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Objective: Timely identification of systematic changes in radiation delivery of an imaging system can 

lead to a reduction in risk for the patients involved. However, existing quality assurance programs 20 

involving the routine testing of equipment performance using phantoms are limited in their ability to 

effectively carry out this task. To address this issue we propose the implementation of an ongoing 

monitoring process that utilizes procedural data to identify unexpected large or small  radiation exposures 

for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. 

 25 

Methods: Data used in this study were obtained from records routinely collected during procedures 

performed in the cardiac catheterization imaging facility at St Andrew's War Memorial Hospital, 

Brisbane, Australia over the period January 2008 to March 2010. A two stage monitoring process 

employing individual and exponentially weighted moving average (EWMA) control charts was developed 

and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as 30 

detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity 

of the charts we account for variation in dose area product (DAP) values due to other measured factors 

(patient weight, fluoroscopy time, digital acquisition frame count) using multiple linear regression. 

Control charts are then constructed using the residual values from this linear regression. The proposed 

monitoring process was evaluated using simulation to model performance of the process under known 35 

conditions.  

 

Results: Retrospective application of this technique to actual clinical data identified a number of cases in 

which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data 

entry errors. The charts monitoring overall system radiation output trends demonstrated changes in 40 

equipment performance associated with relocation of the equipment to a new department.  When tested 

under simulated conditions, the EWMA chart was capable of detecting a sustained 15% increase in 

average radiation output within 60 cases (< 1 month of operation) while a 33% increase would be 

signalled within 20 cases.   

 45 

Conclusion: This technique offers a valuable enhancement to existing quality assurance programs in 

radiology that rely upon the testing of equipment radiation output at discrete time frames to ensure 

performance security. 
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I. INTRODUCTION 

I.A. Motivation 55 
Recent reports concerning the accidental over exposure of stroke patients undergoing brain perfusion 

CT studies has highlighted the need for increased vigilance in the conduct of practices involving the use of 

ionising radiation1. This issue, however, is not limited to CT scans alone but is of general concern, 

especially for modalities and procedures involving significant individual patient radiation risks such as 

fluoroscopy procedures and nuclear medicine imaging exams2.  60 

 

Radiation exposures arising from diagnostic and interventional cardiac catheterisation procedures 

are amongst the highest routinely delivered in any ionising radiation-based imaging procedure with the 

effective dose (E) for diagnostic coronary angiography procedures being reported to be of the order of 5-

10mSv while for complex coronary angioplasty procedures E can exceed 35mSv3-5.  Due to the magnitude 65 

and frequency of these types of studies, efforts aimed at maintaining exposures at the minimum required 

to achieve an effective outcome have the potential to benefit both individual patients and the population as 

a whole.  

  

To ensure optimal performance of the imaging equipment, minimum performance standards are 70 

mandated6-8. These standards cover factors related to image quality and radiation dose delivery and 

stipulate a testing frequency for the verification of defined performance measures. For equipment such as 

that used in cardiac catheterisation, the testing interval is commonly set at 12 months. 

 

A flaw in this testing process concerns the potential for equipment performance to unexpectedly drift 75 

or shift discreetly at some point within the test interval either through the development of a fault in the 

imaging system or as an unintended change in the mode of operation of the equipment (default selection 

of a high or low dose mode of operation). Under certain circumstances this change could result in patients 

and clinical personnel receiving radiation exposures higher than expected. Depending upon the cause and 

magnitude of the variation in exposures being delivered, no marked effect on imaging performance may 80 

be detected and therefore no corrective action to resolve the problem might be taken until the next 

scheduled preventive maintenance or mandatory test. In the example of the incident involving patients 

undergoing brain perfusion imaging, the problem does not appear to have been due to a malfunction of the 

imaging equipment but instead was linked to a process failure in the use of the CT scanner. In total, the 

scanner was used in more than 200 cases over some 18 months before the error was detected1. 85 

 

 Quality issues concerning dose delivery exist in the radiation therapy domain where a subtle drift 

in performance of equipment may result in the under- or over- delivery of radiation to a tumour. This 

change in radiation delivery can have significant consequences for the patient being treated. To manage 

this problem, a system of control charts using individual case data has been evaluated and deemed 90 

effective in detecting unacceptable drift in the delivery of treatment9-10. In general, control charts are more 

effective in detecting process changes than is a simple review of the data because they provide clear rules 

when to look for process changes and also when there is no reason to undertake this search.  In this paper 

we extend the work of Pawlicki et al.9 and Gerard et al.10 in a number of ways.  

 95 

I.B. Goals 

The goal of this project was to develop and describe the use of a radiation exposure monitoring 

scheme in the cardiac catheterization facilities at St. Andrew’s War Memorial Hospital (SAWMH) in 

Brisbane, Australia.  
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 100 

The proposed ongoing performance monitoring method is capable of  

 identifying unusually high or low exposure levels for individual patients, and 

 detecting persistent changes in the average radiation dose applied by the imaging system 

 

We achieve these two goals by monitoring the process using two control charts: a chart for 105 

individuals and an exponentially weighted moving average (EWMA) chart12. EWMA control charts are 

known to be more sensitive than Shewhart type charts to small to medium persistent process changes or 

slow drifts. We found the simultaneous use of the two control charts particularly useful in this context 

because often large individual outliers flagged by the individuals chart were found, upon further 

investigation, to be due to human error such as a transcription error. By filtering these erroneous values 110 

we are better able to detect real changes in the imaging equipment. 

