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Novel Results for Quasiclassical Linear Transport in Metallic Multilayers

Horacio E. Camblong and Peter M. Levy
Department of Physics, New York University, New York, Nevj York 10009

(Received 27 July 1992)

We analyze the linear transport behavior of metallic multilayers via the Kubo formula for a
Hamiltonian with zero-range spin-dependent potentials. We find a direct connection between the
Boltzmann and the Kubo approaches. Our two-point transport theory validates the quasiclassical
approach for multilayered structures and introduces a new treatment of interfaces via angle-dependent
coherent transmission coefficients.

PACS numbers: 72.15.Gd, 73.50.Bk, 73.50.Jt

Recently, considerable attention has been drawn by the
discovery of negative giant magnetoresistance (GMR) in
magnetic multilayers [1]. This new phenomenon is due
to the magnetic-field-induced parallel reorientation of an-
tiferromagnetically coupled magnetic layers across non-

magnetic spacers, rather than to the alteration of the
electron's dynamics. The underlying mechanism for the
decrease in the resistivity from antiparallel to parallel
alignment is spin-dependent scattering [1]. Two con-
ceptually different transport theories have been devel-

oped to account for the observed GMR: quasiclassical,
based on the Boltzmann equation, and quantum, based
on the Kubo formula. The quasiclassical approach, an
extension of the Fuchs-Sondheimer theory [2], was first
applied to multilayers by Carcia and Suna [3] and to
magnetic superlattices by Camley and Barnas [4]. The
quantum approach [5] starts from a model Hamiltonian
and uses the Kubo formula, which provides the correct
quantum-statistical calculation of the linear response co-
efficients [6]. Moreover, it is well known that the qua
siclassical approach apparently fails to account simulta-
neously for the observed values of resistivity and magne-
toresistance: it seems to underestimate the contribution
of interfacial scattering [5, 7]. However, one should not
conclude prematurely that the quasiclassical theory fails
for magnetic superlattices; as pointed out by Johnson
and Camley [8], the problem mentioned above could be
removed by treating interfacial scattering more realisti-
cally in terms of "mixing interlayers. "

So far, no paper has formulated in a fundamental way
(that is, using the Kubo formula) the following questions:
whether or not the quasiclassical approach is applicable
to metallic multilayers and, if the answer were aSrma-
tive, what the explicit connection between the quasiclas-
sical and quantum approaches would be.

In this Letter, we present a nonlocal linear transport
theory of metallic multilayers whereby we answer these
fundamental questions. Our theory lends support to the
quasiclassical approach, establishes the explicit connec-
tion between the two approaches, and, what is most im-
portant, introduces a nets treatment of interface scat-
tering. Our starting point is the model Hamiltonian of

Ref. [5), which we use together with the Kubo formula
in real space to provide a direct comparison with the ap-
proach based on the Boltzmann equation. Our derivation
is similar to the calculation of the bulk electrical resis-
tivity of a homogeneous metallic solid at low tempera-
tures, which is also governed by scattering by impurities
and defects [9]; moreover, we use the following two ba-
sic ingredients: the quasiclassical character of transport
in metallic multilayers (as defined below) and a partial
restoration of translational invariance in the plane of the
layers, via an "impurity average" (also discussed below).

We define the quasiclassical limit as the absence of
quantum corrections of two types: quantum size effects
and quantum interference corrections. Quantum size ef-

fects arise from the confinement of electrons with Fermi
wave number kp in a finite well of size I, and their relative
importance is measured by the parameter kpL. Quan-
tum interference effects arise from the interference ofelec-
tron paths and play a fundamental role, in three dimen-

sions, when kF ) l, where l is the electron's mean free
path. However, for metallic systems in general and metal-
lic multilayers in particular, the relatively small value of
kz makes the quasiclassical limit an excellent approxi-
mation for transport properties, except for the cases of
very dirty samples for which the mean free path becomes
comparable to k& .

The impurity-dominated transport behavior at low

temperatures can be described in terms of an ensemble
2' of distributions of a large number of impurities. For
every distribution of impurities, the corresponding one-
electron model Hamiltonian is

H=Hp+) v, (x),

where He is the unperturbed Hamiltonian, a labels im-

purities (or defects), and v~(x) is the scattering potential
due to the impurity (or defect) located at position x~. In
this Letter, we assume (like in Ref. [5]) that the Fermi
level is well above the multibarrier potentials associated
with the diferent layers, which corresponds to a free-
electron Hamiltonian He in Eq. (1).

