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Black hole thermodynamics from near-horizon conformal quantum mechanics
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The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal
invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational
background, for a general class of metrics in D spacetime dimensions (with D � 4). The ensuing analysis
is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the
leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-
Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most
importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal
coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like
coordinates, despite their ‘‘coordinate singularity,’’ can be used self-consistently to describe the thermo-
dynamics of black holes.

DOI: 10.1103/PhysRevD.71.104029 PACS numbers: 04.70.Dy, 04.50.+h, 04.62.+v, 11.10.Gh

I. INTRODUCTION

The Bekenstein-Hawking entropy SBH [1], the Hawking
temperature TH, and the Hawking effect [2] are well-
established features of black hole thermodynamics [3]
whose universality points to the existence of a quantum
gravitational theory. Moreover, the statistical-mechanical
derivations of the entropy SBH from string theory [4] and
loop quantum gravity [5] verify that these results do not
depend on the details of the underlying quantum theory of
gravity. In addition, the thermodynamic properties appear
to originate from the event horizon [6], within two major
categories: (i) those arising from the relationship SBH �
A=4 between the entropy and the horizon area A;
(ii) those related to the near-horizon conformal symmetry.
The first category has led to ’t Hooft’s brick-wall model [7]
and the thermal-atmosphere proposal [8]—which suggest
an origin of the entropy from within a ‘‘Planck-length
skin’’ of the horizon [7]—and subsequently to the holo-
graphic principle [9] and the AdS/CFT correspondence
[10]. In the second category, the neighborhood of the
horizon displays a peculiar SO(2,1) conformal symmetry
[11–14]; this kind of black-hole near-horizon invariance
[15–17] has been generalized to its supersymmetric exten-
sions [18], and related to horizon states [19,20], to the
thermodynamics [20], and to the Calogero model [21,22].
Moreover, in Refs. [16,17], the thermodynamics is explic-
itly connected with the underlying near-horizon conformal
field theory through the Cardy formula.

With these ideas in mind, in this paper we develop a
framework within which black hole thermodynamics
emerges from the near-horizon conformal symmetry as
the central guiding principle. Furthermore, we display a
direct and explicit connection between the conformal sym-
metry and the thermodynamics: (i) the Hawking tempera-

ture is determined from near-horizon consistency
requirements and traced to the conformal symmetry;
(ii) the Bekenstein-Hawking entropy can be interpreted
within a brick-wall model through a near-horizon confor-
mal quantum mechanics; (iii) the determination of the
entropy as a physical observable leads to a natural cutoff
of the order of the Planck length. Hence, our work supports
the concept that the quantum degrees of freedom of a black
hole appear to reside on its horizon and should arise from a
Planck-scale quantum theory of gravity.

In this paper we adopt the metric conventions of
Ref. [23] and choose natural units �h � 1, c � 1, and kB �
1; by contrast, the D-dimensional gravitational constant
G�D�
N is displayed in appropriate expressions, especially in

Sec. IV. In Sec. II we consider a scalar field in the gravi-
tational background and study its near-horizon behavior. In
Sec. III we develop the general framework for the compu-
tation of thermodynamic properties. In Sec. IV we provide
a renormalization of the entropy in a geometric manner,
which we implement with the aid of ’t Hooft’s brick-wall
model. Finally, these ideas are critically reexamined in
Sec. V.

II. FIELD MODES AND NEAR-HORIZON
EXPANSION

The conjecture that the horizon encodes the quantum
properties of a black hole [7] can be tested by considering a
quantum field as a probe of the gravitational background.
This method has been extensively used in the literature
dating back to the early seminal works of the 1970s,
including Ref. [2]. The main purpose of our paper is to
apply this well-known technique to show that the near-
horizon conformal symmetry of Refs. [12,19,20] governs
the leading thermodynamics of the Bekenstein-Hawking
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entropy and the Hawking temperature. These properties
can be seen most easily for the particular case of an action
(D � 4)

S � �
1

2

Z
dDx

�������
�g

p
�g��r��r��	m2�2 	 �R�2
;

(1)

which describes the coupling of a scalar field � to the
background metric g�� through its covariant derivatives
r�� and to the curvature scalar R. In addition, we assume
a metric

ds2 � �f�r�dt2 	 �f�r�
�1dr2 	 r2d�2
�D�2� (2)

(where d�2
�D�2� is the metric on the unit sphere SD�2),

which includes the Reissner-Nordström geometries in D
spacetime dimensions [24], extensions with a cosmologi-
cal constant, and related stringy black-hole solutions with
additional charges [25]. Equation (1) can be generalized to
include additional fields; this possibility, which may lead to
ambiguities [7,26], is critically revisited in Sec. V.