 

An obvious and overly simple way to monitor the radiation exposure arising from the imaging 

process is to chart the raw dose area product (DAP) values associated with each imaging procedure. 

However, using such a plot can result in a loss of sensitivity to changes in the functionality of the imaging 115 

systems because there is substantial variation in the DAP values due to known factors. These include 

equipment related factors (e.g. the type of imaging equipment and the dose rate it is configured to deliver 

in the various modes of operation) as well as factors related to how the equipment is used (e.g. how much 

imaging is used, number of high dose frames acquired to document the case, number and selection of 

views employed, beam collimation and field size), and finally various patient characteristics (e.g. patient 120 

size, disease state).  

 

To increase the sensitivity of the charts, we adopt two strategies. First we stratify the charting by 

imaging system and procedure type. In our example, we built separate charts for the two imaging systems 

and used only data from the most commonly occurring procedure, an exploration of the coronary arteries. 125 

Second, we account for variation in DAP values due to other measured factors using multiple linear 

regression11. We then construct control charts using the residual values (actual DAP – predicted DAP) 

which have far less variability and hence are more sensitive to process changes than the raw DAP 

measurements.  

 130 

This paper describes the implementation, the interpretation, and the advantages of this technique. 

Further discussion about the differences and advantages of our approach compared to previous suggested 

approaches is given in Appendix.1.  

 

 135 

II. MATERIALS AND METHODS 

II.A. Data 

Data used in this study were obtained from records routinely collected during procedures performed 

in the cardiac catheterization imaging facility at St Andrew's War Memorial Hospital, Brisbane, Australia 

over the period January 2008 to March 2010. The service deals with a comprehensive range of cardiac and 140 

peripheral vascular conditions. Procedures can be broadly divided into four categories: diagnostic and 

interventional cardiac procedures (cardiovascular disease), electrophysiology and device implant 

procedures (cardiac rhythm related issues), miscellaneous cardiac procedures (valvuloplasties, defect 

closures, pacemaker lead screening) and non cardiac procedures (embolisations, peripheral angiography 

and angioplasty). A breakdown of the procedure types along with volumes is provided in Table I. This 145 

analysis demonstrates that as a subgroup, diagnostic coronary angiography (CA) is the most common 

single study type, accounting for approximately 42% of the service’s total workload. 
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Table I.  Summary of procedure types performed by the SAWMH Cardiac Imaging Service 

January 2nd, 2008 to March 29th, 2010 150 

Procedure Classification Volume % of Total 

Cardiovascular Disease Related Procedures   

 Diagnostic Coronary Angiogram (Only) Procedures 2656 42% 

 Coronary Angioplasty Procedures 1004 16% 

 Coronary Artery Bypass Graft Studies 456 7% 

Rhythm Related Procedures   

 Electrophysiology Procedures (Diagnostic and Ablation) 803 13% 

 Device Implants (Pacemakers and Defibrillators) 1246 20% 

Miscellaneous Cardiac Procedures   

 Other Cardiac Procedures (Valvuloplaties, Defect Closures etc.) 69 1% 

Non-Cardiac Imaging Procedures   

 Diagnostic and Interventional Peripheral Procedures 83 1% 

Total Case Load 6317  

 

The service operates three imaging systems and we provide a demonstration of the monitoring for 

two of them, a Philips Allura Xper FD10 system (Philips Medical Systems, Best, Netherlands) and a 

Toshiba Infinix CCi – FPD system (Toshiba Medical Systems Corporation, Tokyo, Japan). These two 

systems account for approximately 70% of all records. The third imaging system, a Toshiba KXO-80 155 

system (Toshiba Medical Systems Corporation, Tokyo, Japan), is not used for CA procedures, and 

therefore was not included in subsequent analysis. As one of our purposes is to detect persistent changes 

in the imaging process, we monitor each imaging system separately.  

 

Control charting for process monitoring has two Phases11. In Phase I, we retrospectively examine a 160 

set of data to build the charts and derive the control limits. In Phase II, we use the charts to monitor the 

process in real time and take action if the charts signal that the process has changed. To demonstrate in 

our example, we have divided the existing data into Phase I and II for each system and have used the 

relocation of each of the imaging systems to a new facility as the delineation between the two Phases.   

 165 

For the Philips system, the period January 2008 until August 25th, 2009 was selected as Phase I. The 

start date was chosen to coincide with a revision to the doses as prescribed by Philips. The end date 

corresponds to the movement of the imaging system to a new location. There are 1098 case records in 

Phase I. Phase II started on September 28th, 2009 when the imaging system began operation at its new 

location and continued until March 25th, 2010. There are 422 case records in Phase II. During relocation 170 

of this equipment, all cardiologists were required to use the Toshiba system for non-rhythm related 

procedures. 

