# The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center

Master's Projects and Capstones

Theses, Dissertations, Capstones and Projects

Spring 5-16-2014

# Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports

Travis M. Norton University of San Francisco, travis76435@hotmail.com

Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Environmental Indicators and Impact Assessment Commons

**Recommended** Citation

Norton, Travis M., "Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports" (2014). *Master's Projects and Capstones*. 15. https://repository.usfca.edu/capstone/15

This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

# Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports

Travis Norton | MSEM University of San Francisco | Spring 2014

# Contents

| Introduction                 |
|------------------------------|
| Aviation Industry2           |
| Greenhouse Gases4            |
| Environmental Impact7        |
| Regulatory Compliance9       |
| Landing and Takeoff Cycle 10 |
| Bay Area Airports12          |
| Study Goals                  |
| Methods16                    |
| Results and Discussion       |
| Recommendations              |
| Conclusions                  |
| Acknowledgements             |
| References                   |
| Appendix A                   |

# Introduction

The aviation industry is a large global industry and has a significant impact on the environment. During all phases of air travel, many types of pollutant emissions are released. It is because of this that air travel is an anthropogenic contributor to global climate change. The pollutants' emitted from jet engines include both criteria air pollutants, defined by the Clean Air Act (CAA) as common pollutants considered harmful to public health and the environment, and greenhouse gases (GHG) (EPA 2012). Both types of pollutants have been known to have serious health effects and a significant impact on the environment. The industry is consistently growing, so the impact these emissions have are of increasing concern. It is unknown how much exact impact the industry has on the environment and people's health, but ongoing efforts to model and predict the aviation industry's exact impact are under way. Difficulties in monitoring and correctly modeling aircraft emissions hinder many viable mitigation efforts. However, new strategies are being developed to reduce the impact that the growing market has around the world.

### Aviation Industry

The aviation industry is one of the largest markets in the world. Roughly 2.2 billion passengers are moved annually by air transport and the industry globally employs 32 million people (Gil et al. 2013). It is estimated that the industry has an economic impact of 3,6 billion USD. This represents almost 7.5% of the world domestic product. Figure 1 shows the international and domestic growth in air travel markets in revenue passenger kilometers (RPK) from 2007 to 2012. RPK measures traffic for airline flights by multiplying the distance the flight traveled by how many revenue-paying passengers were aboard the flight. It is a standard unit of measure in the transportation industry. Figure 1 was obtained from the International Air Transport Association (IATA) December 2012 Air Transport Market Analysis. The figures indicate a steady growth in international

and domestic travel and the industry in general (IATA 2013). Specifically there is a dip in the market during 2008 which corresponds with the onset of the economic recession in the United States. The figures on the right show air travel market growth by region for the months of November 2012 and December 2012. The graphs indicate little variation in growth between each month and show an overall growth in the industry worldwide with the exception of India's domestic travel.

With such a strong global presence, it becomes increasingly important to evaluate the environmental effects of air transport. The aviation industry is



**Figure 1 –** Total domestic and international air travel market growth measured in revenue passenger kilometers (RPK) from 2007-2012 (IATA 2013).

responsible for 2% of total anthropogenic CO<sub>2</sub> emissions and estimated to increase to 3% by 2050 (IPCC TAR 2001).

Air travel is the most energy intensive form of transport (Gossling et al. 2007). Figure 2 brakes down the European travel by mode of transport in 2000 with regard to number of trips, distance traveled and percent GHG emitted, and also makes projections for 2020 (Peeters et al. 2005). Air transit clearly makes up the majority of tourism mode of travel GHG emissions. As the largest GHG emitter in the European modal split, the importance of mitigation research becomes clear.

#### Greenhouse Gases

In addition to the emissions produced from ground activities at airports, aircrafts produce a considerable amount of pollutant emissions into the atmosphere. GHG emissions from jet fuel combustion are estimated to increase between 200 and 500% from 1995 values by 2050 (Olsthoorn 2001).

Typical aircraft jet emissions are shown in the flow chart in figure 3 (Weubbles 2007). These include GHG such as carbon dioxide (CO<sub>2</sub>), water vapor,



**Figure 2 –** European modal split of total trips, mobility measure in distance actually traveled and GHG emissions for outbound tourism in 2000 and projected in 2020 (Peeters et al. 2005).

ozone ( $O_3$ ), nitrous oxide ( $N_2O$ ) and methane ( $CH_4$ ) in addition to other radiative forcing sources such as sulfur oxides ( $SO_x$ ) and soot.

CO<sub>2</sub> emissions are the most understood and well-studied pollutant from jet engine emissions. Table 1 indicates that CO<sub>2</sub> makes up the majority of the environmental impact from aircraft jet engines. (Macintosh et al. 2009). CO<sub>2</sub> had a radiative forcing value of 25 mW/m<sup>2</sup>, while the total radiative forcing impact from aircraft emissions was 48mW/m<sup>2</sup>. Radiative forcing is defined by the IPCC as the change in irradiance at the tropopause after allowing the atmospheric temperatures to return to radiative equilibrium (IPCC 2007). The impact of this is further explained in the Environmental Impact section of this report. Figure 4 shows the same trend is true when looking at global anthropogenic GHG sources.



**Figure 3** – This schematic shows the climatic impacts of aviation by-products (Weubbles et al. 2007).

| Table 1                                    |                          |                    |
|--------------------------------------------|--------------------------|--------------------|
| Radiative forcing due to aircraft emissi   | on in 2000 (Macinto      | osh et al. 2009)   |
| Emitted Pollutant                          | Radiative                | Level of           |
|                                            | Forcing                  | Scientific         |
|                                            | (mW/m2)                  | Understanding      |
| CO2                                        | 25                       | Good               |
| NO <sub>x</sub> <sup>1</sup>               |                          |                    |
| 03                                         | 22                       | Fair               |
| CH <sub>4</sub>                            | -10                      | Fair               |
| H2O                                        | 2                        | Fair               |
| Contrails                                  | 10                       | Fair               |
| Cirrus                                     | 30 (10-80 range)         | Poor               |
| $SO_{x}^{2}$                               | -3.5                     | Fair               |
| Soot                                       | 2.5                      | Fair               |
| Total (without cirrus cloud effects)       | 48                       |                    |
| 1. NOx emissions O3 in the troposhere an   | d removes CH4 from t     | he atmosphere      |
| resulting in negative forcing              |                          |                    |
| 2. 2. Sox emissions form sulfur aerosols w | hich reflect heat, resul | ting in a negative |
| forcing effect.                            |                          |                    |

CO<sub>2</sub> emissions from fossil fuel use make up the overwhelming majority of anthropogenic GHG emissions, around 57%, with roughly 13% of those GHG emissions coming from the transportation industry (IPCC 2007).