The expansion of the quantum field � in generalized
Schwarzschild coordinates �t; r;��,

��t; r;�� �
X
n;l;m

�anlm�nlm�r;��e�i!nlt

	 aynlm�
�
nlm�r;��ei!nlt
; (3)

involves creation and annihilation operators subject to the
usual canonical commutation relations and a complete set
of orthonormal modes�nlm�r;�� � Ylm���!�r�unl�r� that
satisfy the equation �� � �m2 	 �R�
�ei!t � 0; the
discrete index n corresponds to enclosing the system
in a spherical box for the thermodynamic analysis. For a
metric (2), the angular dependence of the modes is given
by the ultraspherical harmonics Ylm��� [27], with eigen-
values #l;D � l�l	D� 3�, while the choice !�r� �
�f�r�
�1=2r��D�2�=2 generates a Liouville transformation
[28] that reduces the equation for the radial part to its
normal form

u00nl�r� 	 I�r;!nl; $l;D�unl�r� � 0 (4)

for every particular frequency !nl. Thus, the reduction of
the field (3) to its normal modes induces an effective
quantum mechanics. With f � f�r� and the parameters
$l;D � #l;D 	 �2 � �l	 �D� 3�=2
2 and � �
�D� 3�=2, the effective interaction I is given by

I�r;!;$l;D� �
1

f2

�
!2 	

f02

4

�
�

1

f
$l;D

r2
�

1

f
�m2 	 �R�

	 Rrr 	
��

1

f
� 1

�
�2 	

1

4

�
1

r2
; (5)

where Rrr � �f00=2f� �D� 2�f0=�2rf� is the radial
component of the Ricci tensor. The effective interaction
I includes two noteworthy terms: the first one, leading to

the SO(2,1) conformal interaction in Schwarzschild coor-
dinates; and the second one, which gives the only depen-
dence of I�r;!;$l;D� with respect to the field angular
momentum.

The near-horizon conformal symmetry can be studied by
considering an expansion of Eq. (4), with the variable x �
r� r	, where r	 is the root of the equation f�r� � 0
defining the outer event horizon H . In this paper, we
will consider the nonextremal case, with f0	 � f0�r	� �

0 (the extremal case is known to involve a number of
subtleties [26]). Consequently, the terms in Eq. (5) can

be reduced with f00=f �
�H �f00	=�f

0
	x� and f0=f �

�H �
1=x, to-

gether with r �
�H �

r	, where �
�H � stands for the hierarchical

expansion about H ; then, the leading terms, of order
O�1=x2�, become asymptotically dominant and Eq. (4)
turns into

u00�x� 	
#

x2
�1	O�x�
u�x� �

�H �
0; (6)

which is driven by the interaction Veff�x� � �#=x2, with a
one-dimensional effective Hamiltonian H � p2

x � #=x2.
In Eq. (6), by abuse of notation: u�r� � u�x�, and

# � �2 	
1

4
; � �

!
f0	

: (7)

The corresponding physics, known as conformal quantum
mechanics [29,30], is invariant under general ‘‘effective-
time (T ) reparametrizations,’’ where T is the variable
conjugate to the Hamiltonian H. These transformations
involve [12] translations generated by H, scalings due to
the dilation operator D � TH � �pxx	 xpx�=4, and
translations of reciprocal T due to the special conformal
operator K � 2TD�T 2H 	 x2=4. The commutators

�D;H
 � �i �hH; �K;H
 � �2i �hD;

