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Preprint

RING PATTERNS AND THEIR BIFURCATIONS IN A

NONLOCAL MODEL OF BIOLOGICAL SWARMS

Andrea L. Bertozzi, James von Brecht and Hui Sun
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Los Angeles, CA, 90095-1555, USA

Theodore Kolokolnikov

Department of Mathematics and Statistics, Dalhousie University
Halifax, Nova Scotia, B3H3J5, Canada

David Uminsky

Department of Mathematics, University of San Francisco
San Francisco, CA, 94117-1080, USA

Abstract. In this paper we study the pattern formation of a kinematic ag-
gregation model for biological swarming in two dimensions. The swarm is
represented by particles and the dynamics are driven by a gradient flow of a
non-local interaction potential which has a local repulsion long range attrac-
tion structure. We leverage a co-dimension one formulation of the continuum
gradient flow to characterize the stability of ring solutions for general interac-
tion kernels. In the regime of long-wave instability we show that the resulting
ground state is as a low mode bifurcation away from the ring and use weakly
nonlinear analysis to provide conditions for when this bifurcation is a pitchfork.
In the regime of short-wave instabilities we show that the rings break up into
fully 2D ground states in the large particle limit. We analyze the dependence
on the stability of a ring on the number of particles and provide examples of
complex multi-ring bifurcation behavior as the number of particles increases.
We are also able to provide a solution for the “designer potential” problem in
2D. Finally, we characterize the stability of the rotating rings in the second
order kinetic swarming model.

1. Introduction. Mathematical models for swarming, schooling, and other ag-
gregative behavior in biology have given us many tools to understand the funda-
mental behavior of collective motion and pattern formation that occurs in nature
[10, 6, 2, 26, 25, 14, 7, 13, 27, 19, 33, 32, 23, 11, 17, 37, 38, 34, 36, 9, 15, 29, 21, 20,
24, 8]. One of the key features of many of these models is that the social commu-
nication between individuals (sound, chemical detection, sight, etc...) is performed
over different scales and are inherently nonlocal [11, 22, 2]. In the case of swarming,
these nonlocal interactions between indviduals usually consist of a shorter range re-
pulsion to avoid collisions and medium to long range attraction to keep the swarm
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Figure 1. Dynamics of (2). First column: f(r) = 1− r, N = 80.
The equilibrium solution is a stable ring. Second column: f(r) =
r−0.5 − r5, N = 300. Third column: Simulation of the continuum
limit (4) with F as in the second column. Fourth column: f(r) =
1− r2.2, N = 100. Fifth column: f(r) = r−0.5 − r0.5, N = 300.

cohesive. While some models include anisotropy in this communication (e.g. an
organism’s eyes may have a limited field of vision) simplified isotropic interactions
have been shown to capture many important swarming behaviors including milling
[20, 10]. More recently it has been shown [17, 38, 37] that the competition between
the desire to avoid collisions and the desire to remain in a cohesive swarm can
sometimes result in simple radially symmetric patterns such as rings, annuli and
uniform circular patches and other times result in exceedingly complex patterns.
Moreover how modelers select the strength and form of the repulsion near the ori-
gin has a direct effect on the co-dimension of the swarm [1]. In particular, the
possible co-dimensionality of the ground state is directly related to the singularity
of the interaction kernel at the origin.

The focus of this paper is to develop an understanding of which patterns will
form (in 2D) in a given swarm as a function of the nonlocal social interaction. The
goal is to develop tools that can help us predict when a swarm will aggregate into
a ring or an annulus or some other complex ground state from a given model for
there social interactions. The classical approach to understanding pattern forma-
tion (say in PDEs), first suggested in Turing [35], is to perform a careful stability
analysis around a homogeneous state and to determine the unstable modes. In
the case of classic Turing instabilities driven by diffusion the resulting unstable
Fourier modes sometimes characterize the final ground state pattern (e.g. stripes
and spots) in the solution. To understand patterns driven, not by diffusion, but
nonlocal repulsion-attraction interactions such as the ones found in Figure 1, we
take a similar approach.
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To develop a theory for predicting the final ground state formation of a swarm,
we formulate our pattern as extrema of the N -particle pairwise, interaction energy

E(x1, . . . ,xN ) =
∑

i,j 6=i

P (|xi − xj |) (1)

where P denotes the isotropic pairwise interaction potential. We consider the asso-
ciated gradient flow to the interaction energy (1) which takes the form

dxi

dt
= −∇xi

E =
1

N

∑

j=1...N
j 6=i

f (|xi − xj |) (xi − xj) , i = 1 . . .N, (2)

where f(r) = F (r)/r and F (r) = −P ′(r) is the force associated to our potential P .
We will be able to characterize the patterns seen in Figure 1 by employing a sta-

bility analysis of equation (1) but unlike classical Turing patterns, we will linearize
around uniform ring solutions. The instabilities of these co-dimension one, radially
symmetric solutions nicely characterize the resulting ground state even when we
the resulting pattern is not co-dimension one.

We will make use of the underlying continuum formulation of (2) known as the
aggregation equation [17, 18, 3, 4] which takes the form

ρt(x, t) +∇ · (ρ(x, t)u(x, t)) = 0, x ∈ R
3, t ≥ 0

u(x, t) =

∫

R3

f (|x− y|) (x− y) ρ(y, t) dy. (3)

Here, ρ describes the density of particles and u is the velocity field. By then con-
sidering a weak formulation of (3) where the density aggregates on a co-dimension
one curve one can derive, see [30, 17, 38] the evolution equation for the material
point of the curve, Y(ξ), to be

yt = u =

∫

D

f(|y − y′|)(y − y′)ρ0(ξ
′)dSξ′ , (4)

where we parameterize the curve with Lagrangian parameter ξ ∈ D ⊂ R
1.

We now summarize the results in this paper. In section 2 we derive the char-
acterization of the stability of the ring solution. In section 3 we use asymptotic
techniques to give a characterization of stability with respect to high-order modes.
When the high modes are unstable, the ring breaks up completely; the resulting
steady state may be an annulus or more complex two-dimensional shapes such as
shown in the last column of Figure 1. In section 4 we analyze a family of power
law interaction kernels using the stability theory and provide bifurcation diagrams.
In section 5 we analyze the deformation of a ring due to low mode instability near
the bifurcation point using weakly nonlinear analysis. At the level of the particle
system, the transition from a ring to an annulus is described in detail in section 6.
For a specific class of kernels, we identify a critical number Nc, which we compute
asymptotically, such that the ring is stable when N < Nc and is unstable otherwise.
In contrast to high mode-instabilities, the low-mode instabilities can deform the
ring while preserving the curve-type structure. In section 7 we solve a restricted
inverse problem: given an instability of a certain mode, design the kernel f which
leads to such an instability in the ground state. Finally in section 8 we extend our
analysis to second order models of self-propelled particles considered in [20, 10] to
characterize the stability of a rotating ring.
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Some of the results in this paper already appeared elsewhere. The statements
of results of sections 2, 4, 5 appeared previously in a shorter form in [17] but
without proofs. Here, we provide the detailed derivations of these calculations. The
three and higher-dimensional analogue of a ring and its stability was also solved
in [38] using a different technique that relies on spherical harmonics. The results
on custom kernels in section 7 are based on ideas first presented in [37], where the
same problem was solved in three dimensions. We include the two-dimensional case
here for completeness. Results in Section 6 and 8 have not appeared elsewhere and
are new to this paper.

2. Stability of ring solutions. We begin by considering the ring steady state for
the equations (2) consisting of N particles equally spaced particles located on a ring
of radius R,

xj = R exp (2πij/N) , j = 1 . . .N.

The equilibrium value for R then satisfies

0 =

N−1∑

j=1

f(2R sin(πj/N))(1 − ei2πj/N ); (5)

in the continuum limit N → ∞, this becomes
∫ π

2

0

f(2R sin θ) sin2 θdθ = 0. (6)

We can now analyze the stability of the ring equilibrium of radius R given from (6).
Our first result is the following characterization of local stability.

Theorem 2.1. In the continuum limit N → ∞, consider the ring equilibrium of
radius R given by (6) for the flow (4). Define

I1(m) :=
4

π

∫ π/2

0

(Rf ′ (2R sin θ) sin θ + f (2R sin θ)) sin2((m+ 1)θ)dθ; (7)

I2(m) :=
4

π

∫ π/2

0

(Rf ′ (2R sin θ) sin θ)
[
sin2(θ) − sin2(mθ)

]
dθ; (8)

M(m) :=

(
I1(m) I2(m)
I2(m) I1(−m)

)
. (9)

Suppose that λ ≤ 0 for all eigenvalues λ of M(m) for all m ∈ N. Then the ring
equilibrium is locally stable. It is unstable otherwise.

