voltage is of 
the form 

(27) 

We derive from this voltage and Eq. (21) the function 
W«(v), which describes the Fourier components (harmon­
ics) of the driving voltage which affect the evolution of the 
junction 

W(w) = i Jk(eVL )8(Ul - kwL ) . 

k=-oo -Iroh) 
(28) 

This equation can be inserted into Eq. (20), and if we define 
a=eVLlwL • then we obtain for I(t) 

( 
~ J f(k - k')(iJL£ 

l(t) = 1m k,k,f;- 00 J k (a) k' (a)e 

'" 
X lqp (k(;)L + 2(;)0) + L Jk (a) 

k.k'= - "" 

XJ
k

• (a)e - irk + k')"'l' - ioV+ ia"IJ{kw
L 

+ ~(j)O)) • 

(29) 

The dc current components for the quasiparticle term exist 
only when k = k " whereas de current components are found 
for the Josephson term when (uo = nUlL' where n is an in-
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teger. The de current resulting from the influence of the mi­
crowave drive voltage, first derived by Werthamer, 12 is 

." 
Ide(~) = L J'i(a)J'lP2(k(h +!Ulo) 

k...:....;.. -- 00 

+ j; I k=~ '" J k (a)Jn _ da)IJ! 

X [ (k -- ~n )rv 1. ] I O(Ulo ± ncu L) . (30) 

The first term of this equation is obtained by substituting 
k = k I into the first term of Eq. (29) and taking the imagi­
nary part of the resulting expression. The second term of this 
equation follows from the second term ofEq. (29) by vary­
ing the initial phase a o and restricting n to positive integers. 
The maximum value of the de current from the Josephson 
effect for the nth step is that given by the second term ofEq. 
(30). Thus Eg. (30) is the fundamental equation we need in 
order to study the zero-crossing step behavior at high fre­
quencies. We can understand the first term of this equation 
better by noting that at the gap voltage 2tl.le the current 
increases dramatically for the quasiparticle portion of the I­
V curve of the juncti.on Iqp2' Under the influence ofa micro­
wave field, the dc current increases rapidly at voltage inter­
vals of kfuv L / e from the gap voltage where the amplitudes of 
these terms are modulated by Bessel functions. Such current 
jumps are known as photon-assisted tunneling steps.13,14 
Note that the microwave power affects the entire quasiparti­
cle 1- V curve because at any bias voltage Vo the current is 
comprised of contributions from other points on the I- V 
curve separated by voltages Va + kw Lie. The pair currents 
behave quite differently in that they modify the 1-V curve 
only at discrete voltages n1ku [j2e with current-step half­
widths given by the second term ofEq. (30). 

The experimental consequences of Eq. (30) were ex­
plored initially by Hamilton 7 who showed the expected ef­
fect of the peak in the supercurrent response on low-voltage 
(n - 3) Josephson steps in tunnel junctions driven to large 
values of a (a> 12) at low frequencies, iL ~25 GHz. The 
slow roll-off in I J I at high frequencies was observed initially 
by McDonald et al. H and in more detail by Weitz and co­
workers,9 both using Nb point contacts. Later when it be­
came possible to fabricate high-quality submicrometer-area 
tunnel junctions, Danchi and co-workers I 0 and Habbal and 
co-workers II were able to demonstrate the effects of Eq. 
(30) at low values of a (a-1) and at high frequencies 
(if. = 604 GHz). All of these experimental results demon­
strate convincingly that the Werthamer theory is the appro­
priate theory for the analysis of the behavior of tunnel junc­
tions at high frequency, and that such analyses are on very 
firm ground. Equation (30) can now be used in a detailed 
analysis of the voltage standard which is independent of any 
low-frequency assumptions. 

D. Zer(N:rossing steps at high frequencies 

The condition for zero-crossing steps at high frequen­
cies is the same as for the low-frequency RSJ model, namely, 
that the half-width of the Josephson step is greater than the 
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quasiparticle current at the de voltage of the Josephson step. 
Thus from Eg. (30) that condition is 

I~>Iqp' 

where we introduce the notation 

n = I k _~ 00 J k (a)Jn ~ k (a)IJl [(k - !nlrvL } I 
and 

00 

Iqp = L J ~ (a)[Qp2 (kwL + ~UJo) . 
k~ - co 

(31) 

(32a) 

(32b) 

In general, condition (31) can only be solved numerically. 
To make the problem analytically tractable, we will make 
the assumption that the microwave drive voltage 
a==eV1j-mUL <, 1; we then expand the Bessel functions for 
this limit. We also choose a frequency that is at or near the 
Riedel peak, i.e., (UL = 4LVn, because the presence of the 
Riedel peak gives the step amplitudes a logarithmic diver­
gence at the gap frequency 4LiHi. This region of frequency 
space has been unexplored in previous work. Before pro­
ceeding further with this analysis we find it useful to make a 
few notational improvements. We scale the real part of the 
Josephson response function I J 1 to the critical current by 
defining In == IJlI Ie. We also con vert from frequency to 
voltage for the imaginary part of the quasiparticle response 
function Iqp2 by defining I() ( V;» == IqpL. (lU()/2) and using 
UJo = 2eV;;Ii. Under these conditions the most important 
term in Eq. (32a) is 

I ~ = 2IcJo(a)J, (a)tl (fIlu I .l2e) . (33) 

To third order in a, Eq. (33) yields 

I ~ = Ica(l- 3az/8)IJ1 (-mu L I2e) . (34) 

In a similar way one can write Eq. (32b) as 

Iqp = J~ (a)Io( Yo) + n (a) [J()( Y;) + mu1je) 

+ IoC Vo - muLlen. (35) 

Expanding (35) to lowest order in a, we obtain 

Iqp = (l - a 2/2) 10 ( Vo) + (a2/4) iIo( Vo - w1je) 

+ loC Vo - ku[je)J . (36) 

Inserting OJ L = 4LiI1i and Vo = 2AI e into Eqs. (34) and 
( 36) we obtain 

1 2 -I J = Ica(1 - 3a 18)IJl (2Ale) , 

Iqp = (l - 3a2/4)Io(2Ale) + (a2/4)lo(6A/e) . (37) 

Ideally In (V;» is infinite at V;) = 2!::.le. The quasiparticle 
current Iqp can be at most 

[ (1 - 3a2/4) + (3a2 hr) ]( 17 A/2eR N) , 

where we have used the value of the current just above the 
gap voltage for an ideal junction, given in Eq. (22), which is 
Io(2Li/e) = trLi/2eR N • At voltages significantly above the 
gap voltage the resistance approaches the normal-state resis­
tance, so we approximate Io(61:::..Ie) by 6A/eR N • Thus from 
inequality (31) and Eqs. (37) we conclude that zero-cross­
ing steps can exist up to and possibly beyond the frequency 
4Li/Ii. Ultimately the maximum frequency in which zero­
crossing steps occur depends on how severely the Riedel 
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peak is rounded for real (nonideal) junctions. For example, 
in real junctions, quasiparticle lifetime effects, gap anisotro­
py, and sample inhomogeneities round the Riedel peak as 
well as the quasiparticle 1- V curve. 19.20 After deriving a nu­
merical estimate of the value ofIJ 1 necessary for zero-cross­
ing steps for ideal junctions, we analyze how this condition is 
modified for a nonideal junction. 