Transport properties will be described in terms of
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impurity-averaged functions. The impurity average is
performed in a locally uniform way in each layer, and si
multaneously over the whole system. Notice that the con-
dition l )& D t, where D t is the distance between atomic
planes, guarantees that conduction electrons propagate
in an effective locally homogeneous medium" and al-
lows us to view multilayers as the juxtaposition, in one
dimension, of locally homogeneous layers. For example,
the average density of impurities n;~~(z) is constant in
each layer.

Furthermore, the short range and spin dependence of
the impurity potentials in Eq. (1) allows us to choose
zero-range potentials

v, (x) = A (o) b(x —x ),
with coupling strength

(2)

T(e) = V + V Gp(e) T(e), (4)

after the impurity average is applied term by term in the
resulting Dyson series. In Eq. (4), V = P v, is the total
potential acting on the electron and Gp(e) is the unper-
turbed one-particle propagator at energy e. The dilute
limit (that is, low concentration of impurities) restricts
the irreducible self-energy to be given by the same sum
of diagrams that defines the one-site off-shell T matrix

t (e) =v, +v, Gp(e) t (e). (5)

The resulting self-energy is local, namely, it is diagonal in
the position representation (the actual degree of nonlo-
cality is determined by the range of the potentials) with
diagonal elements

~()= ()t() (6)

where t(z) is the real-space diagonal element of the one-
site T-matrix at position z:

t(z) = A(z) (1 —A(z) tr[Gp(e)])

with A(z) being the coupling strength at position z and
tr[Gp(e)] being the trace of the unperturbed one-particle

A, (o)=m, +j, M, cr,

where o stands for the Pauli vector spin operator (which
accounts for spin-dependent scattering), M, is a unit
vector in the direction of magnetization of the respec-
tive magnetic layer, and m, and j, are constants (for the
nonmagnetic layers j, = 0). Equations (1)—(3) corre-
spond to those used in the quantum model of Ref. [5];
however, our solution to the model, implemented in real
space, will be different.

The one-particle irreducible self-energy E(e) for the
impurity-averaged functions can be calculated by isolat-
ing the one-particle irreducible parts of the diagrammatic
expansion for the impurity-averaged total off-shell (re-
ducible) T matrix (T(e) ), which is obtained from the
solution to the operator equation

propagator [10].
The ensuing impurity-averaged retarded one-particle

propagator (G(e) ) is then given by the Dyson formula,
and its matrix elements in real space (x

~
G(e) ]

x') ex-
hibit an exponential decay with a mean free path t(z),
such that

2 (z) = —Im [Z(z)] =
k~ l(z)

(where, for transport properties at low temperature, the
electron's energy is the Fermi energy e =eF = h kF/2m).
The real part of the self-energy can be absorbed as a re-
definition of the energy reference level. The Dyson for-
mula implies that the "reduced" one-dimensional one-
particle propagator g(z, z'), which is defined via restora
tion of translational invariance in the plane of the layers:

2

(k~~, z
] G(e) ] k~~, z') = 6& & g(z, z'),

satisfies the differential equation

2

+ k (z) g(z, z') = b(z —z'), (10)

where k(z) is a complex wave number or propagation
constant, which is given by

k(z) = k + i kp/l(z)

in terms of the "reduced" one-dimensional momentum:

k = (kF —kii)'i (12)

Equation (10) has already been proposed, but within the
framework of a different approach, by Vedyayev, Dieny,
and Ryzhanova [11].

Let us now consider an arbitrary X-layered system
and introduce the following notation. Each layer will
be identified with a subscript j, with j = 1, . . . , N: layer

Z~ = [z~ q, z~], of thickness a~ = z~ —z, q, will have a
local propagation constant kz and a mean free path l~.
Then, the resolution z = aiu~+ z~ q, for z in Z~, per-
rnits the identification z = (j, uz), which leads to a "layer-
index notation"; for example, g(z, z') = g~, ~ (u~, u, ), for
z ~ Z~ and z' g Z~ . The main goal of the transport the-
ory of multilayered structures is to predict the size ef
fects, i.e. , the dependence of transport properties with
respect to the different length scales a~. Quasiclassical
size effects can be conveniently expressed in terms of the
set of dimensionless size parameters A~ = a~/l~, if the
effect of multibarrier potentials is neglected.

