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Semiclassical methods in curved spacetime and black hole thermodynamics
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Improved semiclassical techniques are developed and applied to a treatment of a real scalar field in a
D-dimensional gravitational background. This analysis, leading to a derivation of the thermodynamics of
black holes, is based on the simultaneous use of (i) a near-horizon description of the scalar field in terms of
conformal quantum mechanics; (ii) a novel generalized WKB framework; and (iii) curved-spacetime
phase-space methods. In addition, this improved semiclassical approach is shown to be asymptotically
exact in the presence of hierarchical expansions of a near-horizon type. Most importantly, this analysis
further supports the claim that the thermodynamics of black holes is induced by their near-horizon
conformal invariance.

DOI: 10.1103/PhysRevD.71.124040 PACS numbers: 04.70.Dy, 04.50.+h, 04.62.+v, 11.10.Gh

I. INTRODUCTION

The fundamental concepts of black hole thermodynam-
ics have been confirmed within several frameworks since
the 1970s [1], including in string theory [2] and loop
quantum gravity [3]. In particular, the Bekenstein-
Hawking entropy SBH [4] and the Hawking effect [5]
suggest that the horizon plays a fundamental role in black
hole thermodynamics [6,7], an idea that has been empha-
sized in recent approaches [1,8] and generalized to the
holographic principle [9,10]. The connections between
the horizon quantum features and the thermodynamics
include the existence of a near-horizon conformal symme-
try [11–16]. In Ref. [17] we have discussed the emergence
of this thermodynamic behavior, within a semiclassical
approximation with the following building blocks: (i) the
near-horizon conformal symmetry; (ii) the competition of
the field angular-momentum degrees of freedom; and (iii)
the singular dynamics of conformal quantum mechanics
[18,19]. Given the singularity of the conformal potential,
these ingredients suggest the questions:

(i) Is the use of semiclassical techniques justified
within conformal quantum mechanics [20]?

(ii) Is there a preferred order for the angular-momentum
expansion vis-à-vis the radial conformal analysis?

In this paper, we give an affirmative answer to the first
question through an improved semiclassical method, and
show that the stage at which the field angular-momentum
expansion is introduced is immaterial; thus, our framework
justifies the use of these concepts.

In Sec. II we survey the scalar field equations, including
their near-horizon properties. In Sec. III we develop a
generalized version of the semiclassical WKB method in
the presence of a hierarchical expansion—the near-
horizon expansion being a particular case. In Sec. IV we
use phase-space methods in curved spacetime to derive the
spectral function needed for the thermodynamics. Finally,

in Sec. V, we discuss and critically reexamine this
framework.

II. FIELD EQUATIONS

We will consider a real scalar field �, with mass m, in a
D-dimensional spacetime (D � 4), defined through its
action (with the metric conventions of Ref. [21])

S � �
1

2

Z
dDx

�������
�g

p
�g��r��r��� m2�2 � 	R�2�;

(1)

where 	 is its coupling to the curvature scalar R, and the
static spacetime metric is

ds2 � g00	 ~x
dt2 � �ij	 ~x
dxidxj

� �f	r
dt2 � �f	r
��1dr2 � r2d�2
	D�2
; (2)

where d�2
	D�2
 is the metric on SD�2. The derivation of the

thermodynamics requires counting the field modes for the
spectral number function N	!
 leading to the entropy;
thus, this procedure is based on the combinatorics of the
modes of the Euler-Lagrange equation

��� 	m2 � 	R
� � 0 (3)

satisfied by � from the action (1). The quantum field
operator can be expanded as

�	t; ~x
 �
X
s

�as�s	 ~x
e�i!st � ay
s ��

s	 ~x
ei!st�; (4)

where ay
s and as are the creation and annihilation opera-

tors, and �s	 ~x
 is a complete set of orthonormal functions;
the separation of the time coordinate of Eq. (4) turns
Eq. (3) into

	
 	�
� � �ij@i	ln
����������
jg00j

q

@j� � I	0
	r;!
� � 0; (5)
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where 	
	�
 is the Laplace-Beltrami operator with respect to
the spatial metric �ij	 ~x
 and