 

For the Toshiba system, the period February 2008 until September 25th, 2009 was selected as Phase 

I. The start date for this imaging system coincided with a major revision of the unit’s dose algorithm. The 175 

end date corresponds to the day when the Toshiba system was moved to a new location. Phase I includes 

2248 case records. Phase II started on October 20th, 2009 when the imaging system began operation at its 

new location and continued to March 29th, 2010. There are 584 case records in Phase II. During relocation 

of this equipment, all cardiologists were required to use the Philips system for non-rhythm related 

procedures. 180 
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For each procedure, many factors were routinely recorded including patient characteristics such as 

height, weight, body mass index, and resting heart rate as well as procedural factors such as cardiologist, 

imaging system, fluoroscopy time, digital acquisition frame count and total case DAP. Of particular 

interest were patient weight, the number of fluoroscopy frames, and the number of digital acquisition 185 

frames, as these factors were expected to be the main determinants of DAP, an expectation that arose from 

a physical understanding of the procedure.  
 

II.B. Regression Model Building 

In developing the monitoring process we decided to focus on CA procedures only, the most 190 

frequently occurring procedure that accounts for approximately 60% of the non-rhythm related cardiac 

procedures on the two imaging systems. Including other procedures would have increased the volume of 

available data but would also have greatly increased the variability in DAP values. When we tried to 

include data from many procedure types we were unable to build a regression model that could 

sufficiently compensate for this additional variability. By focusing only on a single (common) procedure 195 

we were able to more quickly detect systematic changes in the imaging systems than if we included the 

additional DAP variation generated by uncommon procedures. Note that this choice also excludes all 

procedures other than CA in Phase II. 

 

Radiation delivery in CA procedures occurs due to two components; the first involves imaging while 200 

the cardiologist manipulates a catheter into position in the patient’s heart prior to injecting a radio opaque 

dye into the coronary arteries (to enable visualization of vessel disease). This component typically 

involves a low radiation exposure rate mode of operation (fluoroscopy). The second component involves 

documentation of the injection of contrast agent down the arteries. This commonly involves acquiring low 

noise, high resolution images at a higher radiation exposure. This stage is quantified by the digital 205 

acquisition (DA) frame count. The total study DAP is then a measure of the total radiation exposure 

resulting from the fluoroscopy and DA modes of operation. 

 

With this in mind, we tried to build a good regression model using the Phase I CA procedure data 

for each of the two imaging systems. This involved considerable trial and error, not all of which we 210 

describe here in detail. We considered transformations of the DAP score, the inclusion of various factors 

and possible interactions among the selected factors. In Appendix 2, we provide a brief description of the 

regression model building and some helpful references. 

 

Preliminary regression using DAP as the response suggested a systematic “funnel-shaped” pattern in 215 

the residual values, where the variation in the residual values increased as the fitted values increase. A 

common remedy for this is to model the natural logarithm of DAP instead. However, modeling the data in 

this way results in a multiplicative relationship between DAP and the explanatory variables. This is 

perhaps less intuitive and more challenging to interpret physically than an additive model, but the model 

on the log scale provides a better fit to the data and was therefore retained.  220 

 

One non-linear relationship evaluated and subsequently rejected was based on a physical model of 

the imaging process. This is described as:   

 

ReDAeFLFLDAP
W t

frames

W t

ratetime


 )()(

0

2211 )()(


 , 225 

 

Where DAP is the case Dose Area Product, Wt is the patient weight, FLtime is the case fluoroscopy 

time, FLrate is the fluoroscopy frame rate, and DAframes is the number of DA frames acquired. The
i

 ’s, and 

the
i

 ’s are regression coefficients and we assume  2
~ 0,

r
R N  . However, this more complicated model 
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did not provide a better fit to the data, and so it was abandoned in favour of the simpler linear relationship 230 

for ln(DAP) given in equation (1).  

 

We expected that the patient’s weight may affect the radiation administered differently for the two 

stages of the procedure (due to the different tube voltages used in fluoroscopy and digital acquisition). 

Accordingly, we initially incorporated weight-by-fluoroscopy frames and weight-by-digital acquisition 235 

frames interaction terms. We found that neither played a significant role in predicting DAP. An additional 

concern was whether DAP depended on the cardiologist performing the procedure. To test this notion, 

indicator variables representing cardiologists were included in the model. However,  the inclusion of 

cardiologists did not explain a significant portion of the variation in the DAP values for either imaging 

system and so this factor was excluded.  240 

 

In the end, the model that provided the best fit to the data on both the Philips and Toshiba systems 

was of the form: 

 

RDAFLFLWtDAP
framesratetime

 )()*()()ln(
3210

 ,   (1)  245 

 

We give the final fitted models in Section III.A. 

