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Decline in methylmercury in museum-preserved bivalves from San
Francisco Bay, California
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H I G H L I G H T S

• First reported long-term decline in
methylmercury in San Francisco Bay
biota

• Methylmercury concentration decline
in preserved bivalves since mine
closure

• Stable isotopes indicate methylmercury
trends not attributable to food web
changes.

• δ15N and δ13C trends likely caused by
both natural and anthropogenic drivers
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There are ongoing efforts to managemercury and nutrient pollution in San Francisco Bay (California, USA), but his-
torical data on biological responses are limited. We used bivalves preserved in formalin or ethanol from museum
collections to investigate long-term trends in methylmercury (MeHg) concentrations and carbon and nitrogen iso-
topic signatures. In the southern reach of the estuary, South Bay, MeHg in the Asian date mussel (Musculista
senhousia) significantly declined over the study duration (1970 to 2012). Mean MeHg concentrations were highest
(218 ng/g dryweight, dw) in 1975 and declined 3.8-fold (to 57 ng/g dw) by 2012. This decrease correspondedwith
closure of theNewAlmadenMercuryMines andwas consistentwith previously observed declines in sediment core
mercury concentrations. In contrast, across all sites,MeHg in the overbite clam (Potamocorbula amurensis) increased
1.3-fold from 64 ng/g dw before 2000 to 81 ng/g dw during the 2000s andwas higher than inM. senhousia. Pearson
correlation coefficients of the association between MeHg and δ13C or δ15N provided no evidence that food web al-
terations explained changing MeHg concentrations. However, isotopic composition shifted temporally. South Bay
bivalve δ15N increased from 12‰ in the 1970s to 18‰ in 2012. This increase correspondedwith increasing nitrogen
loadings from wastewater treatment plants until the late 1980s and increasing phytoplankton biomass from the
1990s to 2012. Similarly, a 3‰ decline in δ13C from 2002 to 2012 may represent greater utilization of planktonic
food sources. In a complimentary 90day laboratory study to validate use of these preserved specimens, preservation
had onlyminor effects (b0.5‰) on δ13C and δ15N.MeHg increased following preservation but then stabilized. These
are the first documented long-term trends in biota MeHg and stable isotopes in this heavily impacted estuary and
support the utility of preserved specimens to infer contaminant and biogeochemical trends.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mercury pollution of estuaries poses a global threat to wildlife and
human health. Humans are exposed to the organometallic form, meth-
ylmercury (MeHg), primarily through consumption of coastal and estu-
arine seafood (Sunderland, 2007). Wildlife that depend on the
productive estuarine habitat are also exposed, and reproductive impair-
ment has been documented in birds (Eagles-Smith et al., 2009;
Scheuhammer et al., 2007). Accordingly, there are local, national, and
international efforts to reduce mercury. However, our ability to assess
the efficacy of regulatory efforts is limited by lack of long-term studies
on MeHg concentrations in biota, especially in coastal ecosystems
(Lambert et al., 2012).

To evaluate temporal trends, some studies have relied on total mer-
cury (HgT) measurements, which include both inorganic and organic
forms, in fish (Bhavsar et al., 2010; Gandhi et al., 2014; Kraepiel et al.,
2003). Measuring HgT works well at the top of the food chain where
N95% of the HgT is MeHg (Bloom, 1992). However, one disadvantage
of this approach is that fish HgT concentrations may be decoupled
from mercury inputs. For example, Monson et al. (2011) found that
HgT concentrations in walleye in Ontario declined from 1970 to 1990,
reflecting a general decrease in atmospheric inputs in North America
and Europe. However, walleye concentrations subsequently increased
from the mid-1990s to 2009, possibly due to changes in the food web
(Monson et al., 2011).

At our study site in San Francisco Bay, California, USA (Fig. 1), the
temporal trends in fish are particularly perplexing. There has been no
decline in HgT in striped bass from the 1970s to the present (Davis et
al., 2016; Greenfield et al., 2005), despite the closure of the New
Almaden Mercury Mining District (hereafter New Almaden) in 1975,
and ongoing efforts to understand and control MeHg pollution in San
Francisco Bay and its watersheds (Davis et al., 2012). New Almaden
was once the nation's largest mercury mining district, and it drained

into lower San Francisco Bay via the Guadalupe River (Conaway et al.,
2008; Davis et al., 2012). Mercury concentrations recorded in sediment
cores do show a decline since the mid-20th century (Conaway et al.,
2004; Donovan et al., 2013) and since 1970 (Hornberger et al., 1999),
so perhaps fish are not the best biomonitor for long-term trends in
this estuary.

Another approach is to focus on invertebrates lower in the food
chain, such as bivalves, which efficiently accumulate and transfermetals
(Pan andWang, 2011). Resident bivalves have been successfully used as
biosentinels to record long-term declines in other metals (e.g., Cu and
Ag) in San Francisco Bay (Hornberger et al., 2000), and are widely and
successfully employed for contaminant trend biomonitoring (e.g.,
Lauenstein and Daskalakis, 1998; Luengen et al., 2004; Melwani et al.,
2014). Both resident and transplanted mussels have been central to
long-term monitoring efforts in California, and nationwide, through
the “Mussel Watch” programs (Melwani et al., 2014). Mussel Watch in-
cludes three sites in San Francisco Bay, although reliable data are avail-
able only from 1986 to 2009 and only for HgT (Melwani et al., 2013).
Unlike in fish, MeHg is only a fraction of HgT in bivalves, and varies con-
siderably, between 12 and 60% (Francesconi and Lenanton, 1992; Pan
and Wang, 2011; R. Stewart, USGS, pers. comm.). Studies with
transplanted mussels indicate that that measurements of HgT in bi-
valves are not useful for predicting mercury concentrations in higher
trophic levels (Gunther et al., 1999), because only the methylated
form biomagnifies. Another reason to focus on the methylated form is
that it is difficult to contaminate samples (even preserved ones) with
MeHg, unlike HgT (Vo et al., 2011).

Unfortunately, there are no historical measurements of MeHg in in-
vertebrates because methods to measure MeHg were not established
until 1988 (Bloom and Fitzgerald, 1988) and not widely applied until
much later. This lack of historical data leaves the analysis of archived
specimens as the only potential avenue for determination of past con-
centrations. Along those lines, Vo et al. (2011) recently used bird

Fig. 1. San Francisco Bay Estuary is divided into distinct hydrological sub-embayments. Bivalves were available in natural history collections from both thewell-flushed northern reach of
the estuary and the more stagnant southern reach, which also has the former New Almaden mercury mining district in its watershed. Specimens of the Asian date mussel, Musculista
senhousia, were available from 1970 to 2012. Specimens of the overbite clam, Potamocorbula amurensis, were available from 1988 through 2002.
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feathers from museum specimens and found an increase in MeHg con-
centration in black-footed albatrosses from the Pacific Ocean between
1880 and 2002. However, there are no published studies employing ar-
chived museum invertebrate collections to collect MeHg data. Museum
specimens are a largely untapped source of data; this novel approach
has the potential to create a baseline for MeHg in bivalves in a situation
where there are no historical data (Campbell and Drevnick, 2015).

Analyzing historical samples also has the benefit of allowing concur-
rent isotopic analysis. In particular, stable nitrogen and carbon isotopes
have been useful in attributing mercury body burden to trophic position
(e.g., δ15N enrichment can indicate higher trophic position) and food
source (e.g., δ13C can reflect carbon source) (France, 1995; Minagawa
and Wada, 1984; Pan and Wang, 2011; Stewart et al., 2008). Most bi-
valves feed opportunistically, switching between phytoplankton, benthic
algae, and a detritus-based diet that can include microzooplankton, such
as ciliates and flagellates (Greene et al., 2011; Pan and Wang, 2011). Ac-
cordingly, this study employed stable isotope measurements to deter-
mine if dietary changes could account for any changes in MeHg body
burden. Only a few studies, focused on hair and feathers in museum col-
lections (e.g., Bond et al., 2015; Horton et al., 2009; Vo et al., 2011), have
tracked both stable isotopes and mercury over decadal time scales.

