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Network-based criterion for the success of cooperation in an evolutionary prisoner’s dilemma
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We consider an evolutionary prisoner’s dilemma on a random network. We introduce a simple quantitative
network-based parameter and show that it effectively predicts the success of cooperation in simulations on the
network. The criterion is shown to be accurate on a variety of networks with degree distributions ranging from
regular to Poisson to scale free. The parameter allows for comparisons of random networks regardless of their
underlying topology. Finally, we draw analogies between the criterion for the success of cooperation introduced
here and existing criteria in other contexts.
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I. INTRODUCTION

Altruistic behavior among agents in evolving systems, both
biological and social, has been widely observed in nature
[1–7]. The fact that cooperative behavior can emerge between
unrelated individuals in the competitive landscape of natural
selection, however, poses a challenge to building realistic
models of evolving systems. One tool that has been widely
employed to help address this challenge is evolutionary game
theory. As a result, game theoretic models that can exhibit
realistic phenomena are of great interest to researchers across
disciplines including physics, biology, and the social sciences
[2–18].

Complex networks have also come to play a central role in
the study of evolutionary systems [11–22]. In network-based
models, agents occupy the vertices of a network and interact
only within their immediate neighborhood consisting of those
agents to whom they are connected by network edges. There
are various models of agent interaction using mathematical
games, the most widely studied being the prisoner’s dilemma
(PD), which captures, in a precise framework, the temptation
to selfishly promote one’s own fitness at the expense of a
cooperating neighbor [8]. Another critical model component
is the updating rule by which agents’ strategies in the game
evolve over time. A recent paper has shown that a subtle
interplay among these various components being used—the
structure of the network, the particular form of the game,
and the updating rule—govern the long term dynamics [23]
of the system and give rise to a wide variety of interesting
phenomena.

Nowak and May introduced the network-based approach
by showing that cooperation in the PD could become evo-
lutionarily sustainable on a lattice for a wide range of game
parameter values [11]. In that paper, agents imitated the most
successful strategy among their neighbors. A change in the
updating rule to the discrete replicator dynamics, however,
significantly reduces the range of parameter values for which
cooperation can thrive. On certain heterogeneous networks,
such as those with heavy-tailed degree distributions that follow
an inverse power law, Santos and Pacheco found that, under the
replicator dynamics, cooperation could become the dominant
population trait for the full range of parameter values [13].
This stands in stark contrast to the well-mixed model of the
same dynamics where defection takes over the population

for all game parameter values. Other factors, such as the
payoff structure of the game [20] and the particular model
for evolution [23], have also been shown to have dramatic
effects on the system dynamics. The surveys [12,23] provide
a good starting point for exploring the variety of models of
evolving systems.

In this paper, we consider a particularly widely studied
evolutionary model. We use a payoff matrix that locates the
game on the border between the PD and the snowdrift game—
the so-called weak PD as in Ref. [13]. Updating is performed
synchronously with the discrete replicator dynamics, and our
focus is the role the network structure plays in predicting
the success of cooperation. We observe that the evolutionary
success of cooperation can be accurately predicted from
quantitative network parameters. The results build on previous
studies of how cooperators survive in an evolutionary PD [15]
and the degree to which heterogeneity can be quantified to give
insight into the success of altruism [17]. Our primary tools are
the generating functions associated with the degree distribution
of the network [19]. Comparing predictions to Monte Carlo
simulations, we find excellent agreement across networks
with varying topologies and varying average degrees. Given
the known complexity of these dynamical systems [12,15],
the accuracy with which this simple criterion predicts actual
dynamics is especially appealing.

Finally, we relate the criterion derived here to existing
criteria in other contexts, including kin selection and network
reciprocity.

II. PRELIMINARIES

The PD is a widely studied framework in which to model
problems of conflict and cooperation [8]. Two players indepen-
dently choose between cooperation and defection, and players’
choices determine (normalized) game payoffs. The payoffs
are interpreted as fitness in evolutionary biology as follows:
Mutual cooperation gives a payoff R to each player, a defector
exploiting a cooperator gets T , an exploited cooperator gets
S, and two defectors each give and receive nothing. Payoffs
satisfy T > R > 0 � S, from which it follows that a rational
player always defects as the payoffs for defection strictly
dominate those for cooperation regardless of the co-player’s
strategy. Defection is said to weakly dominate when S = 0.
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The result is a Nash equilibrium in which both players defect
and the dilemma arises from an inefficiency of this equilibrium:
Both agents could fare better by cooperating [8].