I 	0
	r;!
 �
!2

f	r

� 	m2 � 	R
: (6)

An important ingredient for our thermodynamic analysis
is the near-horizon expansion, which is defined with re-
spect to the coordinate

x � r � r�; (7)

where r � r� selects the event horizon H from the largest
root of the scale-factor equation f	r
 � 0 (excluding cos-
mological horizons). Given a quantity Q, for a leading-
order s, it will prove useful to use the notation

Q	r
 �
	H 


Q	s

� xs=�	s � 1
, which amounts to performing a

Laurent expansion; in the case of a Taylor series expansion,
Q	s


� stands for the sth order derivative of Q	r
 at H . In
particular, we will consider the parameter

f0
� � f0	r�
; (8)

with f0
� � 0 for the nonextremal case; this entails the

leading-order expansion f	r
 �
	H 


f0
�x�1� O	x
�, and its

corresponding higher orders f0	r
 �
	H 


f0
� and f00	r
 �

	H 

f00
�.

Several paths can be taken to describe the relevant
physics of the modes. The first one involves the Liouville
transformation [22] �	 ~x
 � jg00j

�1=4�	 ~x
, so that Eq. (5)
becomes

	
 	�
�� I	r;!
� � 0; (9)

whose normal form involves the extra terms

I 	1
	r
 � f	r

�
1

16

�
f0	r

f	r


�
2
�

D � 2

4r
f0	r

f	r


�
1

4

f00	r

f	r


�
;

(10)

in addition to the original function I	0
	r;!
 of Eq. (6),
with

I 	r;!
 � I	0
	r;!
 � I	1
	r
: (11)

Finally, the near-horizon expansion of Eq. (9) involves
the conformally-symmetric terms

I 	r;!
 �
	H 


f0
�

	
�2 �

1

16



1

x
�1� O	x
�; (12)

with the same scaling as the Laplace-Beltrami operator and
characterized by the parameter

� �
!
f0
�

: (13)

The second path consists of introducing the spherical
symmetry of the metric (2) directly from the outset, so that
Eq. (5) turns into

f	r
�00 �

�
f0	r
 � 	D � 2


f	r

r

�
�0

�
1

r2
‘̂2� � I	0
	r;!
� � 0; (14)

where �‘̂2 � �‘̂a‘̂a stands for the Laplacian on SD�2,
with its spherical-harmonic eigenfunctions Ylm	�
. In ad-
dition, applying the Liouville transformation [22]

�s	 ~x
 � �nlm	r;�
 � Ylm	�
"	r
unl	r
 (15)

[where s � 	n; l;m
], with "	r
 � �f	r
��1=2r�	D�2
=2, the
radial equation becomes

u00	r
 � I	r;!; $l;D
u	r
 � 0; (16)

in which

I	r;!; $l;D
 � I	r;!
 �
1

f	r

l	l � D � 3


r2
(17)

�
I	0
	r;!


f	r

�

��
1

f	r

� 1

�
�2 �

1

4

�
1

r2
� Rrr

�
1

4

�
f0	r

f	r


�
2
�

1

f	r

$l;D

r2
(18)

includes the terms I	r;!
 associated with the radial
Liouville transformation, while

$l;D � l	l � D � 3
 � �2 �

	
l �

D � 3

2



2

(19)

is the angular-momentum coupling. In Eqs. (18) and (19),
� � 	D � 3
=2 and

Rrr � �
1

2

f00	r

f	r


�
	D � 2


2r
f0	r

f	r


(20)

is the radial component of the Ricci tensor for the metric
(2).

The most important property of Eq. (18) is that its near-
horizon expansion,

I 	r;!
 �
	H 


	
�2 �

1

4



1

x2
�1� O	x
�; (21)

is conformal because I	r;!
 has the same scale dimension
as the second-order derivative in Eq. (16). Comparison of
Eqs. (12) and (21) shows that: (i) the scale dimension is
changed from 1=x to 1=x2; and (ii) the numerical term has
changed from 1/16 to 1/4. The first point is due to a
rearrangement of factors: Eqs. (12) and (21) describe the
same physics within different coordinate representations
of conformal quantum mechanics. The second, subtler
point is crucial for the counting of modes, as will be seen
in Secs. III and IV.