#### **Environmental Impact**

2007).

Once released from jet fuel combustion, GHGs enter the atmosphere, where they have both a direct and indirect effect. Some of these gases start out as inert, but may react with other chemicals in the environment to produce an entirely different pollutant. The environmental impact of these newly released pollutants may be in the form of radiative forcing, ozone depletion, or some other impact on the global climate. For example, pollutants like  $CO_2$  have a direct warming effect on the atmosphere. Meanwhile,  $NO_x$  will oxidize in the atmosphere with  $CH_4$ ,



removing the high global warming potential pollutant from the atmosphere, resulting in a cooling effect. However, it will also react in the troposphere and form O<sub>3</sub>. The net reactions from the NO<sub>x</sub> reactions are still positive due to the large impact that O<sub>3</sub> has on the

Planes only fly in the troposphere, but the effect of these jet engine emissions transcend into the stratosphere. The

environment.

ultimate environmental impact of these released pollutants will vary. Table 1 summarizes these pollutants and quantifies their impact by calculating the amounts of radiative forcing from global aircraft emissions in 2000. Radiative forcing is the change in net energy of the earth and its atmosphere associated with an external factor. It can be calculated from the entering shortwave radiation to the atmosphere minus the exiting shortwave and longwave radiation. In the case of GHGs, radiative forcing refers to the shortwave radiation entering Earth's atmosphere and getting absorbed by the GHG. It also occurs when outgoing



**Figure 5** – A schematic of the greenhouse effect. Solar radiation enters the Earth's atmosphere, is absorbed by the Earth and the remainder gets reflected back into the atmosphere. While most radiation exits the atmosphere, some is trapped by greenhouse gases. This is called radiative forcing.

longwave radiation gets reflected off of the Earth's surface and gets absorbed by GHG before exiting the atmosphere. Figure 5 shows a schematic of this effect.

As also indicated in Table 1, much of the scientific understanding on the exact environmental effect of these pollutants ranges from fair to poor, with CO<sub>2</sub> as an exception. The estimates made in Table 1 are based on modeling predictions and knowledge of atmospheric chemistry. They should be used as a relative reference on each pollutants environmental impact.

#### **Regulatory Compliance**

Airports across the United States are required to meet air quality standards that are set in accordance with their State's implementation plan (SIP) to meet the national ambient air quality standards (NAAQS) on criteria pollutants (FAA 1997). Most of the specific air quality requirements set for airports are defined in the General Conformity Regulation (FAA 1997). Emissions and ambient air quality monitoring are not required by the general conformity regulations, but may be required at the request of local agencies. For the purposes of developing the SIP in



**Figure 6** – Global and annually averaged estimates of radiative forcing for subsonic aircraft fleet for (a) 1992 and estimates for (b) 2050. Also indicated is the level of scientific understanding in relation to climatic response. (Weubbles 2007).

each state, airports will use dispersion modeling to project emissions inventories. Dispersion modeling uses mathematical formulas to describe the dispersion of a pollutant from a particular source in the atmosphere. It can predict concentrations downwind, as well as determine compliance with NAAQS or other regulatory requirements. The FAA's Emissions and Dispersion Modeling System (EDMS) is used to produce these emissions inventories and assess the air quality impacts from aviation sources, including aircraft (KB 2013).

National regulations do not apply to aircraft GHG emissions, with the exception of those that are also regulated by the Clean Air Act, such as nitrogen oxides and ozone. Currently, GHG emissions inventories are not mandated by national or state agencies; however, a large percentage of aircraft emissions are GHG. Figure 6 shows the distribution of aircraft GHG emissions and their overall radiative forcing effect measured in 1992 and estimates for 2050 (Weubbles 2007). As indicated, the science behind contrails is not well understood, and as such, there are few mitigation options for them. In the figure, chart "a" shows that  $CO_2$ is second to only contrails as the biggest climatic effect in terms of radiative forcing. This is true only when considering the overall net impact of  $O_3$  and  $CH_4$ , since both are from NO<sub>x</sub> emissions. This trend is expected to continue as when looking at 2050 predictions made in chart "b." The total radiative forcing contribution from aircraft GHG emissions is expected to be roughly five times what they were in 1992. Because of the impact of GHG have on climate, it is important analyze the exact impact that an airport's operations have on GHG emissions and what can be done to mitigate those emissions.

#### Landing and Takeoff Cycle

Flight operations that occur on the local level are called the landing and takeoff cycle (LTO). The cycle begins once an aircraft reaches the mixing zone (3,000 ft) upon its descent. The cycle continues as the aircraft lands, taxis to the gate, taxis back out for takeoff, and climbs out past the mixing zone during takeoff



**Figure 7** – Schematic of the LTO cycle, including landing, idle/taxi and takeoff. All operations occurring below 3,000 ft are included. Cruising occurring above 3,000 ft is not included in the LTO cycle.

(Kim 2009). This is shown in figure 7. The FAA's Emissions Dispersion Modeling System (EDMS) is used to model an aircraft's fuel consumption and emissions during the LTO cycle.