From inequality (31) and Eqs. (37) we conclude that 
for sman a, the amplitude of the supercurrent at the gap 
frequency must be at least as great as 

- 2A [ (3 3) 2J l( 3a2)~-1 IJl-;;>- 1 + -;; - 4 a a- 1- 8 (38) 

A simple numerical estimate of this amplitude can be found 
from (38) assuming a ~ 1. We observe that for a junction 
with ideal quasiparticle J- V characteristics, the value of the 
pair response function I J , at the gap frequency must fulfill 
the inequality,lJ! (2.6./e) >-1.93. By numerically calculating 
the minimum of the right-hand side of (38) we find that 
1.11 (2/l/e) >- 1.85 for a = 0.85. Of course, this inequality is 
easily fulfilled in this case since we have assumed a junction 
with ideal characteristics; IJl by Eq. (23) is infinite at the 
gap voltage. 

For real junctions, condition (38) can be used to deter­
mine a limit for the amount of rounding of the Riedel peak, 
when the rounding is described by a simple analytically de­
rived parameteL Commonly used models of Riedel peak 
rounding invoke Lorentzian or Gaussian rounding of the 
logarithmic singularities IJ (UJ) in Eq. (23). We use a form of 
rounding parameter similar to that of Zorin, Likharev, and 
Turovets. 2o In Eq. (23) we make the following substitutions: 

X =eV ->1_[(1_eV\12+(OeV)2]1I2 x<l 
2.6 2.6. J 2.6 ' • 

-----1- 1-- + 0- ,x>1. 1 _ 211 [( 2A)2 ( 2.6 )2] 1/2 

x eV eV eV 
The resulting line shape is approximately Lorentzian in the 
vicinity of the gap voltage. The parameter t) controls the 
height of the Riedel peak as well as its half-width. At x = 1, 
the real part of the pair response function becomes 

Re I J «(r) = in = (2/17)K(1 - 8) . 

Forsman 8, 

K( 1 - 8);:::: (l/2)In(8/8) . 

A variety of effects which contribute to the rounding of 
the Riedel peak also smooth the quasiparticle 1- V curve. 
Such smoothing occurs usually in two ways. One is that the 
abrupt jump in the quasiparticle current at the gap given in 
Eq. (22) for 1m = Iqp «(v) = IoC V;» is smeared out sym­
metrically to a finite width of '- 2t). The other is that quasi­
particle leakage currents are found at voltages below the gap 
voltage. Impurities in the superconducting electrodes or bar­
rier oxides produce quasiparticle subgap leakage currents 
which can be described by a resistance typically 5-10 times 
the normal state resistance. Both kinds of smoothing effects 
may change the value of the pair response function iJi need­
ed to fulfill the condition (31), which for the ideal junction 
had to be greater than 1.93. Equations (37) describe the 
Josephson step amplitude as well as the amplitUde of the 
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photon-assisted quasiparticle tunneling steps. We observe 
that the rounding of the quasiparticle J- V curve atrects the 
zero-crossing condition primarily from the value of the qua­
siparticle current at the gap voltage. At this high a frequen­
cy, sub gap leakage currents do not alter the value of the pair 
response function I J 1 needed for such steps; however, they 
may be more important particularly at lower frequencies. 
The rounding mechanisms discussed above give a total jump 
in current from just below to just above the gap voltage of 
magnitude close to that used previously, i.e., 1Tf1/2eRN . At 
the gap voltage itself, the current is about one-half of the 
total jump because the smoothing is symmetrical, so we use 
Io(2f1le) = (1/2 )mlj2eR N • 

Using this other estimate of Io(2A/e), condition (31) 
and Eqs. (37) yield, after substitution for a-I, 

- 2b. 4 [ ( 6 3 ')] 1.11->- 1 + - - - = 1.73. 
e 5 1T 4, 

(39) 

A better estimate for the minimum value of IJ 1 can be found 
numerically, yielding a lower value for IJ! than by using 
a-I. This value is IJ! > 1.36 for a = 0.63. We see that the 
value of the pair response function needed to obtain zero­
crossing steps is somewhat lower with the rounded quasipar­
ticle 1- V curve than we obtained with the ideal quasiparticle 
1- V curve. Substituting for the rounded value of IJ I (2AI e) 

allows us to derive a limit 

OI1T)ln (8/8) > 1.73 (40) 

for the value of the Riedel peak rounding parameter allowed 
for zero-crossing steps to occur. Condition (40) yields an 
upper limit of 15<0.035 for IJI = 1.73. A more precise esti­
mate for I J I' based on minimizing I J l with respect to a as 
above, is IJj > 1.36. Hence, condition (40) yields the in­
equality 8<0.11, when this numerically determined value 
for IJ! is substituted on the right-hand side of (40). Values 
of 8 that are below this limit are found in real junctions. For 
example, Zorin and co-workers20 have used 8 = 0.050 to 
realistically simulate experimental 1- V curves of small-area, 
high-current density junctions. Thus zero-crossing steps 
should be observable in real high-current density junctions. 
In a later section we show that zero-crossing steps can be 
found for J- V curves that are significantly more rounded 
than typical high-quality junction J- V curves measured ex­
perimentally. We now analyze the effects of an ac current 
source on the behavior of the Josephson steps using a formu­
lation of the problem that is correct at high frequencies. 

E. ac current source effects at high frequencies 

We investigate the effects of an ac current source with a 
method essentially similar to that used by Kautz to derive 
Eqs. (13 )-(15) for the Bessel function step amplitudes. In 
order to have the greatest similarity between our discussion 
of ac current source effects for the RSJ model and for the 
Werthamer theory, we recast Werthamer's equation for the 
current through the junction lour Eq. (20) 1 in the time­
domain form discussed by Harris '" and Tucker and Feld­
man. 22 We use Tucker and Feldman's notation for the quasi­
particle response of the junction. In the time domain, Eq. 
(20) for the current through a Josephson junction becomes 
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In (t) = V( t) I R IV + I ~p (t) + I J (t) , 

where we define 

(41) 

J~p(t)=Im(U*(t) J'""xU-t')UU')dt') (42) 

and 

I) (1) = -l-Im(UCt) J' IJ (t - t ') U(t ') dt') . 
217 - <YO 

(43) 

The functional U (t) describes the time evolution of the junc­
tion and is given by 

U(t) = exp( -~ie r ifo V(t ') dt '+ i~()) 

= exp [ itPs (t)] , (44) 

where ¢Yo is a constant initial phase. Here vet) includes the 
de vo1ta~e contribution Vo in addition to the time-varying 
voltage V( t). The functional U( t) depends on the entire past 
history of the junction. The kernels in Eqs. (42) and (43), 
X ( t) and I J (t), are the causal response functions which de­
scribe the intrinsic time delays in the Josephson junction. 