To assess the validity of using preserved specimens in a long-term
study, it is necessary to quantify the effect of preservation onMeHg con-
centrations in bivalves, which previously has been studied only in fish
(e.g., Hill et al., 2010; Kelly et al., 1975; Levengood et al., 2013). In con-
trast, stable isotope analysis has been validated for usewith various spe-
cies of preserved invertebrates, including bivalves (Rennie et al., 2012)
and has been successfully applied during a study to reconstruct histori-
cal food web pathways in Lake Tahoe (Vander Zanden et al., 2003). Ac-
cordingly, an experimental preservation study was conducted by
adding formalin or ethanol to freshly collected bivalves and analyzing
MeHg concentrations and stable isotopes over time.

Next, for the historical portion of the study, preserved specimens
from museum collections were used to evaluate temporal changes in
MeHg concentrations, δ13C, and δ15N in bivalves from San Francisco
Bay from 1970 to 2012. Museum specimens were collected and pre-
served by the California Academy of Sciences (CAS) and the United
States Geologic Survey (USGS). The study focused on two species: the
Asian date mussel (Musculista senhousia), a mussel widely distributed
in the estuary, and the overbite clam (Potamocorbula amurensis; also re-
ferred to as Corbula amurensis), an invasive clam that displaced natives
when it was introduced in 1986 (Cloern and Jassby, 2012; Fry, 1999).
This voracious clam has been shown to accumulate high selenium con-
centrations (Lee et al., 2006; Stewart et al., 2004); one goal of the study
was to determinewhether P. amurensis accumulates highMeHg relative
to the Asian date mussel, thereby helping to mobilize MeHg to the food
web. In addition to species invasions, the Bay has seen a host of ecolog-
ical changes (Nichols et al., 1986); another study goal was to evaluate
whether stable isotope signatures in bivalves could reveal underlying
ecological processes that could potentially alter mercury uptake. The
overall study hypothesis was that MeHg in bivalves would decrease
over time due to reductions in mercury loadings and that stable isotope
signatures would help in interpretation of coincident ecological
changes.

2. Methods

2.1. Preservation study

The experimental preservation study was designed to evaluate the
use of preserved bivalves for MeHg, δ13C, and δ15N. For each species,
80 to 100 individuals were obtained from a single site on a single date.
M. senhousia were collected from Tomales Bay (Millerton Point, 38°6′
28″N, 122°50′41″W) on June 19, 2013, and P. amurensiswere collected
from Suisun Bay (38°4′21″ N, 121°58′10″W) on July 24, 2013. Within a
species, individuals had similar mean (±standard deviation, SD) shell

lengths: 15.5 ± 2.7 mm for M. senhousia and 11.3 ± 2.0 mm for P.
amurensis. Upon return to the lab, bivalveswere either processed imme-
diately (hereafter “fresh” samples) or preserved via two different tech-
niques to determine if the type of fixative influenced MeHg
concentrations or stable isotope ratios. Any potential effect of fixative
typewas of interest because the historical study included some samples
that had been preserved with formalin (especially older CAS samples
and some USGS samples) and others that had been preserved with
ethanol.

The fresh samples were divided into two batches: a control batch
that received no treatment and an experimental batch that received
MgCl2 to determine if the use of MgCl2 as a relaxant to open the valves
affected MeHg concentrations. The control batch of 10 individuals was
placed in the freezer for a few minutes to make them unresponsive,
then measured, rinsed, pat dried, shucked, weighed (wet weight), and
individually lyophilized for later analysis. The experimental batch of
10 individuals was placed in 0.36 M MgCl2·6H2O made up with water
from the collection site (Tomales Bay for M. senhousia and Suisun Bay
for P. amurensis). This anesthetization method was described in
Williams and Van Syoc (2007) and employed by CAS when appropriate
(E. Kools, CAS, pers. comm). When the bivalves were unresponsive to
touch, they were removed from the MgCl2 solution, measured, rinsed,
pat dried, shucked, weighed, and prepared for lyophilization.

Fresh samples were compared to samples fixed with either formalin
(following USGS preservation techniques, J. Crauder, USGS, pers.
comm.) or 95% ethanol (following Williams and Van Syoc (2007) and
CAS ethanol preservation techniques). Samples in the ethanol treat-
ment were fixed in 95% undenatured ethanol for 24 h, and then stored
in 75% undenatured ethanol. Samples in the formalin treatment were
fixed in 10% formalin with sodium borate added (until saturation) to
prevent acidification. After one week in 10% formalin, the bivalves
were transferred to 70% undenatured ethanol for long-term storage.
For both techniques, the bivalves were relaxed inMgCl2 solution, as de-
scribed earlier, prior to preservation.

Bivalves were removed from the storage solutions after 7, 30, and
90 days and then transferred to 70% or 75% undenatured ethanol. At
each time-point, 8 individuals were removed from the storage jar, mea-
sured, rinsed, pat dried, shucked, weighed (wet weight), and individu-
ally lyophilized for later analysis.

2.2. Historical study

The historical study focused onM. senhousia and P. amurensis speci-
mens collected from two sites: South San Francisco Bay nearDumbarton
Bridge (hereafter, South Bay) and San Pablo Bay in the northern reach of
the Estuary (Fig. 1). Bivalves from these locations were frequently col-
lected and preserved from1970 to 2012. South Bay is of particular inter-
est because mercury concentrations are generally higher in this
embayment than in San Pablo and Central Bays (Conaway et al., 2007;
Greenfield et al., 2013b). San Pablo and Central Bays are flushed as the
Sacramento and San Joaquin Rivers flow from the Sacramento-San
Joaquin River Delta to the Pacific Ocean (Conomos et al., 1985). In con-
trast, South Bay receives relatively little fresh water (b10% of the total),
primarily from wastewater treatment plants and local tributaries, such
as Guadalupe River and Coyote Creek, which drain the New Almaden
mines (Conaway et al., 2008; Conaway et al., 2004).

The analyses focused on bivalve collections within open-water sta-
tions, as close together as the historical collections permitted. Samples
were selected closely together to avoid variation in MeHg concentra-
tions that could be associated with spatial differences in habitat type
(Heim et al., 2007), phytoplankton biomass concentrations (Powell et
al., 1989), or regional differences in mercury sources (Greenfield et al.,
2013b). In South Bay, collection site distances were b0.1–2 km. In
North Bay, the distances were slightly larger, ranging from 1 to 11 km.
To examine small-scale spatial variability, in two cases samples were
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analyzed from the same date, but at different sites, within the Dumbar-
ton Bridge sampling area.

Once appropriate collections were identified, 4 to 15 individuals
were obtained from each collection location and date, depending on
the number of available specimens. For CAS samples, the collection in-
formation and preservation technique (e.g., formalin or ethanol) for
each catalog number were described in the specimen database, http://
researcharchive.calacademy.org/research/izg/iz_coll_db/Index.asp.
Using trace metal clean techniques, the bivalve subsample was trans-
ferred to acid-cleaned Teflon vials filled with 75% ethanol for CAS sam-
ples or 70% ethanol for USGS samples.