For finite N , the ring is stable if λ ≤ 0 for all eigenvalues λ of M(m) for all
m = 1, 2, . . .N, but with I1, I2 as given by (17, 18) below.

An example of a stable ring is provided by interaction kernel f(r) = 1 − r. In
this case a straightforward computation yields

R =
3π

16
;

I1(m) = − m2 + 2m+ 3

(1 + 2m)(3 + 2m)
; I1(−m) =





− m2 − 2m+ 3

(1− 2m)(3− 2m)
, m 6= 1

0, m = 1

I2(m) = − m2 − 1

4m2 − 1
,
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so that, for m > 1, we have

detM(m) =
12m2(2m2 − 1)

(1− 4m2)
2
(4m2 − 9)

> 0, traceM(m) =
9 + 4m2 −m2

(1− 4m2) (4m2 − 9)
< 0.

This shows that the eigenvalues corresponding to m > 1 are all negative. Similarly,
the eigenvalues corresponding to mode m = 0, 1 are also stable. Moreover, for
large m, the two eigenvalues are λ ∼ − 1

4 and λ ∼ − 3
8m2 → 0 as m → ∞. The

presence of small eigenvalues implies the existence of slow dynamics near the ring
equilibrium. Further analysis shows that the eigenvector corresponding to the small
eigenvalue and large m is nearly tangential to the circle; the other eigenvector is
nearly perpendicular. The corresponding two-time dynamics are also clearly visible
in simulations (Figure 1, column 1).

Proof of Theorem 2.1. Consider the perturbations of the ring of N particles
of the form

xj = R exp (2πij/N) (1 + hj) with hj ≪ 1. (10)

We compute

xj − xk = R exp (2πik/N)
(
1− eiφ + hj − eiφhk

)
where φ =

2π(k − j)

N
.

|xk − xj | ∼ 2R

∣∣∣∣sin
φ

2

∣∣∣∣+
R

4
∣∣∣sin φ

2

∣∣∣

[
(1− eiφ)

(
hk + hj

)
+ (1− e−iφ)

(
hk + hj

)]
.

Substituting (10) into (2) leads to the following linearized system,

dhj

dt
=
∑

k

f ′

(
2R

∣∣∣∣sin
φ

2

∣∣∣∣
)

R

4
∣∣∣sin φ

2

∣∣∣
[(1− eiφ)

(
hk + hj

)

+ (1− e−iφ)
(
hk + hj

)
]
(
1− eiφ

)

+
∑

k

f

(
2R

∣∣∣∣sin
φ

2

∣∣∣∣
) (

hj − eiφhk

)
, where φ =

2π(k − j)

N
.

Next we use the identities

(1 − eiφ)2 = −4 sin2
(
φ

2

)
eiφ; (1− eiφ)(1 − e−iφ) = 4 sin2

(
φ

2

)

to obtain

dhj

dt
=
∑

k,k 6=j

G1(φ/2)
(
hj − eiφhk

)
+G2(φ/2)

(
hk − eiφhj

)
,

where φ =
2π(k − j)

N
,

(11)

with

G1(φ) =
1

N
Rf ′ (2R |sinφ|) |sinφ|+ 1

N
f (2R |sinφ|) ;

G2(φ) =
1

N
Rf ′ (2R |sinφ|) |sinφ| .

(12)

Using the ansatz

hj = ξ+(t)e
imθ + ξ−(t)e

−imθ, θ = 2πj/N, m ∈ N. (13)

We can write

hk = ξ+e
imθeimφ + ξ−e

−imθe−imφ, (14)
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and substituting (13), (14) into (11) and collecting like terms in eimφ, e−imφ leads
to the system

ξ′+ = ξ+
∑

k,k 6=j

G1(φ/2)
(
1− ei(m+1)φ

)
+ ξ̄−

∑

k,k 6=j

G2(φ/2)
(
eimφ − eiφ

)
(15)

ξ′− = ξ−
∑

k,k 6=j

G1(φ/2)
(
1− ei(−m+1)φ

)
+ ξ̄+

∑

k,k 6=j

G2(φ/2)
(
e−imφ − eiφ

)
. (16)

It is easy to check that the sums in (15, 16) are all real so that the system becomes

ξ′+ = ξ+I1(m) + ξ̄−I2(m), ξ̄′− = ξ̄−I1(−m) + ξ+I2(−m)

where

I1(m) =
∑

k,k 6=j

G1(φ/2)
(
1− ei(m+1)φ

)
= 4

N/2∑

k=1

G1(
πk

N
) sin2

(
(m+ 1)πk

N

)
, (17)

I2(m) =
∑

k,k 6=j

G2(φ/2)
(
eimφ − eiφ

)

= 4

N/2∑

k=1

G2(
πk

N
)

[
sin2

(
πk

N

)
− sin2

(
mπk

N

)]
. (18)

We thus obtain (
ξ′+
ξ̄′

)
= M

(
ξ+
ξ̄

)

where M is given by (9). Finally, I1 and I2 are just the Riemann sums so that
in the continuum limit N → ∞, these sums are given by (7, 8). Substituting
ξ± = b± exp (λt) we find that λ is the eigenvalue of the matrix M. �

3. High wave-number stability. We next examine the behaviour of the eigenva-
lues as m → ∞, i.e. the high frequency wave limit. We shall call a ring short-wave
stable if the eigenvalues corresponding to all sufficiently large modes m have neg-
ative real part; otherwise we call the ring short-wave unstable. Kernels that are
short-wave unstable generally result in ground state patterns which are no longer
co-dimension one as we will see in section 6. In contrast, short-wave stable kernels
often contain low mode symmetries bifurcating away from the ring but otherwise
remain a co-dimension one curve. For simplicity, we restrict ourselves to the case
where f(s) may be written as a generalized power series, although a similar result
can be derived for a more general case where f is sufficiently smooth. Our main
result is the following.

Theorem 3.1. (Necessary and sufficient conditions for short-wave (in)stability)
Suppose that f(r) admits a generalized power series expansion in the form

f(s) = a0s
p0 + a1s

p1 + . . . , p0 < p1 < . . . . (19)

Moreover, suppose that p0 > −3 and a0 > 0. Let pl be the smallest power which
is not even. Then following conditions are sufficient for the ring to be short-wave
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stable:

p0 > −1; (20)
∫ π/2

0

(Rf ′ (2R sin θ) sin θ + f (2R sin θ)) dθ < 0; (21)

either al > 0 and pl ∈ (−1, 0) ∪ (1, 2) ∪ (4, 6) . . .
or al < 0 and pl ∈ (0, 1) ∪ (2, 4) ∪ (6, 8) . . .

(22)

The ring is short-wave unstable if either p0 ≤ −1 or the inequality in either (21) or
(22) is reversed.

Remark. We note that the condition p0 > −3 is needed in order for the ring to
exist; otherwise, the integral in (6) is undefined.

Proof. First, suppose that −3 < p0 ≤ −1. Then by Lemma A.1, we have that

I1(m) ∼ I1(−m) ∼
{

Cm−p0−1, p0 ∈ (−3,−1)
C lnm, p0 = −1

as m → ∞

where C > 0. In this case trace(M(m)) → +∞ as m → ∞ so that λ > 0 for all m
sufficiently large. Therefore we obtain (20) as the necessary condition for eventual
stability of a ring. When (20) holds, we may estimate

I1(m) ∼ I1(−m) ∼ 2

π

∫ π/2

0

(Rf ′ (2R sin θ) sin θ + f (2R sin θ)) dθ

The necessary condition for stability is that trace(M(m)) < 0 as m → ∞ or

∫ π/2

0

(Rf ′ (2R sin θ) sin θ + f (2R sin θ)) dθ < 0. (23)

To establish sufficient conditions for eventual stability, we also require that detM >
0 as m → ∞. To simplify the computations we may assume, by rescaling the space,
that R = 1/2 and write

I1(±m) ∼ I10 + I11; I2(±m) ∼ I20 + I21

with

I10 =
2

π

∫ π/2

0

(
1

2
f ′ (sin θ) sin θ + f (sin θ)

)
dθ;

I20 =
2

π

∫ π/2

0

f ′ (sin θ)

(
sin3 θ − 1

2
sin θ

)
dθ;

I11 = − 2

π

∫ π/2

0

(
1

2
f ′ (sin θ) sin θ + f (sin θ)

)
cos(2mθ)dθ;

I21 =
2

π

∫ π/2

0

1

2
f ′ (sin θ) sin θ cos(2mθ)dθ;
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Next, using (6) and integration by parts, we note the following identity:
∫ π/2

0

f(sin θ)dθ =

∫ π/2

0

f(sin θ)
(
1− sin2 θ

)
dθ

=

∫ π/2

0

f(sin θ) cos θ
d

dθ
sin θdθ

=

∫ π/2

0

f ′(sin θ)
(
sin3 θ − sin θ

)
dθ.