For a finite system confined to a region of size I by
an infinite potential wall, Dirichlet boundary conditions
are required to account for external size effects How-.
ever, when L )& l~ )) kz (for all j), size effects be-
come asymptotically independent of any external bound-
ary conditions, except for the detailed behavior of inter-
nal fields near the boundaries. In this Letter, we will con-
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where t is a dimensionless variable defined by t = kF/k =
(cose) i, with 8 being the angle of propagation of a
quasiclassical electron with respect to the z axis (and
k, =k), and

P(u, , u, ) = A, ,u, —A, u, , +o.,„„ (14)

with j& (j&) being the smaller (larger) of j and j, and

i = P . . A~. In Eq. (13), the limit kF l~ && 1,
for all j, has been used in order to arrive at a quasiclas-
sical propagator; Eq. (11) shows that this propagator is
valid for most of the effective transport range, with an
infrared lower bound of the order of kF/gkF/s « ks.

What is the connection between the Boltzmann and
the Kubo approaches? A quasiclassical theory is based
on a distribution function, whereas the Kubo formalism

is based on a one-particle propagator or Green's function.
A direct comparison of our approach with the one based
on the Boltzmann equation shows that the quasiclassical
distribution functions are linear functionals of the electric
field E(z), which are given, up to a constant, by

g+(z, k, ) oc E(z'), (15)

where + refers to the sign of the z component of the
velocity the quasiclassical electrons, Iy are the inter-
vals to the left (z' & z) and to the right (z' & z)
of point z, and A(z, z') is the one-dimensional reduced
form [see Eq. (9)) of the density of states operator
A(e) = i [G„i(e) —G,g (e)], whose square is spatially av-'

eraged over a distance of a few times kF in the quasi-
classical limit; the proportionality constant in Eq. (15)
depends upon the normalization chosen for the distribu-
tion functions. Equation (15) shows that quasiclassical
electrons at position z propagating in the positive (neg-
ative) z direction correspond to all the electrons propa-
gating from points z' to the left (right) of the final point
z.

So far, we have shown that the Kubo formalism yields
a quasiclassical description of transport in metallic mul-

tilayers and found the explicit link between the two ap-
proaches. In the remainder of this Letter, we will con-
sider two additional novel aspects of transport in these
structures: the treatment of interfaces and of spatial dis-
persion.

sider only internal size egects, as for most multilayered
structures I » li (sandwich structures are an exception
as their total thickness is usually comparable with the
mean free paths). Therefore, we will replace Dirichlet
boundary conditions by outgoing boundary conditions,
as if the system were effectively infinite. The resulting
retarded Green's function is

1
g, , (u, , u, )= . exp ik~z —z'~ ——P(us, u, )2ik

T' (t) =exp( —tA'), (16)

with A
' = aI'l/II'l, which represents the fraction of

electrons transmitted (probability of transmission) across
a given interface. In this quasiclassical picture of ge-
ometric electron propagation, the complementary frac-

tions [1 —T '
(t)] represent scattering at the interface

layer, which, when the thickness a ' is neglected, is in-

terpreted as "diffuse scattering" (in this Letter, we have
not considered multibarrier effects, which would other-
wise be accounted for via reHection coefficients). Thus,
the coefficients T '

(t) have the same physical interpre-
tation as the ones required in a quasiclassical theory of
multilayers with diffusive interfaces in order to match
boundary conditions at the level of the distribution func-
tion, as first introduced by Carcia and Suna [3] as a gen-
eralization of the specularity parameters of the Puchs-

Interface scattering is the most delicate aspect in a
transport theory of multilayers. For example, an in-

creased density of scatterers near the interfaces may lead
to a breaking of the basic assumption that impurities
scatter independently, that is, that quantum interference
effects are negligible. However, a complete analysis of
this problem is beyond the scope of this Letter, where
we only intend to show the existence of a simple and
unified framework, based on the Kubo formula, for the
treatment of both bulk and interface scattering. Such a
unified frameioork can be developed if we assume that
an electron is free to propagate over the whole system
with small potential differences at the interfaces, but
with a huge potential barrier at the outer boundaries;
correspondingly, the transmission of an electron through
a region of interfacial disorder can be modeled with the
addition of a thin "interface layer. " Therefore, we will

assume that interface scattering can also be represented
with the Hamiltonian of Eq. (1), by treating interfaces as
additional thin layers 8~, , with layer thicknesses a~('l and

characteristic interface-local mean free paths lI', in ad-
dition to the "bulk layers" Zi„with thicknesses ai, and
mean free paths li, . The same treatment, but starting di-

rectly from the Boltzmann equation, has been proposed
by Johnson and Camley [8].