�D;K
 � i �hK;
(8)

define a noncompact SO�2; 1� � SL�2;R� Lie algebra [11],
which summarizes the near-horizon dynamics of the field
in Schwarzschild coordinates. While the relevance of this
symmetry for black hole thermodynamics was first dis-
cussed in Refs. [19,20], the full-fledged form of the con-
formal coupling (7) for arbitrary frequencies ! has not
been properly recognized. In contrast to the work of
Refs. [19,20], we show herein that this frequency depen-
dence is a crucial ingredient for the Hawking temperature
TH and the Bekenstein-Hawking entropy SBH. Specifically:
(i) Eq. (7) describes an effective system with the conformal
symmetry algebra (8) in the strong-coupling regime (# >
1=4); (ii) such system experiences the characteristic path-
ologies of singular quantum mechanics, which, as we will
see in the next section, lead to a divergent contribution to
the density of modes that governs the thermodynamics.

The apparent simplicity of Eq. (6) has completely erased
all information about the additional dynamical degrees of
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freedom of the field: the angular-momentum variables. For
the calculation of the entropy we need a generalized ex-
pansion that includes the leading order with respect to
angular momentum. As this dynamical dependence ap-
pears in only one term, $l;D=�fr2�, in Eq. (5), the leading
orders become

I �r;!;$l;D� �

��
!2

�f0	�
2 	

1

4

�
x�2 �

$l;D

f0	r
2
	

1

x

	
�1	O�x�
:

(9)

In the hierarchical expansion (9), one can see the reason for
the necessity to keep track of this additional angular-
momentum dependence. While all other terms in Eq. (5)
become negligible for sufficiently small x, the term
$l;D=�fr

2� can become comparable to the leading order
x�2 in Eq. (9), for sufficiently high values of $l;D. In other
words, for sufficiently high angular momentum l, the near-
horizon expansion needs to be supplemented by an
angular-momentum contribution of order x�1. This addi-
tional term provides a cutoff that carries the necessary
phase-space information for the statistical counting of
degrees of freedom. Thus, it is the interplay between
the conformally invariant near-horizon leading term and
the field angular momentum that completely determines the
thermodynamics; in Sec. IV, we will see that this competi-
tion leads directly to the holographic property SBH �
A=4.

III. THERMODYNAMICS AND SPECTRAL
FUNCTIONS

The central concept behind the statistical mechanics of
the field � is the existence of thermal averages. For the
static spacetimes with metrics (2), thermodynamic equi-
librium at temperature T � 1=+ can be established from
the periodicity of the Euclidean time ,E � �it in finite-
temperature field theory. In the seminal work of Ref. [31],
the Hawking temperature T � TH was shown to be the
unique value required for the removal of a bolt singularity
of the near-horizon Euclidean metric. In terms of the
conformal parameter �:

TH �
f0	
4.

�

�
4.

�

!

�
�1

(10)

follows from the near-horizon expansion of the �,E; r�
sector of the metric, which takes the two-dimensional

polar-coordinate form f�r�d,2E 	 �f�r�
�1dr2 �
�H �

/2d$2 	 d/2, with f�1dr2 � d/2 [32]. This argument
unambiguously shows that the thermodynamics is dictated
by the near-horizon conformal physics. However, a com-
plete characterization of thermal equilibrium entails self-
consistency within conformal quantum mechanics; in prin-
ciple, for every frequency ! and TH given in Eq. (10), this
amounts to the realization of thermal equilibrium through a
Boltzmann factor [2,33] exp��!=TH
, as in the complex-

path method of Refs. [34–36]. Incidentally, the invariance
of the temperature and surface gravity of a stationary black
hole under conformal transformations of the metric, g�� !

�2g��, is a well-known property [37]; however, the con-
nection between the approach of Ref. [37] and that of our
paper—based on the symmetry algebra (8)—is not
immediately obvious. These issues will be considered in
a forthcoming publication, using the SO(2,1) conformal
interaction.

With the temperature (10) in the canonical ensemble, the
thermodynamic functions can be computed in the usual
way [7,26]; for example, starting with the free energy F
and density operator / � e�+�:H:�F�, the entropy S �
�Tr�/ ln/
 � +2@F=@+ is given by

S � �
Z 1

0
d! ln�1� e�+!�

��
!

d
d!