 

II.C. Control Chart Methodology 

We propose to monitor the imaging systems using the residuals from the DAP regression models. 250 

Specifically, we monitor the quantities ( ) ( )
observed predicted

Ln DAP Ln DAP  for each new CA case. We 

address the two objectives discussed in Section I.A. using  

 

 An individuals control chart of the residuals 

 An exponentially weighted moving average (EWMA) control chart for the residuals where 255 

extreme values identified in the individuals chart are excluded. 

 

We use the residuals from Phase I to determine the control limits for the two charts. We illustrate 

this in Section II.D. In Phase II, for each case, we calculate the estimated residual, denoted 
î

r  for case i, 

using the fitted model and then add the residual to the individuals control chart; a plot of 
î

r  vs. i. If the 260 

observed residual falls outside the chart control limits, we flag the individual case as outlying and 

investigate possible reasons for the unexpectedly large or small radiation dose for case i. 

 

If the observed residual falls inside the control limits on the individuals chart, we add the residual 

value to the exponentially weighted moving average control chart with the following updating formula15: 265 

 

 
i

E  =   1
ˆ 1
i i

r E 


   

        =      
2 3

1 2 3
ˆ ˆ ˆ ˆ1 1 1 ...
i i i i

r r r r      
  

        

        =    
1

0

0

ˆ1 1

i
j

i j

j

r E  







    

where   is a smoothing constant and 0 1  . In our context, 
î

r  is the model residual for case i and 
0

E  270 

is the starting value that we set to zero. Note that the EWMA, as the name suggests, is a weighted average 

of the residuals for all past cases, where the weights decrease exponentially for cases further in the past. 

To monitor the process, the EWMA chart is a plot of 
i

E  vs. i. If the EWMA chart signals, i.e. falls outside 

some pre-specified control limits, we suspect a systematic and persistent change in the imaging process 
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(equipment output, selection of views, use of collimation etc). We recommend a smoothing constant   = 275 

0.1, a typical choice in EWMA implementation. We address this choice of   further in Appendix 1. 

 

By removing extreme residual values before plotting the EWMA, we keep the roles of the two charts 

separate. The individuals chart is designed to detect individual outliers for which the observed DAP is 

markedly different to that expected for the given parameters, while the EWMA chart detects systematic 280 

and persistent shifts in the average DAP. For this reason, our reaction to any signals on either the 

individuals or EWMA charts should be very different. As it turns out in this application, signals on the 

individuals chart were often due to data recording errors, such as transposing height and weight 

measurements. By filtering the residuals that contribute to the EWMA, we introduce a data quality check 

that reduces the chance that the EWMA will signal systematic problems due to simple data errors.  285 

 

To implement the proposed monitoring methodology, we must set control limits, and in the case of 

the EWMA, select a reasonable value for  . For individuals control charts, the control limits are usually 

set at 3  standard deviations away from the average. We use the standard deviation (e.g. an estimate for 

r
  in model (1)) and average of the residuals from the Phase I data. Since the residuals come from a 290 

linear regression model, the average is zero. 

 

The control limits for the EWMA chart are slightly more complicated. One option is to use13: 

 

ˆ
2

r
k








 295 

 

where k is a constant determined by the user,   is the smoothing constant and ˆ
r

  is the residual standard 

deviation from the regression model (1). The choice of k is driven by the desired in-control average run 

length (ARL), which is defined as the average number of cases before the EWMA signals (i.e. goes 

outside of the control limits). See Appendix 1 for more details. 300 

  

II.D. Phase I Analysis  

We assume Phase I data come from a stable (i.e. in-control) process and we use this data to set up 

the control charts that will be used prospectively in Phase II. In practice, using the Phase I data to arrive at 

a final regression model, and setup the control charts is an iterative process since we are concerned that 305 

the Phase I data may come from an unstable process14. To achieve a final regression model which best 

predicts the process, an initial model must be created. Next, we: 

 

 Plot the residuals from this model on an individuals control chart with control limits set at ˆ
r

c , 

where c is a constant (and is normally taken to be 3) and ˆ
r

  is the residual standard deviation. 310 

 Plot the filtered residuals on the EWMA chart as described in the previous section. 

 Remove any cases that suggest the process was not stable if reasons can be found. This could 

include cases whose residuals lie outside of the control limits on the individuals chart or series of 

cases that result in a signal on the EWMA chart. 

 Refit the regression model to the remaining data. 315 

 Repeat these three steps until (almost) all of the residuals fall within the control limits.  