Even though, in this Letter, we subscribe to the de-
scription of interface scattering with additional interface
layers, we would like to emphasize that it naturally ad-
mits the following interpretation in terms of the concepts
used in the Boltzmann equation approach. In effect, one
could go one step further and replace the real interface
regions by infinitely thin interfaces with "internal struc
ture, " which is a good approximation as we can safely

assume that a~'l
&& a~, . Then, the exponential decay

of the one-particle propagator through a given interface
layer 8~. yields an effective "coherent transmission coef-

ficient" T 'l (t):
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Sondheimer theory [2]. However, our transmission coef-
ficients, unlike the ones used by Carcia and Suna and in
all the subsequent papers dealing with the quasiclassical
approach, are not constant parameters but depend upon
the angle of incidence 8 of the electrons on the inter-
face [with t = (cos8) i]; they favor the passage of elec-
trons with nearly normal incidence and suppress expo-
nentially the contribution from electrons moving nearly
parallel to the interfaces. For example, assuming that
l
' (( l~, (for all j, and j&) to further reduce the "inter-

nal structure" of the interface layers, the global in-plane
conductivity of a binary superlattice in our approach is
formally identical to the one given by Carcia and Suna [3],
but now with an angle depen-dent transmission coefficient
T(')(t) = e 'A . This interpretation of the transmission
coefficients is hardly surprising in a quasiclassical theory
which adopts the treatment of interfaces first introduced
by Johnson and Camley [8]. However, we should empha-
size again that a fundamental difference exists between
the outer boundaries and the interfaces, and that, cor-
respondingly, the angle-dependent reflection coefficients
proposed in the Fuchs-Sondheimer theory of thin films
are of a very difFerent nature [12]; moreover, the angle-
dependent transmission coefficients corresponding to su-
perlattice potentials, as discussed, for example, by Hood
and Falicov [13], refer to the scattering by potential bar-
riers (superlattice potentials), which makes them very
different from the ones due to interfacial disorder ("dif-
fuse" scattering).

The main consequence of this new treatment of inter-
faces is that it enhances the contribution of interfaces
to the total resistivity and, in order to fit experimen-
tal results, it requires mean free paths which are smaller
than the ones used in the usual Boltzmann approach and
closer to the ones used in the quantum approach. In
fact, this new choice of mean free paths eliminates the
objections raised against the quasiclassical approach [5]:
it is not the quasiclassical approach itself but the usual
treatment of interfaces that is flawed.

Finally, this Letter presents, for the first time, a
taboo point formalism -for multilayered structures. For
experiments with a uniform external electric field (as
follows from translational invariance in the plane of
the layers), the electrical linear response of the sys-
tem is given by a diagonal two-point conductivity ten-
sor o (z, z') = cr(kll z kll = 0 z'), with components
oi+l(z, z') = o„(z,z') for current perpendicular to the
plane of the layers (CPP) and e~ll~(z, z') = o~ (z, z') for
current in the plane of the layers (CIP). The Kubo for-
mula in real space leads to the following two-point con-
ductivity functions:

where P(uz, uz ) is given by Eq. (14), C~ = ne /mvF
(with n being the density of conduction electrons; al-
ternatively, C~ is the ratio between the bulk conduc-
tivity a~ and the local mean path /~ of any layer l:~),
Fill)(x) = Ei(x) —Es(x), F~~)(x) = 2Es(x), and E„(x)
is the exponential integral function of order n. Notice
that the conductivity is anisotropic as a result of the lay-
ering. The resulting linear transport theory, based on
Eq. (17), is nonlocal, with a characteristic length scale
given by the mean free path. This nonlocality, called spa
Hat dispersion, could be probed via electric fields which
vary over that length scale.

Summarizing, in this Letter we presented a linear
transport theory of multilayered structures that stems
from the quantum-statistical Kubo formula: It yields a
quasiclassical and nonlocal description of transport phe-
nomena, with a novel treatment of scattering at inter-
faces.
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