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Experimenta l and theoretica l investigation s of the structure
and the stabilit y of the BNSi molecule

G. Meloni, R. Viswanathan,a) and K. A. Gingerich
Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, Texas 77842-3012

~Received 9 July 1999; accepted 18 August 1999!

Theoretical computations were carried out to determine the structure and molecular parameters of
the BNSi molecule. The most stable isomer is found to have a BNSi linear geometry. Thermal
functions as derived from the theoretical computed molecular parameters were used in the
evaluation of the thermodynamic properties of BNSi from high-temperature Knudsen effusion mass
spectrometric equilibrium data. From the reactions analyzed by the second-law and third-law
methods, the enthalpy of formation, D fH0

o , and of atomization, DaH0
o , in kJ mol21, for BNSi, were

obtained as 398616 and 1078617, respectively. © 1999 American Institute of Physics.
@S0021-9606~99!30942-9#

I. INTRODUCTION

The great impulse motivated by research on new mate-
rials for electronic devices, has lead to a large number of
studies to develop and better characterize these new
materials.1–3 Especially thin films containing silicon, boron,
and nitrogen find a variety of applications, for instance, as
low dielectric constant materials for the reduction of the
parasitic capacitance in order to improve the overall perfor-
mance of large scale integrated circuits ~LSI!.4,5 Furthermore
the incorporation of silicon atoms in boron nitride films pro-
duces an improvement in the properties and stability of the
films.6 It has also been found that amorphous Si–N–B films
obtained by plasma-enhanced chemical vapor deposition
~CVD! present good insulation characteristics and conformal
step coverage.6 Finally, this ternary material has also been
used as a good chemical/mechanical polish by Neureither
et al.7

Apart from providing insight into the nature of bonding
of these species, equilibrium vaporization studies contribute
to the understanding of the formation of thin solid films con-
taining these elements.

No experimental data or theoretical studies on the BNSi
molecule have been reported in literature. In the present in-
vestigation we report the first experimental data based on
equilibrium measurements employing Knudsen cell mass
spectrometry and the first theoretical computation of the
BNSi molecule. This work is in continuation of our mass
spectrometric equilibrium investigations of small semicon-
ductor nitride clusters.8,9

Our computed values for the enthalpy of atomization,
DaH0

o , and appearance potential are compared with our cor-
responding experimental values. Preliminary experimental
results have been reported elsewhere.10

II. THEORETICAL INVESTIGATIONS

Ab initio calculations were carried out utilizing the
GAUSSIAN 98 program package11 in order to obtain the mo-
lecular parametersof theBNSi ground state. The resultshave
been used to calculate the thermal functions for BNSi needed
in the evaluation of the mass spectrometric equilibrium data
to obtain its thermodynamic properties.

The calculations were performed at five levels of theory:
~i! the density functional ~DF! method using the Becke three-
parameter exchange functional with the Lee, Yang, and Parr
correlation functional ~B3LYP!, ~ii ! the Hartree–Fock ap-
proach ~HF!, ~iii ! the second-order Møller–Plesset perturba-
tion theory ~MP2!, ~iv! the coupled-cluster method ~CCD!,
and ~v! the coupled cluster singles and doubles excitations
approach including the effect of connected triples excitations
@CCSD~T!#. They were applied using a triple-zeta polarized
and diffuse basis set, 6-3111G*, as well as correlated con-
sistent polarized valence double-zeta, cc-pVDZ, and triple-
zeta basis sets, cc-PVTZ.

Among the four possible connectivities for the molecule
with boron–nitrogen–silicon stoichiometry, three acyclic
structures, BNSi, BSiN, SiBN, and a cyclic one, respec-
tively, were considered. In order to compare the stability of
the various isomers, the relative energies were computed at
the CCSD~T!/cc-pVTZ level of theory but with the opti-
mized geometry obtained at the MP2/cc-pVTZ level. This is
justified because for the BNSi calculations there were no
large differences between the optimized geometry at the
MP2 and CCSD~T! level of theory ~see Table I!. From the
calculations the most stable configuration is found to have a
linear geometry with nitrogen located between boron and
silicon. This result is also in agreement with experimental
and theoretical results for the similar molecules, Si2N ~Refs.
12, 13! and B2N ~Refs. 14–16!, which too have linear struc-
tures as the most stable geometry, with nitrogen in the cen-
ter.

The cyclic structure is optimized to linear with the BNSi
a!Current address: Materials Chemistry Division, Indira Gandhi Center for
Atomic Research, Kalpakkam 603 102, Tamil Nadu, India.
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structure; the SiBN and BSiN geometries are linear, and are
181 and 458 kJ mol21, respectively, higher in energy than
the most stable BNSi isomer.

