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Time Delay in the Kuramoto Model of Coupled Oscillators

M. K. Stephen Yeung and Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853-1503

(Received 13 July 1998)

We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New
phenomena include bistability between synchronized and incoherent states, and unsteady solutions
with time-dependent order parameters. We derive exact formulas for the stability boundaries of the
incoherent and synchronized states, as a function of the delay, in the special case where the oscillators
are identical. The experimental implications of the model are discussed for populations of chirping
crickets, where the finite speed of sound causes communication delays, and for physical systems such
as coupled phase-locked loops or lasers. [S0031-9007(98)08184-8]

PACS numbers: 87.10.+e, 02.30.Ks, 05.45.+b

The Kuramoto model was originally developed as a
tractable mean-field model of coupled biological oscilla-
tors [1], such as groups of chorusing crickets [2], flashing
fireflies [3], and cardiac pacemaker cells [4]. In a beau-
tiful analysis, Kuramoto showed that the model exhibits a
spontaneous transition from incoherence to collective syn-
chronization, as the coupling strength is increased past a
certain threshold [5]. The model has since been analyzed
more deeply and extended in various ways [6–10]. It has
also been linked to several physical problems, including
Landau damping in plasmas [8], the dynamics of Joseph-
son junction arrays [11], bubbly fluids [12], and coupled
Brownian ratchets [13].

Here we explore the effects of time delay on the dynam-
ics of the Kuramoto model. In the past, delay has often
been neglected in models of coupled oscillators. In many
cases this approximation is physically justified, and in all
cases it simplifies the mathematics. But recently several
authors have begun to investigate oscillator systems where
delays are not negligible [14,15], motivated by neural net-
works where synaptic, dendritic, and propagation delays
can be significant. Other authors have considered delays
in systems of limit-cycle oscillators [16], with applications
to arrays of lasers and microwave oscillators.

Intuitively, the problem is similar to that faced by
the fans sitting in an enormous football stadium, all of
whom (we suppose) are trying to clap in unison. Even if
everyone were successfully clapping in perfect synchrony,
it would not sound that way to the fans themselves, as
the applause coming from far across the field would be
significantly delayed, because of the finite speed of sound.

Nevertheless, we show that perfect synchrony is pos-
sible in the Kuramoto model with time delay, if all oscil-
lators are identical. In fact, there can be several different
synchronized states, and they can coexist with a stable in-
coherent state where the oscillators are completely disor-
ganized. These multistabilities are qualitatively new: they
do not occur in the original Kuramoto model.

We consider a system of phase oscillators with noisy,
randomly distributed intrinsic frequencies, and with de-

layed mean-field coupling:

Ùuistd ­ vi 1 jistd

1
K
N

NX
j­1

sinfujst 2 td 2 uistd 2 ag , (1)

for i ­ 1, . . . , N . Hereuistd is the phase of theith oscil-
lator at timet, andvi is its intrinsic frequency, randomly
drawn from a probability densitygsvd with mean v0.
The white noisejistd represents frequency fluctuations at
an effective temperatureD $ 0, and is defined by the en-
semble averageskjistdl ­ 0, kjissdjjstdl ­ 2Ddijdss 2

td. In the global coupling term,K $ 0 is the coupling
strength,t . 0 is the delay, anda is a phase frustration
parameter. This model reduces to the Kuramoto model
[5] if t ­ 0, a ­ 0, and D ­ 0, and to the mean-field
XY model if t ­ 0, a ­ 0, and the oscillators are iden-
tical, i.e., gsvd ­ dsv 2 v0d. For t ­ 0, the separate
effects of frustrationa and noiseD have been studied by
Sakaguchi and Kuramoto [6].

As the one-parameter family of rotating-frame transfor-
mationsuistd ! uistd 2 Vt, vi ! vi 2 V, a ! a 1

Vt leave Eq. (1) invariant for anyV, we may assume
a ­ 0 without loss of generality—except ift ­ 0, which
we forbid. (This restriction is merely for convenience. All
of our results are well-behaved ast ! 0 and converge to
those obtained by settingt ­ 0 from the start.) Moreover,
since Eq. (1) is invariant under the reflectionvi ! 2vi ,
ui ! 2ui , a ! 2a, it suffices to considerv0 $ 0.

It is often helpful to describe the macroscopic state
of the system in terms of the complex order parameter
Rstdeicstd ­ 1

N

PN
j­1 eiuj std introduced by Kuramoto [5].

Here Rstd measures the system’s phase coherence. In
particular, R ­ 1 if all of the oscillators are in phase,
whereasR ­ 0 if the oscillators are scattered around the
unit circle with their centroid at the origin.