Finally, including the angular momentum, the near-
horizon expansion of Eq. (17) is
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I	r;!; $l;D
 �
	H 


��
!2

	f0
�


2 �
1

4

�
1

x2
�

$l;D

f0
�r2�

1

x

�
� �1� O	x
�; (22)

which displays the properties: (i) the leading term is the
strong-coupling potential

Veff	x
 �
	H 


�

	
�2 �

1

4



1

x2
�1� O	x
� (23)

of conformal quantum mechanics [17]; (ii) the angular-
momentum term is still required for the correct statistical
counting of modes leading to the thermodynamics [17].

III. NEAR-HORIZON GENERALIZED
WKB FRAMEWORK

We will consider the effective problem obtained after
separation of the time coordinate, which consists of a
d-dimensional equation (with spacetime dimensionality
D � d � 1)

	
 	�
�� I	 ~x
� � 0: (24)

A. Covariant WKB method: General formulation

Our goal is to select a WKB wave vector that would
reproduce the original Eq. (24) as closely as possible.
Without loss of generality, one can start from a WKB-
type solution

�WKB	 ~x
 � A	 ~x
 exp

"
i
Z ~x

kj	 ~x0
dx0j
#
; (25)

in which the wave number kj	 ~x
 and amplitude A	 ~x
 are
real. This is known to be a first-order approximation in an
expansion with respect to the ‘‘small’’ parameter �h but may
fail to be an exact solution of the problem (24). However,
defining

~I	 ~x
 �k ~k	 ~x
 k2� �jh	 ~x
kj	 ~x
kh	 ~x
; (26)

the wave function (25) satisfies the exact equation

	
 	�
�WKB � �~I	 ~x
 � Q	 ~x
��WKB � 0; (27)

which follows by enforcing the conservation of the ‘‘effec-
tive probability current’’ jh � A2kh:

rj��
jhA2kh� �

1����
�

p @j��
jh ����

�
p

A2kh� � 0; (28)

thus suppressing the terms associated with imaginary co-
efficients, and leading to

Q	 ~x
 �
	
	�
A	 ~x


A	 ~x

: (29)

Traditionally, the function Q	 ~x
 in Eq. (29) is viewed as
the ‘‘error’’ in approximating �	 ~x
 with �WKB	 ~x
, with

applicability limited by jQ	 ~x
j �k ~k	 ~x
 k2 . However, for
the near behavior x � 0, a modified WKB approach, in the
style first proposed by Langer [23], may be needed. We
will consider a generalized covariant scheme that expands
the range of applications and permits a treatment of the
coordinate singularity. In this proposal, the additional term
Q	 ~x
 in Eq. (27) is absorbed by the original function I	 ~x

in Eq. (24), in such a way that �WKB	 ~x
 � �	 ~x
; thus,
from Eqs. (24) and (27) it follows that

~I	 ~x
 � I	 ~x
 � Q�~I�	 ~x
; (30)

which is an auxiliary equation, where Q	 ~x
 depends on the
unknown ~I	 ~x
 and its derivatives. Thus, the improved
WKB method amounts to the replacement I	 ~x
 ! ~I	 ~x
,
where the subtraction of the ‘‘quantum potential’’ Q	 ~x

generates an effective potential �~I	 ~x
 that captures the
relevant physics. In this viewpoint, Eqs. (26) and (28)–(30)
constitute a set of coupled partial differential equations;
even though an exact solution to this combined system is
not generally available, a systematic approximation
scheme can be developed as follows. Specifically,
Eq. (30) is taken as the starting point of a successive-
approximation scheme

~I 	n
	 ~x
 � I	 ~x
 � Q�~I	n�1
�	 ~x
; (31)

which begins at zeroth order (n � 0) with the standard
WKB approximation

~I 	0
	 ~x
 � I	 ~x
: (32)

We now turn to the development of a novel approximation
framework, which follows when this scheme is applied
concurrently with an expansion of the near-horizon type.