 

We illustrate this process with the Toshiba Phase I data. Fitting the model (1) to the Phase I data 

gives a residual standard deviation ( ˆ
r

 ) of 0.291, so we set the control limits for the individuals chart at 

0 .873 . Recall that the average of the residuals is zero so the chart is centred on zero. Crowder13 320 
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describes how to determine   and k, and hence how to set EWMA control limits which will minimize the 

out-of-control ARL for a specified shift in the process mean, based on a given in-control ARL. We 

selected a smoothing parameter of   = 0.1 and an in-control ARL of 800 for the Toshiba system (roughly 

one year’s worth of CA cases and equal to the time between mandated major tests of the equipment) 

which resulted in control limits of  0.2024. We give a more thorough explanation of how these limits are 325 

derived in Appendix 1. Figure 1 shows both the individuals and EWMA charts from the original Phase I. 
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FIG. 1.  Individuals and EWMA Control Charts from Original Toshiba Phase I Data 

 330 
Next, we examine the control charts to see if there is any evidence of instability. The individuals 

chart (left panel) shows a number of out-of-control points, but with 3  limits, a normality assumption 

and over 700 CA cases this is to be expected. The EWMA chart (right panel) is more worrying. We see a 

signal above the upper control limit followed by a signal below the lower control limit. Since the number 

of cases in the Phase I is reasonably large and because the in-control ARL is 800 cases, a signal is again 335 

not that unexpected (even for a stable process). However, further investigation is warranted. The period 

between 04/08/2009-22/09/2009 when the EWMA drops consistently corresponds to the time period when 

the Philips system was not in use, and hence all cardiologists were using the Toshiba system. It seems that 

when all of the cardiologists use one imaging system, the process does not behave as it usually does. The 

two groups of cardiologists who typically use different systems also have different habits when using the 340 

same system. This realization suggested changing the Toshiba Phase I dates to exclude the time period 

when only the Toshiba system was in service. This change in Phase I dates necessitated the construction 

of a new Toshiba regression model, and the recalculation of control limits. With the new Phase I data, the 

residual standard deviation increased slightly to 0.3033 and so the control limits for the individuals chart 

are now 0 .910  and the control limits for the EWMA are now 0.2040 . The individuals and EWMA 345 

charts for the new Toshiba Phase I dates are given in Figure 2. We now conclude that the remaining Phase 

I data could reasonably have come from a stable process and we move on to Phase II. 

 

The Phase I construction of control limits for the Philip’s system required no iteration and we do not 

show the resulting Phase I control charts here. The residual standard deviation from the regression model 350 

was 0.2417 resulting in individuals chart control limits of  0.725. We selected an in-control ARL of 400 

for the Philips system (again this corresponds to 12 months of CA cases) which resulted in EWMA 

control limits of 0.1490 . 
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FIG. 2.  Individuals and EWMA Control Charts from Reduced Toshiba Phase I Data 

  

 

III. RESULTS 

III.A. Phase II Analysis 360 
We demonstrate the monitoring approach using the Phase II data for both the Philips and Toshiba 

systems. In actual application, we would build the Phase II control charts in real time as patients undergo 

the imaging procedure. The regression models we used as a result of the model building described in 

Section II are: 

 365 

Toshiba:  

ln(DAP) = 0.666 + 0.0162*(Wt) + 0.00584*(FLtime*FLrate) + 0.00175*( DAframes) 
2

R  = 68.3%, ˆ
r

  = 0.303264 

 

Philips:  370 

ln(DAP) = 0.825 + 0.0191*(Wt) + 0.00567*(FLtime*FLrate) + 0.00122*( DAframes) 
2

R  = 83.3%, ˆ
r

  = 0.241710 

 

As mentioned in Section I.A., the purpose of constructing regression models and using the residuals 

is to reduce the variation in the plotted data, hence making the charts more sensitive to systematic process 375 

changes. In Table II we see reductions of approximately 66% for the Philips system and 48% for the 

Toshiba system. 

 

Table II.  Standard deviations of raw data and residual values for both imaging systems 

System ln(DAP) St. Deviation Residual St. Deviation 

Philips FD10 0.7212 0.2417 

Toshiba Cci – FPD 0.5799 0.3033 

 380 
Next, we plot the control charts for the Phase II data with the control limits as derived in Phase I. 

The Phase II control charts for the Toshiba system are given in Figure 3. Because there were no out-of-

control points identified by the individuals control chart, no cases were omitted in the construction of the 

EWMA chart. As is evidenced by the significant increasing trend in the EWMA chart in Figure 3, the 

process seems to have shifted upward at the start of the Phase II period. Since the EWMA remains 385 

(mostly) positive, it appears that the upward shift is sustained. In other words, we found that the DAP 

values in this period were larger than expected, even after adjusting for the factors in the regression 

model. In real time, we would have examined the imaging system carefully when the signal on the 

EWMA chart first occurred.  
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FIG. 3.  Individuals and EWMA Control Charts of Toshiba Phase II Residuals 

 

A possible explanation for the shift in the process lies in what happened to the imaging equipment 

between the Phase I and Phase II periods. The equipment was relocated to a new cardiac imaging facility; 395 

in so doing it was disassembled into its major components and reinstalled in a new location. During the 

reinstallation process the imaging equipment was fully recalibrated. Although a standardised process, the 

complexity of the system is such that it is likely there were minor inconsistencies in the performance of 

the systems between the two periods (as evidenced by the data).  

 400 

For the Phillips system we see a different pattern on the charts shown in Figure 4. There are several 

unusually large residuals shown on the individuals chart. Further retrospective investigation of these cases 

failed to reveal any clear reasons for the unusual residuals. However, had the charts been constructed in 

real time the investigation would have been more timely and reasons may have been found. 