Our first analytical result concerns the stability of the
incoherent state for the infinite-N limit of Eq. (1). We
rewrite the model as a Fokker-Planck equation for the
densityrsu, v, td of oscillators currently at phaseu, with
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intrinsic frequencyv. Because the method is standard
[7,8], we omit the details. The only new feature here
is that the drift velocity field inherits the time delay in
Eq. (1). When the Fokker-Planck equation is linearized
about the incoherent state (the stationary densityr ;
1y2p), we find [17] that its continuous spectrum ish2D 2

iv j v [ suppsgdj. Hence, forD . 0, the continuous
spectrum corresponds to damped modes and therefore the
stability of the incoherent state is determined solely by the
discrete eigenvalues. But, whenD ­ 0, the continuous
spectrum is pure imaginary and corresponds to neutrally
stable rotating waves in the full system. In this case, the
incoherent state can never be linearly stable: it is either
unstable or neutral, depending on the discrete eigenvalues.
These eigenvaluesl satisfy [17]

e2lt K
2

Z `

2`

dv
gsvd

l 1 D 1 iv
­ 1 . (2)

This implicit formula for l is exact but difficult to
analyze for arbitrarygsvd, so we consider the case of
identical oscillators to gain some insight. Even this case
turns out to be far from trivial. Ifgsvd ­ dsv 2 v0d,
Eq. (2) can be simplified to the transcendental equation

sp 1 ir 2 zdez 1 q ­ 0 , (3)

wherep ­ 2Dt # 0, r ­ 2v0t, q ­ Kty2, andz ­
lt. Then the stability of the incoherent state depends on
whether all roots of Eq. (3) satisfy Reszd , 0 (in which
case we will say “all eigenvalues are stable,” for brevity).

By the transformationsz ! z 1 inp, q ! s21dnq,
r ! r 1 np, andz ! zp, r ! 2r, we may assumer [
f0, py2g in Eq. (3). For r ­ 0, Hayes proved [18,19]
that all eigenvalues are stable if and only ifp , 1 and
p , 2q ,

p
p2 1 y1

2, wherey1 is the unique zero of
p sin y 2 y cosy in s0, pd. Using results of Pontryagin
as in Ref. [19], we can show [17,20] the following for
r [ s0, py2g.

(i) If p ­ 0, then all eigenvalues are stable if and only
if r 2 py2 , q , 0.

(ii) If p , 0, then all eigenvalues are stable if and only
if 2

p
p2 1 s y2 2 rd2 , q ,

p
p2 1 s y1 2 rd2, where

y1 andy2 are the unique zeros ofp sin y 1 sr 2 yd cosy
in s0, rd andspy2, pd, respectively.

These conditions are exact but still opaque, so we
simplify the model further for illustration. Suppose
there is no noisesD ­ 0d. Then we find [17] that the
incoherent state is neutrally stable precisely when

K ,
v0

2m 2 1
and

s4m 2 3dp
2v0 2 K

, t ,
s4m 2 1dp
2v0 1 K

,

(4)

with m being an arbitrary positive integer.
Figure 1 shows that this analytical result agrees with

numerical simulations, even for as few asN ­ 12 oscil-
lators. Although the incoherent state is neutrally stable in
the grey region, we observe numerically thatRstd ! 0 ex-

K

1.5

1.0


0.5

4 8 12 16 200

τ

FIG. 1. Stability region for the incoherent state, withgsvd ­
dsv 2 v0d, v0 ­ py2, D ­ 0, N ­ 12. Black curves:
theoretical boundaries (4) for the infinite-N limit; grey area:
results from numerical integration using a sixth order Adams-
Bashforth-Moulton scheme, with fixed stepsizedt ­ ty20,
and with the corrector formula iterated for convergence and
stability. Initially, all of the phases were evenly spaced,
and the symmetry was broken by addingOs10210d random
perturbations. The incoherent state was judged as unstable if
Rstd . 1027 at a final time oft ­ 800t.

ponentially fast, as in Landau damping [8]. In this sense,
incoherence is stable in the grey region.

Continuing with the instructive case of noiseless, iden-
tical oscillators, we now consider the possibility of perfect
synchrony:uistd ­ ustd for all i. We restrict our attention
to a particular class of such solutions, namely, uniform ro-
tations:ustd ­ Vt 1 b. Self-consistency then requires

V ­ v0 2 K sinsVtd , (5)

for such solutions to exist, and linearization [17] imposes

cossVtd . 0 , (6)

as the condition for their orbital stability.
If we graph both sides of Eq. (5) as functions ofV, we

see that for all sufficiently largeK, there exist multiple
stable synchronized states [21], as Eq. (5) has nonunique
solutions satisfying (6). We can also see that stable
synchrony is impossiblefor certain combinations oft
and K. The problem reduces to characterizing the two-
parameter family of lines of negative slope that intersect
the sine function on its descending limbs. We find that
stable synchronized states do not exist if and only if

K ,
v0

2s2m 2 1d
and

s4m 2 3dp
2v0 2 2K

, t ,
s4m 2 1dp
2v0 1 2K

,
(7)

with m being an arbitrary positive integer.
These zones of forbidden synchrony are shown in black

in Fig. 2. For comparison, they are overlaid on top of the
earlier grey regions (Fig. 1) where incoherence is stable.
The black regions fit neatly inside the grey; they have the
same base and half the height. The exposed parts of the
grey regions correspond to bistability: stable incoherence
coexists with stable synchrony, and hysteresis can occur.
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FIG. 2. Stability regions of the incoherent state (4) and
the synchronized states (7) forgsvd ­ dsv 2 v0d, D ­ 0.
White region: one or more stable synchronized states exist but
the incoherent state is unstable; black region: incoherence is
stable but synchrony is not; grey region: one or more stable
synchronized states coexist with stable incoherence.