It follows that I10 = I20. Therefore we obtain

detM ∼ 2I10 (I11 − I21)

Now from Lemma A.1 we have the following identity:
∫ π/2

0

sinp (x) sin(2mx)dx ∼ − sin
(πp

2

)
c(p)m−p−1 as m → ∞; p > −1

where c(p) =
1

2
√
π
Γ

(
p

2
+

1

2

)
Γ(

p

2
+ 1)

Using the series expansion (19), we then obtain

I11 − I21 ∼ −al (1− pl) c(pl) sin
(
π
pl
2

)
m−pl−1

where l is such that pl is the smallest non-even power in the generalized power series
expansion (19). Now by assumption (20), we have pl > −1 and also note that

(1− pl) c(pl) sin
(
π
pl
2

)
< 0 , if pl ∈ (−1, 0) ∪ (1, 2) ∪ (4, 6) . . .

> 0, if pl ∈ (0, 1) ∪ (2, 4) ∪ (6, 8) . . .

Assuming I10 < 0, we have detM > 0 provided that (22) holds.

4. Power force law. In this section, we present more explicit results for the force
where the attraction and repulsion are given by power laws. That is, we consider
the interaction force F (r) = rp − arq, corresponding to

f(r) = rp−1 − arq−1 with p < q, a > 0. (24)

The constant a can be scaled out, and so it does not affect stability. For convenience,
we will choose a such that the ring radius is precisely R = 1

2 . From (6) we then
obtain:

a =

∫ π/2

0 sinp+1 θdθ
∫ π/2

0
sinq+1 θdθ

=
Γ (1 + p/2)Γ(3/2 + q/2)

Γ(3/2 + p/2)Γ (1 + q/2)
.

We also evaluate
∫ π/2

0

(Rf ′ (2R sin θ) sin θ + f (2R sin θ)) dθ

=
p+ 1

2

∫ π/2

0

sinp−1 θdθ − a
q + 1

2

∫ π/2

0

sinq−1 θdθ

=(p− q) (pq − 1)

√
πΓ(p/2)

8Γ(3/2 + p/2)
.

From Theorem 3.1, it follows that the ring is short-wave stable provided that that
pq > 1 and p > 0.



RING PATTERNS AND BIFURCATIONS IN SWARMS 9

(a)

(b)

Figure 2. (a) Stability region of a ring solution for the force law
(24). Instability boundaries corresponding to m = 3, 4, 5 and m =
∞ are indicated. Crossing any of these boundaries triggers the
corresponding instability. The stable region is bounded by the
instability of mode 3 from above the curve pq = 1 (corresponding
to instabilities of modes m → ∞) from below. (b) Bifurcation
diagram for interaction force (24) near the dot shown in (a), with
p = 0.5, and as q is varied. The solid curve is derived from weakly
nonlinear analysis while the dots are simulations of (2).

Next, we compute det(M(m)), using the key integral (A.1) derived in the Ap-
pendix. Omitting the details, we obtain the following polynomial expressions for
when det(M(m)) = 0, for the low modes m = 2, 3, . . . :

m = 2 : 7 + 38(p+ q) + 12pq + 3(p2 + q2) + 2
(
pq2 + p2q

)
− p2q2 = 0

m = 3 : 723− 594(p+ q)− 27(p2 + q2)− 431pq + 106
(
pq2 + p2q

)

+ 19
(
p3q + pq3

)
+ 10

(
p3q2 + p2q3

)
+ 6

(
p3 + q3

)
+ p3q3 = 0.

The instability thresholds for modes m ≥ 4 can be analogously computed, each
resulting in a symmetric polynomial in p, q of degree 2m. Each of these polynomials
corresponds to the stability boundary of mode m. Using Maple, we have plotted
each of these boundaries for m = 2, 3, 4, 5, as well as the stability boundary pq = 1
for large modes m. These are shown in Figure 2(a).

5. Weakly nonlinear Analysis: Low mode bifurcations. Theorem 2.1 char-
acterizes the conditions for a ring solution to be stable in the limit N → ∞. That is,
the eigenvalues of the matrix M(m) defined in (9) must be both non-positive. For a
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given mode m, when one of the eigenvalues becomes zero, the stability changes. In
this section, we study the general bifurcation dynamics near a ring solution using
weakly nonlinear analysis. As such, we take the continuum limit of (2) as described
in [30]:

x′(θ, t) =
1

2π

∫ 2π

0

f(ν, |x(θ, t)− x(θ
˜
, t)|)(x(θ, t) − x(θ

˜
, t))dθ

˜
, (25)

where ν is considered to be the bifurcation parameter and x′(θ, t) denotes ∂x(θ, t)/∂t.
We are particularly interested in the critical value of ν, i.e. ν = ν0, which yields a
zero determinant of M(m), with the corresponding ring steady state solution

x(θ, t) = u0(θ, t) = Reiθ. (26)

For the sake of brevity, in the rest of this section we use the notation x for x(θ, t),
x
˜
for x(θ

˜
, t), f for f(ν0, |x(θ, t)−x(θ

˜
, t)|), ∂νf for ∂f/∂ν evaluated at (ν0, |x(θ, t)−

x(θ
˜
, t)|), and f ′, f ′′, etc. for the corresponding derivatives of f with respect to the

second argument evaluated at (ν0, |x(θ, t) − x(θ
˜
, t)|).

Let 0 ≤ ǫ ≪ 1 be an expansion parameter near a bifurcation point u0,

x(θ, t) = u0(θ, t) + ǫu1(θ, t) + ǫ2u2(θ, t) + ǫ3u3(θ, t) + · · · , (27)

ν = ν0 + ǫν1 + ǫ2ν2 + · · · . (28)

At order O(ǫ), we obtain the linear equation

L(u1, ū1) =
1

π

∫ π

0

(f ′R sin∆θ + f)(u1 − u
˜
1)d∆θ

− e2iθ

π

∫ π

0

f ′R sin∆θe2i∆θ(ū1 − ū
˜
1)d∆θ

=− ν1I0e
iθ, with I0 =

4

π

∫ π/2

0

R∂νf sin2 ∆θd∆θ

(29)

and ∆θ = (θ
˜
− θ)/2. The solution to (29) is u1 = b1e

i(m+1)θ + b2e
−i(m−1)θ + b0e

iθ,

where [b1, b2]
t ∈ N (M(m)) and b0 = ν1c1, with c1 = −I0/(I1(0) + I2(0)). This is

the eigenvalue problem for the linear stability of the ring solution. Typically one
measures the amplitude that the solution deviates either radially as |b2 + b1| or
tangentially as |b2 − b1|.
At order O(ǫ2), we obtain

L(u2, ū2) =

− ν1 (b1, b2) ·
(

2c1I3(m) + ∂νI1(m) −2c1I4(m) + ∂νI2(m)
−2c1I4(m) + ∂νI2(m) 2c1I3(−m) + ∂νI1(−m)

)
·
(

ei(m+1)θ

e−i(m−1)θ

)

−
(

b21I5(m) + b22I6(m)− b1b2I7(m)
b21I5(−m) + b22I6(−m)− b1b2I7(−m)

)t

·
(

ei(2m+1)θ

e−i(2m−1)θ

)

−
(
ν2I0 +

ν21
2
∂νI0 +

(
b1b2I4(m) + b21I3(m) + b22I3(−m)

))
eiθ,

(30)
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where

I3(m) =
4

π

∫ π/2

0

(2Rf ′′ sin∆θ + 3f ′2(m+ 1)∆θ sin∆θd∆θ,

I4(m) =
4

π

∫ π/2

0

(2Rf ′′ sin∆θ + f ′) sin (m− 1)∆θ sin (m+ 1)∆θ sin∆θd∆θ,

I5(m) =
2

π

∫ π/2

0

(
3

2
f ′ +Rf ′′ sin∆θ) sin2 (m+ 1)∆θ sin (2m+ 1)∆θd∆θ,

I6(m) =
2

π

∫ π/2

0

(−1

2
f ′ +Rf ′′ sin∆θ) sin2 (m− 1)∆θ sin (2m+ 1)∆θd∆θ,

I7(m) =
2

π

∫ π/2

0

(3f ′ + 2Rf ′′ sin∆θ) sin (m− 1)∆θ sin (m+ 1)∆θ sin (2m+ 1)∆θd∆θ.