A 1S1 state is calculated as the electronic ground state
for BNSi.

The vibrational frequencies for the three vibrational nor-
mal modes of B–NSi stretching, v1 , Si–NB stretching, v2 ,
and B–N–Si bending vibrations, v3 , in the X 1S1 state were
calculated at all levels of theory used and are listed in Table
I. The computed energy and the molecular parameters for the
ground state of BNSi optimized at different levels of theory
are also given in Table I.

At the highest level of theory, CCSD~T!/cc-pVTZ, the
geometrical parameters of BNSi, show a boron–nitrogen
bond distance equal to 1.385 Å and a silicon–nitrogen bond
distance equal to 1.591 Å. The B–N internuclear distance is
very close to that of 1.403 Å in H2BNH2,

17 which has a
double bond character, and slightly longer than the triple
bond of 1.335 Å ~Ref. 18! of the BN molecule, derived from
the rotational constant of its ground state. The Si–N internu-
clear distance is very close to that of the double bond of
1.576 Å in H2SiNH,19 calculated at the HF/6-31G* * level
of theory.

From Table I, it is noted that there is no pronounced
trend of the internuclear distances with the level of ab initio
treatment. For the vibrational frequencies, there is a slight

difference in the values from the HF calculations and the
correlated calculations. At the HF/cc-pVTZ level the values
for the v1 and v2 stretching modes are about 10% higher
than those obtained at the CCSD~T!/cc-pVTZ level. The v3

bending frequency at the HF/cc-pVTZ level is about 70%
higher than that calculated at the CCSD~T!/cc-pVTZ level.

In the evaluation of the thermal functions of BNSi we
used our computed values obtained at the highest level of
theory, CCSD~T!/cc-pVTZ. Table II lists the thermal func-
tions calculated for BNSi. In order to support our choice for
the molecular parameters of BNSi, we calculated the bond
distances and the vibrational frequencies for the AlNC mol-
ecule, isoelectronic with BNSi, at the same level of theory,
CCSD~T!/cc-pVTZ. The results are reported in Table III.
The agreement between the experimental values and our
computed parameters is very good.

III. MASS SPECTROMETRIC MEASUREMENTS

Al l equilibrium measurements were done with aNuclide
Corporation mass spectrometer. The technique and the ex-
perimental procedure have been described elsewhere.20

TABLE II . The Gibbs energy functions, (GT
o2H0

o)/T (GEF0), in JK21

mol21, and the heat content functions, HT
02H0

o (HCF0) in kJ mol21, for the
BNSi molecule.

Temperature ~K!

298.15 1400 1600 1800 2000 2000

2GEF0 211.8 286.2 293.4 299.9 305.7 311.1
HCF0 12.83 75.06 87.17 99.36 111.6 123.9

TABLE I. The optimized molecular parameters and the energy of the 1S1 ground state of linear BNSi at
different levels of theory.

Method Basis set Total energya rB–N
b rN–Si v1

c v2 v3

B3LYP 6-3111G* 2369.066 9090 1.372 1.589 1554 851 121
cc-pVDZ 2369.039 0056 1.383 1.603 1533 835 112
cc-pVTZ 2369.077 4413 1.368 1.587 1565 855 97

HF 6-3111G* 2368.030 1334 1.364 1.559 1654 931 176
cc-pVDZ 2368.006 7503 1.372 1.572 1636 916 153
cc-pVTZ 2368.045 2175 1.359 1.558 1667 934 152

MP2 6-3111G* 2368.333 7292 1.384 1.596 1529 831 78
cc-pVDZ 2368.298 4106 1.399 1.614 1502 803 103
cc-pVTZ 2368.397 3679 1.382 1.595 1543 831 92

CCD 6-3111G* 2368.352 9697 1.382 1.580 1570 872 121
cc-pVDZ 2368.319 4632 1.395 1.597 1540 849 118
cc-pVTZ 2368.413 8319 1.378 1.578 1582 875 115

CCSD~T! 6-3111G* 2368.374 2712 1.388 1.592 1530 838 94
cc-pVDZ 2368.339 3236 1.402 1.612 1493 809 95
cc-pVTZ 2368.439 0062 1.385 1.591 1540 840 89

aThe computed total energy in hartree.
bThe bond lengths are in Å.
cv1 is the B–N stretching, v2 the Si–N stretching, and v3 the bending vibrational mode, in cm21.

