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Atomization energies and enthalpies of formation of the SnBi n (n=1-3)
gaseous molecules by Knudsen cell mass spectrometry

G. Meloni® and K. A. Gingerich?
Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012

(Received 18 December 2001; accepted 28 January)2002

The equilibria involving the gaseous species SnBi, $nBnd SnBj above the condensed system
Bi—Sn contained in a graphite cell have been investigated by the Knudsen effusion technique
combined with mass spectrometry. Third law enthalpies for the reactions,(@)BiSn(cond)
+nBi(g), n=1-3, were evaluated. By combining the experimental reaction enthalpies with the
appropriate thermodynamic data taken from literature, the following atomization enexgle$,

and enthalpies of formation){H3g ;s, in kJmol %, have been derived: SnBi, 191:12.0 and
317.5£12.0; SnBj, 415.2+15.0 and 303.€ 15.0; SnBj, 603.4-18.0 and 323.418.0. © 2002
American Institute of Physics[DOI: 10.1063/1.146181]3

I. INTRODUCTION mass spectrometer. Details of the instrument and the general

Inorganic polyatomic molecules have been extensivel;}aXpe”,memal procedure have been d?sc”beo‘ else.v%efre.
studied over the past years, both experimentally througlgra_ph'te_ Knudsen cell was charged with the eutectic mixture
various techniqués® and theoretically employing several of tin—bismuth, and red phosphorus. The temperature of the

quantum chemistry methods? Polyatomic molecules play Knudsen cell was measured using a Pt vs Pt—10% Rh ther-
an important role as intermediate state of matter. In fact, thghocouple that was calibrated undersitu conditions against

formation of condensed phases is expected to be controlidff€ Solidification points of zinc and copper prior to the in-
by the properties of such molecules. vestigation. The thermocouple was enclosed in a ceramic

In particu'an due to the environmental po”ution Causedsheath. The various SpeCieS were identified by their mass to

by lead, in the last few years great attention has been directediarge ratio, shutter effect, ionization efficiency curves, and,
toward the development of Pb-free electrically conductingwhere possible, by their isotopic distribution. The ions were
materials, such as Sn—Bi alloyAmong of the most prom- produced with 20 eV and 1.0 mA electron emission current.
ising alternatives to Pb-containing joining materials there isThe acceleration voltage used was 4.5 kV, along with a volt-
42Sn-58Bi solder, a good candidate for low temperature apage of 1.9 kV at the entrance shield of the electron multiplier.
plications such as flexible circuits and smart card assemblies, At the time the measurements on the tin—bismuth spe-
due to its low melting temperaturé. cies were begun, only trace amounts of phosphorus and of an
The presence of the SnBi and SpRBitermetallic mol-  apparent zinc impurity were present. The vaporization of the
ecules in a mass spectrum was observed by Riekat!?  liquid tin—bismuth alloy was incongruent by predominant
during the determination of activities of the Sn—Bi alloys in loss of bismuth.
the temperature range from 1023 to 1323 K. The only spec- The ionic species detected over the Sn—Bi mixture were
troscopic investigation on Sn—Bi molecules is that of SnBiBi*, Bi; , SnBi", SnBi, , and SnBj . Their measured ion
by Bondybey and English® Employing a laser to vaporize currents are given in Table I. The ionization enettfy), in
the metals followed by laser induced fluorescence of theV, was estimated by the extrapolated voltage difference
products, they observed the SnBi gas phase spectrum, yielthethod® as 8.7-0.8 for the SnBj molecule.
ing the vibrational frequency and the bond distance of the Indications for fragmentation were evident from the ion-
ground state. ization efficiency curve of Bi. Rovneret al® also observed
In the present investigation, we report our results derived contribution of fragment ions to the measured intensities of
from high-temperature mass spectrometric equilibrium meaBi* during the evaporation of pure bismuth and of a 1:1
surements for the atomization enthalpies and enthalpieBi—Pb alloy. They reported a 35% fragmentation contribu-
of formation of the SnBig), SnBi(g), and SnBi(g)  tion to Bi" intensity. Riekertet all? during the determina-

molecules. tion of activities of the Sn—Bi alloys determined a 30% con-
tribution to the ion current of Bi essentially due to the
Il. MASS SPECTROMETRIC MEASUREMENTS fragmentation of Bj, using 20 V ionizing electrons. We took