Applying the Fredholm alternative to ensure that the right hand side of (30) is
in the range space of the linear operator L determines a unique solution u2 =
b21c3e

i(2m+1)θ+b21c4e
−i(2m−1)θ+(ν2c1+b21c2)e

iθ, subject to the condition that ν1 = 0,
where

c2 = −−I1(m)I4(m)/I2(m) + I3(m) + I1(m)2I3(−m)/I2(m)2

I1(0) + I2(0)
,

[
c3
c4

]
= −M(2m)−1 ·

[
I5(m) + I1(m)2I6(m)/I2(m)2 + I1(m)I7(m)/I2(m)

I5(−m) + I1(m)2I6(−m)/I2(m)2 + I1(m)I7(−m)/I2(m)

]

(31)

Finally, at O(ǫ3), we use the equation L(u3, ū3) = R3(u0, u1, u2, ν2), to determine
the relation between ν2 and b1, b2. Applying the Fredholm alternative to this
equation,

Im
(
R3(u0, u1, u2, ν2)(I1(m)e−i(m+1)θ + I2(m)ei(m−1)θ)

)
= 0, (32)

which yields

ν2 = κb21

κ =
τ4I1(m)I2(m)− τ3I2(m)2

τ1I2(m)− τ2I1(m) + I2(m)2∂νI1(m)− 2I1(m)I2(m)∂ν + I1(m)2∂νI1(−m)
,

(33)

where

τ1 = 2c1I2(m)I8(m) + 2c1I1(m)I9(m)

τ2 = −2c1I1(m)I8(−m)− 2c1I2(m)I9(m)

τ3 = 2c2I8(m) + 2c2I1(m)I9(m)/I2(m)

+ c3I1(m)I11(m)/I2(m) + c3I10(m) + c4I1(m)I11(−m)/I2(m) + c4I12(−m)

+ I14(m) + I1(m)I15(m)/I2(m) + I1(m)2I16(m)/I2(m)2 + I1(m)3I13(−m)/I2(m)3

τ4 = −2c2I1(m)I8(−m)/I2(m)− 2c2I9(m)

− c4I11(−m)− c4I1(m)I10(−m)/I2(m) + c3I1(m)I11(m)/I2(m) + c3I12(m)

− I1(m)3I14(−m)/I2(m)3 − I1(m)2I15(−m)/I2(m)2 − I1(m)I16(−m)/I2(m)− I13(m)
(34)
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and

I8(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ + 3f ′) sin2 (m+ 1)∆θ sin∆θd∆θ,

I9(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ + f ′) sin (m− 1)∆θ sin (m+ 1)∆θ sin∆θd∆θ,

I10(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ + 3f ′) sin2 (m+ 1)∆θ sin (2m+ 1)∆θd∆θ,

I11(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ + 3f ′) sin (m− 1)∆θ sin (m+ 1)∆θ sin (2m+ 1)∆θd∆θ,

I12(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ + f ′) sin2 (m− 1)∆θ sin (2m+ 1)∆θd∆θ,

I13(m) =
2

π

∫ π/2

0

(2Rf ′′′ sin∆θ + 3f ′′ − 3f ′

2R sin∆θ
) sin (m− 1)∆θ sin3 (m+ 1)∆θd∆θ,

I14(m) =
2

π

∫ π/2

0

(2Rf ′′′ sin∆θ + 5f ′′ +
3f ′

2R sin∆θ
) sin4 (m+ 1)∆θd∆θ,

I15(m) =
2

π

∫ π/2

0

(
5

3
Rf ′′′ sin∆θ + 2f ′′ − f ′

R sin∆θ
) sin3 (m+ 1)∆θ sin (m− 1)∆θd∆θ,

I16(m) =
2

π

∫ π/2

0

(
5

3
Rf ′′′ sin∆θ + 2f ′′ +

f ′

R sin∆θ
) sin2 (m− 1)∆θ sin2 (m+ 1)∆θd∆θ.

(35)

These calculations allow us to summarize this section with the following theorem:

Theorem 5.1. Let f(ν, r) be an attractive-repulsive kernel, with a parameter ν,
where mode m perturbation is stable for ν < ν0, unstable for ν > ν0 and f(ν0, r)
gives the instability threshold det(M(m)) = 0. Given the following conditions:

1. I0 6= 0
2. I1(0) + I2(0) 6= 0

3. The matrix N(m) =

(
2c1I3(m) + ∂νI1(m) −2c1I4(m) + ∂νI2(m)
−2c1I4(m) + ∂νI2(m) 2c1I3(−m) + ∂νI1(−m)

)
has

nonzero determinant.
4. The matrix M(2m) has nonzero determinant.
5. The denominator of κ in (33) is nonzero.

Then we have a pitchfork bifurcation for solutions of (25) at ν = ν0, with bifur-
cation coefficient defined as either

ν2/|b1 + b2|2 = κI2(m)2/(I1(m)− I2(m))2 (radially), or

ν2/|b1 − b2|2 = κI2(m)2/(I1(m) + I2(m))2 (tangentially),

where ν2 and κ are defined in (33).

With this theorem, we are able to say that the bifurcation type for the kernel
f(ν, r) = r−0.5 − νrν−1 at ν0 ≈ 4.9696 is pitchfork with bifurcation coefficient
ν2/|b1 + b2|2 ≈ 84.18. We can see the details of the pitchfork bifurcation in Figure
2, also refer to [17]. In contrast, we can re-examine the stability of collapsing rings
with power law f(r) = rν−2, with ν > 2, studied in [31]. We can conclude that this
is not a pitchfork bifurcation and moreover it is condition (4) in theorem 5.1 that is
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Figure 3. Bifurcations of a ring into multiple rings as a function
of N , using f(r) = 1 − r2 + 0.35/r. Top: steady states with N
as indicated. These were computed by evolving (2) starting from
random initial conditions. A part of the annulus-type solution is
shown at t = 25, 000. Bottom: The bifurcation diagram with N on
the horizontal axis. The vertical axis shows the distribution of the
radii of the particles obtained by computing a steady state up to
t = 5000 using random initial conditions.

not satisfied. Whenever M(m) has zero determinant, M(2m) has zero determinant
as well. In this situation, the stable scaled ring solution collapses sharply to clusters
that form vertices of a regular simplex once the bifurcation parameter ν passes its
critical value.

6. High mode bifurcations: ring to annulus. In Theorem 3.1 we characterized
the stability of the ring with respect to high modes. In particular, we showed that
if f(r) = O(rp) as r → 0, then p > −1 is the first necessary condition. A natural
question is what kind of bifurcation can occur when this condition fails. To answer
this question, we concentrate on the following function f(r) :

f(r) = f0(r) +
1

r
δ with δ ≪ 1, (36)

where we assume that (36) with δ = 0 admits a stable ring solution. In particular,
we assume that f0(r) satisfies the conditions of Theorem 3.1 to guarantee short-
wave stability of a ring when δ = 0. To motivate the discussion, Figure 3 shows a
numerical computation of the steady state for f(r) = r− 1+ δ

r for several values of
N and with δ = 0.35. Note that when N = 80, the steady state appears to converge
to a simple ring solution, which on the surface appears to contradict the condition
(20) of Theorem 3.1. This discrepancy is due to the finiteness of N. Indeed, when
N is increased to 100, the steady state consisting of two rings begins to emerge. As
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N is increased further, complex patterns emerge consisting of more and more rings.
The bifurcation to k−ring pattern appears to take place when the mode m = N/k
first becomes unstable. We start by characterizing the first such transition, when
the two-ring pattern first bifurcates from a single ring. We summarize the result as
follows.