B. Generalized WKB framework in the presence of a
hierarchical expansion

As discussed throughout this paper, the emergence of
black hole thermodynamics is governed by the near-
horizon behavior of the metric (2), which can be displayed
by means of an expansion with respect to the coordinate x
of Eq. (7). The existence of an expansion of this kind
furnishes a hierarchy, which organizes the relevant physics
with respect to powers of the variable x, starting with the
dominant physics for the leading order. Such a hierarchical
expansion can be conveniently applied concurrently with
the (covariant) WKB approach of the previous subsection
to provide a systematic modified WKB approach. As we
will show next, within the ensuing hierarchical WKB
framework, the first-order approximation (n � 1) in
Eq. (31) becomes asymptotically exact with respect to x �
0, so that

~I	 ~x
 � ~I	1
	 ~x
 � I	 ~x
 � Q�I�	 ~x
; (33)
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where � stands for the hierarchical expansion [with the

near-horizon case being �
	H 


].
The dominant physics is described by the leading orders

of the building blocks of Eq. (24): I	x
 and 	
	�
. In the
hierarchical WKB framework, the relevant expansion vari-
able is x, which we choose with dimensions of length.
Then, the leading scale dimensions of I	x
, 	
	�
, and other
variables can be identified from the homogeneous degree
of the leading-order terms, under a rescaling x ! )x.
Specifically, the dimension � 	
	�
� � �p can be extracted
from

	
	�
F	x


F	x

� "	s
xp; (34)

while �I	x
� � �q is defined by

I 	x
 � cxq: (35)

In Eq. (34), the test function F	x
 admits the expansion
F	x
 � F	s
xs=�	s � 1
, while "	s
 is a normalization fac-
tor that depends on the dimension parameter s associated
with F	x
. The scale dimension of Q	x
 can be determined
from Eqs. (29) and (34) (with A � F),

Q	x
 � "	s
xp; (36)

where the normalization function "	s
 is to be computed
from the specific expansion of the operator 	
	�
 with
respect to x; thus, the ‘‘quantum potential’’ Q	x
 has the
same scale dimension, �p, as the Laplace-Beltrami opera-
tor. As a result, Eq. (30) defines the scale dimension of
~I	x
 by selecting the leading order, i.e., �~I	x
� �
�minfp; qg.

In addition to the scale dimension displayed in Eq. (36),
it is necessary to determine the normalization prefactor
"	s
, whose functional form can be computed from the
derivatives in Eq. (29). However, the actual value of s
requires the use of the continuity condition (28), combined
with Eq. (26) (see the near-horizon expansion in the next
subsection).

The nature of the expansion leads to three possible
scenarios from a comparison of the scale dimensions of
I	x
 and 	
	�
: regular case, defined by q > p, so that the
Laplace-Beltrami operator yields the dominant physics
near x � 0; properly singular case, defined by q < p, so
that I	x
 is dominant as x � 0; marginally singular case,
defined by q � p, so that I	x
 and the Laplace-Beltrami
operator [along with the quantum potential Q	x
] compete
at the same order. As for the solutions, for the regular case,
they are of power-law free-particle type as x � 0; in addi-
tion, for the singular cases q � p, asymptotically exact
WKB solutions can be found by:

(1) The standard WKB method, for the properly singular
case. In this method, the required effective potential

�~I	 ~x
 only involves the term �I	 ~x
, with negli-
gible Q	 ~x
.

(2) The improved WKB method, which applies to the
marginally singular case. In this method, the re-
quired effective potential �~I	 ~x
 is given from the
rule (30) or (33).

The latter, nontrivial case can be established by going
back to Eq. (31) and verifying it becomes self-consistent at
the n � 1 level, in the form of Eq. (33). Moreover, sub-
stituting Eqs. (35) and (36) in Eq. (33), and defining c	�
 �
�"	s
, we see that

~I	x
 � �c � c	�
�xp: (37)

Thus, the nature of the modes changes around c � c	�
,
which plays the role of a critical coupling, with c selecting
either a singular (supercritical) or regular (subcritical)
behavior.