The function X ( t) can be written in terms of the dc J- V 
curve of the junction, i.e., J4P2 as 

- 1 L"" XU) = -( 1 + sgn t) 
1T 0 

X sin (OJt) dw , (45) 

where sgn t = 1 for t> 0 and sgn t = - 1 for t < O. In this 
way we explicitly show that XCt) = 0 for t < O. The quantity 
X (t) can be written in terms of only the imaginary part of the 
complex response function because the response functions 
satisfy the Kramers-Kronig transforms. Both the real and 
imaginary parts of the response function contribute equally 
to X(t), which is a real function. In a similar way,JJ (t), the 
response function for the pair currents, can be written in 
terms of the cosine transform of the real part of the complex­
valued response function for I J ((£}) [recall that 
IJj = Re fJ(w) L given in Eq. (23): 

I.lU) = 2(1 + sgn t) (X IJl «(tJ)cos(O)t) d(v. (46) 
)0 

The equation we wish to solve is the analog of Eq. (3), 
the RSJ model equation for a current-hiased junction: 

dV V d -c- + - + I qp (t) + IJ(t) = 10 + 11 cos (OLt. (47) 
dl R" 

To keep the closest possible analogy to the RSJ model deri­
vation discussed in Sec, II we separate the instantaneous 
response of the quasiparticies V(t)IR N from the delayed 
response I ~r (t). It is the delayed response which causes the 
photon-assisted tunneling steps which are not included in 
the RSJ model. Additional reactances, which are familiar in 
quantum mixer theory, also come from this term. 22 We as­
sume now that the current through the Josephson element 
I J (t) is small compared to the currents through the other 
elements of the junction. We assume also that the voltage 
across the junction is sinusoidal, but with unknown de and 
ac amplitudes Ve" VI" and phase ¢ d: 
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Vet) = V;) + VL cos (WfJ + <Pd) . 

We solve for V;), Vf-' and <Pd given 10 and h as well as the 
other junction parameters. Given this V(t), then UU) be­
comes 

'" 'V//ii ->-'''/2 '" J(} -ik(u"t+4>,,) U(t) = e . Ie" e' lor< £.. k a e , (48) 
k= 

where J k (a) are Bessel functions of order k. When this U( t) 
is substituted into Eq. (42) for the delayed part of the quasi­
particle response, I ~p (t), then after some manipulation Eq. 
( 47) reduces to 

(GN VL + Gw )cos«(t)[) + ¢d) + ( - WI. CVr. + B",) 

00 

Gu, = 2.: Jk (Jk + 1 + Jk _ 1 )1~? (Vo + kfuuLle) ,(SOa) 
k::::-: ~- IX> 

= 
Bm = I Jk(Jk+[ -Jk_,)IKK(Vo+kftwfje) ,(50b) 

k--, 

and where I KK is the Kramers-Kronig transform of I ~p ( V) 

defined by I ~p ( V) -=Jqp2 ( V) ~ GN V. I ~p is defined in this 
way to make the integral for XU) a proper (finite) Fourier 
transform, Ifthe divergent part of the quasiparticle response 
function were not subtracted, the Fourier transform would 
be ill defined. The dc current through the junction must sat­
isfy the equation 

,,<0 

10 = I Ii (a)Iqp2 (V;) + kfuuLle) . 
k--= - o:J 

This equation can be obtained from the dc component of the 
quasiparticle current when Eq. (48) is substituted into Eq. 
(42) and the dc components of Eq. (47) are collected to­
gether. 

By squaring both sides of Eq. (49) and time averaging 
we can derive a relation for VI. and hence a, given II' 

e GN V L + G
M 

) 2 + ( - (Ih CV L + B,u ) 2 = Ii . (51 ) 

Equation (51) is familiar as the large-signal problem in 
quantum mixer theory in which one determines the operat­
ing point of the mixer given a large local osciHator drive. 22 In 
general, Eq. (51) can be solved self-consistently by calculat­
ing B", and Gw given an initial value for VI. and the known 
values II' C, GN , and Uh. We can also make approximate 
solutions to (51) for low microwave power. In this limit we 
retain only the k = 0, 1, - 1 terms of (50a) and (SOb) in 
addition to expanding the Bessel functions only to low order 
in a. 

The phase angle between the voltage and the current ¢" 
can be found from Eq. (49) and is given by 

(52) 

In the low-power limit (first order in a), Eqs. (50) for G,,, 
and B", can be written 

GM = VI.G" 
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where 

G I = e/2wL [ioC V;) + fzoJL/e) - Io( Vo - ftwL/e) 

-2GN 1ULlle] (53) 

and 

Btu = VLB j , 

where 

B] = e/2ftwL [ - IKK (Vo + fuLlLle) 

- IKK (Vo - ftwLle) + 2lKK (Vo) J . (54) 

The relation between the driving current and an equivalent 
voltage source can be written in the low-power limit as 

eVL ell 
a=--= 

fwh ftw cJ7J; N + GY+ ((t) L C - ifJ'L 
(55) 

At low voltages and low frequencies, Vo ~ 2t../ e and 
w L ~2A, the conductance G1 becomes G 1 = (Go - GN ), 

where Go = dIoe Vo)ldV, and Bl :::::;0. Hence (55) becomes 

(56) 

When Eq. (56) is converted to normalized units it is equiva­
lent to Eq. (17) derived earlier for the relationship between 
the microwave drive current II and the equivalent micro­
wave drive voltage a in the context of the RSJ model. At 
high frequencies, the relationship between I( and a is some­
what different. For example, suppose (t) L = 4A/f! and 
~) = 2tJ.1 e; in this case Gland B 1 become 

GI~(G,,\';8)[(1T12) -2], 

BE ~ (eI8tJ.)IKK (2tJ.le) . 

We conclude that in this context IGII ~GN' B, can be evalu­
ated for a rounded quasiparticle 1- V curve. In the same way 
in which the Riedel peak is rounded, the logarithmic diver­
gence of I KK at 2tJ.1 e is rounded as well. With the rounding 
parameter 15 described earlier, we obtain the following ap­
proximation for IKK (2~/e): 

I KK c: ) -e~ J ~ In ( ! ) -2] . (57) 

For /) - 0.1, the largest 0 or the most rounded Riedel peak 
that one would expect, we find IKK (2~/e) -O.19(AleR N ). 

For 0-0.001, the situation where there is very little round­
ing, we obtain 1 KK (26.1 e) - 2.5 (~/ eR N ). We see that the 
divergence at 2AI e does not represent a major problem, be­
cause if the capacitive reactance is small compared to the 
reactance associated with the Josephson inductance (a nec­
essary condition for Bessel function step amplitudes) then 
we have fulfilled the condition needed at high frequencies to 
minimize the reactance of the quasiparticles relative to the 
capacitive reactance. Another way to look at it is directly 
from Eg. (55). Consider first that 

elc [1 (8) ] B 1=-- -In - -2 
rrfuUL 2 D 

for frequencies near the gap frequency. Therefore, in order 
to satisfy (t) l. C}> B l' the condition 
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nY3>_1 J.. 1n (~) - 2] 
21T 2 (j 

must be satisfied or equivalently the quasiparticle 1-V curve 
must have a minimum rounding given by 

8)8 exp - 2(21T + 2) ~5.1 X 10- 7
• 

This condition is easily fulfilled for most practical junctions. 
Equation (55) yields 

eI a= I 
rT:r,---~-~ , 

wd (GN )- + (wI. C)-
(58) 

the high-frequency relation between driving current and 
equivalent ac voltage. Equation (58) is completely analo­
gous to the low-frequency equation (56); the only difference 
is that the dissipative element ofthe junction at high frequen­
cies is essentially the normal-state resistance rather than the 
low-voltage dynamic resistance. 