Proposition 1. Suppose that f(r) is given by (36). Let N = Nc be given by

Nc =
π

4
exp

(α
δ
− γ − 1

)
(37)

where

α := −4R

∫ π/2

0

(Rf ′
0 (2R sin θ) sin θ + f0 (2R sin θ)) dθ (38)

and where R satisfies (6). Then the ring is stable for all N < Nc and is unstable
for N > Nc. More explicitly, we have

Nc ∼
π

4
exp(α1 − γ − 1) exp

(α0

δ

)
(39)

where α = α0 + δα1 +O(δ2) with

α0 = −
∫ π/2

0

4R2
0f

′
0 (2R0 sin θ) sin θ + 4R0f0 (2R0 sin θ) dθ (40)

α1 = −
∫ π/2

0

16R0R1f
′
0 (2R sin θ) sin θ + 8R2

0R1f
′′
0 (2R0 sin θ) sin

2 θ + 4R1f0 (2R sin θ) dθ

(41)

and R = R0 + δR1 +O(δ2) with

0 =

∫ π/2

0

f0(2R0 sin θ) sin
2(θ); (42)

0 =
1

2R0
+ 2R1

∫ π/2

0

f ′
0(2R0 sin θ) sin

3(θ). (43)

In the limit N → ∞, the steady state consisting of a thin annulus eventually
forms, as illustrated in Figure 3. These numerical simulations also suggest that
the width of such an annulus appears to be well-approximated by the width of the
double-ring solution that first arises when N crosses Nc. The distance between the
two rings of such a solution can be asymptotically computed as follows.

Proposition 2. Using the notation as in Proposition 1, suppose α > 0. Then in
the large N limit the particle system admits a double-ring steady state consisting of
two rings of radii R− ε and R+ ε with

ε ∼ 4eR exp (−α/δ) (44)

∼ 4eR0 exp (−α1) exp (−α0/δ) . (45)

Before proving Propositions 1 and 2, consider the following example:

f(r) = 1− r + δ/r.

Formulas (40) to (43) yield

R0 =
3π

16
; R1 =

2

π
; α0 =

3π2

64
; α1 = 5
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so that (39) and (45) then yields

Nc ∼
π

4
e4−γ exp

(
3π2

64δ

)
; ε ∼ 3π

4
e−4 exp

(
−3π2

64δ

)
as δ → 0. (46)

Taking δ = 0.35, this yieldsNc ∼ 90.29 and 2ε ∼ 0.01975.A more accurate estimate,
valid to all algebraic orders in δ, is given by (37, 44) and yields Nc ∼ 80.63 and
2ε ∼ 0.03331. This agrees very well with full numerical simulation of the flow (2) as
Figure 3 demonstrates: taking N = 80, random initial conditions were observed to
converge to a ring solution; on the other hand, the double-ring structure is clearly
visible when N = 100. Moreover, the distance between the inner and outer ring
of the resulting annulus is about 0.03, in line with the theoretical prediction of
2ε ∼ 0.033.

Proof of Proposition 1. Using the notation of Theorem 2.1, we recall that

I1(m− 1) = 4

N/2∑

k=1

G1(
πk

N
) sin2

(
mπk

N

)
, (47)

I2(m) = 4

N/2∑

k=1

G2(
πk

N
)

[
sin2

(
πk

N

)
− sin2

(
mπk

N

)]
. (48)

We set m = N
2 in (47); then sin2

(
mπk
N

)
= sin2

(
πk
2

)
=

{
0, k even
1, k odd

so that (47)

becomes

I1(m− 1) = 4

N/2∑

k odd

G1(
πk

N
) = I10 + I11

where we define

I10 =
4

N

N/2∑

k odd

Rf ′
0

(
2R

∣∣∣∣sin
πk

N

∣∣∣∣
) ∣∣∣∣sin

πk

N

∣∣∣∣+f0

(
2R

∣∣∣∣sin
πk

N

∣∣∣∣
)
; I11 =

δ

NR

N/2∑

k odd

1

sin πk
N

.

(49)
We estimate

I10 ∼ 2

π

∫ π/2

0

(Rf ′
0 (2R sin θ) sin θ + f0 (2R sin θ)) dθ

and to isolate the singularity in I11 we write

I11 =
δ

NR

N/2∑

k odd

(
1

sin πk
N

− N

πk

)
+

δ

πR

N/2∑

k odd

1

k
.

Next, we use the identity

M∑

k=0

1

2k + 1
=

1

2
lnM +

γ

2
+ ln(2) +O(M−1)

and approximate

2

N

N/2∑

k odd

(
1

sin πk
N

− N

πk

)
∼ 1

π

∫ π/2

0

(
1

sin(θ)
− 1

θ

)
dθ =

1

π
(2 ln 2− lnπ)
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so that

I11 ∼ δ

2πR
(lnN + ln(4/π) + γ) .

Similarly, we find that

I2 = 4

N/2∑

k=1

G2(
πk

N
) sin2

(
πk

N

)
− 4

N/2∑

k odd

G2(
πk

N
) = I20 + I21

where

I20 ∼ 2

π

∫ π/2

0

Rf ′ (2R sin θ) 2 sin3 θ −Rf ′
0 (2R sin θ) sin θdθ; (50)

I21 = I11. (51)

Next we further simplify I20 as follows. From (6) we have
∫ π/2

0

f0(2R sin θ) sin2 θdθ = − δ

2R
(52)

Use integration by parts and (52) to obtain

∫ π/2

0

f ′ (2R sin θ) sin3 θdθ =

∫ π/2

0

f ′
0 (2R sin θ) sin3 θdθ − δ

4R2

=

∫ π/2

0

f ′
0 (2R sin θ) sin θdθ −

∫ π/2

0

d

dθ
(f0(2R sin θ))

sin θ cos θ

2R

=

∫ π/2

0

f ′
0 (2R sin θ) sin θ +

1

2R

∫ π/2

0

f0 (2R sin θ) dθ +
δ

4R2
(53)

Substituting (53) into (50) yields

I20 = I10 +
δ

Rπ
.

In summary, we obtain I2 = I1 +
δ

Rπ so that

detM = I21 − I22 ∼ − δ

Rπ
(2I1 +

δ

Rπ
).

It follows that the threshold detM = 0 occurs when 2I1 +
δ
Rπ = 0, or

4R

∫ π/2

0

(Rf ′
0 (2R sin θ) sin θ + f0 (2R sin θ)) dθ + δ (lnN + ln(4/π) + γ + 1)

Solving for Nc = N yields (37). Expanding (37) in δ yields (39).

Proof of Proposition 2. We seek a two-ring equilibrium state of radii Ri, Ro, each
having the same number of particles. Let

Ri = R − ε; Ro = R+ ε.

Then similar to a single ring, and in the limit N → ∞, the radii satisfy

0 =

∫ π/2

0

dθ

[
f(2(R− ε) sin θ)2(R − ε) sin2 θ + f

(
2

√
(R2 − ε2) sin2 θ + ε2

)(
2 sin2(θ)(R + ε)− 2ε

)]

0 =

∫ π/2

0

dθ

[
f(2(R+ ε) sin θ)2(R + ε) sin2 θ + f

(
2

√
(R2 − ε2) sin2 θ + ε2

)(
2 sin2(θ)(R − ε) + 2ε

)]
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Define

I1(ε) :=

∫ π/2

0

f(2(R+ ε) sin θ)2(R + ε) sin2 θdθ;

I2(ε) :=

∫ π/2

0

f

(√
4(R2 − ε2) sin2 θ + 4ε2

)
4R sin2(θ);

I3(ε) :=

∫ π/2

0

f

(√
4(R2 − ε2) sin2 θ + 4ε2

)
4ε cos2(θ);

so that the steady state satisfies

I1(ε) + I1(−ε) + I2(ε) = 0; I1(ε)− I1(−ε) + I3(ε) = 0.

We have

I1(ε) + I1(−ε) = 4R

∫ π/2

0

f(2R sin θ) sin2 θdθ +O(ε2);

I1(ε)− I1(−ε) = 2ε

{∫ π/2

0

4Rf ′(2R sin θ) sin3 θ +

∫ π/2

0

f(2R sin θ) sin2 θ

}

and we simplify

I2(ε) ∼
∫ π/2

0

f(2R sin θ)4R sin2 θ +O(ε2).

For I3 we split off the singularity to write it as I3 = I31 + I32 with

I31 := 4ε

∫ π/2

0

f0(2R sin θ) cos2(θ); I32 := 4δε

∫ π/2

0

(
4(R2 − ε2) sin2 θ + 4ε2

)−1/2
cos2(θ)

Using the asymptotics
∫ π/2

0

(
sin2 θ + ε2

)−1/2
cos2 θ ∼ − ln ε− 1 + ln 4 +O(ε2 ln ε)

we then obtain

I32 = 2δ
ε

R

(
− ln

ε

R
− 1 + ln 4

)
.