	 2
�
dN�!�
d!

�
;

(11)

which follows from the familiar expression for a free field
[7,26] through integration by parts. In Eq. (11), the non-
trivial effects of the spacetime curvature are carried by the
spectral function N�!�, which measures the cumulative
number of modes associated with the field Eq. (4). In
turn, the mode ordering fnlmg is governed by Sturm’s
theorem [38] for a given effective potential (5), so that
N l�!� � Zl�!� 	 1 and Zl�!� are the ordinal number
and number of zeros of the eigenfunction unl�r� in Eq. (4)
for every value of !. As a result,

N�!� �
X
n;l;m

I�r;!nl;$l;D��I�r;!;$l;D�

1 �
X
l

glN l�!�; (12)

where gl � �2l	D� 3��l	D� 4�!=�l!�D� 3�!
 is the
multiplicity of Ylm��� [27].

The spectral function N�!� can be computed with the
algorithm of Eq. (12) combined with the semiclassical
approximation [7,26], which involves a linear combination
of

u��r� � �k$l;D
�r�
�1=2 exp

"
�i

Z r
k$l;D

�r0�dr0
#
; (13)

i.e., the familiar WKB wave functions with a local wave
number k$l;D

�r�. For the relevant domain, namely, in the
neighborhood of the horizon, a Langer-corrected wave
number [39]

k$l;D
�r� � k$l;D

�r	 	 x� �

����������������������������������������������������
I�r	 	 x;!;$l;D� �

1

4x2

s
(14)

is required to deal properly with the coordinate singularity.
The ordinal number

N l�!� �
Z
I
k$l;D

�r�dr (15)
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is obtained from the wave functions (13), with an integra-
tion range I in the spatial region outside the horizon,
limited by the semiclassical restriction within the turning
points. In addition, the nontrivial angular-momentum sum
in Eq. (12) can be approximated in the semiclassical re-
gime by means of the rule [40]

X
l

glF�$l� �
1

��D� 2�

Z 1

0
d$$D=2�2F�$�: (16)

As a result, substituting Eqs. (15) and (16) in Eq. (12), we
obtain

N�!� �
1

.��D� 2�

Z 1

0
d$$D=2�2

Z
I
drk$�r�; (17)

where the semiclassical interval I is limited by a right
turning point rmax � rmax�$�, which is defined by the zero
of the radicand in Eq. (14). Reciprocally, if the order of
integration is reversed, an angular momentum cutoff $max

can be defined for a given x; this is implicitly given by
I�r	 	 x;!;$max� � 1=�4x2�.

As it stands, Eq. (17) describes the physics of the scalar
field in the gravitational background, including the effects
associated with all relevant scales. In particular, it contains:
(i) its ordinary bulk behavior; (ii) effects of the near-
horizon physics, which correspond to the sector r� r	;
(iii) additional terms arising from the intermediate region.
For the relevant near-horizon physics, a systematic near-
horizon expansion can be applied to Eq. (17) and then
transferred to all relevant thermodynamic quantities. The
leading orders in Eq. (9) call for the use of the Langer
prescription (14), which yields the replacement #=x2 !
#=x2 � 1=4x2 � �2=x2. Therefore, from Eqs. (7), (9), and
(14),

k$l;D
� k$l;D

�r � r	 	 x; �; $l;D�

�
�H �

�������������������������������������������������������������������������������
�2

x2
�1	O�x�
 �

A�r	�$l;D

x
�1	O�x�


s
; (18)

where A�r	� � 1=�f0	r
2
	� stands for the angular-

momentum coefficient.
The leading orders of the corresponding spectral func-

tion (17) become

N�!� �
�H � �

.��D� 2�

Z 1

0
d$$D=2�2

Z xmax�$�

a

dx
x

�

����������������������������
1�

A�r	�$

�2 x

s
�1	O�x�
; (19)

where xmax � rmax � r	 and a is a coordinate cutoff.
Two important conclusions stem from this analysis,

from Eq. (19):
(i) The conformal interaction involves an effective

‘‘coupling parameter’’ �2 rather than #. This pa-
rameter emerges from the near-horizon physics

alone and provides a conformal wave number
kconf�x� � �=x in Eq. (18).