 405 

The right panel of Figure 4 gives the EWMA control chart for the same data with the four outliers 

from the individuals chart removed. 

 

Date  of Procedure

In
d

iv
id

u
a

l 
V

a
lu

e

24
/0
3/
20
10

08
/0
3/
20
10

17
/0
2/
20
10

18
/0
1/
20
10

16
/1
2/
20
09

30
/1
1/
20
09

17
/1
1/
20
09

19
/1
0/
20
09

13
/1
0/
20
09

06
/1
0/
20
09

28
/0
9/
20
09

1.0

0.5

0.0

-0.5

-1.0

-1.5

_
X=0

UCL=0.725

LCL=-0.725

1

1

1

1

Indiv iduals  Chart of Philips  CA R esiduals

Date  of Procedure

E
W

M
A

10
/0
3/
20
10

17
/0
2/
20
10

18
/0
1/
20
10

11
/1
2/
20
09

30
/1
1/
20
09

17
/1
1/
20
09

19
/1
0/
20
09

13
/1
0/
20
09

05
/1
0/
20
09

28
/0
9/
20
09

0.2

0.1

0.0

-0.1

-0.2

UCL=0.1490

Mean=0.00

LCL=-0.1490

EW M A CHart of Philips  non-outly ing CA R esiduals

 
FIG. 4.  Individuals and EWMA Control Charts of Philips Phase II Residuals 410 

 

Looking at the EWMA chart in Figure 4, we see that the process exceeds the upper control limit 

around 13/10/2010, and drops below the lower control limit around 11/12/2010. An explanation exists for 

the first signal on the EWMA. It was during this time period that only the Philips system was in use, and 

hence all cardiologists were performing CA procedures on the Toshiba system. As described in Section 415 

II.D., when all of the cardiologists use one system the process does not behave as it usually does. This 

suggests that while we found no substantial differences between cardiologists on a single system, there 
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appears to be a substantial difference between cardiologists when grouped by their preferred imaging 

system. Generally, the cardiologists who regularly use the Toshiba system have an inherently lower 

average DAP than those who normally use the Philips system (taking into account the frame rate 420 

difference between the two systems). With regard to the second signal, to determine whether deterioration 

in the performance of the imaging system has occurred, or whether some other factor is responsible, an 

investigation to search for the cause of this drift is necessary. 

 

 425 

IV. DISCUSSION 

Driven largely by improvements in technology and clinical understanding, the practice of medical 

imaging is dealing with increasingly complex procedures14. Whilst it can be argued that this change has 

resulted in substantial improvements in healthcare, recent events in the United States also reveal a 

corresponding increase in the opportunity for failures of the overall imaging process resulting in 430 

significant and unnecessary risk increases for individual patients and the population as a whole2. As was 

the case with the brain perfusion CT cases, these failures are not constrained to malfunctions of the 

imaging equipment but can arise due to unintended and unacknowledged changes in the imaging process1.  

 

At present, the recommendation of most professional bodies is for ionising radiation based imaging 435 

equipment to undergo regular performance assessments. For the type of equipment used in cardiac 

angiography (as noted in this paper), this testing is normally performed every 12 month using standardised 

protocols6. However, most testing procedures are designed to be independent of the patient, assessing 

discrete aspects of the performance of the equipment with emphasis placed on image quality (resolution 

and contrast) and radiation output. The limitation of this process is that it does not take into consideration 440 

the potential for non catastrophic failures to occur (that may result in radiation output increases) at a point 

in time between the major performance assessments, nor does it account for unintended variations 

(specifically increases) in radiation use arising from changes in clinical practice or system protocols. For 

angiography systems, this might include frame rate changes, changes in collimation practice, and use of 

different (less efficient dose vs. clinical yield) imaging projections. 445 

 

Although it is possible that certain discrete and significant changes (equipment failures and protocol 

changes, for example) would be detected promptly by imaging staff, the sophistication of newer digital 

imaging systems (e.g. CT scanners, cardiac and vascular angiography systems) is such that modest 

changes in radiation output may be overlooked due to the imaging system’s inherent ability to compensate 450 

for patient load and hence detector input variation. The process proposed here addresses these concerns by 

supplementing the conventional testing program with a secondary process that makes use of clinically 

derived data acquired routinely by most imaging services as part of their regulatory obligations. 

 

The success of the proposed monitoring scheme depends critically on the quality of the data and the 455 

fitted regression model. In this example application, the routine capture of the factors of interest such as 

patient weight and frame rate was not introduced until September 2008. As such, these data were not 

always recorded, or were occasionally recorded improperly. Accordingly, in Phase I, approximately 40% 

of the cases could not be used to estimate the parameters for the final regression models. Later, in Phase II 

far fewer cases were missing factor values, but there were still occasionally errors that became clear upon 460 

closer inspection of particular data records. To utilize this monitoring methodology at its full potential, it 

is important to keep complete and accurate documentation of all cases.  