The measurements were performed with a Nuclide Corj.nto account the fragment contribution to the Bi and SnBi

poration 12-90 HT single focusing magnetic deflection-typemolecules ion currents in the thermodynamic evaluation of
the equilibria studied as explained in the Results and Discus-

. N - sion.
dCurrent address: Department of Chemistry, University of California, Ber- . . . . .
keley, CA 94720. The ion intensities measured for the various ions were
PElectronic mail: gingeric@mail.chem.tamu.edu converted into partial pressures by using the relatmpn
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TABLE |. Measured ion currensin A, over the Sn—Bi—P system, and third-law values, in kJthabf the A, H§ for reactions(1), (2), (3).
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lon intensities

AHS AHg A HG
T (K) Bi* Bij SnBi* SnBi SnBi reaction(1) reaction(2) reaction(3)
903 2.3E-08 1.3%&-08 4.8E—-13 2.8E—-12 —-105.4 120.1
884 1.4&—08 8.0&£—-09 3.8E—-13 1.8E—-12 8.0E—-14 —99.82 121.0 312.0
922 4.0—-08 2.2E—-08 1.1E-12 6.6E—12 2.4E-13 —-105.1 120.6 310.3
941 6.0 —08 3.2E-08 2.3E—-12 1.1%¢E-11 2.1E-13 —-102.7 121.3 306.2
952 7.5€£—-08 4.0E—-08 3.2&E—-12 1.6E-11 4.2E—-13 —-103.1 122.3 309.9
969 1.2€&-07 6.2 —-08 5.1&-12 2.4£-11 6.7€E—13 —-103.7 120.0 307.9
984 1.6&£-07 8.5& 08 9.3E—-12 4.2E-11 9.8E—-13 —-102.5 121.4 308.2
—103.2£1.9 121.0+0.8 309.1-2.1

aMeasured ion currents without corrections for fragmentatisme text
PThe error terms are standard deviations.

=(K/o;vn)I;T, whereK is the instrumental constant; , v; , was taken from Kisef® and those of the molecular species
n,, andl; are the cross section, the multiplier gain, the iso-Were calculated from the. isotppip apundance of thg constitu-
topic abundance, and the current intensity of the specific iorﬁ’m elements. The relative |0n|zat|9n cross sections used,
respectively, and is the temperature. The pressure calibra-" 10716_3 cnT, were taken from experimental valueszreported
tion constantsk,=K/(c;n;), were determined from the in the literature for Bi, 7.61Ref. 22, and Sn, 9.04 and
known Bi(g)=2Bi(g) dissociation reaction.kg; was those for SnBi(12.5, SnBj, (18.2, and SnBj (23.9 were
deduced by combining the ion intensities of ‘Band B , assumed as 0.75 times the sum of thel atomic values. The
and the literature values of the dissociation enthalpy€Sulting pressure constants, in bg'lA(T , are 0.0269 for

of Biy(g), and the Gibbs energy functions (GEF Bi, 9.0584 for SnB.I, 0.0401 for SI’]BJ- and_0.0305 for

of Bi(g) (Ref. 17 and Bi(g). The dissociation enthalpy SnBk. The uncertainty of thé; values is estimated to be

of Bi,(g) has been obtained from the formul@g  @bout 30%.

=D2—ZPE=(199.7:0.1) kJmol'!, where the valueD?
=(200.7+0.1) kI mol ! is from Ehret and Gerbéf and the
zero-point energyZPE) of 1.03 kJmol! was taken from
Barrow et all® The GEFR; values of Bj(g) have been com- The harmonic-oscillator rigid-rotator approximatfn
puted according to statistical thermodynamic procedures, usvas used in the evaluation of the Gibbs energy functions,
ing the rigid-rotator harmonic-oscillator approximaﬁBand (G3—HQ)/T (GER), and enthalpy incrementdi?—Hg

the experimental molecular parameters; the vibrational fre(HCF,), of the SnBig), SnBi(g), and SnBji(g) mol-
quency, ®.=173.0cm%'® the bond distance, r, ecules.