A widely adopted payoff normalization [11,13–17] sets
R = 1 and S = 0 so that the game depends on the single
parameter T = 1 + r indicating the temptation toward defec-
tion in the game. Taking values of S near zero amounts to an
assumption that social interactions are inexpensive. With this
normalization, the game lies on the boundary between the PD
and the snowdrift game (SG), another commonly studied game
of cooperation. In the SG, the bottom two PD game payoffs
are reversed so that cooperation is a better unilateral response
to defection: T > R > S > P with P as the punishment for
mutual defection. In that case, setting T = 1 + r, R = 1, and
P = 0, the Nash equilibrium calls for a cooperation probability
of 1 − r

S+r
, which is close to zero as long as S is sufficiently

close to zero. Qualitatively, the case of S = 0 (the so-called
weak PD) addresses both games when social interactions are
inexpensive and so, is the focus from here on. Although the
S ≈ 0 assumption is both plausible and widely adopted, it
is significant, and dropping it has a considerable effect on
system dynamics [20]. As mentioned in the Introduction, the
interplay among the network, the updating scheme, and the
game is subtle, and a change in any of these can have a
significant effect on the dynamics of the system. We stress
that the criterion derived here is specific to the assumptions of
this particular model (see further discussion below).

Evolution is introduced through repeated interactions be-
tween agents. Agents engage in a PD with their neighbors
and then update their strategy using the replicator dynamics.
Replicator dynamics updating models natural selection using
agent fitness comparisons that result in stochastic imitation
of fitter strategies by less fit strategies. In the repeated PD,
payoffs are further required to satisfy T + S < 2R in order to
ensure that full cooperation in the population remains Pareto
optimal.

When a population of agents is unstructured and agent
interactions are random, the replicator dynamics favor defec-
tion, and cooperation is driven to extinction. As mentioned in
the Introduction, the situation is notably different when the
population is structured by a network.

Let N be a network consisting of vertices and undirected
edges where neither loops nor multiple edges are allowed.
Agents occupy the network’s vertices and are constrained to
interact only within their immediate neighborhood defined to
be those agents with whom they are connected by an edge.
Define a round of play to consist of each agent playing a
pure strategy in a PD with all neighbors and accumulating the
resulting payoffs. Following a round, agents simultaneously
update strategies using the discrete replicator dynamics: If
agent x has accumulated payoff Px and compares her payoff to
that of agent y, then x adopts the strategy of y with probability,

Px→y = max{0,Py − Px}
(1 + r)kmax

.

Here, kmax is the larger of the degrees of vertices x and y

[13,15–18].
Simulations are performed on various networks (details

below) with 104 vertices. In each case, we start from a
random strategy assignment where the probability of an agent

cooperating is 0.5. A series is defined to consist of 104

rounds of play with updating. The series mean is taken to be
the average cooperation level over the last 1000 rounds
of the series. For a particular network, 100 series are run, and
the equilibrium cooperation level is taken to be the average
of these 100 series means. For a network N and a particular
choice of PD parameter r , we let ρN,r denote this equilibrium
cooperation level.

It is well known (and summarized below) that cooperation
can become evolutionarily stable in network models of this
kind. Moreover, the extent of the evolutionary success of
cooperation has been shown to depend greatly on the particular
underlying network topology [11–13]. In order to make this
relationship more explicit, we recall some basic tools in the
study of networks.

Let pk denote the probability that a random vertex from the
network N has degree k, and let X be the random variable
that takes values in the set of all possible vertex degrees in
the network. The probability generating function [19] for the
distribution of X is given by

G(x) =
∑

k>0

pkx
k,

and gives a first-order approximation of network topology.
The degree distribution ignores any other contact information,
so G(x) represents a generic network chosen randomly from
among all those with the fixed degree distribution. The mean
vertex degree V in the network is given by V = G′(1) = 〈k〉.