TABLE III . Comparison between our calculations and the experimental
molecular parameters of the AINC molecule.

Method rAl–N
a rN–C v1

b v2 v3

CCSD~T!/cc-pVTZ 1.868 1.188 2065 553 103
MWSc 1.849 1.171
LEFSd 2069 549 100

aThe bond lengths are in Å.
bv1 is the C–N stretching, v2 the Al–N stretching, and v3 the bending
vibrational mode, in cm21.

cMWS is for millimeter-wave spectrum, see Ref. 31.
dLFES is for laser fluorescence excitation spectra, see Ref. 32.
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The BNSi molecule had first been identified in connec-
tion with the investigation of the Si5 cluster21 but its evalu-
ation was obscured by the presence of gaseous silicon
carbides.9,22

The sample, a mixture of semiconductor grade silicon
powder, and Si3N4 of 99.9% purity, was evaporated from a
boron nitride Knudsen cell with an orifice diameter of 1.0
mm, placed inside a graphite cell having a molybdenum lid.
The molybdenum lid, instead of the graphite lid,9 was used
to minimize the formation of silicon carbides, SiC2 and Si2C,
and the overlap of their isotopes with those of BNSi and
Si2N, respectively. The cell was heated by radiation by a
tungsten coil resistor and the temperatures were measured by
a calibrated optical pyrometer focused onto a black body
hole at the bottom of the graphite cell. Appropriate window
and prism corrections were applied. The energy of the ion-
izing electron was 12.5 eV, the emission current 10 mA, the
ion-accelerating voltage was 4.5 kV, and the electron multi-
plier was operated at 23 kV.

The ions pertinent to the present investigation, namely
B1, Si1, Si2

1 , Si2N
1, BNSi1, SiC2

1 , and Si2C
1 were iden-

tified by their mass to charge ratio, isotopic abundance, shut-
ter effect, and ionization efficiency curves. The electron im-
pact energy scale was calibrated with B ~8.296 eV! ~Ref. 23!
and Si ~8.149 eV!.23 The appearance potential of 8.2
60.5eV, was derived for BNSi1 by the linear extrapolation

method. This value is in good agreement with that of 7.98
eV, calculated at the CCSD~T!/cc-pVTZ level of theory.

The pressure calibration constants were determined from
the known Si2(g)52 Si(g) dissociation reaction, in the same
way as described elsewhere.9 The resulting values, of ki , in
atm A21 K21, are for series 1 and 2: Si, 8.11 and 23.6; Si2,
5.86 and 17.0; B, 33.5 and 97.6; Si2N, 5.39 and 15.7; BNSi,
9.61 and 28.0.

Table IV lists the measured ion currents for the most
abundant isotopes of the species pertinent to the present in-
vestigation. Each of the ion intensities of Si2N

1 and BNSi1

has been corrected for small contributions due to Si2C and
SiC2, respectively. For BNSi1 the maximum correction from
SiC2, at m/e553, was 2%, and for Si2N

1 it was 10% from
Si2C, at m/e570.

IV. RESULTS AND DISCUSSION

The Gibbs energy functions, (GT
o2H0

o)/T~GEF0!, and
the heat content functions, HT

o2H0
o~HCF0!, needed in the

evaluation of the reaction enthalpies were taken from litera-
ture for B(g),24 Si(g),25 Si~cond.!,25 BN(s),26 Si2(g),27 and
Si2N(g).9 Those for BNSi(g) were calculated according to
statistical thermodynamic procedures, using the rigid-rotator
harmonic-oscillator approximation.28

TABLE IV. Measured ion currents, in A, over Si3N41Si system in BN, and third-law values, in kJ mol21, of
the D rH0

o for reaction ~1! and reaction ~2!.

T ~K!

Ion intensities
D rH0

o

reaction ~1!
D rH0

o

reaction ~2!Si1 Si2
1 Si2N

1a B1 BNSi1a

Series 1
1834 3.1E210 8.0E212 8.4E212 5.4E214 9.9E213 272.9 653.7
1798 2.0E210 5.0E212 5.5E212 3.5E214 4.9E213 267.2 652.7
1834 2.8E210 7.0E212 9.4E212 6.2E214 9.3E213 266.6 654.7
1856 3.6E210 9.6E212 1.2E211 6.3E214 1.5E212 274.7 654.4
1874 4.7E210 1.3E211 1.5E211 8.0E214 2.0E212 276.9 655.6
1897 6.0E210 1.8E211 2.7E211 1.3E213 2.7E212 269.5 658.0
1868 5.3E210 1.4E211 1.9E211 1.1E213 2.2E212 271.3 652.2