(ii) The angular-momentum coefficient A�r	�, needed
for the mode counting (19), is due to the SD�2

foliation of the metric and yields an angular-
momentum degeneracy factor !$l;D

�x� ������������������������������������������
1� A�r	�$l;Dx=�

2
q

that modifies the kconf�x� in
Eq. (18).

Finally, a simple rescaling of the integral with respect to
$ shows that

N�!� /
�H �

�D�1�A�r	�

��D�2�=2lim

a!0

Z x1

a

dx

xD=2
�1	O�x�
;

(20)

where a is a near-horizon coordinate cutoff for the radial
variable r and x1 is an arbitrary upper limit. Unfortunately,
two major flaws of Eq. (20) prevent a meaningful applica-
tion of this formula. First, the integral in Eq. (20) is
divergent with respect to the limit a ! 0, and this singular
behavior is transferred to all thermodynamic functions,
including the entropy (11). This ‘‘ultraviolet catastrophe’’
[3], which can be viewed as due to the divergent near-
horizon redshifts, signals the existence of new quantum
gravitational physics near the horizon and requires an
appropriate regularization of the theory. One of the novel
features of the approach presented herein is the description
of this ‘‘ultraviolet catastrophe’’ in Schwarzschild coordi-
nates, as directly arising from singular conformal quantum
mechanics. Second, the naive use of a radial cutoff a as a
finite adjustable parameter cannot work as this is merely a
coordinate assignment; instead, the thermodynamic func-
tions should be recast in terms of physical observables—a
renormalization of the theory. In conclusion, there is a way
of treating the divergence and the noncovariant nature of a
simultaneously: the concurrent use of real-space renormal-
ization and a geometric redefinition of a. In particular, the
brick-wall model [7] provides an implementation of this
regularization. This is the problem to which we now turn.

IV. GEOMETRIC RENORMALIZATION

The divergent behavior of the spectral function (20) and
of the associated thermodynamics has a simple physical
interpretation. The framework defined by a field action (1)
in a gravitational background (2) is but an effective theory
that calls for modifications in the ultraviolet sector, as the
event horizon is approached. In a generic sense, this is the
ansatz known as ’t Hooft’s ‘‘brick-wall model,’’ according
to which the relevant part of the entropy S in Eq. (11) arises
from a ‘‘thermal atmosphere’’ extending a few Planck
lengths above the horizon, and whose ultimate origin lies
in a full-fledged quantum theory of gravitation.

In our approach, the ultraviolet cutoff a in Eq. (20)
provides an approximate coordinate value leading to a
scale for the transition to more fundamental short-distance

HORACIO E. CAMBLONG AND CARLOS R. ORDONEZ PHYSICAL REVIEW D 71, 104029 (2005)

104029-4



physics. As such, a is a particular value of the
Schwarzschild coordinate r rather than a proper length
scale. For the geometrization of the theory, what is needed
is a proper distance [7]

/�x� � �‘�D�P 
�1
Z r		x

r	
jgrr�r�j

1=2dr

�
�H � 2

‘�D�P

������
f0	

p ���
x

p
�1	O�x�
 (21)

from the horizon, which we write in dimensionless form
with respect to the D-dimensional Planck length ‘�D�

P �

�G�D�
N 
1=�D�2�. In particular, the proper ‘‘geometrical eleva-

tion’’ hD of the ‘‘brick wall’’ (away from the horizon) can
be identified as hD � /�a�. In a more restricted sense, the
regularization of the theory can be implemented by enforc-
ing a boundary condition at the location defined by the
coordinate parameter a. In particular, a sharp cutoff in the
integral of Eq. (20) is equivalent to the use of a Dirichlet
boundary condition

��t; r � a;�� � 0; (22)

this assignment is a consequence of the selection of a
semiclassical left turning point. However, the existence
of fairly general results in conformal quantum mechanics,
which are independent of the selection of the ultraviolet
physics [29,30], suggests that different boundary condi-
tions are likely to yield the same physics.