F. Discussion 

It is useful to compare these results with other work 
performed at high frequencies. Danchi et al. 23 studied the 
behavior of Sn-SnO-Pb tunnel junctions irradiated at 604 
GHz by a far-infrared molecular laser. They found remark­
able agreement between their experimental 1-V curves and 
simulated 1-V curves based on a current-biased RSJ model 
with noise and with photon-assisted quasiparticle tunneling 
steps. These steps were put in by adding to the RSJ model 
current at a particular voltage the current contribution from 
photon-assisted tunneling. Here the photon-assisted tunnel­
ing contribution was that calculated for an rf voltage bias 
and a de voltage bias. The quality of the agreement between 
the simulation and data was surprising considering that their 
procedure was somewhat ad hoc. They argued that the junc­
tion was effectively voltage biased because ofthe large value 
of the wLRNC product for their junctions at the 604 GHz 
laser frequency. The analytic calculation discussed in Secs. 
II D and II E rigorously shows that the procedure they used 
was correct. Another problem with their analysis was in de­
termining the correct impedance for the calculation of a 
from the rf drive current. In the formulation of the problem 
we have used here, this impedance comes out quite natural­
ly. 

iH. PRACTICAL CONSIDERATIONS 

For a voltage standard at high frequencies to actually 
work in practice, several conditions must be fulfilled. The 
most significant are that superconducting tunnel junctions 
of sufficient quality and reliability must be fabricated, that 
the standard must maintain a stable voltage, and that suffi­
cient microwave drive power should be available at the de­
sired frequency. Stability on the zero-crossing step is per­
haps the most significant factor that affects the whole design, 
as has been discussed thoroughly by Kautz, Hamilton, and 
Lloyd. 24 We apply some of the methods of their analysis to 
the situation of interest here: that of a junction being driven 
at frequencies near the gap frequency. These authors have 
discussed the design of the individual junctions that make up 
the standard in terms of junction current density Jc ' length /, 
and width w. We briefly review these requirements for com-
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pleteness of this discussion. To obtain Bessel function step 
amplitudes, the junction must be driven at a frequency above 
the plasma frequency [condition (11)}. This condition can 
be interpreted as a requirement on the current density of the 
junction,24 because the ratio of the critical current to capaci­
tance in the expression for the plasma frequency is indepen­
dent ofthejunction area. Otherwise if the driving frequency 
is close to the plasma frequency then chaos has been ob­
served both in simulation at low frequencies25 and in experi­
ments at submillimeter wavelengths.:!6 Kautz and co­
workers24 describe a normalized parameter which is the 
ratio of the critical current density Je to the product of the 
square of the drive frequency wi and the specific capacitance 
Cs == C /wl. This parameter which we call r is given by 

r==(wp/ctJd2 = 2eJJfUiJ'iCs ' (59) 

Monte CarIo simulations have been performed which indi­
cate that a good design choice for the value of r is r - O. I, 
although those studies indicate r can take on values from 0.1 
to 0.3 because there is a broad minimum in the mean time to 
jump from the Josephson step in these regions. 24 A separate 
set of time-domain simulations, performed with values of r 
ranging from 0.1 to 1.0, indicate that at high frequencies the 
locking range is most ideal (close to the Wert hamer theory) 
when r<O.3, so it appears that the choice of r = 0.1 is a 
sensible one for high frequencies in the absence of further 
Monte Carlo simulations. For junctions made from Nb base 
electrodes with an Nb20 S barrier, the specific capacitance is 
roughly Cs ;::: 14 pF cm- 2

.27 Using this value of specific ca­
pacitance and a driving frequency W L = 7.9X 1012

8--1, we 
find that the critical current density should be Je ;::: 2.9 X 104 

A cm- 2
• 

For a bias point at the center of the nth Josephson step, 
Fokker-Planck methods have been used to find the mean 
time between phase slips 7, which occur when the junction 
loses lock to the radiation field due to the thermal activation 
processes25 (essentially the Johnson noise in the resistive ele­
ment R). This r is also approximately the mean time for the 
Junction to jump between Josephson steps and is given by 

(60) 

where kT<E, and where E, the activation energy, and 1'"o, 

the attempt time, are given by 

E = full" /2e (61) 

and 

(62) 

In this model A1n indicates the full width of the Josephson 
steps. For the RSJ model, 111" =2Jc 'Jn (2a)!, whereas in 
the Werthamer theory the full width is 21], where n is 
given by (32a). At high frequencies, the simple expressions 
(60)-( 63) may not completely describe the behavior of the 
junction since shot noise may also significantly perturb the 
Josephson currents. 2., However, for the purpose of this work, 
which is to explore roughly the differences between the low­
and high-frequency escape time r, this type of analysis is 
sufficient. A simple way to take into account the effects of 
shot noise is to define an effective temperature T~lf for the 
nth step, such that the mean-square noise current from shot 
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noise is equal to that from a resistor at that elevated tempera­
ture, i.e., 

(i;, ) shot ~ 2eV IR,y == (i~ )thmn ~4kT~,ffl RN . (63) 

Thus T;tr = e Vn 12k, and since the voltage at the nth step is 
Vn = nfuu L 12e, 1'~1f = n (fl(» L 14k). This gives T";ff:::;; 15K 
for the first step at (tJ L = 4b..ln. 

The activation energy E at twice the gap frequency be­
comes 

(64) 

where we have used the full width of the first step from Eq. 
(34 ), 

all = (5/4rr)1c Ine8/8) , 

which is appropriate for a-I, near the maximum width of 
this step. The attempt time To can also be evaluated and 
yields 

To = (7r/~r{[h. )J[81T151n(8/8)T. (65) 

Before evaluating Eqs. (60), (64), and (65) we turn briefly 
to the optimum dimensional parameters of the junction. The 
stability of the phase-lock state is also affected by the length 
and width of the junction. The microwave currents in the 
usual geometry for a series voltage standard propagate along 
the length of the junction and produce a magnetic field in the 
junction dielectric, which causes a non constant junction 
phase that grows quadratically along the junction axis. 24 

This time-varying phase reduces the critical current to an 
effective current lower than the original critical current and 
hence reduces the coupling energy. The optimum junction 
length has been found to be 

(66) 

where ItJ is the Josephson penetration depth defined by 
It} == (fz/2epodJc ) 1/2 and where d is the sum of the dielectric 
thicknesses and the penetration depths of each electrode.24 

UsingJe = 2.9X 104 A cm- 2 andd = 230nm, the optimum 
junction length is 1= 0.77 It J • The upper limit ofthejunction 
width w is set by the presence of Fiske modes, which occur 

beginning at the frequency (UF = (1Tlw)Jjinde,. The junc­
tion width must be small enough that the first Fiske mode 
occurs at a frequency higher than that of the driving frequen­
cy ())L' otherwise these modes can be excited, reducing the 
phase lock of the junction. The upper limit on the junction 
width is thus 

w = rr/(1)c.jfJodC, . (67) 

Evaluating (67), one finds that Wma, ~2.0,um. 