Bivalves were measured and the tissues were individually extracted
in a clean room at the University of San Francisco Mercury Laboratory.
The bivalves were measured for their antero-posterior and dorso-ven-
tral shell dimensions using a digital caliper (Grizzle et al., 2001). Then,
a clean razor was used to open the shell and expose the tissues. Each bi-
valve was thoroughly rinsed with Milli-Q (18.2 MΩ) purified water to
remove any particulates and dried with a Kimwipe (Gunther et al.,
1999). Bivalves were then shucked, individually placed in acid-cleaned
numbered Teflon vials, weighed to obtain wet weights, and lyophilized
(Horvat and Byrne, 1992). Once lyophilizationwas complete, the tissues
were weighed (dry weights), homogenized and set aside for future
analysis.

2.3. Tissue digestion and MeHg analysis

For each individual bivalve, approximately 2 mg of tissue was
weighed (to four significant figures) into 5 mL Savillex vials for a
microdigestion. The method was a modification of the commonly
employed alkaline digestion procedure first developed by Bloom
(1992) for larger sample masses. Samples were digested by adding
0.500 mL of 25% KOH: methanol (w/v) and then heating at 65 °C for
4 h. Prior to analysis, samples were allowed to stand for three days
and were diluted with 2.50 mL of methanol.

Samples were analyzed for MeHg as per the U.S. Environmental Pro-
tection Agency's (EPA)Method 1630 using ethylation, gas separation, py-
rolysis, and cold vapor atomic fluorescence spectrophotometry (CVAFS)
(EPA, 2002). For analysis, a thirty microliter aliquot of digestate was
added to the sample vials, pH was adjusted by addition of 300 μL of ace-
tate buffer, and samples were ethylated with 1% sodium tetraethylborate
in 2% potassium hydroxide (Bloom, 1989). Detectionwas by CVAFS using
a MERX Automated Methylmercury System (Brooks Rand Instruments).
Calibration was performed using the method of standard additions (all
standards, calibration verifications, and calibration blanks received 30 μL
of a 1:5 dilution of the 25%KOH:methanol solution) to address any poten-
tial matrix interferences (Bloom, 1989). The instrument was calibrated
daily using a 7-point calibration curve with an r2 N 0.99.

The accuracy and precision of MeHg data was checked by analyzing
standards and blanks including 1) analytical standards traceable to the
U.S. National Institute of Standards and Technology (NIST); 2) analytical
andmethodological blanks; 3) a certified referencematerial, lobster he-
patopancreas (TORT-2) from theNational Research Council of Canada; 4)
matrix spikes and duplicates; and 5) analytical and methodological rep-
licates. Initial calibration and on-going precision and recovery was veri-
fied with a secondary standard (also traceable to NIST); recovery was
within 67–133%. Themeanmethod detection limit, averaged acrossmul-
tiple sets of analyses, was 5 ng/g dry weight for a 2 mg tissue sample. All
samples were above detection limits. The mean concentration of MeHg
in TORT-2 (�x±SD) during study analyses was 135 ± 22 ng/g, which
was within the acceptable range (70–130%) of its certified value of
152 ± 13 ng/g. Matrix spikes and matrix spike duplicates had quantita-
tive recoveries within 65–135%. The procedural reproducibility,
calculated as the relative percent difference of replicate subsamples
that were separately digested and analyzed, averaged 8%.

MeHg concentrations in the preservative were measured to rule out
contamination, which can be a problem for other trace metals in

museum specimens (e.g., Renaud et al., 1995). However, MeHg was
not detected in the preservative, and this analyte was selected partially
because it is muchmore difficult to contaminate for MeHg than HgT (Vo
et al., 2011).

2.4. Stable isotope analysis

Dried, homogenized samples for 13C and 15N analysis were weighed
(~2 mg to four significant figures), packaged into tin capsules, and sent
to the University of California, Santa Cruz Stable Isotope Laboratory for
analysis. Samples were analyzed with a CE Instruments NC2500 ele-
mental analyzer interfaced to a ThermoFinningan Delta Plus XP isotope
ratio mass spectrometer (IRMS). Results are expressed as delta (δ)
values, which are the deviation in parts per thousand (‰), relative to in-
ternational standards (PeeDee belemnite limestone for δ13C and air for
δ15N) (Peterson and Fry, 1987). Calibrated in-house standards were
used to correct sample data for instrumental drift and linearity. Calibra-
tion was verified with a secondary standard, acetanilide, which was an-
alyzed repeatedly with each run. The precision (SD of acetanilide,
averaged across multiple runs) was 0.05‰ for carbon and 0.04‰ for ni-
trogen. Accuracy ranged from0.02 to 0.5‰ for carbon and 0.02 to 0.09‰
for nitrogen.

2.5. Statistical analysis

Statistical analyses for thepreservation study consisted of a two-way
analysis of covariance (ANCOVA), with fixative type (ethanol vs. forma-
lin) and storage time (fresh, 7 days, 30 days, and 90 days) treated as cat-
egorical independent variables, and tissue freshweight as a covariate. A
fixative type versus storage time interactionwas also included. ANCOVA
was chosen because it does not assume a linear or monotonic response
with time. To achieve a balanced statistical design in the preservation
study, all MeHg and isotope results from the fresh samples were ran-
domly allocated to either the ethanol or formalin treatment (N ~ 10
per treatment). MeHg concentrations and isotope results in fresh sam-
ples treated with MgCl2 did not differ from fresh samples without
MgCl2. Accordingly, it was appropriate to combine the samples into a
single treatment, the “fresh” treatment.

Preservation study data were analyzed using the general linear
model routine in Systat (version 13.00.05). Data were transformed
when needed to achieve normally distributed residuals.When a storage
time effect was determined to be significant (p b 0.05), pairwise differ-
ences between days were evaluated using Tukey's honestly significant
difference post hoc test (Tukey's HSD).When both storage time and an-
other variable (e.g., weight) were significant, pairwise differences were
assessed by evaluating the residuals of other significant model terms.
For example, residuals of a significant weight effect were evaluated for
pairwise differences on a significant storage time effect. When there
were significant interactions between model terms, graphical analyses
and parameter estimates for model terms were used to evaluate the
contribution of interaction terms.

For the historical study, Kendall's τ correlation coefficients were
employed to examine trends in MeHg with time on all study samples
(N = 243). Kendall's τ was selected because it is a non-parametric
test that is robust to nonlinearity, outliers, and the presence of tie-
values. The strength of association between MeHg and δ15N or δ13C
was evaluated using Pearson's correlation coefficients.

Mixed models were performed in R (v. 3.2.1; R Core Team, 2015)
to further evaluate temporal trends in MeHg, δ15N, and δ13C, while ac-
counting for other factors, including spatial location, species, and biolog-
ical variables. Datawere centered and scaled to a standard range prior to
statistical analysis to reduce parameter correlation.Methylmercury was
log-transformed to improve residual normality. In the mixed model
analyses, an individual sampling event (i.e., date) was treated as a ran-
dom effect with all other parameters treated as fixed effects; this
accounted for observed heterogeneity of residuals with sampling date
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when using multiple linear regression (Zuur et al., 2009). For δ13C,
which exhibited different trends over time, a breakpoint analysis (i.e.,
piecewise regression) was also performed, following Crawley (2012).

The models that best predicted MeHg, δ15N and δ13C in the bivalve
museum specimens were selected based on information theoretic
criteria (AIC and BIC) and application of the likelihood ratio test for in-
dividual parameter contributions (p b 0.05 for each parameter addition)
(Zuur et al., 2009). Amount of variability explained by the models was
calculated based on the marginal and conditional r2, described else-
where (Johnson, 2014; Nakagawa and Schielzeth, 2013). The marginal
r2 indicates variability in the data explained by fixed model effects,
and the conditional r2 indicates variability explained by both fixed and
random effects. For consistency, analysis focused on the subset of sam-
ples with MeHg, δ15N, δ13C, moisture, and C:N ratio data (N = 156).