In conclusion, singular quantum mechanics can be de-
scribed with asymptotic exactness by the improved WKB
method, with modes having a semiclassical appearance
due to the singular term I	x
. However, in the marginally
singular case, the competing ‘‘potential’’ Q	x
 generates
the subtraction of a critical coupling, as in Eq. (37), and the
leading physics has asymptotic scale invariance—this
applies to nonextremal metrics in the near-horizon
expansion.

C. Near-horizon WKB framework:
Multidimensional case

The multidimensional Eq. (24) describes the full-fledged
spatial dependence of the modes. The near-horizon expan-
sion of the Laplace-Beltrami operator for the metric (2),

	
 	�
 �
1����
�

p @j�
����
�

p
�jk@k� �

	H 

f0
�

	
x@2

x �
1

2
@x



; (38)

implies that p � �1 (or ‘‘ 	
	�
 / x�1’’); therefore, if
A	x
 / xs, then

Q	x
 �
	
	�
A	x


A	x

�
	H 


f0
�s

	
s �

1

2



x�1: (39)

Clearly, for the nonextremal metrics, the leading scale

dimension of I	x
 /
	H 


1=x is equal to 1, thus showing that
this is a marginally singular case: the near-horizon physics
exhibits SO(2,1) conformal invariance. Accordingly, the
semiclassical function ~I	x
 is given by Eq. (37) with a
critical coupling

c	�
 � f0
�s

	
1

2
� s



: (40)

In addition, the value of the parameter s for the multi-
dimensional case can be determined from the continuity
Eq. (28), which yields the leading order of the amplitude
through

HORACIO E. CAMBLONG AND CARLOS R. ORDÓÑEZ PHYSICAL REVIEW D 71, 124040 (2005)
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@
@x

	
�xx���

f
p A2kx



/

	H 
 @
@x

	
���
x

p
A2kx
 �

	H 

0: (41)

Therefore, k̂x �
�������
�xxp

kx �
���
f

p
kx /

	H 
 ���
x

p
kx gives the am-

plitude scaling

A	x
 /
	H 


	k̂x

�1=2 /

	H 

�~I	x
��1=4 /

	H 

x1=4; (42)

where, from Eq. (26), ~I	x
 �
	H 


�xx	kx

2 � 	k̂x


2 /
	H 


1=x
(p � q � �1). In particular, Eq. (42) implies that s �
1=4; as a result, from Eq. (39), the leading ‘‘extra term’’
becomes

Q	x
 �
	H 


� f0
�

1

16

1

x
�
	H 


� f	x

1

16

1

x2
: (43)

Finally, from the near-horizon expansion of Eqs. (12),
(33), and (43),

~k �

����������
~I	x

f	x


vuut
�
	H 


���������������������������������
I	x
 � Q�I�	x


f	x


s
�
	H 
�

x
; (44)

which defines an improved wave number. Then, the lead-
ing form of ~I	x
 yields the chain of relations,
~k �
	H 


kr �
	H 


kconf	x
, which reduce to the conformal wave
number

kconf	x
 �
�

x
: (45)

In conclusion, this calculation shows that: (i) the leading
covariant momentum component is radial; (ii) kconf	x

embodies the improved WKB features of conformal quan-
tum mechanics; and (iii) kconf	x
 is the correct input for the
phase-space algorithms of Sec. IV.

D. Near-horizon WKB framework:
Reduced radial case

Equation (16) was derived through the sequence of exact
Liouville transformations; in turn, this equation can be
solved within the semiclassical approximation, with


	1D
 � @2
x (46)

applied to the formalism of Sec. III B. The original radial
part of the Laplacian also includes the prefactor f	r
;
however, in the sequence of transformations leading to
Eq. (16), f	r
 was scaled away. As a result, the leading
scaling of Eq. (46) is now given by

Q	x
 �
A00	x

A	x


� s	s � 1
x�2; (47)

i.e., ‘‘
	1D
 / x�2.’’ Moreover, the near-horizon leading
form of Eq. (16) becomes


	1D
u	x
 �
�
�2 � 1=4

x2

�
u	x
 � 0; (48)

which corresponds to the effective conformal interaction
(23) and implies that

I 	x
 �
	H 


	
�2 �

1

4



1

x2
: (49)

Accordingly, in the radial setup of the generalized WKB
framework, the scale dimensions of Eqs. (46), (47), and
(49) are equal to 2 for the nonextremal metrics: the near-
horizon physics is marginally singular, with the scale
symmetry of conformal quantum mechanics.