In summary, we get

0 ∼
∫ π/2

0

f(2R sin θ) sin2 θdθ; (54)

0 ∼
∫ π/2

0

4Rf ′(2R sin θ) sin3 θ + 2

∫ π/2

0

f0(2R sin θ) cos2(θ) +
δ

R

(
− ln

ε

R
− 1 + ln 4

)
.

(55)

Next we simplify (55) by using identities (53) and (52); this yields (44), from which
(45) follows by expanding in δ.

7. Custom-designer kernels in 2D. In the previous sections our primary focus
was to understand the resulting ground state pattern from a given interaction kernel,
f . In this section we consider the inverse problem of, given a particular pattern,
can one construct interaction kernel(s) who’s ground state will exhibit this pattern?
This problem is exceedingly complex and non-unique in general but here we solve
the following inverse problem: Consider a co-dimension one ground state which
can be approximated by a finite collection of Fourier modes, can one construct an
interaction kernel whose ground state will contain the same set of Fourier modes?
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In three dimensions, this question was recently solved in full (though non-uniquely)
in [37]. In this section, we extend the analysis of [37] to two dimensions. To begin
recall that the eigenvalues of the matrix

M(m) :=

(
I1(m) I2(m)
I2(m) I1(−m)

)

determine the stability of mode m, in that we require strictly negative eigenvalues,
except for the zero eigenvalues that result from rotation and translation invariance of
the ring steady-state. We now reformulate this matrix using the notation introduced
in [38, 37]. For each fixed mode m, we perform a similarity transformation to M(m)
to obtain the matrix

Ω(m) :=
1

2

(
1 1

− 1
m

1
m

)(
I1(m) I2(m)
I2(m) I1(−m)

)(
1 −m
1 m

)
.

Note that this change of variables does not change the sign of the eigenvalues, so
that Ω(m) characterizes the stability of mode m in exactly the same fashion as
M(m) does. By straightforward computation,

Ω(m) :=
1

2

(
I1(m) + I1(−m) + 2I2(m) m(I1(−m)− I1(m))

1
m(I1(−m)− I1(m)) I1(m) + I1(−m)− 2I2(m)

)
.

First, let g(s) := f(
√
2s) and let V (s) denote a potential, i.e. that V ′(s) = −g(s).

By applying the change of variables η = 2θ in the definition of the integrals I1(m)
and I2(m), integrating by parts and using the radius condition for R we discover
that

I1(m) + I1(−m) + 2I2(m) =
2

π

∫ π

0

g
(
R2 −R2 cos(η)

)
(1− cos(η) cos(mη)) dη

+
2

π

∫ π

0

R2g′
(
R2 −R2 cos(η)

)
(1− cos(η))2 (1 + cos(mη)) dη,

I1(−m)− I1(m) = m
2

π

∫ π

0

g
(
R2 −R2 cos(η)

)
(1− cos(η)) cos(mη)dη,

I1(m) + I1(−m)− 2I2(m) = −m2

R2

2

π

∫ π

0

V
(
R2 −R2 cos(η)

)
cos(mη)dη.

Next, define the auxiliary quantities

α =
1

π

∫ π

0

g
(
R2 −R2 cos(η)

)
+R2g′

(
R2 −R2 cos(η)

)
(1− cos(η))2 dη,

g1(η) = R2g′
(
R2 −R2 cos(η)

)
(1 − cos(η))2 − cos(η)g

(
R2 −R2 cos(η)

)
,

g2(η) = g
(
R2 −R2 cos(η)

)
(1− cos(η)) ,

g3(η) = − 1

R2
V
(
R2 −R2 cos(η)

)
.

These allows us to characterize stability in terms of the Fourier coefficients ĝi(m)
of the auxiliary quantities. That is, the matrix Ω(m) becomes

Ω(m) :=

(
α+ ĝ1(m) m2ĝ2(m)
ĝ2(m) m2ĝ3(m)

)
(56)

where

ĝi(m) =
1

π

∫ π

0

gi(η) cos(mη)dη. (57)
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Therefore, for a mode m ≥ 2 to have strictly negative eigenvalues we require that
all of

α+ ĝ1(m) < 0 ĝ3(m) < 0 (ĝ2(m))
2
< (α+ ĝ1(m)) ĝ3(m)

simultaneously hold.
Now, let us fix a ring solution with R = 1 and turn to the task of destabilizing

an odd mode m = 2n+ 1. For this, we take a kernel

f(
√
2s) = g2n+1(s) := c0(1+2(1−s))+

2n− 1

2n
(1+c1)(1−s)2n−2+c1(1−s)2n−1−(1−s)2n

(58)
for some choice of coefficients c0, c1 that are positive. A simple computation then
yields

g3(η) =
cos2n+1(η)

2n+ 1
− 1

2n

[
c1 cos

2n(η) + (1 + c1) cos
2n−1(η)

]
−c0

[
cos(η) + cos2(η)

]
.

Recalling the standard identities

cos2n+1(η) =
1

22n

n∑

k=0

(
2n+ 1

k

)
cos((2n− 2k + 1)η),

cos2n(η) =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑

k=0

(
2n

k

)
cos((2n− 2k)η),

and the orthogonality of the cos(kη), k ∈ N in L2([0, π]) then shows that

ĝ3(2n+ 1) > 0.

In other words, the mode m = 2n+1 is always unstable, independently of the choice
of c0 and c1. Moreover, computing the auxiliary quantities shows that each gi(η) is
a polynomial in cos(η) of degree at most 2n+ 1. Therefore,

ĝi(m) = 0

for all m > 2n + 1 by orthogonality and the above identities. In these cases, the
matrix Ω(m),m > 2n + 1 has eigenvalues λ = α, 0. In other words, if α < 0 then
all modes larger than 2n+1 are neutrally stable. The goal is then simply to choose
c1 (depending on n) and c0 (depending on c1) appropriately so that g2n+1(s) has
all modes m < 2n stable as well. When a kernel g2n+1(s) has all modes less than
2n+ 1 stable, mode 2n+ 1 unstable, and all modes greater than 2n+ 1 neutrally
stable we shall say g2n+1(s) is a primitive kernel for the mode 2n + 1. Using a
kernel as above, we need to check only a finite number of conditions to ensure that
a given choice of c0, c1 results in a primitive kernel.

For instance, if we choose (n, c0, c1) = (1, 0, 1) then it is tedious but routine to
check that

g3(s) = 1 + (1 − s)− (1− s)2

is a primitive kernel for mode 3. Similarly, taking (n, c0, c1) = (2, 0, 1) gives a
primitive kernel for mode 5,

g5(s) =
3

2
(1− s)2 + (1− s)3 − (1− s)4.

In general, following the methods of [37] would show that in general taking c1 =
O(n) and c0 = O(c1/n) results in a primitive kernel for mode 2n + 1, although a
complete proof of this fact is well beyond the scope of this work.
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−1

0

1
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(d)

Figure 4. Steady-states arising from custom-designer kernels us-
ing 200 particles. (a) Pure mode m = 3 instability with g =
g3+1.1158g0. (b) Pure mode m = 4 instability with g = g4+1.3g0.
(c) Pure mode m = 5 with g = g5+1.3g0. (d) Mixed mode m = 3, 5
instability with g = 1.1225g3 + g5 + 1.3g0.

The primitive kernels for an even mode 2n+ 2 ≥ 4 take the form

g2n+2(s) = c0(1+2(1−s))+(1+c1)(1−s)2n−1+c1(1−s)2n−2n+ 2

2n+ 1
(1−s)2n+1; n ≥ 1

(59)
again for appropriate choices of c1 (depending on n) and c0 (depending on c1). As
before,

ĝ3(2n) > 0

regardless of the choices of c0, c1, and Ω(m) has eigenvalues λ = α, 0 for all m >
2n. Thus, we again have only a finite number of conditions to check to guarantee
that a particular choice of c0, c1 results in a primitive kernel for the mode 2n.
Again, straightforward calculations show that the choice (n, c0, c1) = (1, 3, 2) gives
a primitive kernel for mode 4,

g4(s) = 3(1 + 2(1− s)) + 3(1− s) + 2(1− s)2 − 4

3
(1 − s)3.