The redefinition involved in Eq. (21) permits the geo-
metrization of Eq. (19),

N�!� �
�H � 2�

.

Z
hD

d/
/
%D�$max�/��; (23)

where the angular-momentum degeneracy is described by
the weight function

%D�$max� �
1

��D� 2�

Z $max

0
d$$D=2�2

�������������������
1�

$
$max

s
(24)

�
�H �

CD
ÂD�2

4

�
�

/

�
D�2

; (25)

with ÂD�2 � ��D�2��r	=‘
�D�
P 
D�2 being the �D�

2�-dimensional horizon area in Planck units, given in terms
of ��D�2� � 2.�D�1�=2=���D� 1�=2�. In Eqs. (23) and
(25) and hereafter, the higher-order terms of the near-
horizon expansion are omitted; beta-function identities
give the numerical constant CD � 2D��D=2�=
.D=2�1��D�; and the angular-momentum cutoff, from
Eqs. (19) and (21), becomes $max�/� �
4�r	=‘

�D�
P 
2�2=/2.

A number of remarks are in order. Equation (23)
shows the interplay between the weight function (24)
and the purely conformal contribution NCQM�!� �

2�=.
R
hD
d/=/, which would otherwise lead to a renor-

malized conformal logarithmic counting of states [30]. In
contrast to this logarithmic behavior, in the case of black
hole thermodynamics, the angular-momentum degeneracy
weight changes the distance scaling in Eq. (23), due to the
additional dependence implicit through the ‘‘cutoff’’
$max�/�. Furthermore, Eq. (25) shows the presence of
two distinct contributions, in addition to the numerical
constant CD: the ‘‘holographic factor’’ ÂD�2=4 and the
factor associated with the ‘‘conformal part’’ of the angular-
momentum cutoff, ��=/�D�2. For the class of metrics
considered in this work, the holographic factor emerges
from a phase-space contribution that can be traced to the
horizon hypersurface. In turn, the ‘‘conformal part’’ of the
angular-momentum cutoff factor is due to the competing
effects of the conformal interaction, parametrized via the
effective coupling �2, and the angular-momentum term.
Correspondingly, from Eqs. (23)–(25),

N�!� �
�H �

N D
ÂD�2

4
���!�
D�1; (26)

where N D � f2CD=��D� 2�.
g�hD
��D�2� is a numeri-
cal constant arising from phase-space counting of modes
and from measuring the cutoff elevation hD. Most impor-
tantly, Eq. (26) shows that the angular momentum contrib-
utes to the horizon degrees of freedom through %D�$max�,
while the conformal interaction mainly induces the degrees
of freedom due to radial displacements and associated with
the SO(2,1) symmetry.

The geometric renormalization of the spectral functions,
leading to Eq. (26), transfers to all thermodynamic quan-
tities. In particular, this procedure should apply to the
entropy (11). The fundamental concept already displayed
by Eq. (26), is that the entropy is a surface contribution
induced by the horizon. Our derivation displays this �D�
2�-dimensional feature in its most transparent form as
arising from the summation over angular-momentum de-
grees of freedom. Correspondingly, this also suggests the
property known as holography, whose realization for
black-hole entropy appears to be related to the conformal
nature of the near-horizon expansion. Specifically, substi-
tuting Eq. (26) in Eq. (11),

S �
�H �

SD

�
4.
+f0	

�
D�1

SBH; (27)

where the expected Bekenstein-Hawking entropy is

SBH �
1

4
ÂD�2; (28)

and the numerical constant

S D �
D�D� 1�

2D�1 N DJD

�

�
.1�3D=2

2D�2 D6�D���D=2� 1�
�
�hD
��D�2� (29)
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has been evaluated in terms of the Riemann zeta function
6�z� from the integral

J D � �
Z 1

0
d88D�2 ln�1� e�2.8� �

6�D���D� 1�

�2.�D�1 :

(30)

Finally, the entropy (27) reduces to the expected holo-
graphic result (28), but only after two additional identifi-
cations are made. First, the factor �4.=�+f0	�


D�1 can be
set equal to unity, due to the Hawking-temperature assign-
ment (10). The second identification involves the factor
(29), which should be set equal to unity; this condition
determines the ‘‘elevation’’

hD �
1

2
�D6�D���D=2� 1�.1�3D=2
1=�D�2�; (31)

of the brick wall above the horizon. For example, for D �

4 [7], hD in Eq. (31) reduces to 1=
���������
90.

p
. Thus, when

physical units are restored in terms of the Planck length
‘�D�P , this distance becomes HD � hD‘

�D�
P , whose order of

magnitude is comparable to that of ‘�D�P .
In conclusion, the entropy (28) follows quite naturally

within conformal quantum mechanics and requires a real-
space regulator whose concomitant invariant distance is of
the order of the Planck length. Moreover, our derivation
shows two important features: (i) the entropy is a �D� 2�-
dimensional property induced by the near-horizon expan-
sion and implemented through the angular-momentum
phase-space counting of states; (ii) the temperature is
purely conformal. These universal properties are driven
by the near-horizon symmetry and apply to a large class
of black holes and any number of dimensions, thus sug-
gesting the existence of an underlying order arising from
the Planck scale.

V. CONCLUSIONS

In this paper we have considered the near-horizon con-
formal symmetry of a broad class of black-hole metrics and
described the emergence of thermodynamic behavior in-
duced by the existence of an event horizon. Specifically, we
have rederived the Hawking temperature (10) and
Bekenstein-Hawking entropy (28) almost exclusively
from this conformal symmetry. In the case of the entropy,
an appropriate treatment of the angular momentum degrees
of freedom directly relates to the horizon area, with the
conformal sector requiring an effective-field-theory type of
renormalization such as that within the brick-wall model.
The ensuing symmetry-based characterization of the ther-
mal nature of black holes ascribes the singular behavior of
thermodynamic quantities to the physics within a ‘‘Planck-
length skin’’ surrounding the horizon. In addition, our
work:

(i) Provides strong additional evidence that the physi-
cal origin of the quantum-mechanical degrees of

freedom of a black hole can be traced to within a
Planck scale of the event horizon.

(ii) Shows the need for new physics near the Planck
scale, manifested through the existence of an in-
variant radial distance from the horizon where the
theory breaks down [41].

(iii) May prove useful in identifying the relevant parts
of quantum gravity that are responsible for the
thermodynamic behavior of black holes.

A number of critical remarks are in order, as the brick
wall model poses several puzzling questions. First, the
scalar field-action of Eq. (1) can be extended to involve
any number of ‘‘species,’’ with different types of fields; this
ambiguity implies a possible dependence on the number
and type of species [3,7,26]. Second, when this generalized
action is applied to the computation of the entropy as in
Eq. (27), the identification of the Bekenstein-Hawking
result (28) with a numerical prefactor of 1=4 requires a
fine-tuning of the cutoff [3,7,26], as in Eq. (31). In other
words, the entropy prefactor is not calculable in this ap-
proach, thus being subject to renormalization; however, the
result still has two remarkable features that suggest its
possible correctness: the area dependence and the expected
order of magnitude. Finally, it was first shown in Ref. [42]
and subsequently confirmed in other papers [43] that the
brick-wall contribution to the entropy can be interpreted as
being absorbed by a renormalization of Newton’s gravita-
tional constant GN . A possible interpretation of these
multiple ambiguities is that the species dependence of
the entropy prefactor is compensated by a corresponding
dependence of the renormalization ofGN; this is confirmed
by miscellaneous renormalization approaches [26,44,45].
Notwithstanding any unresolved issues, the results of our
paper appear to be extremely robust and confirm the rele-
vance of the conformal aspects of black hole thermody-
namics; in particular, the temperature and the Hawking
effect are independent of any particular regularization
model. In this regard, the near-horizon conformal symme-
try appears to be central to black hole thermodynamics,
even though its physical interpretation and relationship
to spacetime symmetries of quantum gravity still
remain elusive. In this context, it would be useful to un-
cover the meaning of our construction within an approach
based on conformal field theories, as in the work of
Refs. [16,17].
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Phys. Rev. D 68, 025006 (2003); H. E. Camblong and
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