3. Results

3.1. Preservation study

Methylmercury concentrations in fresh tissues treated with
MgCl2 did not substantially differ from concentrations in fresh
tissues without MgCl2 (rows 1 and 2 in Table 1). There was no
significant difference between the two treatments for either
M. senhousia (t-test with pooled variance, n = 19, p = 0.31) or
P. amurensis (t-test with pooled variance, n = 19, p = 0.97).
Accordingly, fresh tissues that had received MgCl2 were pooled
with those that had not in subsequent statistical analyses, and
then randomly allocated to either the formalin or the ethanol
treatments (as in Fig. 2).

Table 1
Average methylmercury (MeHg) concentrations (±1 SD) in ng/g dry weight (dw), shell length, and number of individuals (N) analyzed at each time-point in the preservation study for
two bivalve species. Fresh individuals (without MgCl2) and fresh individuals treated with MgCl2 (as a relaxant to open the valves) were processed immediately after collection. Samples
were then preserved in formalin or ethanol. After 7, 30, and 90 days, a subsample of bivalves was removed from the storage solution and analyzed individually.

Preservation technique Preservation time (days) M. senhousia P. amurensis

Mean MeHg (ng/g dw) Mean shell length (mm) N Mean MeHg (ng/g dw) Mean shell length (mm) N

Fresh 0 73 ± 23 16.8 9 75 ± 22 12.5 9
Fresh MgCl2 0 64 ± 15 15.5 10 75 ± 19 12.6 10
Formalin 7 124 ± 26 14.8 8 83 ± 20 11.9 8
Formalin 30 116 ± 31 15.4 8 94 ± 17 10.9 8
Formalin 90 159 ± 38 15.1 8 121 ± 21 9.1 4
Ethanol 7 118 ± 40 15.0 8 123 ± 21 11.6 7
Ethanol 30 147 ± 46 15.3 8 140 ± 22 11.0 8
Ethanol 90 151 ± 41 15.9 7 149 ± 36 11.3 8

Fig. 2. Box and whisker plots showing the effects of preservation on MeHg concentrations and stable isotope signatures over time. Boxes represent themiddle half of the data, horizontal
lines are themedians, points show raw data, and points not connectedwithwhiskers are outliers. Day zero shows samples that were not preserved. Top row:M. senhousia. Bottom row: P.
amurensis. Note different scales in y-axes.
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3.1.1. Preservation study MeHg trends
ForM. senhousia, concentrations of MeHg in the preserved tissues in-

creased over time and then stabilized for both the formalin and ethanol
treatments (Table 1, Fig. 2). MeHg inM. senhousiawas significantly relat-
ed to the number of days in the storage solution (r2 = 0.59, p b 0.0001,
N = 66) but not dry mass, fixative type, or day by fixative interaction.
Pairwise comparison indicated significant difference between the fresh
samples (0 days) and samples that had been held for 30, 60, and
90 days. There was also a marginally significant (p = 0.06) increase
from 7 days to 90 days. No other pairwise differences were observed be-
tween days (Tukey's HSD). In the formalin treatment, the mean MeHg
concentration increased by a factor of 1.9 in the first week, starting at
67 ± 19 ng/g dry weight (dw) for fresh tissues that had been randomly
allocated to the “formalin treatment” and increasing to 124 ± 26 ng/g
dw (Table 1). Similarly, in the ethanol treatment, the mean MeHg
concentration increased by a factor of 1.7 in the first week, starting at
69 ± 20 ng/g dw and increasing to 118 ± 40 ng/g dw (Table 1).

Methylmercury in P. amurensis was significantly related to storage
time, fixative type, and storage time by fixative interaction terms, but
not dry body mass. There was an increase in MeHg for both fixatives,
but the temporal pattern differed between fixatives. For formalin, the
temporal pattern was variable but suggestive of a gradual increase in
MeHg over the experiment duration (Fig. 2). Concentrations of MeHg
in tissues fixed in formalin did not statistically increase until 90 days.
For example, the mean MeHg concentration was 78 ± 16 ng/g dw in
fresh (pretreatment) P. amurensis tissues randomly allocated to the for-
malin treatment. That baseline was comparable to 83 ± 20 ng/g dw
after 7 days. Finally, after 90 days, that concentration increased to
121± 21 ng/g dw, which was a 1.5-fold increase from the fresh tissues.
In contrast, MeHg in tissues fixed in ethanol increased after 7 days and
then stabilized, similar toM. senhousia (Fig. 2). Specifically, in the etha-
nol treatment, the mean MeHg concentration was 71 ± 24 ng/g dw in
fresh tissues and increased to 123 ± 21 ng/g dw after just 7 days.

3.1.2. Preservation study stable isotope trends
ForM. senhousia, δ15N initially increasedwith addition offixative (eth-

anol or formalin) but did not continue to increase over time (Fig. 2). Spe-
cifically, δ15N was significantly related to storage time and dry mass
(model r2 = 0.28, p b 0.01, N = 62), but not fixative, or storage time by
fixative interaction. Residuals from a dry mass versus δ15N regression
(r2=0.07, p=0.04)were analyzed for pairwise preservation time differ-
ences in δ15N. The only significant pairwise difference among preserva-
tion times was an increase between the fresh samples (0 days) and
30 days.

For δ13C in M. senhousia, there was no significant effect of dry mass
(p N 0.05), and it was removed from the model. In the final model,
there was a significant (p = 0.009) interaction between storage time
and fixative and a significant effect of fixative (p b 0.01). Graphical anal-
ysis indicated a clear decline after 7 days in formalin, but no further de-
cline thereafter. In contrast, ethanol exhibited a weak and variable
storage time effect with no clear time trends.

For δ15N in P. amurensis, there was no significant (p N 0.05) effect of
dry mass, which was removed from the model. In the final model, there
was no significant (p N 0.05) effect of preservation time or fixative, but
therewas amarginally significant (p=0.06) interaction between preser-
vation time and fixative. Graphical analysis and parameter estimates for
model terms indicated a decline in δ15N at 30 days in the ethanol treat-
ment thatwas not seen in the formalin treatment. Because this treatment
showed a decline on a single day, rather than an overall trend (Fig. 2), the
decline could be attributed to variability between samples.

For δ13C in P. amurensis, there was no significant (p N 0.05) effect of
dry mass and no significant interaction between storage time and fixa-
tive type. There was a significant (p= 0.02) effect of fixative type, with
lower δ13C concentrations found in formalin relative to ethanol (Fig. 2).
There was no significant (p N 0.05) effect of preservation time.

3.2. Historical study

3.2.1. MeHg trends
Examining all study data across both embayments, the MeHg tem-

poral trend varied according to bivalve species (Fig. 3). ForM. senhousia,
samples spanned the entire 42 year study time range (November 1970
through November 2012), and mean MeHg concentrations were
highest in South Bay in October 1975 (218 ng/g dw) and January 1976
(180 ng/g dw). By November 2012, concentrations had declined to
57 ng/g dw, a 3.8-fold decrease from peak concentrations. In contrast,
for P. amurensis, which was introduced into San Francisco Bay in the
late 1980s, samples were available from 1988 through 2002. The first
samples from 1988 were located in Grizzly Bay (the embayment to
the east of the study's San Pablo Bay focus-area) and had a mean
MeHg concentration of 73 ng/g dw. Subsequent samples from the
study focus areas (South Bay and San Pablo Bay) averaged 62 ng/g dw
in the 1990s and 81 ng/g dw in the 2000s.