Lastly, we require a kernel that has a ring of radius R = 1 as a stable steady
state. Using lemma 5.3 in [37], we can prove that

g0(s) = 1 + 2(1− s) + s−
1

4 − µ

where

µ =
1

π

∫ π

0

(1− cosx)3/4 dx ≈ 0.93577

gives precisely such a kernel. This gives us the final ingredient we need in order to
construct kernels with desired instabilities. For instance, if we want a kernel with
only mode 3 unstable, we take a primitive kernel g3(s) for mode 3 and set

g(s) = g3(s) + ǫg0(s).

Then for all ǫ sufficiently small, g(s) has a pure mode 3 instability, i.e. mode 3 is
unstable and all remaining modes are stable. Indeed, we simply take ǫ small enough
so that ĝ(3) > 0. Figure 4 (a) shows an computed example of this construction for
ǫ = 1.1158, i.e. a steady-state resulting from a pure mode 3 instability. Starting
with a different primitive kernel and repeating the same procedure gives a kernel
with a different, pure instability; for instance modes 4 and 5 are shown in 4 (b,c).
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The straightforward generalization of this construction allows us to create kernels
with precisely two unstable modes. For concreteness, suppose we want a kernel that
has mode 3 and 5 instabilities, while all other modes remain stable. We first take
a positive linear combination of a primitive kernel for mode 5 and a stable ring as
before,

g̃(s) := g5(s) + ǫ1g
0(s).

As before, provided ǫ1 > 0 is sufficiently small g̃(s) has a pure mode 5 instability.
We take ǫ1 = 1.3 as in the previous example. Now, take a primitive kernel g3(s) for
mode 3 and set

g(s) =
1

ǫ2
g3(s) + g̃(s).

Then provided ǫ2 > 0 is sufficiently small, g(s) will have a mode 3 instability as
well. Moreover, as the auxiliary quantities g3i (η) associated to the primitive kernel
g3(s) are polynomials of degree at most 3 in cos(η), the choice ǫ2 does not affect the
instability of mode 5, no matter how large or small. This yields a kernel that has
mode 3 and 5 instabilities, while all other modes remain stable as desired. Figure
4(d) shows an example of such a mixed 3+5 mode steady-state.

We remark that the above construction works for all modes ≥ 3; however it does
not work for the mode 2, since the primitive kernel (59) is singular when n = 0. It
remains an open question whether it is possible to design a kernel which destabilizes
mode 2 only.

8. Second order model. Until now we have only considered the ground state pat-
terns of the kinematic model (2) for particle interactions, in particular the particles
have no independent means of self-motility. Here we extend the stability techniques
to the second order models of self-propelled particles such as studied in [20, 10],
which incorporate acceleration. We consider the general system

x′
j = vj ; v′j = g(|vj |)vj +

1

N

∑

k,k 6=j

f (|xj − xk|) (xj − xk) ; (60)

the term g corresponds to the self-propulsion and typically has the form [10],

g(s) = α− βs2.

In [10], a solution consisting of a rotating ring was considered. Such solution has
the form

xj = Reiθ where θ = ωt+ 2πj/N ; vj = ωiReiθ.

Equating real and imaginary parts, we find that the frequency ω and the radius R
satisfy

g(ωR) = 0;

−ω2 =
4

N

N/2∑

k=1

f

(
2R

∣∣∣∣sin
πk

N

∣∣∣∣
)
sin2

(
πk

N

)
. (61)

In the continuum limit, (61) becomes

−ω2 =
4

π

∫ π/2

0

f (2R |sin θ|) sin2 θdθ; g(ωR) = 0.

We now take the perturbation of the form

xj = Reiθ (1 + hj) , hj ≪ 1.
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and we compute,

x′
j = Reθiωi

(
1 + hj +

h′
j

iω

)
;

∣∣x′
j

∣∣ = Rω

(
1 +

1

2

[
hj + hj +

h′
j

iω
−

h′
j

iω

])
;

g(|vj |)vj = Reθig′(Rω)Rω
1

2

[
iωhj + iωhj + h′

j − h′
j

]

x′′
j = Reθi

(
−ω2 − hjω

2 + 2ωih′
j + h′′

j

)

so that the linearized equations become

−hjω
2 + 2ωih′

j + h′′
j = g′(Rω)Rω

1

2

[
iωhj + iωhj + h′

j − h′
j

]

+
∑

k,k 6=j

G1(φ/2)
(
hj − eiφhk

)
+G2(φ/2)

(
hk − eiφhj

)

where G1 and G2 are defined in (12) and φ = 2π(k−j)
N .

As before, we make an ansatz

hj = ξ+(t)e
imθ + ξ−(t)e

−imθ, θ = 2πj/N, m ∈ N

Equating the like terms in eimθ yields

−ξ+ω
2 + 2ωiξ′+ + ξ′′+ = A0

[
iωξ+ + iωξ− + ξ′+ − ξ−

′
]
+ ξ+I1(m) + ξ−I2(m)

where I1 and I2 are defined in (7, 8) and where

A0 = g′(Rω)Rω
1

2
.

Equating the like terms in e−imθ and taking a conjugate yields

−ξ−ω
2 − 2ωiξ′− + ξ′′− = A0

[
−iωξ+ − iωξ− − ξ′+ + ξ−

′
]
+ ξ+I2(m) + ξ−I1(−m).

Setting ξ′± = η±, we obtain the following linear system:

d

dt




η+
η−
ξ+
ξ−


 =




A0 − 2ωi −A0 iωA0 + ω2 + I1(m) iωA0 + I2(m)
−A0 A0 + 2ωi −iωA0 + I2(m) −iωA0 + ω2 + I1(−m)
1 0 0 0
0 1 0 0







η+
η−
ξ+
ξ−




(62)

The solution to this linear system is given by




η+
η−
ξ+
ξ−


 = eλt




a
b
c
d


 where λ is an

eigenvalue of the 4x4 matrix in (62). By eliminating c and d we then obtain the
following system that the eigenvalue λ must satisfy:

λ2v = M1vλ+M0v
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Figure 5. Dynamics of the 2nd order model (60) with N = 50,
g(s) = 1 − s2 and f(r) = −rp, with p as indicated. Row 1-3:
The initial conditions are taken to be a slight random perturbation
of a ring of radius one rotating counterclockwise. Row 4: Initial
positions and velocities are taken to be random inside a unit square.

where v = (a, b)t and where

M1 =

(
A0 − 2ωi −A0

−A0 A0 + 2ωi

)
;

M0 =

(
iωA0 + ω2 + I1(m) iωA0 + I2(m)
−iωA0 + I2(m) −iωA0 + ω2 + I1(−m)

)
; A0 = g′(Rω)Rω

1

2

Example 1. Consider f(s) = −1; g(s) = α− βs2. Then

ω = 1, R =
√
α/β.

Moreover, I1(m) = − 4
π

∫ π/2

0 sin2((m + 1)θ)dθ = −1; I2(m) = 0, A0 = −α. Com-
puting the characteristic polynomial of (62) then yields

λ
(
λ3 + 2αλ2 + 4λ+ 4α

)
= 0.

Therefore Re(λ) ≤ 0, by the winding number test. It follows that the ring is stable
for all choices of α, β > 0.

Example 2. Take f(s) = −asp; we will choose the constant a to make R = 1
2

to simplify the computations. Then a, ω satisfies:

ω2 =
4a

π

∫ π/2

0

sin2+p θdθ; ω = 2
√
α/β.

Now we have ∫ π/2

0

sin2+p θdθ =

√
π

2

p+ 1

p+ 2

Γ(p2 + 1
2 )

Γ(p2 + 1)
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Figure 6. The stability with respect to modes m = 2 . . . 5 as a
function of p for the rotating ring of Example 2. All modes are
stable if and only if p ∈ (0, 2).

which yields

ω = 2
√
α/β, a = 2α/β

√
π
Γ(p2 + 1)

Γ(p2 + 1
2 )

p+ 2

p+ 1
, R =

1

2
.