Roughly ten percent of all types of aircraft emissions, except hydrocarbons and carbon monoxide, are produced during ground-level and LTO operations. For carbon monoxide and hydrocarbons, LTO operations make up thirty percent of emissions (FAA 2005). LTO operations have a significant contribution to an airport's GHG emission inventory, despite representing only ten percent of an aircraft's total emissions. The LTO cycle aircraft emissions can represent up to 70% of an airport's emissions inventory (MAC 2010). Aircraft cruising emissions are not typically included in an airports emissions inventory, as the emissions do not affect the local environment (Kim 2009). Operational strategies can be used to mitigate these emissions at individual airports. The strategies used to mitigate emissions in the LTO cycle will have a direct impact on emissions in the cruising phase as well.

#### **Bay Area Airports**

| Table 2 - Total | Arrival and Depar | ture Operatior | าร      |
|-----------------|-------------------|----------------|---------|
|                 | 2011              | 2012           | 2013    |
| SFO             | 400,805           | 419,867        | 418,719 |
| OAK             | 150,651           | 152,125        | 144,143 |
| SJC             | 124,731           | 122,025        | 126,848 |

The San Francisco Bay Area is the third largest aviation market in the United States. The largest airports in the area include San Francisco International Airport (SFO), Oakland International Airport (OAK) and Norman Y. Mineta San Jose International Airport (SJC). The FAA categorizes airports based on their activities, the main distinction being the percentage of the total US annual passenger boardings (FAA 2012). Based on this, SFO is defined as a Large Hub, representing >1% of annual passenger boardings, and OAK and SJC are defined as Medium Hubs, representing 0.25-1% of annual passenger boardings (FAA 2012). Figure 8 is a map of the Bay Area and shows each airport's relative location. Table 2 shows the total number of arrival and departure operations for all three airports from 2011 through 2013. San Francisco International Airport has over twice as many total flight operations than either of the other two.

#### SFO

San Francisco International Airport (SFO) serves over 41 million passengers annually including both domestic and international travel. This includes nonstop service to over 75 domestic airports and 30 internationally (San Francisco International Airport 2012). In fiscal year (FY) 2012, SFO had 417,430 takeoffs and landings of 56 airlines in addition to shipping 385,113 metric tons of cargo (SFO 2012). It is defined by the FAA as a Large Hub.



**Figure 8** – ArcMap of the San Francisco Bay Area, including San Francisco International (SFO), Oakland International (OAK) and Norman Y. Mineta San Jose International (SJC) airports (ESRI 2008).

In 2010 SFO started installing preconditioned air to several boarding areas, thereby reducing the need of Auxiliary Power Units (APUs) while boarding and deplaning passengers. By eliminating the need for the aircrafts to run idle during this process, less jet fuel is burned, thereby reducing the GHG emissions. In an effort to offset GHG emissions from airport operations by carbon sequestration, SFO has planted 2,020 trees of different varieties around the airport in recent years. The airport has also been developing a Climate Action Plan (CAP) outlining its GHG reduction activities since 2008. This is in compliance with San Francisco law that mandates all city departments to develop a CAP that outlines procedures for meeting GHG reduction goals.

SFO does not have mandatory programs for requiring emission reductions or fuel efficiency of aircraft, but it does encourage environmentally beneficial operational procedures. One such example is the airport's support of singleengine use during aircraft taxiing to reduce fuel consumption and resulting GHG emissions (SFO 2011). In 2008 the City and County of San Francisco signed into law Ordinance No. 81-08, Climate Change Goals and Action Plan. This mandated GHG reductions of 25% below 1990 levels by 2017 and 40% by 2025. This mandate, however, only extends to SFO-controlled operations, not including airline controlled aircraft operations. SFO has stated that it plans to refine and supplement emissions estimates from these aircraft operations in the future (SFO 2012).

#### OAK

Oakland International Airport (OAK) transports over 10 million passengers annually with both domestic and international travel (Oakland Airport 2014). In addition, it transports over a billion pounds of cargo annually. It is defined by the FAA as a medium hub. As part of an environmental management decision to improve air quality, OAK has installed ground power at all terminal gates. OAK also has installed preconditioned air units in several gates throughout the airport, which will reduce GHG emissions by eliminating the need for aircraft to burn jet fuel in order to supply power and preconditioned air while boarding and deplaning (OAK 2014). The installation will also be done at the remaining gates during upcoming renovations.

The City of Oakland established an Energy and Climate Action Plan in December of 2012 to address GHG emissions and relevant reduction strategies in order to meet regulatory emission goals; however, airport GHG emissions were not a component of this plan (City of Oakland 2012).

#### SJC

Norman Y. Mineta San Jose International Airport (SJC) is located in the heart of Silicon Valley and transports over 8 million passengers annually (Mineta San Jose International Airport 2014). In addition it transports over 94 million pounds of cargo annually. It is defined by the FAA as a medium hub.

In an ongoing effort started in 1998, all airlines at SJC are encouraged to perform single or reduced-engine taxiing in a safe and efficient manner. In 2001 SJC constructed a second air carrier runway and extended runway 12L/30R from 4,400' to 11,000'. The new and extended runway will reduce congestion and, therefore, aircraft delays that may result in increased GHG emissions.

SJC was awarded the FAA's Voluntary Airport Low Emissions (VALE) grant in 2009. The airport was the first in the western United States to receive the award. The \$4.6 million grant was used in coordination with the airport's modernization program to provide all aircraft gates with pre-conditioned air (PCA) and ground power. This allows the airport to use less jet fuel while parked at the gate (City of San Jose 2014).

#### STUDY GOALS

A method developed by the Intergovernmental Panel on Climate Change (IPCC) was used to produce an emissions inventory for Bay Area airports (IPCC 2001). FAA data was used along with existing models to characterize the LTO GHG emissions at SFO, OAK, and SJC. A comparative analysis was done to relate the Bay Area airport LTO GHG emissions to other airports both domestically and globally. Mitigation strategies were then suggested to reduce LTO GHG emissions at these airports. Current strategies at the Bay Area airports were then analyzed to suggest what new areas should be focused on.

## Methods

This study is a modeling analysis to produce a comparative evaluation of Bay Area airports and suggest operational best practices to reduce LTO GHG aircraft emissions. The purpose of the study is to find out how each of the three Bay Area airports compare to similar airports with regard to GHG emissions caused by LTO-based fuel consumption. A list of operational best practices for mitigation of these emissions is made and specific recommendations are made for each airport. A similar method of analysis to that used in Song 2012 for Korean airports is used here for Bay Area airports.