If one evaluates the critical current Ie from Eqs. (59), 
(66), and (67), one finds (using Ie = twJe ) 

Ie = j(:rrrfzy 12poed , (68 ) 

which depends on materials only through the length d. Tak­
ing d:::;;230 nm appropriate for Nh/Nb2 O~/PblnAu junc­
tions and y:::;;O.l, the optimum critical current should be 
~O.87 rnA. Using the ideal feRN product for a junction 
with a = 1.3 meV yields a normal state resistance RN of2.4 
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n. The coupling energy E ofEq. (14) can be evaluated yield­
mg 

(69) 

Using b = 0.05, which is likely to be the largest 15 one would 
use in practice, and using the above-mentioned values for d, 
and r, we find that Elk ,= 8.4 X 104 K. Evaluating (65) for 
70 we find that 70 = 1.25 X 10- 12 s. If we assume that ther­
mal noise is the only source of phase slips and if we use Tbath 

= 4.2 K, then E /kThath = 2.0X 104
, whereas if Te,tf = 15 

K, assuming that shot noise is the major cause of pha~e slips, 
then Elk T';ff = 5.6 X 103

• Both of these values are some­
what above that of the voltage standards operated at 96 
GHz, where E Ik1~ath = 3.6X 103

• It is important to point 
out that it would be useful to analyze the behavior of the 
junction mere fully when it is phase locked at such high 
driving frequencies. Based on this analysis high frequencies 
apparently have a significant advantage in terms of stability 
when locked onto the step; however, other choices exist for 
some of the parameters. For example, one could choose the 
optimum critical current based on other design strategies. 
Also, one has found an optimum value of y at high frequen­
cies, so the complete answer to the question of stability is not 
known at present. Further work will be necessary to sort out 
this important issue. It is clear that fabricating junctions ac­
cording to these design criteria should not be too difficult 
since the junction area would he less than or approximately 
equal to 4pm 2 and the current densities (in the 104 A cm- 2 

range) are not too high. 
Coupling the electromagnetic field to an array of these 

junctions is a serious issue and points out some of the 
tradeoff's involved in designing a voltage standard to operate 
at high frequencies. One approach that has worked success­
fully is the planar bow-tie antenna on a quartz substrate, 
which is itself attached to a quartz hyperhemisphere. Such 
coupling structures have been used in studies of SIS mixers 
at submillimeter wavelengths. 28 Another possibility is the 
Vee antenna, which is a planar antenna sandwiched between 
quartz substrates.::!\) A stripline configuration such as that 
used for the 96 GHz voltage standard could also be used in a 
high-frequency standard. The power requirements are not 
too severe. The required microwave current is given by 
I) = {u I. eVil' which for the values of capacitance and step 
voltage for the example in this work is I J = 8.6 mA.24 There­
fore, the drive power level PI. = (1/2)1 i Zo, where Zo is the 
impedance of the stripline which could be designed to be in 
the range from ~ 10 to 100 n. Ifwe assume that the stripline 
impedance is 100 fl, then PI. = 3.7 mW, while if we assume 
the lower value of stripline impedance, which is closer to that 
used in practice, PL = 0.37 mW. Far-infrared molecular la­
sers can produce well over 10m W at frequencies near 1 THz, 
so it should be possible to couple enough power into the 
array if we assume coupling efficiencies in the range from 
4% to 40%, which should be achievable. 

We conclude this section by noting that there does not 
appear to be any practical reason why voltage standards 
could not be made to operate at frequencies as high as 1.2 
THz. It is dear that some of the issues discussed herein de-
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serve further attention before a practical standard can be 
developed. 

IV, NUMERICAL CALCULATIONS 

A. Numerical calculations with the voltageabias 
frequencysdomaln theory 

1. Gap frequency drive 

The analytical calculations based on Eq. (30) in Sees. 
II D and II E provide a clear set of criteria that a junction 
must satisfy in order to have zero-crossing steps at the gap 
voltage. Numerical calculations based on Eq. (30) for the 
behavior of the ac Josephson steps at high frequencies can be 
made for model tunnel junction quasiparticle 1- V curves and 
a rounded Riedel peak. The pair-response function 1./ I can 
be rounded in a straightforward manner as described in Sec. 
n D. The quasiparticle 1- V curves on the other hand must be 
modelled in such a way as to include both kinds of "smooth­
ing" effects noted in Sec. n D, the smoothing of the discon­
tinuity at the gap voltage, as well as leakage currents below 
the gap voltage which can be modelled by a finite subgap 
resistance R I .. By controlling the subgap resistance, the 
"width" of the quasiparticle current rise at the gap voltage, 
and the height of the Riedel peak we simulate the frequency­
domain expressions for a real junction. Later, in the time­
domain simulations discussed in the next section, a fast 
Fourier transform of these expressions is used to calculate 
response functions in the time domain. 

In Fig. 1 we display realistic 1- V curves and pair-current 
response functions used in the numerical computations. The 
1- V curves used here are simulated but realistically rounded 
by the method of Sollner and Powe1l30 and were used in nu­
merical calculations of SIS quantum mixers by Danchi and 
Sutton.31 The /- V curves and the Riedel peak are rounded 
using the parameter t5, discussed previously, which takes on 
the values of 0, 0.005, 0.02, and 0.05. The gap-sharpness 
parameters eV'/2A and eV" /21l described by Sollner and 
Powell are set equal to D, the parameter describing the 
rounding of the Riedel peak. In this way we have a single 
parameter to describe the rounding of both the quasiparticle 
/- V curve and the Riedel peak. Weare still allowed the free­
dom to independently adjust the subgap leakage resistance 
in order to separate the two effects on the zero-crossing be­
havior of the junctions. The subgap leakage resistance varies 
also in these I-V curves with values RL = 00, 100 R N • 

25 R N , and 10 R N • 

A numerical calculation of the Josephson step widths 
based on the voltage-biased junction theory of Sec. II D is 
shown in Figs. 2(a)-2(d). In this figure we display the up­
per and lower ends of the Josephson steps (black lines) for 
increasing values of a, the microwave drive level. The verti­
cal scale is in dimensionless current units in which the cur­
rent is scaled to the critical current. From these plots we 
observe that the locking range depends on the rounding of 
the Riedel singularity. As expected, the more the singularity 
is rounded the smaller the locking range. We observe a lock­
ing range between a~O.24 and 1.47 for 8 = 0.005, whereas 
the locking range is reduced to between a ~ 0.40 and 1.13 for 
8 = 0.05. Note that the full width of the Josephson step is 
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FIG. 1. (a) The imaginary part of the quasiparticle response function Iqp2 

normalized to lefor the following values of phenomenological rounding 
parameters: (i) 13=0, RL = 00, (ii) 8=0.005, Rl. = lOOR N , (iii) 

8 = 0.020, RL = 25RN, (iv) [5 = 0.020, RL = lORN' (v) 8 = 0.050, 
RL = 25R N • (0) The real part of the pair response fanction!J I normalized 
tole for the same valuesof8as in (a). Both (a) and (b) are computed for 
the voltage normalized to the gap voltage e V /2£:". 

about 2.3 times larger than the step width would be without 
the Riedel peak (from Bessel function RSJ expression) 
when D = 0.02. 