Next we consider the stability. We have

I1(m) = −4a

π

(p
2
+ 1
)∫ π/2

0

sinp θ sin2((m+ 1)θ)dθ;

I2(m) ∼ −4a

π

(p
2

)∫ π/2

0

sinp θ
[
sin2(θ)− sin2(mθ)

]
dθ;

A0 = −α

Figure 6 shows the Re(λ) corresponding to the first few modes m = 2 . . . 5. As
p is increased from zero, the instability is first observed when p crosses 2. This
instability threshold happens when λ crosses zero at which point det(M0) = 0 or

ω4 + ω2I1(m) + I1(−m)) + I1(m)I1(−m)− I2(m)2 + iwA0(I1(−m)− I1(m)) = 0

This is only possible if

I1(m) = I1(−m) and ω4 + ω22I1(m) + I21 (m)− I22 (m) = 0. (63)

From Lemma A.1, the condition I1(m) = I1(−m) is satisfied if and only if p is even
and p

2 < m− 2. In this case we obtain

I1(m) = I1(−m) = −α/β
(p+ 2)

2

p+ 1
; I2(m) = −α/β

p2

p+ 1
p is even

and moreover the second condition in (63) is then automatically satisfied.
Another type of instability occurs when p < 0, as illustrated in Figure 6. This is

due to a Hopf bifurcation. For example, taking α, β = 1, the mode m = 3 undergoes
a Hopf bifurcation when p is decreased past ph ≈ −0.9405 with λ ≈ 0.08044i. All
higher modes m also undergo a Hopf bifurcation for p < 0. In fact, the ring is

high wave number unstable for p < 0 and breaks up, as confirmed via numerical
simulations.
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9. Discussion. We investigated the stability of a ring pattern in a two-dimensional
aggregation model. We extended the stability theory to the rotating ring state for
the second-order models of self-propelled particles. Some of the results were first
published in [17] without proofs. Here we provide the detailed derivations. We also
extended the results of [37, 38] on custom kernels from three to two dimensions.

There are two basic types of instabilities that can occur: a low mode instability
which leads to curve deformation, and a high-mode instability which can lead to a
complete disintegration of the ring. We analyzed both types of instabilities in detail.
We clarified the shape of the bifurcation corresponding to a low-mode instability.
Using weakly nonlinear analysis, we derived a set of conditions for when such a
bifurcation is a pitchfork.

The high-mode instability depends on the local behaviour of the force F (r) near
r = 0. If the leading order behaviour is F (r) ∼ arp as r → 0 where a > 0, then we
show that a necessary (but not sufficient) conditions for stability of a ring is that
p > 0. Recently, it was shown in [1] that the Hausdorff dimension of the steady state
in two dimensions is at least 1 − p provided that −1 ≤ p ≤ 1 which is consistent
with our analysis of the high-mode perturbations. The threshold case p = 0 is
particularly interesting: as we show in Proposition 1, in this case it is possible for
a discrete ring of N particles to be stable for very large N , although it is unstable
in the continuum limit. Moreover as N is increased multiple “bifurcations” in N
are observed, from single to multiple rings to a continuum “thin annulus” (Figure
3). The density of the resulting annulus was recently analyzed in [16]; it was shown
that in the threshold case p = 0, the density blows up near the boundaries of the
annulus.

A key open question is to study the stability of co-dimension two patterns (for
stability of co-dimension zero patterns consisting of “black holes”, see [12] in one
dimension and [16, 31] in two dimensions). Many such steady states can be con-
structed analytically; see for example [16]. Unlike the the ring patterns, there is no
known unstable co-dimension two patterns; they are difficult to compute numer-
ically since the simulations typically rely on the ODE particle formulation which
will diverge away from any unstable pattern.

For the second-order models, double-mill formations are commonly observed es-
pecially when the repulsion is relatively weak at the origin [10]. It is an open
question to analyze the stability of such double-mills.

Appendix A. The key integral.

Lemma A.1. Let

I(p,m) :=

∫ π/2

0

sinp (x) sin2(mx)dx; with p > −3, m ∈ N.

This integral has the following representations.



26 A. L. BERTOZZI, J. VON BRECHT, T. KOLOKOLNIKOV, H. SUN AND D. UMINSKY

1. If p 6= −1 and p
2 /∈ N then

I(p,m) =

√
π

4

Γ
(
p
2 + 1

2

)

Γ(p2 + 1)

[
1− (−1)m

Γ(p2 + 1)2

Γ(p2 + 1 +m)Γ(p2 + 1−m)

]
(64)

=

√
π

4

Γ
(
p
2 + 1

2

)

Γ(p2 + 1)

[
1 +

sin
(
π p

2

)
Γ(p2 + 1)2

π

Γ
(
m− p

2

)

Γ(m+ p
2 + 1)

]
(65)

∼
√
π

4

Γ
(
p
2 + 1

2

)

Γ(p2 + 1)

[
1 +

sin
(
π p

2

)
Γ(p2 + 1)2

π
m−p−1

]
as m → ∞ (66)

2. If p = −1 then

I(−1,m) ∼ 2 logm+O(1) as m → ∞ (67)

3. If p
2 ∈ N then

I(p,m) =





√
π

4

Γ
(
p
2 + 1

2

)

Γ(p2 + 1)
, if m >

p

2√
π

4

Γ
(
p
2 + 1

2

)

Γ(p2 + 1)

[
1− (−1)m

Γ(p2 + 1)2

Γ(p2 + 1 +m)Γ(p2 + 1−m)

]
, otherwise

.

(68)

Proof. Let s = (sin (x))
2
so that the integral becomes

I(p,m) =
1

2

∫ 1

0

sp/2−1/2(1 − s)−1/2 sin2(m arcsin s1/2)ds.

Next, we have the following identity:

sin2(m arcsin s1/2) =
1

2

[
1− 2F1

(
m,−m
1/2

; s

)]

and write I(p,m) = 1
4I1 − 1

4I2 where

I1 =

∫ 1

0

sp/2−1/2(1−s)−1/2ds; I2 =

∫ 1

0

sp/2−1/2(1−s)−1/2
2F1

(
m,−m
1/2

; s

)
ds.

Note that

I1 =

∫ 1

0

sp/2−1/2(1− s)−1/2 =
Γ
(
p
2 + 1

2

)
Γ(12 )

Γ(p2 + 1)
.

To evaluate I2, we make use of the following fundamental relationship (Euler’s
transform) [28]:

∫ 1

0

tc−1(1−t)d−c−1
AFB

(
a1, . . . , aA
b1, . . . , bB

; tz

)
=

Γ(c)Γ(d − c)

Γ(d)
A+1FB+1

(
a1, . . . , aA, c
b1, . . . , bB, d

; z

)
.

(69)
It follows that

I2 =
Γ(p2 + 1

2 )Γ(
1
2 )

Γ(p2 + 1)
3F2

(
m,−m, p

2 + 1
2

1/2, p2 + 1
; 1

)
.

Next, we apply the Saalschütz Theorem [5] which states that if Saalschützian rela-
tion

e+ f = a+ b+ 1− n and n ∈ N
+, (70)
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holds, then the following identity is true:

3F2

(
a, b,−n
e, f

; 1

)
=

(e − a)n (f − a)n
(e)n(f)n

(71)

where
(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) = Γ(a+ n)/Γ(a).

It follows that

3F2

(
m,−m, p

2 + 1
2

1/2, p2 + 1
; 1

)
=

Γ(1/2)2Γ(p2 + 1)2

Γ(12 −m)Γ(p2 + 1−m)Γ(12 +m)Γ(p2 + 1 +m)
.

Using the identity

Γ(z)Γ(−z) =
−π

sin (πz) z

and the fact that m is an integer, we get

I2 = (−1)m
Γ(p2 + 1)Γ(p2 + 1

2 )Γ(
1
2 )

Γ(p2 + 1 +m)Γ(p2 + 1−m)
.

Putting all together we obtain (64, 65, 68).
Asymptotics, p 6= −1: First, note that

Γ(
p

2
+ 1 +m)Γ(

p

2
+ 1−m) = −π

Γ(m+ p
2 + 1)

Γ
(
m− p

2 − 1
) (−1)

m

sin
(
π p

2

) (
m− p

2 − 1
) .

Now using Sterling’s identity, we have

Γ(m+ p
2 + 1)

Γ
(
m− p

2 − 1
) ∼ mp+2 as m → ∞

This yields (66).
For the asymptotics result for p = −1: We write
∫ π/2

0

sin2(mx)

sin (x)
dx =

∫ π/2

0

sin2(mx)

x
dx+

∫ π/2

0

sin2(mx)

(
1

sin (x)
− 1

x

)
dx.

The second integral on the right hand side is bounded independent of m.The first
integral is estimated as

∫ π/2

0

sin2(mx)

x
dx =

∫ mπ/2

0

sin2 y

y
dy ∼ 1

2
ln(m) as m → ∞

(to see the last estimate, note that
∫mπ/2

1
sin2 y

y dy =
∫mπ/2

1
1−sin(2y)

2y dy = 1
2 lnm +

O(1) as m → ∞; on the other hand,
∫ 1

0
sin2 y

y dy is bounded). This proves (67). �
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