In addition, the parameter s is determined from the
leading-order continuity equation,

@
@x

	A2kx
 �
	H 
 @

@x
fA2�~I	x
�1=2g �

	H 

0; (50)

where kx �
	H 


�~I	x
�1=2 for the one-dimensional analogue of
Eq. (26). In turn,

A	x
 /
	H 


�~I	x
��1=4 /
	H 


x1=2; (51)

because ~I	x
 / 1=x2 for the reduced radial case (as p �
q � �2). In particular, Eq. (51) shows that s � 1=2 and
yields the critical coupling c	�
 � 1=4, as Eq. (47) turns
into

Q	x
 �
	H 


�
1

4x2
: (52)

Thus, the one-dimensional analogue of Eqs. (26) and (33)
yields the conformal behavior (45),

k$l;D
	r
 �

��������������������������
~I	r;!; $l;D


q
�
	H 


kconf	x
: (53)

In conclusion, Eq. (53) provides the wave number for the
WKB wave functions

u�	r
 � �k$l;D
	r
��1=2 exp

"
�i

Z r
k$l;D

	r0
dr0
#
: (54)

Even though the variables ~k of Eq. (44) and k$l;D
	r
 of

Eq. (53) are different, their near-horizon leading contribu-
tions reduce to the same conformal value (45). Moreover,
Eq. (22) implies the competition of the angular momenta
with kconf	x
 in the form

k$l;D
	r � r� � x; �; $l;D
 �

	H 

kconf	x


���������������������������
1�

$l;Dx

f0
�r2��

2

s
:

(55)

IV. PHASE-SPACE METHODS FOR QUANTUM
MECHANICS AND QUANTUM FIELD THEORY IN

CURVED SPACETIME

The main goal of this section is to derive phase-space
expressions—compatible with the improved WKB ap-
proach—for the cumulative number of modes or spectral
function
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N	!
 �
X
s

!s�!

1: (56)

For a monotonic increasing operator [24] �Ĥ eff	!
,
Eq. (56) is equivalent to

N	!
 � Tr�0	�Ĥ eff	!

� �
X
s

0	��Ĥ eff	!
�s
; (57)

in which 0	z
 stands for the Heaviside function and the
formal trace is defined in the Hilbert space spanned by the
basis of modes �s	 ~x
.

A. Phase-space method: Generic techniques

For the statistical mechanics of a quantum-mechanical
system in curved space, the semiclassical counterpart of
Eq. (57) is derived by counting the number of phase-space
cells d�=	22
d enclosed within a given !-parametrized
surface H eff	 ~x; ~p;!
 � 0; this is computed with the
Liouville measure in local Darboux coordinates [25]
d� � dx1 ^ . . . ^ dxd ^ dp1 ^ . . . ^ dpd—with the short-
hand d� � ddxddp, in terms of the covariant momentum
components. Then, for a classical Hamiltonian H eff	 ~x; ~p
,
with configuration-space metric �ij	 ~x
,

N	!
 �
Z d�

	22
d
0	�H eff	 ~x; ~p;!



�
1

	22
d

Z
ddx

����
�

p Z
H eff 	 ~x; ~p;!
�0

ddp
1����
�

p (58)

(where the symbol � denotes the semiclassical approxi-
mation before a hierarchical expansion).

For the analysis of the black hole problem of Eq. (9), the
momentum dependence of the effective Hamiltonian

Ĥ eff	!
 is merely quadratic and two distinct ways of
evaluating Eq. (58) are possible: (i) the multidimensional
approach and (ii) the reduced radial approach.