Numerical simulations reveal windows in the bistable
regions whereR can be time periodic (Fig. 3). In the ex-
ample shown, period doubling occurs asK increases, but
seems to be truncated beyond period 16 (not shown); after
that, a synchronized state apparently takes over, suppress-
ing further period doubling [Fig. 3(d)]. Such unsteady
behavior is a consequence of the delay; in the standard
Kuramoto model, numerical experiments show thatRstd
always approaches a constant value ifgsvd is unimodal
and symmetric (although this has never been proven). Os-
cillator configurations with two or more clusters [22] cause
the unsteady behavior seen here. All of the clusters move
with the same average velocity, but their separation is pe-
riodically modulated.

So far we have concentrated on identical oscillators.
To check how the results would be modified for other
frequency distributions, we have considered the Lorentzian
distribution gsvd ­ sgypd fg2 1 sv 2 v0d2g21. Then
by a remarkable coincidence [17], Eq. (2) can again be
reduced to Eq. (3), but now withp ­ 2sg 1 Ddt, r ­
2v0t, q ­ Kty2, andz ­ lt. The critical coupling is
given by

Kc ­ 2sg 1 Dd secsVctd , (8)
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FIG. 3. Time series showing nonsteady order parameterRstd,
with gsvd ­ dsv 2 v0d, v0 ­ py2, D ­ 0, t ­ 2, N ­
24. (a) K ­ 1.3: period-2 oscillation; (b)K ­ 1.4: period-4
oscillation; (c)K ­ 1.44: period-8 oscillation; (d)K ­ 1.475:
Rstd ! 1 after a periodic transient.

where Vc ­ v0 2 sg 1 Dd tansVctd. Figure 4 plots
the corresponding region where incoherence is stable. It
resembles Fig. 1, with a series of evenly spaced peaks
[at v0t ­ s2n 1 1dp] that decrease in height. The main
difference is that the distributed frequencies produce some
rounding of the boundary, and lift it off thet axis so that
it now has minima2sg 1 Dd at v0t ­ 2np.

The bistability found earlier also has a counterpart in
the Lorentzian case [Fig. 4(a)]. Partially locked states
(which may not be unique) replace the earlier in-phase
states, but otherwise the story is unchanged [23]. Thus, the
case of identical oscillators captures the essential features
introduced by delay.

Our final result concerns the bifurcation atK ­ Kc,
where the incoherent state becomes unstable. We have
adapted the two-timing method of Ref. [9] to handle the
delay-differential equations (1). We find [17] that generi-
cally, for D $ 0 and arbitrarygsvd, a Hopf bifurcation
occurs atKc [24], giving rise to a partially locked state,
or in the density description, a rotating wave with constant
coherenceR ­ Os

p
jK 2 Kcj d. This bifurcation may be

subcritical [Fig. 4(a)] or supercritical [Fig. 4(b)].
Experimental tests of the model may be possible in net-

works of phase-locked loops [25], relativistic magnetrons
[26], solid-state lasers [27], or communication satellites
[28], as they are all approximately governed by coupled
Adler equations [29] similar in form to Eq. (1). The delay
and the coupling strength are both natural control parame-
ters, and perhaps one could try to map out the stability
boundaries, look for hysteresis between incoherence and
synchrony, etc. Our model may also help to explain how
crickets can synchronize their chirps [2], despite the time
delays caused by the speed of sound. Crickets listen to
each other’s chirps and adjust their own timing accord-
ing to a phase response curve [2]. The propagation delay
between two crickets 3 m apart is about 10 msec. This is

FIG. 4. Stability region of the incoherent state for Lorentzian
gsvd with v0 ­ 3, g ­ 0.1, D ­ 0, N ­ 3600. Black curves:
theoretical boundary Eq. (8); grey stripes: numerical results
using the same method as in Fig. 1. Insets: (a) Subcritical
Hopf bifurcation of the incoherent state att ­ 1. Arrows
indicate a hysteresis loop between stable incoherence and a
stable partially locked state withR close to 1. (b) Supercritical
Hopf bifurcation of the incoherent state att ­ 2. A stable
partially locked state grows continuously from the incoherent
state withR ­ Os

p
K 2 Kc d.
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short compared to the chirp period (300–500 msec). Our
results suggest that delay effects become significant only
in the first peak in Fig. 2, i.e., for delays near half the pe-
riod of the oscillation. Thus the delays that crickets actu-
ally encounter in the field are probably negligible as far as
synchrony is concerned. It would be interesting to try lab
experiments on crickets interacting via chirp signals whose
delay and amplitude can be electronically manipulated.

This research was supported in part by the National Sci-
ence Foundation. We thank Tim Forrest for information
about crickets.
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