Overall, there was not a significant trend when combining samples
fromboth species (Kendall's τ=−0.05, p=0.21, N=243). Separating
by species, M. senhousia exhibited a significant negative trend
(τ=−0.15, p=0.004, N=169), whereas P. amurensis exhibited a sig-
nificant positive trend (τ = 0.20, p = 0.018, N = 74).

Stable isotope and C:N ratio analyses were performed for a subset of
samples from Dumbarton Bridge (South Bay) and San Pablo Bay only
(the study focus area; N = 156). For these samples, the best model to
predict MeHg (log-transformed) included a random effect of date and
the following fixed structure:

Ln MeHgð Þ ¼ −0:53þ 0:06 Dateð Þ
þ 1:07 SouthBayð Þ–0:94 FormalinTreatedð Þ
þ 0:63 P:amurensisð Þ–0:61 Date � SouthBayð Þ

The marginal r2 (fixed effects only) was 0.38, and the conditional r2

(also including randomvariability amongdates)was 0.66 for themodel.
Continuous variables were centered and rescaled. All the above model
terms were included based on likelihood ratio test (p b 0.05), AIC, and
BIC. Bivalve characteristics, including length, moisture content, C:N
ratio, δ15N, and δ13C, were not in the final model, indicating that they
did not contribute meaningfully to understanding MeHg content in
this study. Rather, the model indicates elevated MeHg in P. amurensis
(vs.M. senhousia) and in samples collected from South Bay, and reduced
MeHg in formalin fixed samples (versus ethanol). Furthermore, for
South Bay samples, there was a decrease in MeHg for later dates; i.e.,
South Bay samples declined over the study duration. Graphical analysis
indicated elevated MeHg tissue concentrations in the 1970s compared
to other dates, for South Bay, but not San Pablo Bay (Fig. 3).

To examine small-scale spatial variability, M. senhousia were com-
pared from two occasions where specimens had been collected on the
same date, but at different sites within the South Bay sampling area.
On January 24, 1976, M. senhousia specimens from two sites that were
2.7 km apart did not significantly (t-test with separate variance,
p N 0.05) differ in MeHg concentrations (Fig. 3). Similarly, on May 1,
1976,M. senhousia from two sites that were 2.1 km apart did not signif-
icantly (t-test with separate variance, p N 0.05) differ in MeHg concen-
trations (Fig. 3).

3.2.2. Nitrogen isotope trends
For the 156 samples examined for δ15N, the bestmodel (based on like-

lihood ratio test for parameter inclusion, AIC, and BIC) included a model
fixed structure (on centered and rescaled continuous variables) of:

δ15N ¼ −1:09−0:03 Dateð Þ þ 1:49 SouthBayð Þ þ 0:39 P:amurensisð Þ
þ 0:74 Date � SouthBayð Þ

The marginal r2 was 0.83 and the conditional r2 was 0.98, indicating
that the model explained almost all observed variation in the data.
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Other effects examined (length, δ13C, C:N ratio, moisture, and fixative
treatment) did notmeaningfully contribute to understanding of δ15N. Ex-
amining themodel structure and parameter estimates indicates that δ15N
was substantially greater in South Bay (Dumbarton Bridge) than San
Pablo Bay and moderately greater for P. amurensis thanM. senhousia. Ad-
ditionally, δ15N increased strongly with date for South Bay but not San
Pablo Bay. This trend is visually apparent, with South Bay median results
around 12‰ in the 1970s samples, then 16‰ in the 1990s samples, and
18‰ in the 2012 samples (Fig. 3). Tomeet requirements of residual inde-
pendence and variance homoskedasticity, the model included a random
date effect (intercept term), a date-specific random effect of body length
on δ15N (i.e., slope term for body length), and a treatment-specific resid-
ual variance structure (ethanol versus formalin).

Given the trend in δ15N and in MeHg in South Bay, there was also
a weak negative association between δ15N and MeHg (log-trans-
formed) for the South Bay (Pearson's r = −0.37, N = 104), but
not for San Pablo Bay (Pearson's r = 0.20, N = 52), or for both
embayments combined (Pearson's r = −0.06, N = 156). The
negative association between δ15N and MeHg in South Bay
contradicts a hypothesis of δ15N indicating increased MeHg with
increased trophic position.

3.2.3. Carbon isotope trends
In contrast to δ15N, which increased across the duration of the histor-

ical study, δ13C exhibited no clear temporal trend until after 2002, when
δ13C appeared to decline. In particular, δ13C was visibly lower (mean ±
SD=−26.2± 0.9‰; N= 15), on November 15, 2012, the final date an-
alyzed, than on earlier dates (−23.1 ± 1.7‰; N = 141). Consequently,
both linear and quadratic negative date effectswere significant predictors
of δ13C (N=153), in addition to nitrogen isotope in the final fixedmodel
structure:

δ13C ¼ 0:36−0:55 Dateð Þ−0:45 Date2
� �

þ 0:28 δ15N
� �

The marginal r2 for the model fixed effects was 0.38 and the condi-
tional r2, including both fixed and random effects, was 0.91. The
model indicated that decline was strongest in the most recent samples
(Fig. 4). There was no significant difference among species or sampling
locations.

For δ13C, there were three positive outliers (−15.6, −16.4,
and −18.6‰). These were identified as outliers based on exhibiting
values 1.4–4.4‰ heavier than the remaining 153 samples (range:
−27.4 to−20.0‰), relatively high C:N ratios, and graphical analysis in-
dicating extreme values on a given sampling date (see Fig. 3). Inclusion

Fig. 3. Box andwhisker plots of methylmercury (MeHg), δ15N, and δ13C inmuseum preserved bivalves collected from San Francisco Bay between 1970 and 2012 for the subset of samples
(N= 156) where stable isotope data were available. Boxes represent the middle half of the data, horizontal lines are the medians, points show raw data, and points not connected with
whiskers are outliers. Left column: South Bay. Right column: San Pablo Bay. On some dates (Nov. 1991, Jul. 1993, Sep. 2001, and Aug. 2002) both specieswere collected from the same site.
ForM. senhousia, two boxes are plotted on Jan. 1976 andMay 1976 to distinguish samples collected from different locations on the same date. For San Pablo Bay, there were two different
sampling dates in Aug. 2002. Note different scales in y-axes for South versus San Pablo Bay. The x-axis is not to scale.
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versus exclusion of these outliers did not change the significant linear
and quadratic date effects. For all models, the model structure required
to achieve acceptable residuals also included a sample fixative effect on
residual variation, as well as a random date effect.

A breakpoint analysis (i.e., piecewise regression)was performed and
also indicated declining concentrations in recent years only. Based on
minimizing AIC across all possible dates, a breakpoint was indicated be-
tween July 1994 and August 1995. There was no significant slope before
the breakpoint (i.e., flat concentrations), and a significant decline after-
wards, indicating declining δ13C starting in the mid-1990s. In a mixed
model with a September 1994 breakpoint, marginal and conditional r2

were 0.43 and 0.91, similar to the quadratic model described above.
Although δ13C and MeHg both exhibited temporal trends, δ13C and

MeHg were not significantly associated with each other for South Bay
(Pearson's r = 0.00, N = 104), San Pablo Bay (Pearson's r = −0.16,
N = 52), or both embayments combined (Pearson's r = −0.02, N =
156).

4. Discussion

4.1. Preservation study

4.1.1. MeHg trends
Preservation notably increasedMeHg tissue concentrations, but con-

centrations generally stabilized after a week, with the exception of P.
amurensis in formalin, which took 90 days to stabilize. This result was
consistent with previous research showing that HgT in preserved fish
samples increases and then stabilizes (Hill et al., 2010; Kelly et al.,
1975; Levengood et al., 2013). The HgT increase has been attributed to
loss of sample biomass due to dehydration and lipid loss; this loss con-
centrates mercury, which remains behind, associated with the sulfhy-
dryl groups in proteins. Initial biomass loss generally occurs rapidly,
leading to the most pronounced increases in mercury concentrations
within the first 10 to 40 days (Hill et al., 2010; Kelly et al., 1975;
Wetzel et al., 2005).