Alternatively, a randomly chosen edge from the network
is k times more likely to lead to a vertex of degree k than
a vertex of degree 1. Therefore, if Y is the random variable
whose values are the degrees of vertices reached from random
edges, then the probability generating function of Y is given
by

T (x) =
∑

k>0
kpkx

k

∑
k>0

kpk

= 1

G′(1)

∑
k>0

kpkx
k = xG′(x)

G′(1)
.

(1)

Define a random neighbor to be a vertex reached by first
choosing a random vertex in the network, followed by a
random edge emanating from that vertex. Assuming that the
network is random other than the fixed degree distribution, it
follows that T (x) is the probability generating function for the
degree distribution of random neighbors. The average degree
of a random neighbor N is, therefore, the expected value of
Y so that N = T ′(1). Note that, if the network is not random,
then N need not equal T ′(1) [21]. An example of a nonrandom
network is one where the probability that an edge leads from
a degree j vertex to a degree k vertex is not independent
of j , i.e., a network with degree-degree correlations. Since
the generating functions G and T contain no information
about network size, they represent the limit as the number
of vertices grows without bound. The mean-field parameters
N and V , consequently, require sufficiently large networks to
be meaningful. That said, the results that follow are robust
down to networks with 2 × 103 vertices.

A critical factor in the study of cooperation phenomena is
network heterogeneity [13–17]. In heterogeneous networks,
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a broad diversity of vertex degrees is represented. In the
context of the evolutionary PD, network heterogeneity has
been shown to be strongly correlated with increased success
of cooperation [13,17]. On certain highly heterogeneous
networks, such as those with so-called scale-free degree
distributions, cooperation can be the dominant population trait
for the full range of PD game parameters.

Heterogeneity can be naturally quantified by the variance in
the degree distribution. With 〈k〉 denoting the expected value of
the random variable X and 〈k2〉 denoting the expected value of
X2, one has Var[X] = 〈k2〉 − 〈k〉2. Using the above notation,

Var[X] = G′(1)T ′(1) − G′(1)2 = V (N − V ).

Fixing the average network degree V , one gets (N − V ) or the
difference between the degrees of an average neighbor and an
average vertex as a measure of network heterogeneity. In what
follows, we are interested in this measure of heterogeneity
relative to the degree of a random neighbor, namely, the mean-
field parameter N−V

N
. This parameter has the advantage of

giving a normalized measure of heterogeneity that lies in the
interval [0,1).

III. RESULTS AND DISCUSSION

We consider the following question: Given a network N ,
for what game parameter values r can cooperation flourish?
To address this question, we define r0.5 to be the value of
the game parameter at which point neither a cooperator nor
a defector has an advantage (on average) in the network
dynamics at equilibrium. The hypothesis is that r0.5 marks
the point at which each strategy is equally successful, and in
the resulting equilibrium, one finds cooperation and defection
to be approximately equally prevalent on the network. Thus,
r0.5 is a threshold at which point the system transitions between
dominant cooperation and dominant defection where dominant
is defined as representing more than 50% of all vertices. In
what follows, we explore the value of r0.5 in terms of the
network parameters N and V .

To this end, we consider simulated dynamics on networks
with varied degree distributions. Networks with K vertices
and average degree 2m (m = 2, 3, or 4) are constructed via
a two step process introduced in Ref. [22]. First, a network
is generated from the algorithm introduced in Ref. [22]. This
algorithm uses a single parameter α to interpolate between an
Erdős-Rényi random network (ER) [24], and a Barabási-Albert
(BA) scale-free network [25]. Starting from a complete graph
on n0 vertices, one of the remaining K − n0 vertices is
chosen. This vertex has m edges to attach as follows. With
probability 1 − α, the vertex attaches an edge to an existing
vertex with a probability proportional to the existing vertex’s
degree (i.e., by preferential attachment). With probability α,
the edge is connected to any of the existing K − 1 network
vertices with a fixed probability. This procedure is repeated
m times, once for each edge. When α = 0, one obtains
a BA network with a power law degree distribution, and
when α = 1, one obtains an ER random graph. Intermediate
α’s give hybrid distributions with levels of heterogeneity
falling between the heterogeneous BA networks and the
essentially homogeneous ER random networks [17]. Networks
are generated with K = 104 vertices and average degree
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FIG. 1. (Color online) Equilibrium cooperation level as a function
of the game parameter b = 1 + r for the B4,α and B6,α families of
networks.