2. Subharmonic drive 

Enhanced Josephson step widths for low-voltage steps 
can be found when the junction is driven by subharmonics of 
46./ h as has been discussed by Hamilton.7 It may also be 
possible that the step width at the gap voltage is larger than 
the width expected from the RSJ model. Analysis of Eq. 
(30) for the cases when fL=(I12)4.:l/h and fL 
= (1/3 ) 46./h shows that the step widths at the gap voltage 

indeed are expected to be larger than the RSJ model step 
widths. For example, when fL = (112)46./h, it is expected 
that the second Josephson step is enhanced by the Riedel 
peak but not the first or the third steps. Similarly, if fL 
= (1/3) 46.1 h, then it is expected that the first and third 

steps are enhanced, but not the second step. These steps are 
enhanced by the Riedel peak because they fulfill the condi­
tion that 12k - nl = I, where I is an integer and where 
fL = I - I ( 4A/ h). This result is easily derived from (30) by 
noting the terms in the summation on k in the argument of 
t 1 which equal the gap voltage 21l/ e. The symbol n here is 
the step number and k is the summation index in Eq. (30). 
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FIG. 2. Upper and lower ends of the Josephson steps cal­
culated from the voltage-bias Werthamer theory are dis­
played in the black lines for increasing values of the mi­
crowave drive level a = e V[/fIUJ l.' The vertical scale is in 
dimensionless current units in which the step current is 
scaled to the critical current. Cal Here we have a very 
sharp but not ideal Riedel peak, with {j = 0.005, 
Rl. =,IOORN" (11) A more realistic case with 8=0.02 
(corresponding to a peak height of about 1.9 Ie) and 

RL = 25R". (c) Here 8=0.02, R I . = lORN' (d) A 
highly rounded Riedel peak with 8 = 0.05 and 
RL = 25R N • 
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Thus if I is an odd integer then only odd numbered steps 
should be enhanced, while if I is an even integer then even 
numbered steps are enhanced. 

This analysis is supported by numerical computations. 
Equation (30) can be evaluated for 15 = 0.02, GN = 0.02 S, 
GLIGN = 0.04, and 2111e = 2.6 X 10-3 V, which is the same 
set of conditions as Fig. 2 (b) . We find the largest steps at the 
gap voltage when n = 1 and fL = 4111 h. In this case the step 
width is maximized when a = 1.1 and the full step width is 
2.5 Ic. This can be contrasted with the RSJ model width of 
1.1 Ie at a = 1.0. When 1= 2, the step at the gap voltage is 
the n = 2 step, which is maximized at a = 1.5 with fun 
width 1.47 I c ' while the RSJ model width is 0.91 Ie. When 
I = 3 the maximum value of the step at the gap voltage 
(n = 3) occurs at a = 4.0 with full width of 1.29 Ie as com­
pared to an RSJ width of 0.87 h· for a = 2.1. Only when 
I = n = 1 do we observe zero-crossing steps; the step widths 
are significantly increased for 1= 3, n = 3 and 1= 2, n = 2, 
but do not cross the zero-current axis. This means that in a 
series array voltage standard one would have to use some dc 
bias current to utilize these steps. An interesting point con­
cerns the first step (n = 1) when ft, = (l/3)411Ih. We find 
that this step has a maximum width of 1.57 Ie fora = 2.6 as 
compared to a width of 1.16 Ie for a = 1.0 from the RSJ 
model. Thus it appears that driving the junctions with a sub­
harmonic of twice the gap frequency has an advantage with 
regard to stability when locked on the step because the steps 
are so much larger than expected from the RSJ model. We 
shall discuss stability questions in detail in Sec. III. 

B. Time-domain simulations 

1. Numerical approach 

A set of FORTRAN programs has been written to simu­
late the behavior ofa Josephson junction, described analyti­
cally by Egs. (41) - ( 47). The algorithm for the programs is 
essentially as follows. Suppose the junction is located in an 
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external circuit containing a capacitor and dc and ac current 
sources, and suppose that the voltage and phase are known 
at discrete intervals up to a time t i • We wish to obtain the 
voltage and phase at the next time point. We can obtain the 
phase if we know the voltage, since from Eq. (44), 
¢, = - (elfz) V( t). If we know the current through the 
junction and the contribution from the dc and ac current 
sources, we can compute the voltage from I = Cd VI dt. The 
junction current is calculated from the convolution integrals 
[Eqs. (41)-(43)], since we know the values of <P for pre­
vious times. To ensure higher accuracy, it is desirable to 
include the phase at the current time point in this calcula­
tion; however, the phase is one ofthe quantities we are trying 
to determine. This problem is solved through an iterative 
process as follows. The voltage Vi is defined to be the voltage 
at the ith time point l;, Vi"" V( ti ). The initial value of Vi is 
based on a parabolic extrapolation from previous voltage 
points. The phase <Pi is calculated from the previous voltage 
and phases by 

1 e 
A,. = A.. I - - -( V + V I) f:.t . 
'i'l '1',- 2 fz I I 

Following this the convolution integrals are computed using 
response functions for the quasi particles and for the pairs 
that had been calculated previously. This procedure yields 
IJ,' the total junction current. The charge on the capacitor Qi 
due to the junction current is computed from 

Qi =Qi-l +~(IJ;+IJi 1) b.t. 

Contributions to the total charge, Qton from the de and ac 
current sources are computed analytically from Iof:.t and 
III sin(wt) dt. The voltage is then ~ = QtoJc. Thus we 
have a new approximation to Vi and the process is iterated. 
To speed the convergence of this process, an accelerated con­
vergence technique adapted from the Aitken ~ 2 process is 
used,32 Once the convergence criterion is satisfied, we cease 
iterating and record the voltage, phase, and current, and we 
then continue to the next time point. 
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There are two methods used to compute the time-do­
main response functions depending on whether the junction 
is assumed to have ideal or realistic characteristics. For the 
ideal junction, the response functions can be computed from 
the Bessel function expressions of Harris 17 given in his Eq. 
(2). For more realistic junctions, however, analytical ex­
pressions for the response functions do not exist, and we 
must compute Fourier transforms over the frequency-do­
main expressions. The time domain response functions are 
obtained by fast Fourier transformation of the rounded qua­
siparticle J- V curves and pair response functions of Sec. 
IV A. 

The simulations described below are begun at time 
t = 0, and it is assumed that the junction phase 
(j (t) = ¢o = const, and V( t) = 0 for t < o. The initial guess 
for V(O) may be chosen to have any value; different choices 
may well lead to different steady-state solutions. 