The multidimensional approach starts by integrating out
all the generalized momenta:

N	!
 �
�	d�1


d	22
d

Z
dV	d
 k ~k	 ~x
 kd; (59)

where dV	d
 � ddx
����
�

p
is the d-dimensional spatial volume

element and k ~k	 ~x
 k�k ~p	 ~x
 k�
�����������������������������������
�jh	 ~x
pj	 ~x
ph	 ~x


q
(with

~k � ~p). In addition, in the presence of a hierarchical
expansion [from Eqs. (26) and (33)] k ~k	 ~x
 k �fI	 ~x
 �
Q�I�	 ~x
g1=2, with � replaced by �. Moreover, when the
potential is spherically symmetric: ~I	 ~x
 � ~I	r
, Eq. (59)
becomes

N	!
 �
��	d�1
�

2

d	22
d

Z
dr��rr�

�	d�1
=2rd�1�~k	r
�d; (60)

where

~k	r
 � ��rr�
1=2 k ~k	r
 k : (61)

In the radial approach, for a spherically symmetric
Hamiltonian, Eq. (58) turns into a radial integral in con-
figuration space and an integral over the angular momenta;
this is accomplished by a four-step method. First, from the
polar coordinates ~x � 	r; 01; � � � ; 0d�1
, the conjugate mo-
menta ~p � 	pr; ‘1; � � � ; ‘d�1
 satisfy �jkpjpk � �rrp2

r �

‘2=r2, where ‘a are angular momenta (with a �
1; � � � ; d � 1) and ‘2 � ‘a‘a. Second, the radial momen-
tum can be integrated out with

R
1
�1 dpr0	~I	r
 � �rrp2

r �

$l=r2
 � 2~k	r;$l
, where $l � ‘2 and

~k	r;$l
 � k$l;D	r
 � 	�rr
�1=2
���������������������
~I	 ~x
 �

$l

r2

r

�

���������������������������������
�~k	r
�2 � �rr

$l

r2

r
; (62)

with ~k	r
 defined by Eq. (61). Third, the angular-
momentum dependence is kept through $ � $l and with
the use of

R
dd�1‘=

����
3

p
� �	d�2


R
d$$	d�3
=2=2, where

3ab is the Sd�1 metric associated with � � f0ag (a �
1; . . . ; d � 1). Finally, integration of the angular variables
d�	d�1
 � dd�10

����
3

p
yields the solid angle �	d�1
. Thus,

the spectral function becomes

N	!
 �
�	d�1
�	d�2


	22
d

Z
d$$	d�3
=2

Z
I

dr~k	r;$
; (63)

where the interval I is bounded by the classical turning
points; in the presence of a hierarchical expansion, Eq. (63)
requires the use of improved wave numbers. Equivalently,
Eq. (63) has been shown to follow from the one-
dimensional Sturm oscillation theorems [17].

B. Phase-space method: Quantum field theory in
curved spacetime and near-horizon physics

We now turn to the specific computation of the spectral
number function N	!
 corresponding to our quantum field
theory in curved spacetime. The starting point is the spa-
tially reduced Klein-Gordon Eq. (9). Its classical limit
involves a simple Hamiltonian formulation with the modi-
fication (30) at the level of the effective potential.
Consequently,

N	!
 �
Z

ddx
Z ddp

	22
d
0	I	0
	r;!
 � I	1
	r
 � Q	r


� �jk	 ~x
pjpk
; (64)

where the ‘‘quantum potential’’ Q	r
 is required for the
near-horizon expansion of nonextremal metrics, and the
approaches of the previous subsection can be applied.

In the multidimensional approach, Eq. (64) leads to the
counterpart of Eqs. (59) and (60) with �rr	r
 � 1=f	r
; in
the near-horizon limit, from Eq. (44),
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N	!
 �
	H 
 1

d2d�2��	d=2
�2

�
Z

dxrd�1
� �f0

�x�	d�1
=2|��������{z��������}
angular

contribution

�kconf	x
�
d|������{z������}

conformal
interaction

; (65)

which displays a competition of the conformal wave num-
ber kconf	x
 with the angular-momentum factors
�f0

�x�	d�1
=2. These factors reduce the degree of divergence
of the integral, but the ensuing singular behavior can be
ultimately attributed to the ultraviolet singularity of con-
formal quantum mechanics [20]. As a final step, from
Eqs. (45) and (65),

N	!
 �
	H 
 1

2�	d � 1

B
	
d � 1

2
;
3

2



�d�f0

�r2��
	d�1
=2

� lim
a!0

Z x1

a

dx

x	d�1
=2
; (66)

where a is a radial cutoff and B	p; q
 is the beta function,
while x1 is an arbitrary upper limit (with a scale of the
order of r�). This cutoff and the associated renormaliza-
tion of Eq. (66) are discussed in the next section and
analyzed in Ref. [17].