=2.6597 A" of the Bi(g) 'S, ground state, and the tran- For the SnBif)) thermal functions the experimental val-
sition energies of the first three low-lying excited staf®5,  ues for vibrational frequencye(,) of 183.06 cm® and bond

(1,) at 5480 cm?, 33 (0,) at 8245 cm?, and®A, (2,) at  distance () of 2.612 A were taken from Bondybey and
9900 cm * from Polaket al?! Table Il lists the thermal func-  English® Stol?* performedab initio and density functional
tions of Bih(g). For the calculation okg;, the ionization calculations on the SnBi(n=1-3) molecules employing
cross section of B{g) was assumed to be 1.5 times that of small-core pseudopotentials and valenée6p4d3f2g] ba-
Bi(g),?% and the multiplier gains were measured astifles  sis sets, and using the coupled cluster single and double ex-
2.67 and 2.30 for Bi and Bi, , respectively. The multiplier citations with the inclusion of perturbative triplgSCSD(T)]
gains for SnBf, SnBi , and SnBj were assumed equal to level of theory, and the Becke three parameter exchange
that of Biy . The isotopic abundance of the atomic speciesunctional and the Lee-Yang—Parr correlation functional

Ill. THERMAL FUNCTIONS

TABLE II. The Gibbs energy functions @3—H$)/T (GER,), in JK tmol%, and the enthalpy increments,
H$—HJ (HCFR,) in kd mol%, for the SnBi, SnBi, and SnBj molecules.

TemperaturgK)

Species 298.15 600 700 800 900 1000 1100 1200

Bi, -GER 237.9 262.5 268.0 272.8 277.1 280.9 284.4 287.6
HCFR, 10.26 21.49 25.22 28.96 32.72 36.50 40.32 44.19

SnBi —-GER 243.1 267.6 273.2 278.1 282.5 286.4 290.0 293.3
HCF, 10.22 21.58 25.48 29.43 33.44 37.50 41.58 45.68

SnBj, -GER 300.6 340.2 349.3 357.1 364.1 370.4 376.1 381.4
HCF, 16.36 34.98 41.18 47.40 53.62 59.84 66.06 72.29

SnBj —-GER 350.9 402.8 414.7 425.1 434.4 442.7 450.3 457.2
HCFR, 21.16 46.06 54.35 62.64 70.94 79.24 87.54 95.85
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SnBiz(g) = Sn(cond + 3Bi(g), 3)

were evaluated by the third-law method, using the standard
relationship A Hg=—RTInK,—TA[(G7—Hg)/T]. Because

of the few data and the short temperature range explored
during the measurement it was not possible to perform a
reliable second-law method analysis.

In order to evaluate the data, the ion currents of Bnd
SnBi* were corrected for fragmentation contributions. In
particular, the correction applied to the ion intensity of Bi
was mainly due to fragmentation of Bi approximately
equal to 30%, meaning that only 70% of the measured ion
current of Bi* is due to primary Bi. The ion intensities of
SnBi* were corrected for a possible fragment contribution of
10% from the SnBj intensity, or Irec(SNBIY)
:Imea&(snBﬁ)_O-lx[lcorrec(snBi;)]: and Icorrec(snBE—)
=l mead SNBi; )/0.9. In view of the smaller ion currents of
SnBj; relative to that of SnBi and SnBi the contribution
from a possible fragment portion of SnBio the smaller
mixed molecules is neglected. The activity of Sn in the eu-

(B3LYP) method. In particular, including the spin—orbit tectic Sn—Bi sample increased during the investigation, the

(SO) coupling by complete active space self-consistent field@MPle becoming richer in Sn as Bi was vaporigedomi-

(CASSCH calculations Stoll obtainell, as the SnBig) nantl)és incongruent vaporization According to Hultgren
ground state. He also calculated two low-lying states®! al,”> Bi—Sn alloys show slightly positive deviations from
namely,2S.,,, and?I1,,,, at 2137 cm* and 8812 crm, re- ideality at 600 K. In the temperature range of the present

spectively, above the ground state. The molecular parametefdvestigation, they can be considered to obey ideal solution
of SnBi(g) for these states arew,—194cmi® and r behavior, and hence the activity can equated to the atom