2. Tests of the simulation 

A good test of a numerical simulation of a tunnel junc­
tion is that it produces realistic J- V curves. By incrementing 
the bias current and taking the time average of the voltage 
waveform, the resulting J- V curve should agree well with the 
predictions of the Wert hamer theory and the RSJ model. We 
display in Fig. 3 an J- V curve for an ideal junction, with R]V 
= 50 fl, C = 100 iF, and I'J./e = 1.3 mV, corresponding to 

the energy gap of niobium. In this plot the initial voltage is 
set at zero for the lowest current point and the bias current is 
incremented using the time-averaged voltage from the pre­
vious point as the initial voltage. Note that the junction re­
mains in the zero-voltage state until about 75% of the criti­
cal current, when it leaps up to the finite voltage state. Above 
the critical current, the junction displays an J- V curve which 
agrees with the analytical expression from the Werthamer 
theory, Eqs. (22) and (23), to better than one part in one 
thousand. Starting at a current that is approximately twice 
the critical current, the bias current is decreased, once again 
using the time-averaged voltage from the previous point as 
the initial voltage at each point This 1- V curve displays a 

c;J 
;: 1.0 ~ __ -+ __ --r __ --

III 

i 

-1 
J 
1 
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at 
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FIG. 3. J. V curves obtained from time-domain simulations for a junction 
driven only by a dc current source. The de current is ramped upward first 
and then downward. Here t:./e = 1.3 mY. Rv = 50 n, C = 100 fF, and 

Ie =40f1A. 
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large amount of hysteresis as would be expected for an 1- V 
curve with such a large value of capacitance and subgap 
leakage resistance ( 00 ). Similar 1- V curves have also been 
computed for different values of the junction capacitance 
with reduced hysteresis for smaller values of the junction 
capacitance, as expected, 

One might ask why the junction in Fig. 3 remained in 
the zero-voltage state until only 75% of the critical current. 
One possibility would be that noise could decrease the criti­
cal current below the ideal value; however, a noise source 
was not added to this circuit. Although numerical "noise" 
inevitably exists due to numerical errors, especially discreti­
zation error, it does not appear to be very serious here. Rath­
er, the initial conditions for the simulation, in particular the 
initial phase, are what actually determine the point at which 
the voltage jumps up. In the 1- V curves so far discussed, the 
initial phase was set at zero and a bias current was suddenly 
switched on. Since no quasiparticles flow at zero voltage and 
no pair currents fiowat zero phase [recaEIJ(t) = Ie sin ¢], 
there is bias current lcte entering the capacitor but not leav­
ing it. Hence charge builds up, a voltage drop appears, and 
the finite voltage state may be entered. But suppose the ini­
tial phase is <Po = rr/2. Then, even at Ide -;::::.Ie, the bias cur­
rent entering the capacitor may be balanced by the pair cur­
rents, and the zero-voltage state may be the steady-state so­
lution. To test this, an 1- V curve was computed with the 
assumption that ¢o = rr /2 and in this case the voltage 
jumped up at precisely the critical current, 40,LA. Numeri­
cal noise is not likely to be a major factor in the J- V curves 
discussed here, because we have shown that it is not respon­
sible for the junction prematurely entering the finite voltage 
state. 

Another important test, however, is the behavior of the 
simulation when the junction is driven by an ac current 
source. It is useful to see jf the Josephson step amplitUdes 
generated by the simulation agree with the amplitUdes pre­
dicted by the voltage-biased junction theory under the con­
ditions in which zero-crossing steps are most expected. Sim­
ulations have been performed with the rf frequency 
bh = 4il/1f and with values of a = e Vj/fUih ranging from 
0.4 to 1.2. The initiai voltage is set equal to the gap voltage 
2fl/e and the ac current source is turned on gradually. Sig­
nificant bias current (-0.5 Ie) is supplied as the amplitUde 
of the ac current source is ramped upward in order to main­
tain the junction in the finite voltage state. Then the bias 
current is ramped to a final value and it is observed whether 
phase lock can be maintained at that de bias level. The fol­
lowing parameters were chosen: C = 500 fF, RN = 50 fl, 
21:!./e=2.6mV,R L = 10 R N ,and8=O.02.Theresultsare 
presented in Table I, where they are compared with the theo­
retical prediction of the Werthamer theory. The step ampli­
tudes from the simulations agree with those expected from 
the theory to a precision of about 1 %-2%, showing that the 
simulation is indeed correct. 

3. Numerical simulations for zero-crossing steps 

We now turn to the actual simulations for the zero­
crossing steps. The initial voltage and phase were set at zero 
for all the simulations. The bias current was set at zero and 
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TABLE I. Step amplitudes from simulations and Werthamer theory. 

a 

004 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
Ll 
1.2 

Full width of the first step 
(Normalized to Ie) 

Simulations" Werthamer theory" 

1.44 1.443 
1.72 1.739 
1.95 1.994 
2.16 2.204 
2.32 2.364 
2.43 2.470 
2.47 2.523 
2.49 2.521 
2.44 2.468 

"(UI.=.4c.lli=7.9XlO I2
, 2A/e=2.6 mY, R N =50n, RL·~!oRv' 

0= 0.02. 
bTheory assumes voltage bias at de and (Uv and calculation uses same R N , 

R i " 2!:>.le, WI' and {) as the simulations. 

the ac current source was turned on suddenly. In all cases 
D.Je = 1.3 mV and RN = 50 n. Four values for the param­
eter /j (discussed earlier and shown in Fig. 1) were chosen: 0, 
0.005,0.02, and 0.05. For (j = 0.005, a leakage resistance of 
100 RN was used; for fj = 0.02, two leakage resistances, 
25 RN and 10 RN, were used; and for /j = 0.05, only 25 RN 
was used. For each case four values of capacitance were cho­
sen: 20, 50, 200, and 500 fF. These values of capacitance 
correspond to values of the parameter Pc of 6.2, 15.5, 62, 
155, respectively, where Pc =.2eIcR ~C 1ft. The normalized 
frequency n becomes n = 1.275. For each capacitance ac 
current amplitudes were chosen producing values of a in the 
range of 0.4-1.2. In these simulations n ~ p- Ii2 and i I ~ 1. It 
was observed that the waveform was always very nearly sin­
usoidal as expecied from the RSJ model. Comparison be­
tween values of a found directly from the voltage waveform 
and from Eq. (58) show excellent agreement. 

We observed many cases of zero-crossing steps. Espe­
cially encouraging is that they were observed even for the 
realistic J- V curves, so that zero-crossing steps may be ob­
servable in realjullctions at such high frequencies. The lock­
ing behavior for any particular set of runs differing only in 
values of a was visibly erratic. 