Average 271.363.8 654.561.9

Series 2
1898 2.6E210 7.6E212 8.0E212 4.9E214 1.0E212 275.3 657.2
1959 4.9E210 1.5E211 2.2E211 1.0E213 2.0E212 271.3 664.7
2000 7.3E210 2.4E211 3.3E211 2.1E213 3.8E212 271.1 666.5
2061 1.8E209 7.6E211 9.1E211 5.1E213 1.2E211 275.9 664.8
2015 7.2E210 2.1E211 2.5E211 3.4E213 4.5E212 270.8 668.1
2026 8.3E210 2.4E211 2.8E211 4.3E213 5.3E212 270.5 668.6
2052 9.2E210 2.8E211 2.7E211 8.2E213 6.6E212 266.5 675.4
2001 6.5E210 1.5E211 5.1E213 4.2E212 665.1
2009 6.3E210 1.8E211 1.2E211 5.7E213 3.6E212 268.3 670.0
1975 4.4E210 1.4E211 9.7E212 2.7E213 2.1E212 268.1 668.8
1947 3.5E210 8.9E212 5.8E212 1.7E213 1.5E212 273.7 665.7
1931 3.1E210 6.9E212 5.1E212 1.5E213 1.2E212 271.6 664.4
1915 2.4E210 5.5E212 3.5E212 1.2E213 8.0E213 270.0 666.0
1902 2.1E210 4.8E212 3.1E212 9.8E214 7.1E213 270.7 663.8
1894 1.8E210 4.0E212 2.5E212 7.0E214 5.7E213 273.1 664.8
1882 1.5E210 3.4E212 2.2E212 7.2E214 4.5E213 267.7 664.7
1870 1.2E210 2.8E212 1.6E212 4.8E214 3.4E213 270.7 665.2
1846 8.1E211 1.8E212 1.1E212 2.4E214 1.9E213 271.1 666.5

Average 271.062.5 666.063.2

aIon intensities have been corrected for small contributions of Si2C and SiC2 ~see text!.
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For the determination of the enthalpy of formation,
D fH0

o , and the atomization enthalpy, DaH0
o , of the BNSi

molecule, the enthalpy changes for the reactions:

Si2N~g!1B~g!5BNSi~g!1Si~g!, ~1!

BN~s!1Si~cond!5BNSi~g!, ~2!

were evaluated according to the second-law method, based
on a least-squares analysis of lnKp vs. 1/T plots, and accord-
ing to the third-law method, using the relation D rH0

o

52RT lnKp2TD@(GT
o2H0

o)/T#.
Reaction ~1! is an all gas phase pressure independent

reaction, and reaction ~2! is pressure dependent. Table V lists
the results of the second-law and third-law evaluations. For
series 2 the selected value of D rH0

o for each reaction was
obtained by giving the third-law value twice the weight of
the second-law value; whereas for series 1 only a third-law
analysis was used because of too few data points.

The necessary enthalpies of formation, D fH0
o , in kJ

mol21, used to obtain the final values for the enthalpy of
formation and atomization of BNSi were: 56065,24 470.82
60.10,26 445.764.0,25 2247.9961.55,26 for B(g), N(g),
Si(g), and BN(s), respectively. The atomization enthalpy of
Si2N(g), DaH0

o , in kJ mol21, used was 1011.2612.4.9

From the selected D rH0
o values ~see Table V! and these

auxiliary literature data, the respective D fH0
o and DaH0

o val-
ues were derived for each reaction. By giving the same
weight to the reactions ~1! and ~2!, we obtain for the
D fH0

o(BNSi,g), D fH298.15
o (BNSi,g), DaH0

o(BNSi,g), and
DaH298.15

o (BNSi,g), in kJ mol21, the values 398.4616,
402.3616, 1078.2617, and 1085.4617, respectively. Here
the overall uncertainties were determined as described
elsewhere.29 Our computed DaH0

o(BNSi,g) of 1017 kJ
mol21 is about 6% smaller than the experimental value, ob-
tained in the present investigation.

It is interesting to compare the thermodynamic stabilities
of similar molecules. Atomization enthalpies, DaH0

o , in kJ
mol21, of the molecules Si2B,30 Si2N,9 B2N,10 and BNSi are:
767618, 1011612, 1068625, and 1078617, respectively.
As can be seen, the thermodynamic stability increases from
Si2B to BNSi; in particular, BNSi is more stable than Si2N
and B2N by 67 and 10 kJ mol21, respectively.
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