2m ∈ {4,6,8}. For each value of 2m, networks are generated
with α ∈ {0.00,0.10,0.20,0.40,0.60,0.80,1.00}. Finally, each
network is distilled down to its degree distribution by throwing
away all other contact information, and a new network is
reconfigured, consistent with that degree distribution, using the
configuration model [26]. The result is a maximally random
network with the specified degree distribution belonging to a
family of graphs, which we denote by B2m,α .

Figure 1 shows the average cooperation levels as a function
of the parameter of 1 + r for average network degrees V = 4
and V = 6 and with varying levels of heterogeneity determined
by α. We see that, for networks with increased levels of
heterogeneity, high levels of cooperation are sustained for
larger values of r . In Fig. 1, r0.5 can be seen as the value of r

which gives an average equilibrium cooperation level ρN,r of
approximately 0.5.

The results of the simulations described above are con-
sistent with previous work and are summarized with the
temperature plot in Fig. 2. For each simulation, ρN,r is plotted
as a function of the mean-field parameter N−V

N
introduced

above as well as the game parameter r . Note that the
actual transitions from dominant cooperation (darker red)
to dominant defection (darker blue) occur in the neutral tan
colored regions between red and blue. One can see that, for all
networks, the value of r0.5 varies linearly with N−V

N
. Indeed,

the black lines in each panel mark the equation,

r0.5 = N − V

N
, (2)
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FIG. 2. (Color online) Simulation results for the evolutionary PD on the family of networks B2m,α with varying heterogeneity and average
degrees (a) 4, (b) 6, and (c) 8. The equilibrium level of cooperation is given as a temperature plot depending on both the network parameter N−V

N

and the cost-to-benefit ratio r . A point (x,y) in the plot, therefore, is colored according to the equilibrium cooperation level in the evolutionary
game on a fixed network with heterogeneity given by x = N−V

N
and PD cost-to-benefit ratio y = r .

where cooperators and defectors should be approximately
equally successful and so, are predicted to be equally prevalent.
Note that the line given by this simple relationship passes
through the neutral or nearly neutral regions of the temperature
plot, giving a strong indication of the correlation between
the value r0.5 arising from simulations and the mean-field
network coefficient N−V

N
. We also note that, on random

regular networks where all 104 vertices have the same degree,
cooperation levels are essentially zero for all values of r > 0,
which is consistent with Eq. (2) when N = V . It must be noted
that values of N−V

N
beyond 0.70 prove difficult to achieve, at

least, in the context of the growth and preferential attachment
algorithm. Recall, the reason for using this family of networks
was not any particular topology but rather to provide a range
of varied topologies and heterogeneity so as to highlight the
success of the parameter N−V

N
in predicting r0.5.

In Fig. 3, we plot simulated r0.5 values directly against N−V
N

for all networks. The strong linear relationship is again evident.
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r 0
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FIG. 3. (Color online) A plot of N−V

N
versus r0.5. In addition, the

figure shows the linear regression line y = 0.953 024x + 0.044 2192
with correlation coefficient r = 0.986.

Setting x = N−V
N

and y = r0.5, we get a linear regression line
of

y = 0.953 024x + 0.044 2192, (3)

with correlation coefficient r = 0.986 (r2 = 0.972). This gives
excellent agreement with Eq. (2). We again note the versatility
of the mean-field parameter N−V

N
, giving accurate predictions

across networks with very different distributions, different
levels of heterogeneity, and different average degrees.

As motivation for the criterion of Eq. (2) and the mean-
field parameter N−V

N
, we consider the results in Refs. [17]

and [15]. In Ref. [17], the weighted (by the cost-to-benefit
ratio r) average equilibrium cooperation level on the network
depended on the network parameter x = V

N
in a linear way.