—2.63A for the 23, state, andw,=204 cm * and re fraction y;. Therefore, at any temperature the partial pres-
=2.66 A for the?Il,, state. ¢ ®  sure of Bi can be related to its activity by the relatipg

There are no experimental spectroscopic investigations Keil (Bi ") T=agipg;, wherepg; is the partial pressure of
on the SnBj(g) and SnBi(g) molecules. In order to calcu- PUré bismuth §g;=1). Using this relationship we calculated
late the thermal functions needed to evaluate the mass spel® average activity of Bi as 0.34.009. Consequently, the

trometric equilibrium data of SnBiand SnBi, we used the activity of Sn was obtained as 0.654. We used this value for
molecular parameters computed by Stll. asy, in the calculation of the equilibrium constants of reac-

FIG. 1. Optimized computed geometries of the Sré3id SnBj molecules.

For the SnBj(g) molecule Stoll computed a linear sym- tions (1)—=(3). - _
metric 33~ ground state, Bi-Sn—Bi. Including the SO cou-  The reaction enthalpyd Hg, 1fOr reaction(1) was cal-
pling, ther (Sn—Bj bond distance was calculated as 2.68 A,culated as € 103.2£1.9) kImol =. Using the enthalpyﬂof
the symmetric vibrational stretching as 117 cmthe anti- formation of Sn(), A¢Hg(Snl)=(7.0=0.2) kJmol *,
symmetric vibrational stretching as 267 chand the bend- the enthalpy of formation of Sgj, AHg(Sng)=(301.3
ing vibrational mode as 29 cm (without SO coupling +1.5) kJmol'%,?° and the relatiom\ ;H3(SnBi,,g)=AHg

For the SnBj(g) molecule the calculations by Stoll —AtHo(Snl)+AHG(Sng), the atomization energy,
were performed at the B3LYP level of theory. The ground2aHo(SnBig), was derived as (191:112.0) kJmol *.
state was found to be a doublet with a distorted pyramidaHere the uncertainty is the overall error, calculated as in
geometry, with symmetry reduction $,. The optimized ~Schmudest al?’ The same thermodynamic relation has been
geometries used in the thermal functions evaluation of Snsi€mployed in deriving thé ;Hg values for SnBj and SnBj.
and SnBj are shown in Fig. 1. The bond lengths, in A, are For reaction (2) the AHg was calculated as (121.0
r(Sn1-Bi2)=r(Sn1-Bi3)=2.956, r(Snl-Bi4)=3.285, *0.8) kimol'*, and theA,Hg(SnBk,g) was obtained as
r(Bi2—Bi3)=3.126, and r(Bi2—Bi4)=r(Bi3—-Bi4) (415.2£15.0) kJ mol 1. From the calculated,H§ for reac-
=2.950. The vibrational frequencies, in chare 71, 73,92, tion (3), (309.1x2.1) kJmol'*, the A H3(SnBi,g) was

129, 139, and 170. derived as (6032 18.0) kJmot 2.
Table Il lists the thermal functions calculated for the ~ The enthalpies of formation for SnBi, SnBi and
SnBi, SnBj, and SnBj molecules. SnBi; have been obtained from the Hg and the enthal-

pies of formation of Bifj) and Sn(), employing the rela-
tion AH3(SnBi,,g)=A;HY(Sn))+nA{HY(Bi,g)—AHY,
whereT is 0 or 298.15 K. The thermodynamic properties for
The following heterogeneous equilibria: the SnBi, SnBj, and SnBj molecules have been summa-

. : rized in Table Il
SnBi(g) =Sn(cond +Bi(g), @) It is interesting to compare trends in the dissociation
SnBi(g)=Sn(cond+ 2Bi(g), 2 energies of the Sn—Bi molecules with the homonuclear clus-

IV. RESULTS AND DISCUSSION
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TABLE IIl. Thermodynamic properties for the SnBi, SpBiand SnBi  tative conclusion of the higher stability of SnBiith respect
molecules. All values are in kJ mdh. . .
to the other clusters here investigated.

Species A Hg A H3gg15 A¢Hg AfH%og15

SnBi  191.1+12.0 1933120 320.0:12.0 317.512.0 ACKNOWLEDGMENTS
SnBi,  415.2+150 417.4-150 3052150 303.0:15.0
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