In this study, the initial MeHg increase was greater than that report-
ed in prior studies of finfish but was consistent with expectations based
on preservation effects on invertebrates. For the formalin treatment,
MeHg increased by 86% for M. senhousia after 7 days and 54% for P.
amurensis after 90 days (Table 1), a much greater increase than the
18% reported by Hill et al. (2010) for formalin-isopropanol preserved

fish. The increase also seemed high compared to the increase (~30%)
that would be expected from the amount of dehydration observed in
fish (Kelly et al., 1975). However, Wetzel et al. (2005) observed dry
mass decreases of 20–50% in invertebrates preserved in ethanol or for-
malin, which could result in up to two-fold MeHg concentration in-
creases if the majority of MeHg was retained in tissue.

Neither this study nor prior studies (Hill et al., 2010; Kelly et al.,
1975; Wetzel et al., 2005) indicate the relative importance of different
mechanisms (lipid loss versus dehydration versus other possible mech-
anisms) for initial increases in MeHg concentrations upon sample pres-
ervation. In the current study, analysis of covariance did not indicate a
statistical association between dry tissue mass and MeHg for either bi-
valve species, perhaps suggesting that loss of biomass was not impor-
tant in the preservation study. However, this study did not compare
the mass of each bivalve before and after it was preserved. Instead, it
compared the mass of individual bivalves in the “fresh” treatment to
the mass of individual bivalves in other treatments, a design that
could have obscured small changes in the biomass of a single organism.
The question of what caused the increase in MeHg following preserva-
tion and the time-frame for stabilization is an areawheremore research
is needed, including directmeasurements of lipid loss after preservation
across multiple phyla andmeasurements over longer durations of years
to decades (e.g., Rennie et al., 2012).

Because of the nontrivial effect from preservation (up to 1.9-fold in-
crease inMeHgafter 7 days of preservation) and the short time-frameof
the preservation study, this study cannot rule out a preservation effect
as a factor contributing to the historical trends (Fig. 3). However, several
factors support the conclusion that the observed decline in MeHg in bi-
valves in the historical study is not simply a preservation artifact. First,
the magnitude of the decline in the historical study (3.8-fold decrease
in MeHg) is double that of the preservation effect. Second, if MeHg con-
centrations simply increased as samples aged, it would be hard to ex-
plain the lower MeHg in M. senhousia in the early 1990s compared to
the mid-1990s (Fig. 3). Third, the historical study data did not support
a trend of decreasing biomass over time; the samples in 1975–1976,
which had some of the highest MeHg concentrations, did not have the
lowest dry mass. Fourth, a continuing increase in MeHg in preserved
samples over time would be inconsistent with the statistical results
showing that MeHg in P. amurensis is lower in older samples. Fifth,
this research and previous studies (e.g., Hill et al., 2010) support the
conclusion that much of the MeHg increase occurs immediately upon
preservation. Because all of the samples in this study were preserved,
this 1.9-fold factor would not contribute to the historical trend.

Some researchers (e.g., Drevnick et al., 2007) have corrected for de-
hydration during preservation to compare preserved specimens to fresh
ones. However, long-term trends in fish mercury concentrations have
been reported without the use of a correction factor when all of the
samples were preserved (Martins et al., 2006). All of the historical
data in the current study were collected from samples that had been
preserved for years, with the exception of the 2012 samples that had
been preserved for about six months. Therefore, no correction factor
was applied to the historical data in the current study.

4.1.2. Preservation study stable isotope trends
The effects of fixation on δ15N depended on species but were limited

overall. For M. senhousia, δ15N values increased by about 0.3‰ after a
week of fixation (ethanol or formalin), but then stabilized. For P.
amurensis, fixation did not seem to affect δ15N signatures in any system-
atic way. These results were consistent with literature reviews that re-
port either no effect of preservation on δ15N signatures (Rennie et al.,
2012) or a very minimal change of 0.5‰ at most (Sarakinos et al.,
2002). Preservation generally does not affect δ15N signatures to the
same extent that it affects δ13C signatures (Sarakinos et al., 2002).

The study's experimental δ13C data suggest that formalin fixation
decreases δ13C isotopic values, but ethanol fixation does not systemati-
cally affect δ13C signatures. These results were in general agreement
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Fig. 4. The best statistical model to describe δ13C included a negative quadratic date effect
(marginal r2 = 0.38).
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with past studies reporting a depletion in δ13C following formalin fixa-
tion (Rennie et al., 2012), but no change following ethanol fixation
(Sarakinos et al., 2002). Averaged acrossmultiple taxa, δ13C declines fol-
lowing formalin fixation have been reported to be around1.3‰ (Vander
Zanden et al., 2003), 1.7‰ (Sarakinos et al., 2002), and 2‰ (Rennie et al.,
2012). However, there is a lot of variability between species. For exam-
ple, while δ13C values for most taxa declined following formalin preser-
vation, Sarakinos et al. (2002) reported an increase of 0.7‰ for the Asian
clam, Corbicula fluminea. In the current preservation study, the effects of
formalin fixation were at most a 0.5‰ decrease.

Overall, preservation study data suggest that it is appropriate to use
preserved specimens to evaluate general temporal trends in bivalve
δ15N and δ13C, provided that caution is applied to small changes (i.e.,
b1‰). Of interest, a long-term comparison shows similar δ13C and
δ15N signatures in specimens preserved with formalin for 1 year versus
those preserved for 15 years (Rennie et al., 2012). In the current preser-
vation study, the effects of fixation on δ15N values varied with species
and time. However, the largest change was a 0.3‰ enrichment in δ15N
in M. senhousia with increasing storage time (Fig. 2), which was rela-
tively small, and in the opposite direction, compared to the ~6‰ long-
term enrichment in the historical study of South Bay (Fig. 3). Similarly,
the depletion in δ13C (at most 0.5‰ for formalin fixed samples)with in-
creasing storage time in the preservation study was of a smaller magni-
tude and opposite direction from the strongest temporal trend in the
historical study, which was a 3‰ depletion in δ13C in 2012 compared
to prior years.

4.2. Historical study

4.2.1. MeHg trends
The study's main hypothesis was that MeHg concentrations in bi-

valves would decline due to a widespread reduction in mercury use
prior to and during the study period. Mercury usage in the United States
peaked in 1964, with consumption of 2.7 million kg per year (Conaway
et al., 2007). Shortly thereafter, mercury was recognized as an environ-
mental hazard, and production tapered off (Conaway et al., 2007). In
San Francisco Bay sediments, mercury concentrations peaked in the
middle of the 20th century and subsequently declined, although con-
centrations have not fallen to background levels (Conaway et al.,
2004; Donovan et al., 2013).

Methylmercury declined over time in bivalves from South Bay, but
there was no apparent time trend in San Pablo Bay. This difference be-
tween embayments was consistent with Mussel Watch data showing
that trends vary by site; among 51 estuarine and coastal sites in Califor-
nia, analyzed across dates ranging from 1977 to 2010 (depending on
site), HgT declined in Mytilus spp. at 24 sites but exhibited no trend at
27 sites (Melwani et al., 2013).