To start this study, operational information for each airport was obtained from FAA databases. The data was analyzed within the time frame of January 2011 to December 2013. As a control measure, all the data were collected from the same time frame and from three different years to average out any years that may have been outliers. The specific information that was gathered comes from FAA Operations and Performance Data Traffic Flow Management Counts (TFMSC). This database provides the traffic counts by airport for different data groupings. The data groupings used in this study are by airport location, aircraft type and by year. Departure and arrival counts are collected for each year and broken down by aircraft type. The aircraft types representing 90% of the airports' total operations for the year were sorted, and then traffic count data was collected and input into the EDMS modeling software. This data is found in the Appendix Tables 1-3.

Within EDMS nine emissions inventories were made, one for each year and at each airport. The method used is the same one presented in the IPCC Good Practice and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2001). All aircraft types were added to the emissions inventory along with each aircraft type's corresponding operational information. EDMS uses engine specifications to calculate emissions for each aircraft type, then compiles the whole inventory for the year. EDMS produces fuel consumption, water vapor, and CO<sub>2</sub> inventories for the LTO phase. An evaluation of the environmental impact of ground service equipment and other airport generated GHG has not been done. The actual effect that aircraft produced water vapor has on the environment is still not well known, but speculated to have a large impact (Macintosh 2009). The basis for this is a result of water vapor's effect on cloud or contrail cirrus formation, which have a large radiative forcing effect. However, this process happens at altitudes higher than 3,000 ft, and not in the LTO phase. It is also concluded that the water vapor released from jet engine emissions will not have a significant impact on the global water cycle. Therefore, the water vapor emissions are reported but not calculated in total  $CO_2$  equivalence ( $CO_2e$ ). The fuel consumption data is used to calculate the GHG emissions using Method 2 as described in the Airport Cooperative Research Program (ACRP) Report 11 (Kim 2009). Using a simple model, methane and nitrous oxide emissions are calculated as follows:

> Jet fuel =  $0.27g \text{ CH}_4/\text{gal}$  fuel Jet fuel =  $0.21g \text{ N}_2\text{O}/\text{gal}$  fuel

Jet A fuel is assumed as the fuel used and no analysis was done with Aviation gasoline (Avgas). While the two fuels produce different emission profiles, most modern commercial airliners use jet fuel and not Avgas (Maurice 2001). The resulting  $CO_2e$  from  $CH_4$  and  $N_2O$  are calculated using the global warming potential (GWP) data from table 2.14 of the IPCC Fourth Assessment Report, using the 100 year time horizon (Table 3) (IPCC 2007).

| Table 3                                                                                     |                                               |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|
| IPCC Fourth Assessment Report CO <sub>2</sub> e                                             | GWP (100 year time horizon)                   |
| CO <sub>2</sub>                                                                             | 1                                             |
| CH4 <sup>*</sup>                                                                            | 25                                            |
| N <sub>2</sub> O                                                                            | 298                                           |
| * The GWP for CH <sub>4</sub> includes indirect effects from enh<br>water vapor (IPCC 2007) | ancements of O <sub>3</sub> and stratospheric |

The aircraft GHG emissions inventories are then be compared to similar airports to compare their relative efficiency. The airports were selected based on airport size. As a large hub, SFO was compared with other large hubs, including Los Angeles International Airport (LAX), John F. Kennedy International Airport (JFK), Newark Liberty International Airport (EWR), LaGuardia Airport (LGA), and Minneapolis-St. Paul International Airport (MSP). Because of the lack of data available for medium and small hubs domestically, OAK and SJC were compared to similar sized major international airports in Korea. These include Gimpo (RKSS), Jeju (RKPC), and Gimhae (RKPK). SFO and Incheon International Airport (RKSI) were also included in this comparison to provide a larger hub benchmark comparison.

The interactive research tool AirportGEAR was then used to produce a list of recommended operational strategies for GHG mitigation. The ACRP is a

program controlled by the Transportation Research Board (TRB), which is funded by the FAA. AirportGEAR was developed by the ACRP and is designed to assist airport operators analyze technical information and choose various GHG reduction strategies (CDM 2012). It is further defined in ACRP Report 56. Out of the program's 125 different operational strategies, 30 are specifically related to reducing GHG emissions produced by aircraft during the LTO cycle. The most effective strategies are presented to provide practical solutions to GHG assessment and reduction. Using these strategies, specific recommendations will be made for each airport. AirportGEAR was developed in 2012, and due to its recent development, many airport operators have not yet utilized it to prioritize and evaluate different GHG mitigation strategies.

## **Results and Discussion**

The TFMSC database produced operational reports for SFO, OAK and SJC grouped by aircraft equipment and by year. The aircraft equipment representing 90% of the total operations were used to produce the tables 1-3 in the Appendix. SFO has the largest number of flights and the smallest number of aircraft type represented with 20 different aircraft types totaling 1,125,804 aircraft operations including both landing and takeoff. This is followed by OAK which has 39 different types of aircraft equipment totaling 404,133 aircraft operations. SJC has 34 different types of aircraft equipment and a total of 339,064 landing and takeoff operations.

This arrival and departure information was imputed into the FAA's EDMS software to produce emissions inventories for the three airports from 2011 through 2013. This provided fuel consumption, CO<sub>2</sub>, and water vapor data. The fuel consumption data was used to calculate the resulting CH<sub>4</sub> and N<sub>2</sub>O inventories. Their CO<sub>2</sub>e values were then calculated from the GWP in table 3. As stated earlier, water vapor is not included in the CO<sub>2</sub>e analysis. Table 4 shows this information

and the total CO<sub>2</sub>e for each airport reported in metric tons per year. SFO had an average CO<sub>2</sub>e emissions of 506,409 metric tons per year during the period of study. OAK had an average CO<sub>2</sub>e emissions of 160,726 metric tons per year during the period of study. And SJC had an average CO<sub>2</sub>e emissions of 106,830 metric tons per year during the same period of study.