In a similar manner, for the reduced radial problem,
Eq. (55) turns Eq. (63) into

N	!
 �
	H 
 1

2�	d � 1


Z $max

0
d$$d=2�3=2

Z
I

dxkconf	x


�

���������������������������
1�

$x

f0
�r2��

2

s
; (67)

where $max � $max	a
 � �2f0
�r2�=a is the angular-

momentum cutoff arising from the passage of the right
turning point through r � a. Finally, reversing the order of
integration and using a beta-function identity, Eq. (66)
follows again. This shows the equivalence of the reduced
radial and multidimensional approaches.

V. BEKENSTEIN-HAWKING ENTROPY FROM
THE NEAR-HORIZON EXPANSION:

CONCLUSIONS

In this paper we have illustrated the use of improved
semiclassical techniques for the computation of spectral
functions and derived the corresponding near-horizon ex-
pansions, with the central result (66) being independent of
the semiclassical procedure involved.

Unfortunately, as it stands, Eq. (66) appears to be diver-
gent when the lower limit a approaches zero. This singu-
larity can be traced to the scale invariance of the effective
conformal interaction and is inherited by the thermody-
namic observables. The cutoff a serves as a regulator and
leads to the renormalization of the theory, which can be
implemented geometrically by absorbing the coordinate
assignment a into a distance or ‘‘elevation’’

hD �
Z r��a

r�
ds �

	H 
 2
���
a

p������
f0
�

p (68)

from the horizon. As shown in Ref. [17], the various
contributions to the entropy can be organized into those
factors that are purely conformal and those arising from the
angular momentum: their interplay leads to the familiar
Bekenstein-Hawking entropy SBH � A=4, which is a
	D � 2
-dimensional ‘‘hypersurface’’ feature, induced by
the horizon. Furthermore, this result relies on the purely
conformal characterization of the Hawking temperature
[17,26] needed in the statistical-mechanical calculations.
Moreover, this procedure shows that the ‘‘new physics’’ of
a full-fledged quantum gravitational theory arises from
within an invariant distance of the order of the Planck
length.

Despite its appealing features discussed above, the regu-
larization procedure based on the brick-wall model leaves
a number of unanswered questions. First, the computation
leading to the Bekenstein-Hawking result, with the correct
numerical prefactor of 1=4, involves a fine tuning of the
cutoff [1,6,7]. This poses a problem: in this method of
calculation, the numerical prefactor appears to depend
upon the number Z of species of particles, rather than
being a Z-independent value of 1/4; for example, in the
case of Z scalar fields, the required fine tuning involved in
Eq. (68) would lead to a brick-wall elevation with the
species dependence

hD �
1

2
�D7	D
�	D=2� 1
21�3D=2Z�1=	D�2
: (69)

Another paradoxical feature of the entropy computed by a
brick-wall method is that it can be absorbed by a renor-
malization of Newton’s gravitational constant GN , as
shown in Refs. [27,28]. However, in this light, it is possible
that the species problem associated with the entropy pre-
factor may be compensated by a corresponding
Z-dependent renormalization of Newton’s constant
[7,29,30].

In summary, we have established that the procedure that
singles out the leading conformal behavior also provides a
systematic application of semiclassical methods. The ro-
bust nature of this framework and the asymptotically exact
semiclassical description of conformal quantum mechanics
are somewhat surprising, given the presence of a coordi-
nate singularity. Remarkably, these techniques: (i) con-
verge towards a unique result driven by the near-horizon
expansion, the Bekenstein-Hawking entropy; (ii) point to
the horizon degrees of freedom that determine the thermo-
dynamics. The fact that this universality is driven by the
near-horizon symmetry is intriguing, but its deeper geo-
metrical meaning is not well understood. However, the
robustness and simplicity of these properties suggest their
possible origin from an even more fundamental principle
of nature.
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