In the current study, the difference between sites likely results from
embayment-specific primary mercury sources and reservoirs, which
themselves exhibit differing time trends. There were two main anthro-
pogenic sources of mercury to San Francisco Bay: elemental Hg (Hg0)
that was used during the Gold Rush in the Sierra Nevada region and
mercury ore from the California Coast Range (Alpers et al., 2005). Mer-
cury was also used in the San Francisco Bay watershed in a variety of
historical applications, including as agricultural pesticides, as anti-foul-
ing paint, and in chloralkali plants for the production of chlorine and
caustic soda (Conaway et al., 2008). Mercury associated with gold min-
ing reached North San Francisco Bay when mercury-contaminated sed-
iments were transported downstream through the Sacramento-San
Joaquin watershed (Domagalski, 2001; Donovan et al., 2013). Mercury
associated with mercury mining in the Coastal Range reached South
Bay when it was leached from tailings and calcine (roasted ore) and
transported with sediments into the small waterways that empty into
South Bay, such as Guadalupe River and Coyote Creek (Donovan et al.,
2013; Thomas et al., 2002).

Mercury stable isotopes have been used to distinguish elemental
mercury used in the Sierra Nevada from mercury leached from ores in
the Coast Range (Gehrke et al., 2011). Stable isotope results show that
the contribution of mercury from mining in the Coast Range has de-
clined for open-water sites in South Bay, such as our field site. Around
1960, mercury from mining in the Coast Range accounted for 37% of
the mercury in lower South Bay surface sediments; that number has
dropped to 16% at present (Donovan et al., 2013). Elemental mercury,
such as that used in the Sierra Nevada, is the now dominant source in
surface sediments (Donovan et al., 2013).

The timing of the decline in the contribution of mercury from the
Coast Range corresponds with the timing of the decline observed in
this study. The highest concentrations of MeHg in this study were ob-
served inM. senhousia in October 1975 (average 218 ng/g dw) and Jan-
uary 1976 (180 ng/g dw), corresponding with the closure of New
Almaden in 1975. LowerMeHg concentrations observed inM. senhousia
in later years (e.g., 57 ng/g dw in 2012) likely reflect the decline in re-
lease of mercury source material after closure of this mine (Conaway
et al., 2007; Conaway et al., 2004). It is worth noting that this overall de-
cline is significant even with the slightly lower MeHg (average 92 ng/g
dw, Fig. 3) 1970 samples included; the 1970 samples were from the
most westerly of the Dumbarton Bridge collection sites and were pre-
sumably furthest from the mine inputs (Fig. 1).

Bivalves in this study did not show a continued decline inMeHg con-
centrations in the 1990s although continued downward trends have
been seen in sediments (Conaway et al., 2007). By compiling monitor-
ing data, Conaway et al. (2007) found that mercury concentrations in
sediment samples from the Dumbarton Bridge declined by 32% from
1993 to 2001. They tentatively attributed the decline in mercury in sed-
iments to a wet period in the 1990s that lead to high flow from the Sac-
ramento River, bringing less contaminated sediments all the way into
South Bay (Conaway et al., 2007).

It would be reasonable to expect a continuing decline in mercury in
bivalves, following remediation of New Almaden. After closure of the
New Almaden mines in 1975, the site was opened as a county park
until the California Department of Toxic Substances Control ordered
its clean-up and temporary closure in 1987 (URS, 2012). Remediation
occurred in two phases in 1999 and 2000 (URS, 2012). Further remedi-
ation to minimize erosion and thus release of mercury to San Francisco
Bay followed after a Total Maximum Daily Load (TMDL) was developed
for the Guadalupe River watershed in 2008. Unfortunately, one of the
limitations of using preserved specimens is limited sample availability
(Campbell and Drevnick, 2015). Lack of samples in the 2010s limits
the ability to detect further declines in mercury in bivalves.

Although sample availability limited the time-frame of observations,
this is the first study to report a long-term decline in mercury in biota
from South San Francisco Bay. Long-term trends in MeHg in fish and
wildlife have been observed in other waterbodies (e.g., Bhavsar et al.,
2010; Bond et al., 2015; Campbell and Drevnick, 2015; Frederick et al.,
2004; Gandhi et al., 2014; Hill et al., 2010; Vo et al., 2011). However,
San Francisco Bay is somewhat unique in that it has a wide range of
mercury sources, some of which were active over century timescales
(e.g., historical gold and mercury mining and industrial applications)
and some of which are still ongoing (e.g., atmospheric deposition)
(Conaway et al., 2008; Davis et al., 2012).

Multiple sourcesmake it difficult to observe declines, a problem that
is further compounded by using biota to monitor trends. Biota mercury
concentrations tend to fluctuate substantially from year to year in San
Francisco Bay (Greenfield et al., 2005; Greenfield et al., 2013a;
Gunther et al., 1999) and elsewhere (Claveau et al., 2015). These fluctu-
ations can obscure trend detection. Another challenge is that concentra-
tions in biota are frequently decoupled from those in sediments, as seen
in the lack of a relationship between sediment HgT concentrations and
fish HgT concentrations across Western North America (Eagles-Smith
et al., 2016). Furthermore, rates of change in biota are slow and are
most likely to be detected when initial concentrations are high
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(Melwani et al., 2013). For example, Mussel Watch data showed no sig-
nificant trend at two South Bay sites (Dumbarton Bridge and SanMateo
Bridge) from 1986 to 2009 (Melwani et al., 2013). The declining trend
that we observed in South Bay was due to the much higher MeHg con-
centrations thatwewere able to observe in the 1970s by using historical
samples. The Mussel Watch study did report a weak declining trend in
Mytilus spp. collected at the Emeryville shoreline (Central San Francisco
Bay) from 1986 to 2009, with a calculated half-life of 54 years. Despite
the different mercury form (HgT) and bivalve species examined, both
Mussel Watch and the current study suggest limited change from the
mid-1980s to the present.

The slow recovery suggests that the extensive health impacts from
mercury usage in ongoing global gold mining (Gibb and O'Leary,
2014) may not be immediately curtailed when mining is stopped. The
slow recovery also indicates that despite extensive ongoing restoration
andmanagement efforts, MeHg in the Bay is likely to require decades to
exhibit detectable declines. There is a large existingmercury reservoir in
Bay sediment and watersheds, which serves as an ongoing source of
mercury to biota (Davis et al., 2012). As a result, restoration efforts
andmonitoringwill need to be implemented on a long-termbasis if dis-
cernable benefits are intended. Monitoring efforts will also need to ac-
count for ecological changes that can affect how much MeHg is
transferred in the food web (Monson et al., 2011), such as the introduc-
tion of P. amurensis in the northern reach of the estuary in 1986. This
species has shown an increase in MeHg from 1988 to 2002.

In the historical study, the statistical model indicated higher concen-
trations of MeHg in P. amurensis relative toM. senhousia during the time
period when both species were available. Previous studies have consid-
ered both biodynamics (e.g., update and loss rates) and feeding niches
to explain differing concentrations of MeHg among marine bivalve spe-
cies (Pan and Wang, 2011). In this study, bivalves had similar feeding
niches (as indicated by δ13C signatures) so it seems likely that the differ-
ences are due to the way in which P. amurensis bioaccumulates MeHg
and its rate of ingestion. P. amurensis is known to be a voracious filter
feeder; its grazing rate can equal the rate of phytoplankton primary pro-
duction in San Francisco Bay (Alpine and Cloern, 1992). The extremely
high ingestion rate of P. amurensis has been cited as a factor contributing
to its high selenium concentrations, which exceed concentrations in
transplanted bivalves (Linville et al., 2002), lower trophic level crusta-
ceans (Stewart et al., 2004), and the clam Corbicula fluminea (Lee et
al., 2006). Dietary uptake may also explain the elevated MeHg in P.
amurensis.