In each reported inventory, the CO<sub>2</sub> produced from LTO aircraft emissions represented over 99.5% of the total GHG emissions. Despite the much larger GWP of CH<sub>4</sub> and N<sub>2</sub>O, they represent only a small portion of the anthropogenic GHG produced during the LTO cycle, meaning additional efforts for mitigation should be primarily focused on CO<sub>2</sub> specifically.

| Table 4                           |           |            |           |           |            |         |         |         |         |
|-----------------------------------|-----------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Aircraft Greenhouse               | e Gas Emi | ssions Inv | ventories | (Metric 1 | Tons / Yea | ar)     |         |         |         |
|                                   | SFO       |            |           | OAK       |            |         | SJC     |         |         |
|                                   | 2011      | 2012       | 2013      | 2011      | 2012       | 2013    | 2011    | 2012    | 2013    |
| Fuel Consumption                  | 156,338   | 161,815    | 161,440   | 50,149    | 51,721     | 50,346  | 33,777  | 33,060  | 34,336  |
| Carbon Dioxide                    | 493,248   | 510,526    | 509,344   | 158,219   | 163,178    | 158,841 | 106,566 | 104,304 | 108,332 |
| Water Vapor                       | 193,391   | 200,165    | 199,701   | 62,034    | 63,978     | 62,278  | 41,782  | 40,895  | 42,474  |
| Methane                           | 14        | 14         | 14        | 4         | 5          | 4       | 3       | 3       | 3       |
| Methane (CO <sub>2</sub> e)       | 340       | 352        | 351       | 109       | 113        | 110     | 73      | 72      | 75      |
| Nitrous Oxide                     | 6         | 6          | 6         | 2         | 2          | 2       | 1       | 1       | 1       |
| Nitrous Oxide (CO <sub>2</sub> e) | 1,652     | 1,710      | 1,706     | 530       | 546        | 532     | 357     | 349     | 363     |
| Total CO <sub>2</sub> e           | 495,239   | 512,588    | 511,400   | 158,858   | 163,837    | 159,482 | 106,996 | 104,725 | 108,769 |



Figure 9 – Bay Area airport LTO GHG emissions for the years 2011-2012 is shown.

For SFO and OAK, 2013 saw a slight decrease in total operations and therefore total CO<sub>2</sub>e emissions, whereas SJC had slight increases every year. This falls in line with SJC's projected growth and recent airport expansions (Mineta San Jose International Airport 2014). Figure 9 shows the scope of the Large Hub (SFO) emissions compared to the other two Bay Area airports. Figure 9 also shows off how minimal the relative changes are from year to year.

Additional airports were studied to compare bay area airports to airports of similar size. All airports studied completed a similar GHG emissions inventory to the one conducted in this study (see references in Table 5 caption), using the guidelines presented in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2001). Table 5 compares SFO to other airports meeting the Large Hub distinction. The US Department of Transportation's passenger boarding statistics was used to identify comparable airports (USDOT 2012).

Table 5 shows GHG emissions inventories from the following airports: SFO, Los Angeles International Airport (LAX), John F. Kennedy International Airport (JFK), Newark Liberty International Airport (EWR), LaGuardia Airport (LGA), and Minneapolis-St. Paul International Airport (MSP). All six these of these airports are classified by the FAA as Large Hubs. Included in Table 5 are the airports LTO cycles for the given year and their inventoried LTO cycle aircraft GHG emissions listed in metric tons CO₂e. LTO cycle data was calculated using operational data from TMFSC in the FAA database. This was done by dividing in half the total arrivals and departures.

| Table 5    |                         |                               |                      |
|------------|-------------------------|-------------------------------|----------------------|
| Large Hul  | o Total and Bo          | oeing 777-200/300 LTO Cyc     | les                  |
| Airport    | LTO Cycles <sup>1</sup> | Boeing 777-200/300 LTOs       | GHG Emissions (CO2e) |
| LAX        | 275,771                 | 5,030                         | 634,424 <sup>a</sup> |
| JFK        | 223,144                 | 7,833                         | 866,027 <sup>b</sup> |
| EWR        | 218,180                 | 5,335                         | 588,366 <sup>c</sup> |
| MSP        | 217,076                 | 5                             | 327,736 <sup>d</sup> |
| SFO        | 200,403                 | 4,219                         | 495,239 <sup>c</sup> |
| LGA        | 191,311                 | 0                             | 428,742 <sup>c</sup> |
| 1. Operati | onal data based         | on TMFSC data from FAA databa | ases                 |

<sup>a</sup> Based on 2009 emissions inventories (LAX 2013)

<sup>b</sup> Based on 2011 emissions calculations completed in this study

<sup>c</sup> Based on 2008 emissions inventories (Peeters 2010)

<sup>d</sup> Based on 2009 emissions inventories (Metropolitan Airports Commission 2010)



**Figure 10** – GHG emissions inventories six large U.S. airport hubs are arranged by decreasing LTO cycles per year at each airport.

The data in table 5 show a predictable trend of decreasing GHG emissions with decreasing airport size with the exception of JFK and MSP. This is highlighted in Figure 10. While it is possible that there was an error in calculating this data, it is unlikely as the method described by both the New York Port Authority closely and Metropolitan Airports Commission matches the method used in this study, where operational information for individual aircraft engine types were used in EDMS. A more likely explanation for this is that since the emissions data is calculated by aircraft operations and not passenger boarding totals, that JFK had more larger-GHG-emitting aircraft land and takeoff at its airport than the others in this study proportional to its total LTO cycles. MSP likely had fewer larger-GHG-emitting aircraft land and take off at its airport than the others in this study proportional to its total LTO cycles. An example of this is evidenced in Table 5. Column 2 shows Boeing 777 LTO's at each airport.