More precisely, if we let

y =
∑

rρN,r

∑
r

,

where the sum is taken over all game parameter values r , then
a linear regression of y on x = N

V
gives y = −1.0074x +

0.9322. This can be thought of as a relationship between
the global average cooperation level on a network, over the
full range of the temptation to defect, and the parameter
V
N

. Notice, however, that the regression line is very close
to y = −x + 1. Indeed, inserting x = V

N
in the line gives

y = N−V
N

, the network parameter of Eq. (2). This suggests
a kind of mean value relationship whereby the global average
cooperation level over all temptation values also gives the local
threshold value of the game parameter r0.5 where the network
transitions from dominant cooperation to dominant defection.

A further understanding of Eq. (2) emerges from a closer
look at the dynamics discussed in Ref. [15]. For low temptation
to defect, cooperation is the social norm. As the temptation
to defect increases, however, the dynamics are governed by
three populations: a core (or cores) of cooperating agents, a
core (or cores) of defecting agents, and a critical fluctuating
population of sometime cooperators and sometime defectors.
The resilience of cooperation, as described in Ref. [15], is
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determined by interactions between agents on the border of
the cooperator core(s). When the temptation to defect becomes
great, defectors eventually invade the core by stripping off
layer upon layer of exposed cooperators until they are largely
eradicated from the population. The resilience of the coopera-
tor core(s) is fundamental to the success of cooperation.

Consider, therefore, an agent interacting within a cluster
of cooperators with the cost-to-benefit ratio for the game
as given by the normalized payoffs used here. Within the
cooperation cluster, the cost c paid by a cooperating agent is
(1 + r) − 1 = r: That is, r is the payoff forgone by cooperating
instead of defecting. Likewise, the benefit b received by a
cooperating neighbor of a cooperator is 1. This gives us a
notion of a localized cost-to-benefit ratio within a cooperator
cluster of c

b
= r . When r < r0.5, the game dynamics present

an advantage to cooperators within a cluster, and they can
resist invasion. In this case, we expect cooperation to thrive.
When r > r0.5, the advantage shifts to defectors who will
infiltrate the cooperator core (on average), and cooperation
should fall below 50%. Replacing r0.5 with N−V

N
, we get

c
b

= r < N−V
N

as the condition for cooperation to flourish as
in Eq. (2).

Finally, we draw an analogy between the criterion of Eq. (2)
and some existing criteria for the evolution of cooperation. A
discussion of the notion of network reciprocity in the context of
a death-birth process evolving under weak selection is given
in Refs. [3,27]. Here, a single network agent is chosen to
be replaced each round, and the agent’s neighbors compete
to pass their strategy along. Weak selection indicates that
the game payoffs represent only a small contribution to an
agent’s baseline fitness. In this context, the fixation probability
or the likelihood that cooperation ultimately takes over the

entire network is studied. Although, this is clearly a different
evolutionary system than the one studied here, it is interesting
to note the connection with their criterion for natural selection
to favor cooperation: On a regular network, cooperation is
favored when r < 1

V
. This result was extended to nonregular

networks in Ref. [28] where the criterion became r < 1
N

. As
pointed out in Ref. [27], network reciprocity is reminiscent of
Hamilton’s rule for kin selection [1].

Hamilton’s rule gives a genetic criterion for the emergence
of altruistic behavior between individuals when their genetic
relatedness exceeds the cost-to-benefit ratio of the altruistic
act. Genetic relatedness is measured by the probability that
two genes, randomly selected from each individual at the
same locus, are identical by descent [1]. The parameter N−V

N

that arises in Eq. (2) can be thought of as an analogous
notion of relatedness. Like genetic relatedness, N−V

N
lies in

the interval [0,1), with larger values indicating increased
relatedness. If two networks have the same fixed average
degree V , then there is more social cohesion in networks with
larger more influential neighbors. As a result, N emerges as
the parameter governing social viscosity [29] where larger
neighbors increasingly facilitate relatedness and, through
this, cooperation. As stressed above, changes to the specific
assumptions of the model have far reaching effects on the
dynamics of cooperation, and these analogies extend only so
far as the particulars of the model used here.

In conclusion, we have shown that a simple criterion,
derived using basic ideas from the theory of complex networks,
can effectively predict the success of cooperation in a particular
evolutionary PD on varied network topologies. Moreover, the
analysis suggests a network-based evolutionary rule that nicely
parallels existing criteria in other contexts.
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