One implication of the differing MeHg levels between the two bi-
valve species is that although MeHg concentrations in M. senhousia
have declined, if predators switched their diet to include P. amurensis,
which became abundant in someparts of the estuary following its intro-
duction in 1986, their overall MeHg body burden may have remained
the same. Given the abundance and ecological importance of P.
amurensis (Zeug et al., 2014), pulse-chase experimentsmay bewarrant-
ed to compare uptake and loss rates andMeHg body burden among San
Francisco Bay bivalve species.

4.2.2. Stable isotopes compared to MeHg
Methylmercury bioaccumulation occurs primarily through dietary

exposure and researchers can employ multiple stable isotopes (e.g.,
δ13C and δ15N) to track food sources, foodweb structure, and trophic po-
sition (Peterson and Fry, 1987). For example, different feeding niches
(e.g., benthic versus pelagic) can be detected by δ13C signatures, provid-
ed that the food sources have distinct isotopic signatures (France, 1995).
Additionally, relative trophic positions can be detected with stable ni-
trogen isotope ratios because δ15N becomes enriched between predator
and prey, unlike δ13C (Minagawa andWada, 1984). This study therefore
employed δ13C and δ15N as indicators of potential causes of mercury
trends or mercury difference between species.

In this study, neither δ13C nor δ15N values were predictive of MeHg
concentrations in the bivalves. In particular, neither were retained in

mixed models to predict MeHg. Additionally, bivariate associations be-
tween the isotopes andMeHgwere generally not observed. The only ex-
ception was a weak negative association between δ15N and MeHg in
South Bay; however, this contradicts a hypothesis of MeHg increasing
with increased trophic position of individual bivalves, suggesting that
MeHg is not explained by foodweb position. Previous studies of mercu-
ry accumulation in different bivalves species have argued that the car-
bon source, measured by δ13C, can be a predictor of MeHg
concentrations, but that the trophic level, measured by δ15N, is similar
among different bivalves species (Pan and Wang, 2011). In the current
study, the lack of a relationship between MeHg and δ13C or δ15N sug-
gests that the decline inMeHg concentrations (Fig. 3)was due to chang-
es in exposure, not changes in food web structure. One possible reason
for lack of associations between δ13C signatures and MeHg was that, in
contrast to fresh waters, which often exhibit clear two-source mixing
(France, 1995), the food sources in San Francisco Bay exhibit highly var-
iable and complex δ13C baseline signatures (Cloern et al., 2002).

Higher δ15N values were observed in P. amurensis relative to M.
senhousia. This was somewhat surprising because previous studies of
mercury accumulation have found no difference in δ15N between bi-
valve species (Pan and Wang, 2011). P. amurensis has been shown to
feed on zooplankton, such as copepod nauplii (Kimmerer et al., 1994)
and microzooplankton (Greene et al., 2011), in addition to its main
diet of phytoplankton (Canuel et al., 1995). These other carbon sources
could potentially account for this clam's δ15N enrichment relative to
other filter feeding organisms in San Francisco Bay. Nevertheless, die-
tary information is lacking for M. senhousia, and thus, some other un-
known factor could be causing a baseline shift in nitrogen isotope
between the species. Future studies could conduct side-by-side compar-
isons of δ15N and diet in the two species.

4.2.3. Stable isotope spatial and temporal trends
Substantially higher δ15N values were observed in South Bay bi-

valves relative to San Pablo Bay, consistent with different nutrient and
water sources between the embayments. San Pablo Bay is dominated
by riverine inflow and nutrient sources from runoff, whereas wastewa-
ter sewage treatment plant discharges are the predominant sources of
water and nutrients to South Bay (Novick and Senn, 2014; Smith and
Hollibaugh, 2006). In many systems, anthropogenic nitrogen loading
(e.g., from wastewater treatment plants) causes elevated δ15N values
(Wankel et al., 2006).

The increase in δ15N values in South Bay bivalves over the study du-
ration likely results from a shift in baseline over time, due to multiple
processes. The magnitude of the increase (6‰) would represent two
trophic levels and therefore is too large to be explained by an increase
in trophic position for filter-feeding bivalves. Instead, the increase
could result from a combination of changes in total inorganic nitrogen
(TIN) loading (e.g., NO3 and NH4

+) and changes in algal biomass. From
the 1970s to 1991, δ15N values in South Bay bivalves increased from
12 to 16‰. The timing of this increase generally corresponded with an
increase in dissolved inorganic nitrogen (DIN) loadings from the San
Jose-Santa Clara wastewater treatment plant between the mid-1970s
and the late 1980s (Cloern et al., 2006). The San Jose-Santa Clara waste-
water treatment plant is the major municipal discharger into South Bay
(Cloern et al., 2006).

From the 1990s to 2012, δ15N values in bivalves continued to in-
crease from around 16 to 18‰. However, increased TIN loading is un-
likely to be the cause of this trend because improvements in
wastewater treatment resulted in a decrease in TIN loading, beginning
around 1990 and continuing to 2006, when data were last available
(Cloern et al., 2007). Instead, the increase in δ15N could potentially be
the result of a long-term increase in algal biomass in South Bay, docu-
mented since 1999 (Cloern et al., 2007). Algal populations have in-
creased in recent years, likely due to climate-mediated reductions in
benthic bivalve populations and grazing (Cloern and Jassby, 2012). In-
creased phytoplankton biomass may have increased inorganic nitrogen
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δ15N-DIN, due to isotopic fractionation to the heavier isotope during
phytoplankton uptake (Granger et al., 2004). Enrichment of the nitrate
pool in 15N in South Bay waters as a result of primary production was
also previously observed (Wankel et al., 2006).

Similarly, the apparent shift in δ13C to a lighter signature by 2012
(Fig. 4) is consistent with increased pelagic (versus benthic) carbon
sources to the bivalves (Peterson and Fry, 1987), possibly resulting
from the recent increase in phytoplankton biomass. However, there is
considerable variability in δ13C signatures (Cloern et al., 2002), includ-
ing short-term variability from stormy conditions that can introduce
waters depleted in 13C (Fry, 1999). The recent decrease in δ13C, possibly
indicating a shift to a more pelagic food web pathway, should be inves-
tigated further because previous studies have demonstrated that pelag-
ic food webs biomagnify mercury more efficiently than benthic food
webs (Pickhardt et al., 2006; Stewart et al., 2008) and that algal blooms
may mobilize MeHg in San Francisco Bay (Luengen and Flegal, 2009).

5. Conclusions

The sharp decline in MeHg in M. senhousia following closure of the
New Almaden Mercury Mines, combined with mercury isotope results
showing a decline in mine-derived mercury (Gehrke et al., 2011;
Donovan et al., 2013), strongly suggests the importance of source con-
trol in decreasing MeHg concentrations in biota. However, MeHg pat-
terns in bivalves can be decoupled from those in sediments, as in the
1990s whenmercury concentrations in bivalves did not continue to de-
cline despite decreases in HgT sediment concentrations andmine reme-
diation. Furthermore, the overall impact of decreasing mercury
loadings, especially to higher trophic levels, may be obscured by ecolog-
ical changes. For example, invasion of P. amurensis may increase MeHg
accumulation in the food chain; it has higher MeHg concentrations
than M. senhousia. Stable carbon and nitrogen isotope analyses of pre-
served bivalve tissues can be useful in detecting ecological changes, in-
cluding natural drivers, such as a recent increase in algal biomass
(Cloern et al., 2007; Cloern and Jassby, 2012) that is of concern due to
the potential for pelagic-based foodwebs to accumulate highMeHg. Ul-
timately, to understand and predict MeHg biotic trends, it is important
to consider trends in loadings, MeHg production (i.e., methylation),
and bioaccumulation to the food chain. Use of preserved specimens is
one of many approaches that can help identify these multiple drivers
to understand how management actions will influence biological
responses.
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