In the Appendix to this report, there are four tables. Tables 1 through 3 show the typical aircraft types at each of the Bay Area Airports. The most commonly used aircraft type is the Boeing 737 at SJC and OAK and the Airbus A320 at SFO. These are lighter aircraft and are designed for shorter distances. The Boeing 737 has a maximum range of 3,440 nautical miles (Boeing 737 2014). The Airbus A320 has a maximum range of 3,790 nautical miles (Airbus 2014). The Appendix Table 4 shows a variety of aircraft and their typical emissions factor per LTO. The 737 and A320 engines produce 2740 and 2440 kg CO<sub>2</sub> /LTO respectively (Climate Registry 2014). Larger aircraft typically fly farther, carry more passengers and can produce exponentially more GHG. They can greatly add to an airport's GHG inventory. For example the Boeing 777-200 has a maximum range of 5,240 nautical miles (Boeing 777-200 2014). Its engines typically produce 8,100 kg  $CO_2/LTO$ , almost three times that of the 737 and A320 (Climate Registry 2014). Table 5 shows that JFK has much more 777 aircraft per year than the other airports and MSP has much less. This shows that the exact airport type can play a key factor in determining GHG emissions.

Because GHG emissions inventories are not mandated by federal regulations, and because the environmental impact of Medium Hub airports is less than that of much larger hubs, there are not many environmental impact studies of GHG LTO emissions inventories from comparable sized airports to SJC and OAK. Because of this, international airports were analyzed of comparable size. A study by Song of Korean airports generated GHG emissions inventories for the following airports: Incheon (RKSI), Gimpo (RKSS), Jeju (RKPC), and Gimhae (RKPK) (Song 2012).

| Table 6                   |                           |                                   |
|---------------------------|---------------------------|-----------------------------------|
| LTO Cycle GHG Emiss       | ions Inventories at Ko    | rean Airports                     |
| Airport Code              | LTO Operations            | GHG Emissions (CO <sub>2</sub> e) |
| RKSI (Incheon)            | 214,853                   | 628,000a                          |
| SFO                       | 200,403                   | 495,239b                          |
| RKSS (Gimpo)              | 118,514                   | 199,000a                          |
| RKPC (Jeju)               | 103,426                   | 152,000a                          |
| ОАК                       | 75,322                    | 158,858b                          |
| SJC                       | 62,362                    | 106,996b                          |
| RKPK (Gimhae)             | 62,225                    | 96,400a                           |
| a. Based on 2010 emission | ns inventories (Song 2012 | 2)                                |

b. Based on 2011 emissions calculations completed in this study



**Figure 11** – GHG emissions inventories for Korean and Bay Area airports arranged by decreasing LTO cycles per year at each airport.

Table 6 shows the emissions inventories of the Korean airports as well as SFO, SJC, and OAK. Figure 11 shows that the airports follow the general trend of decreasing GHG emissions with decreasing LTO cycles. RKSS and RKPC are slightly below the trend indicated in figure 11. Given the analysis done for figure 10, one would expect the average aircraft at RKSS and RKPC to be smaller engine size and produce less GHG than that of OAK. This is because OAK has roughly the same GHG emissions inventory as RKPC, but RKPC has nearly 25% more LTO cycles. This further proves that GHG emissions can be estimated by LTO operations, but in order for an accurate GHG inventory, emissions for each aircraft type must be used.

#### Recommendations

AirportGEAR was used to identify the GHG mitigation strategies that specifically address aircraft emissions. Of the 125 total strategies in the program, 30 pertain to addressing aircraft GHG emissions. These strategies were prioritized by their GHG reduction potential and their effect on LTO cycle emissions, and were given a score. The top fifteen mitigation strategies are presented in table 7. Table 7 consists of a list of reduction strategies taken directly from AirportGEAR and a synopsis of its benefits.

| Table 7<br>GHG Reduction Stra                                          | ntegies from AirportGEAR (CDM 2012)                                                                                                                                                                               |                                                                                                                                                                                                                |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction                                                              | Description                                                                                                                                                                                                       | Pros/Cons                                                                                                                                                                                                      |
| Create a Carbon<br>Offset Purchasing<br>Strategy                       | Works to achieve a net CO <sub>2</sub> emissions<br>inventory of zero over the course of a<br>year by purchasing carbon credits.<br>Often done through funding of off-site<br>projects that reduce GHG emissions. | Helps to meet GHG regulations or<br>reduction mandates. Requires<br>solid estimates of future GHG<br>emissions. Cost of carbon credits<br>depend on the market which can<br>be highly volatile.                |
| Develop and<br>Apply or Sell<br>Carbon Offsets                         | By generating carbon credits, airports<br>can generate revenue from GHG<br>reduction projects, or alternatively<br>apply those credits towards its own<br>GHG inventory                                           | Promotes implementation of<br>GHG reduction technologies and<br>boosts the airports public image.<br>The revenue stream created from<br>carbon credit sales is highly<br>variable.                             |
| Support<br>Optimized<br>Departure<br>Management on<br>Existing Runways | Improves efficiency of aircraft<br>movement through the use of<br>decision-making tools.                                                                                                                          | Fuel savings from optimized<br>aircraft operations will result in a<br>reduction of GHG emissions.<br>Direct cost needed initially for<br>hardware and software upgrades<br>and training of airport personnel. |
| Design Airfield<br>Layout to Reduce<br>Aircraft Delay                  | Redesigning the airfield layout to<br>improve airport traffic flow and<br>decrease aircraft delay                                                                                                                 | Decongestion of runway traffic<br>will result in fewer GHG<br>emissions from idling aircraft.<br>Some airports may have<br>limitations on possible design<br>changes.                                          |
| Develop a Climate<br>Action Plan (CAP)                                 | Focuses on GHG management on the<br>time scale of 2 - 50 years. Includes<br>target goals, timelines and<br>recommendations for meeting these<br>goals                                                             | Helps airports plan for future<br>mitigation efforts and outside<br>factors like climate change.<br>Requires extensive initial data<br>and could take over a year to<br>start.                                 |
| Invest in<br>Terrestrial Carbon<br>Sinks                               | Reforestation or afforestation is used<br>to improve CO2 uptake and have a<br>positive effect on the local natural<br>environment                                                                                 | The mitigation strategy has<br>relatively little cost, but the<br>turnaround time on the<br>investment is long                                                                                                 |
| Support<br>Modernization of<br>Air Traffic<br>Management<br>(ATM)      | The purchase and installation of new<br>operational management system to<br>better control aircraft movement and<br>improve fuel usage                                                                            | The FAA is funding new ATM<br>system development, not airport<br>operators. New systems may be<br>limited by airport, airline or<br>aircraft adaptation                                                        |