 

To maintain the effectiveness of the proposed methodology, the models and control limits should 

occasionally be updated to allow for accepted process changes such as technological improvements or 465 

changes in clinical practice. We recommend refitting the model and updating the control limits whenever 
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a substantial process change has taken place. A regression model update may also be required if the 

process signals frequently, or for prolonged periods of time. 

 

When an update of the regression model and control charts is deemed warranted we are faced with 470 

the difficult question of how much data we need. From a statistical perspective more data are better as this 

will allow us to better model the relationship between the response and the factors and estimate the 

unexplained variability. However, waiting until a large amount of data is available delays the application 

of the monitoring. We propose a compromise. To get the monitoring started quickly we initially use the 

first 20 cases, only to estimate a new model intercept term (
0

 ) which is estimated as the original 
0

  475 

estimate minus the average residual (from the original model) for the 20 cases. In other words, until we 

have more data we assume the effect of the factors remains the same and only the average DAP value has 

changed. Once we have collected additional new cases, say at least 100, we can investigate to see if a new 

regression model is necessary. 

 480 

In our example, we decided to base the monitoring on only cases with CA procedures. We 

investigated including other procedures in the model building but were unable to construct a single model 

that was appropriate for more than CA procedures. An alternative idea that we did not pursue here is to 

build a separate model for each procedure and then construct the two control charts using estimated 

residuals from each model, standardized to have the same variability. This approach assumes that if the 485 

imaging system drifts, then the effect is the same across all procedures included in the monitoring.  

 

The methodology that we propose here can be applied to any measured output, such as cumulative 

air kerma, from a high volume imaging process. If the volume is low, then the monitoring procedures are 

likely to be ineffective since it will take a long time relative to performance standards to detect any 490 

process shifts.  

 

The chief value of the proposed monitoring scheme is that it operates in real time and will detect 

underlying shifts in average DAP levels as quickly as possible. There is substantial administrative cost 

due to the requirement to maintain the records for each case and to review the charts looking for signals. 495 

The charting can be easily automated using standard software such as EXCEL. 

 

V. CONCLUSIONS 

The process outlined in this paper uses two control charts, informed by clinically derived data, to 

monitor the use of radiation by system.  It is offered as a supplement to existing equipment performance 500 

assessment programs.  The benefit of this process is twofold; first, as the data is captured and analysed on 

a case by case basis, data errors can be identified and addressed promptly and second, small sustained 

shifts in the output of the imaging system (arising from equipment performance drift or changes in 

imaging practice) can be identified. Although performance of the example charts provided in this paper 

may appear overly sensitive, the minor inconvenience caused by investigating the signals arising is a 505 

small price to pay when compared to the benefits for patients (and associated personnel).  

 

 

APPENDIX 1: EWMA Charts 

Assuming a Guassian model for the residuals, we can derive the properties of the combined 510 

individuals and EWMA control charts using a Markov Chain approximation15. The approximation 

suggests that for an in-control average run length of 400 and ̂  = 0.24, the EWMA control limits should 

be set at 0.1490 , and for an in-control average run length of 800 and ˆ
r

  = 0.30, the control limits should 

be set at 0.2040 . This coincides very closely with what Crowder et al.13 suggests when 1 ˆ
r

  above or 

below the mean is the magnitude of the shift in the process that must be detected quickly.  515 
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We can also use the Markov Chain approximation to illustrate how quickly we expect the EWMA to 

detect a persistent shift in the mean DAP. Denoting the mean  , and standard deviation  we let 


    . Thus, when we speak of a 1 ̂ -shift in the mean (i.e. 1  ), we mean that the average of the 

residuals has increased or decreased by one standard deviation, and is hence given by 
1

    . Recall 520 

that these residuals are from a regression model where ln(DAP) is the response, and so a shift in the mean 

refers to a shift on the log-scale.  

 

Figure 5 plots the ARL of the Toshiba system vs. (the number of ̂ -shifts in the mean) when we 

assume the residuals are normally distributed. Three lines are depicted. Each represents the change in 525 

ARL for common values of  (EWMA smoothing constant). We used 0 .1  , and so any discussion 

below is in reference to the dashed line. 

 

The results shown in Figure 5 give the change in ARL using the proposed monitoring scheme, where 

outlying points detected on the individuals control chart are not included in the EWMA. Assuming the 530 

control limits on the individuals chart are set at ˆ3  we found that there is very little difference between 

the ARL of the proposed monitoring scheme and the EWMA where all points are included.  