One result is that in the time domain simulation, locking 
seems to peak at a::::;0.5-O.6 rather than at 0.8, where one 
might expect from the voltage-biased theory calculations 
displayed in Figs. 2(a)-2(d). A possible explanation comes 
from the fact that the initial voltage was always set to zero 
and that the ac current source was turned on suddenly. The 
ac current source takes the form 1\ sin oht. Assuming that 
the ac current going into the capacitor is dominated by the ac 
current source and that by comparison the contribution 
from the Josephson effect is small, we obtain the voltage 
waveform from the formula 1= C dV Idt. Thus a good ap­
proximation to V(t) is Vo - VL cos wE.t, where 
VL = I1/C(uL and Vc) = 21::..1e. Thus V(O) = v,> - VL> and 
by choosing this to be the input voltage at the start of the 
simulation, it is easiest for the junction to become phase 
locked to the first principal step. For a = 0.5, Va - Vi. = 0, 
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and so the initial voltage is ideal for phase locking. For a = 1 
phase locking occurs less frequently even though the full step 
widths are greater, in part because the initial voltage is not 
close to the ideal value - v,). Another factor in the reduced 
locking at a;::::: 1 appears to be that photon-assisted tunneling 
modifies the whole quasiparticle 1- V curve and can therefore 
lift the steps away from the voltage axis for values of a near 
1.0. Because the initial conditions here were not controlled 
as carefully as the simulations upon which Table I is based, 
the locking ranges found were in general well below those 
expected from Figs. 2(a)-2(d). 

It is also evident that zero-crossing steps are more easily 
achieved at smaller values of D, corresponding to higher val­
ues of the Riedel peak. This is expected, since Eq. (32a) for 
the Josephson step widths depends on iJI which is propor­
tional to In ( 8/ D) at the rf frequency used. In addition, more 
often than not higher capacitance seems to increase the oc­
currence of zero-crossing steps. This is also expected, be­
cause at higher capacitance the ac Josephson current be­
comes smaller relative to the ac current source for fixed a 
and the voltage waveform becomes more nearly sinusoidal, 
which tends to increase phase locking. 

Another point that deserves mention is that the re­
sponse functions were truncated in the time domain in order 
to save computer time. This was feasible because the re­
sponse functions die off in amplitUde with time. For the pair 
currents greater rounding means a more rapid decrease in 
the amplitude of the time domain response function. Hence 
truncation of I J I after a certain point in time has the effect of 
increasing the rounding of the Riedel peak in the frequency 
domain. This effect becomes more important for sharper 
peaks. The effective height of the Riedel peak was estimated 
by computing f~'~ (t)cos wt dt, where 7c is the cutoiftime, 
for w = 21::../fi. The height was then converted into an equiva­
lent value of 8. For fj = 0, 0.005, 0.02, and 0.05, the corre­
sponding equivalent values were t5 = 0.015, 0.015, 0.028, 
and 0.048, respectively. We observe that for the sharpest 
peaks the errors are indeed greatest, while for the most 
rounded peak there appears not to be any appreciable error 
at all. The fact that the effective values of {j are the same for 
the cases fj = 0 and 0.005 helps to explain why the pattern of 
phase locking for the two cases appears similar. It should be 
kept in mind, however, that the effect of rounding the peak 
through truncation is not necessarily the same as that of 
rounding it through the technique of Sec. II D, and the full 
significance of the equivalent values is not clear. 

We conclude that there is general agreement between 
the voltage-bias theory and the more general time-domain 
simulations, which display a more complex behavior with 
increasing microwave drive level. It is important to realize 
the complex behavior of locking with a that we have de­
scribed may be due to problems with initial conditions, since 
these simulations were done only for one set of initial condi­
tions, namely ¢(t) = V(t> =0 for t<O. Better agreement 
with voltage-bias theory (Table I) was obtained only after a 
larger exploration of initial conditions than was performed 
for the study of the locking range with a. However, the re­
sults we have obtained are quite tantalizing and merit further 
time-domain simulations" Our simulations generally sup-
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port the conclusions based on the analytical and numerical 
frequency-domain calculations. 

v. SUMMARY AND CONCLUSIONS 

We have shown from the Wert hamer theory that zero­
crossing steps are possible in principle at high frequencies as 
long as the voltage waveform is nearly sinusoidal. Limits on 
the amount of permitted rounding of the Riedel peak were 
derived from the analytical calculations of Sees. n D and 
II E. Numerical frequency- and time-domain computations 
for realistic junctions support these limits. We have observed 
that in the time domain simulations the capacitance was suf­
ficiently large to ensure that the voltage waveform was very 
nearly sinusoidal. This leaves us with the issue ofthe stability 
of these steps, and further numerical analysis and simula~ 
dons may be necessary to help address this question. Our 
results show that zero-crossing steps do in some cases appear 
to be stable for realistic junctions, at least for the short per­
iods of time over which the simulations were run. A number 
of points should be kept in mind, however. First, the erratic 
locking patterns observed suggest that we are near the edges 
of the steps at zero bias current for our set of initial condi­
tions. These are likely to be the least stable places on the 
steps. Second, there was no source of noise other than nu­
merical noise, which does not seem to have been very impor­
tant in these simulations. Real junctions, however, will al­
ways contain intrinsic noise that can disrupt phase lock. 
Analysis of thermal and shot noise effects on the phase-lock­
ing behavior suggests that stability of the phase lock should 
be significantly better at high frequencies than at the fre­
quencies currently used for voltage standards. Third, it 
should also be mentioned that in the simulations the convo­
lution integral was cut off beyond a certain point. The re~ 
sponse functions die off with time, and at times at which the 
amplitudes are sufficiently diminished, the contribution to 
the total integral may be neglected. While this saves enor­
mously in computer time, some error inevitably results. The 
effect of cutting off the response functions at later times in 
the time domain is essentially that of increasing the rounding 
of the Riedel peak in the frequency domain. This may affect 
our results somewhat, although the effect should be small 
here. Analysis of the practical considerations involved in 
making a standard at high frequencies shows that optimum 
junction current density, length, width, and microwave 
power levels are all within reasonable limits. 

We have also shown that the Riedel peak can increase 
the width of the Josephson steps at the gap voltage when the 
microwave drive frequency is a submultiple of twice the gap 
frequency. This may have a practical benefit since it is easier 
to find oscillators with sufficiently large power levels and 
tunability at 400 and 600 GHz as compared to 1.2 THz 
( 4/J./ h for Nb/PblnAu edge junctions). Sufficient power 
levels for such frequencies could be achieved by harmonic 
multiplication of lower-frequency (lOO-GHz range) Gunn 
oscillator frequencies. 

It is clear from analytical and numerical computations 
and the simulations done so far that the best conditions un­
der which to search for zero-crossing steps occur when the 
Riedel peak is sharpest, so it is clear that junction quality is 
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an important factor. In addition, the capacitance should be 
large enough to ensure that the voltage is sinusoidal. ac cur­
rent sources must have sufficient amplitude for a::::;O.5 for 
junctions driven at twice the gap frequency. Subharmonical­
ly driven junctions need somewhat higher values of a for 
maximum step amplitude. Further simulations or experi­
ments would be useful, and it would probably be best to focus 
on these conditions. However, previous arguments that 
zero-crossing steps could probably never be observed above 
half the gap voltage are incorrect due to neglect of the Riedel 
peak. Both our theoretical calculations and numerical simu­
lations indicate that such steps can indeed occur up to the 
gap voltage. 
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