| Implement                                                                                                   | Incentive fees are used to promote                                                                                                                                                                    | Airport would see increased                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission-based                                                                                              | transitioning away from older and                                                                                                                                                                     | revenue due to GHG emissions                                                                                                                                                                                                                                                                                                                                       |
| Incentives and                                                                                              | higher emitting aircraft technology                                                                                                                                                                   | reductions. Turnaround time on                                                                                                                                                                                                                                                                                                                                     |
| Landing Fees                                                                                                |                                                                                                                                                                                                       | investment is long due to                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             |                                                                                                                                                                                                       | infrequency of fleet turnover                                                                                                                                                                                                                                                                                                                                      |
| Use Greenhouse                                                                                              | GHG emissions resulting from future                                                                                                                                                                   | Evaluations often also highlight                                                                                                                                                                                                                                                                                                                                   |
| Gas Impact                                                                                                  | projects alternatives and equipment                                                                                                                                                                   | ways to optimize processes and                                                                                                                                                                                                                                                                                                                                     |
| Evaluations as                                                                                              | purchases will be used as decision-                                                                                                                                                                   | reduce other environmental                                                                                                                                                                                                                                                                                                                                         |
| Decision-Making                                                                                             | making criteria                                                                                                                                                                                       | impacts. Data required to                                                                                                                                                                                                                                                                                                                                          |
| Criteria                                                                                                    |                                                                                                                                                                                                       | complete evaluations may be                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                             |                                                                                                                                                                                                       | limited                                                                                                                                                                                                                                                                                                                                                            |
| Design Runways,                                                                                             | Reducing distances will reduce                                                                                                                                                                        | Fuel burn reductions will have                                                                                                                                                                                                                                                                                                                                     |
| Taxiways, Ramps                                                                                             | associated fuel burn, thereby reducing                                                                                                                                                                | other positive environmental                                                                                                                                                                                                                                                                                                                                       |
| & Terminals to                                                                                              | GHG emissions                                                                                                                                                                                         | impacts. Existing airports may be                                                                                                                                                                                                                                                                                                                                  |
| Reduce Aircraft                                                                                             |                                                                                                                                                                                                       | limited by space. Also NEPA                                                                                                                                                                                                                                                                                                                                        |
| Taxiing Distances                                                                                           |                                                                                                                                                                                                       | compliance might be triggered by                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             |                                                                                                                                                                                                       | certain projects                                                                                                                                                                                                                                                                                                                                                   |
| Support                                                                                                     | Use of single engine or reduced engine                                                                                                                                                                | Reduced fuel burn would have                                                                                                                                                                                                                                                                                                                                       |
| Single/Reduced                                                                                              | power during aircraft taxiing is                                                                                                                                                                      | additional positive environmental                                                                                                                                                                                                                                                                                                                                  |
| Engine Taxiing                                                                                              | encouraged to reduce fuel burn and                                                                                                                                                                    | impacts. Airports cannot require                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             | resulting GHG emissions                                                                                                                                                                               | these procedures but can instead                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             |                                                                                                                                                                                                       | seek voluntary implementation                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                             |                                                                                                                                                                                                       | from airlines.                                                                                                                                                                                                                                                                                                                                                     |
| Develop an                                                                                                  | Limits are set for GHG emissions                                                                                                                                                                      | In California, a GHG assessment is                                                                                                                                                                                                                                                                                                                                 |
| Airport Expansion                                                                                           | related to specific airport projects.                                                                                                                                                                 | already required for projects                                                                                                                                                                                                                                                                                                                                      |
| and Development                                                                                             |                                                                                                                                                                                                       | requiring an environmental                                                                                                                                                                                                                                                                                                                                         |
| Greenhouse Gas                                                                                              |                                                                                                                                                                                                       | impact report. Plans can be                                                                                                                                                                                                                                                                                                                                        |
| Emission Policy                                                                                             |                                                                                                                                                                                                       | difficult to enforce and goals can                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                             |                                                                                                                                                                                                       | be difficult to quantify                                                                                                                                                                                                                                                                                                                                           |
| Minimize the Use                                                                                            | Gate power and pre-conditioned air                                                                                                                                                                    | Direct savings are seen from a                                                                                                                                                                                                                                                                                                                                     |
| of Auxiliary                                                                                                | are used to reduce aircraft fuel burn                                                                                                                                                                 | reduction in jet fuel expenses.                                                                                                                                                                                                                                                                                                                                    |
| Power Units                                                                                                 | and associated GHG emissions                                                                                                                                                                          | Could take a long time to                                                                                                                                                                                                                                                                                                                                          |
| (APUs)                                                                                                      |                                                                                                                                                                                                       | implement due to necessary                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                             |                                                                                                                                                                                                       | airline engagement                                                                                                                                                                                                                                                                                                                                                 |
| Conduct Regular                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |
| Conduct Regular                                                                                             | GHG inventories are conducted to                                                                                                                                                                      | The largest GHG sources would                                                                                                                                                                                                                                                                                                                                      |
| Greenhouse Gas                                                                                              | GHG inventories are conducted to create a baseline of emissions and                                                                                                                                   | The largest GHG sources would be identified and benefits of GHG                                                                                                                                                                                                                                                                                                    |
| Greenhouse Gas<br>(GHG) Emission                                                                            | GHG inventories are conducted to create a baseline of emissions and monitor GHG reductions over time.                                                                                                 | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be                                                                                                                                                                                                                                                                  |
| Greenhouse Gas<br>(GHG) Emission<br>Inventories                                                             | GHG inventories are conducted to create a baseline of emissions and monitor GHG reductions over time.                                                                                                 | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can                                                                                                                                                                                                                               |
| Greenhouse Gas<br>(GHG) Emission<br>Inventories                                                             | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.                                                                                           | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming                                                                                                                                                                                                          |
| Greenhouse Gas<br>(GHG) Emission<br>Inventories<br>Create                                                   | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel officient reil          | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be                                                                                                                                                                      |
| Create<br>Partnerships with                                                                                 | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel efficient rail          | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be<br>negatively affected, but airlines                                                                                                                                 |
| Create<br>Partnerships with<br>Intercity Rail                                                               | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel efficient rail<br>trips | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be<br>negatively affected, but airlines<br>would save money by eliminating                                                                                              |
| Create<br>Partnerships with<br>Intercity Rail<br>Services to                                                | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel efficient rail<br>trips | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be<br>negatively affected, but airlines<br>would save money by eliminating<br>shorter, low-demand routes.                                                               |
| Create<br>Partnerships with<br>Intercity Rail<br>Services to<br>Optimize                                    | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel efficient rail<br>trips | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be<br>negatively affected, but airlines<br>would save money by eliminating<br>shorter, low-demand routes.<br>Successful reduction is                                    |
| Create<br>Partnerships with<br>Intercity Rail<br>Services to<br>Optimize<br>Passenger and<br>Cargo Movement | GHG inventories are conducted to<br>create a baseline of emissions and<br>monitor GHG reductions over time.<br>Partnership would replace short-haul<br>flights with more fuel efficient rail<br>trips | The largest GHG sources would<br>be identified and benefits of GHG<br>reduction projects would be<br>quantified. Data collection can<br>be time consuming<br>Initial airline revenue would be<br>negatively affected, but airlines<br>would save money by eliminating<br>shorter, low-demand routes.<br>Successful reduction is<br>contingent on passenger buy-in. |