 

 
FIG. 5.  Average Run Length as a Function of Mean Shift for different values of   535 

 

We can use the results in Figure 5 to quantify how quickly we expect to detect systematic changes in 

the average ln(DAP) for the Toshiba system. Table III gives the ARL for specific values of  , and gives 

the resultant actual shift in the average DAP for the Toshiba system. Note that for a clearer understanding 

of this concept, the information in this chart has been transformed from the log-scale to the actual DAP 540 

scale. For instance, Table III suggests we can expect that a 1 ̂ -shift in the average ln(DAP) will, on 

average, signal as out-of-control in approximately 18 cases, and that a shift of this magnitude translates 

into a shift in the average DAP of 6.8 Gy.cm2, an increase of approximately 35%. 
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Table III.  ARL for various shifts in the mean DAP 545 

value for the Toshiba CA data with   = 0.1 

  start
  

end
  % increase ARL 

0 19.3 19.3 0 800 

0.5 19.3 22.5 16.4 59.1 

1 19.3 26.1 35.4 18.4 

1.5 19.3 30.4 57.6 10.8 

 

Figure 6 explores the best choice of the smoothing constant   as a function of the size of shift in the 

mean ln(DAP) values. We define best as the value of   that yields the smallest ARL when the ln(DAP) 

mean has shifted while still having fixed in-control (i.e. no mean shift) ARL. Figure 6 suggests   = 0.1 is 550 

optimal for a mean shift of   = 0.84. 

 
FIG. 6.  Optimal Smoothing Constant   to Detect Different Sized Mean ln(DAP) Shifts 

 

It is of interest to compare the performance of our proposed EWMA chart based on filtered model 555 

residuals with previously suggested methods such as using only an individuals control chart based on the 

raw data10. It is well known that an individuals chart is good at detecting large shifts in the process, while 

an EWMA chart is better suited to detecting small to medium sustained shifts11. However, in our context 

to fairly compare the approaches we must also consider the influence of monitoring the raw ln(DAP) 

values rather than model residuals. Assuming the model is reasonable, using residuals has the advantage 560 

of reducing the unexplained variation thereby making it easier to detect process changes. However, in our 

context, this advantage is partially offset because we could only successfully build a model for the CA 

procedure and thus lose some data in our resulting monitoring scheme. 

 

For illustration we consider monitoring the Toshiba system. The regression model 2
R  is 0.68, thus 565 

the standard deviation of the model residuals is 0.566 ( 2
1 R ) times the residuals of the raw ln(DAP) 

values. Hence, assuming process mean shifts effect all procedures equally, a one standard deviation shift 

in mean ln(DAP) corresponds to a 1.77 (1 0.566 ) standard deviation shift in the mean of the residuals. 

This captures the effect of the modeling (assuming there is no estimation error in the model). We use the 

Markov chain approximation to determine the ARL of the two methods. To account for the fact that the 570 

CA procedure represents only about 60% of all the non-rhythm related cardiac procedures, and thus that 
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the filtered EWMA approach loses some data we divide the ARL values for the EWMA by 0.6 to make 

them comparable to the individuals chart. 

 

In Figure 7 we compare the performance of the two approaches. For the individuals charts we use 575 

the usual 3  standard deviation unit control limits. For the Gerard et al.10 approach this results in an in-

control (i.e. when there is no mean shift) ARL of 370. We then determine the control limit for the filtered 

EWMA so that, with the 0.6 factor adjustment, the in-control ARL is also 370. Figure 7 suggests that the 

proposed filtered EWMA method, despite not using all the data, is superior to an individuals chart based 

on the raw data at detecting ln(DAP) mean shifts of less than about 2.5 standard deviation units. Table IV 580 

quantifies the results numerically. For instance, for a mean shift in ln(DAP) of one standard deviation unit 

we expect the filtered EWMA chart to signal on average after only 7.3 cases while the individuals chart is 

expected to signal after about 44 cases. 

 

 585 
FIG. 7.  Comparison of Average Run Length for Two Monitoring Approaches 

Solid line – individuals chart on raw ln(DAP) 

Dashed line – combined individuals and EWMA chart on residuals 

 

Table IV.  Comparison of ARLs by Mean Shift Size 590 

  Mean Shift 

Methodology   0   0.5   1   1.5 

Individuals Chart 370 155.2 43.9 15 

Filtered EWMA Chart 370 16.8 7.3 4.9 

 

 

APPENDIX 2: Regression Modelling 

For each case, a regression model describes the relationship between a response, such as log(DAP), and 

the measured factors or explanatory variates such as patient weight and fluoroscopy time. The model has 595 

the form 

 

0 1 1
...

i i p ip i
y x x r        
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where, for the ith case, 
i

y  is some function of DAP and 
1
., ...,

i ip
x x are functions of the explanatory variates. 600 

The residuals 
i

r  account for the variation in 
i

y  not explained by the explanatory variates. We use the 

available Phase I data to build the model i.e. choose 
i

y  and 
1
., ...,

i ip
x x , estimate the coefficients 

0
, ...,

p
   

and the residuals 
i

r ,  determine if there are any outliers and so on 12, 16. Building the model is highly 

iterative in that we try different possibilities and use the tools given in the above references to select 

among candidate models.  605 

 

If we can successfully build such a model, then the variation in the estimated residuals will be 

substantially smaller than the variation in the response.  In Phase II, if the process drifts, then 
0

 will 

change resulting in a shift in the mean of the response and the estimated residuals. Because the variation 

in the estimated residuals is smaller, a control chart based on these residuals will detect the change more 610 

quickly than will a chart based solely on the response.  

 

 

 

615 
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