It should be noted that controlling specific airline aircraft operations is difficult for airport operators, as they often have little or no control over individual gate operations. While not all of the GHG mitigation strategies identified in Table 7 deal directly with reducing aircraft GHG emissions, they all present a way to reduce or counteract the impact of these aircraft emissions. The Bay Area airport section in the Introduction of this report identified the current strategies being used at each airport to reduce aircraft GHG emissions.

The strategies presented in Table 7 can be broken down into three categories:

- <u>Planning Strategies</u> This includes strategies such as developing a CAP, using GHG impact as decision making criteria, optimizing departure management, and conducting regular GHG emissions inventories. These strategies deal with the GHG emissions of the entire airport, but take into account the impact LTO GHG emissions have on the airport. These often don't involve physical changes to the airport. They also have the least amount of capital investment and the shortest time to initiate. They do, however, take involvement from many stakeholders at the airport and the return on investment is difficult to estimate.
- 2. <u>Airport Development Strategies</u> This category includes strategies such as airfield layout design, runway and taxiway reduction, and updating airport gates to minimize the use of APUs. These strategies deal with specific updates and modernization to the airport. They often have a large capital investment, take a long time to implement, and are often dependent on the restrictions of a specific airport. They do, however, have the largest reduction potential on GHG emission reduction.

3. <u>Economical Strategies</u> – This category includes strategies such as developing carbon offsets, purchasing carbon offsets, and implementation of emissions-based landing fees. These strategies deal with monetary quantification of GHG emissions. They create a ways to prioritize airport upgrades from an economical perspective. The revenue produced from these strategies can be used to invest into airport developments that will help reduce GHG emissions. They take minimal capital to implement, but their return on investment in unclear and is highly dependent on a volatile global market.

Each of the airports should look at the strategies identified in Table 7 in order to prioritize their next mitigation projects. The LTO cycle represents a significant component of airport GHG emissions as previously identified. As funds become available for new environmental projects, they should be allocated to implementing some of the before mentioned mitigation strategies in order to have the greatest impact on reducing the airports total GHG emissions inventory.

It is also recommended that each airport conduct regular GHG emissions inventories to keep track of their progress in GHG reduction and their selected mitigation strategy effectiveness. SFO conducted an estimation of their carbon footprint as part of their 2012 climate action plan; however, in it they calculated LTO aircraft emissions by estimating the jet fuel use for one day, multiplying it by 365 and adjusting for a peak month factor (SFO 2012). The difference between the emissions noted in the Climate Action Plan and those calculated in this report are shown in Table 8.

| Table 8<br>SFO LTO Cycle GHG Em | iissions Inventori | es (Metric Tons) |
|---------------------------------|--------------------|------------------|
| Report                          | 2011               | 2012             |
| SFO FY2012 CAP                  | 579,105            | 685,095          |
| Norton (2014)                   | 495,239            | 512,588          |

As indicated in Table 8, SFO has over-estimated their GHG emissions by 17% in 2011 and 34% in 2012. This has an effect on SFO's GHG reporting and subsequent mitigation efforts. SFO did not use the emissions inventory method outlined in IPCC Good Practice and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2001) and instead used a cruder, but much faster calculation that requires far less data. However, this method does not account for variation from standard norms throughout the year and instead relies on a peak month adjustment factor. As indicated in the analysis of Figure 10 earlier in this section, the exact aircraft type emissions are needed to accurately produce an emissions inventory. SFO has indicated that emissions from the airlines, such as jet fuel consumption from aircraft in the LTO cycle is not a focus of their Climate Action Plan since it is not controlled by the Airport Commission, and therefore not as thoroughly analyzed. SFO should implement a more detailed method, similar to the one utilized in this report, to calculate their GHG emissions inventories in the future. These new inventories should be included in future climate action plans. It would enable them to further evaluate where their emissions sources are coming from throughout the year and produce a more accurate emissions inventory.

Because of SFO's size and existing GHG reduction efforts, it should look at all three strategies for potential mitigation strategies. However, the econmonical strategies category would be the easiest to implement and have the largest impact on the LTO GHG emissions. The Development Strategies are hard to implement based on the airport size and space restrictions in the surrounding area. Many of the strategies in the Planning Strategies category are already being implemented by the airport.

As a growing airport undergoing recent development and receiving new governmental funding, SJC should focus on mitigation strategies from the Airport Development Strategies section. Compared to other airports in this study, SJC has more growth potential and should consider GHG emissions from all phases of air travel, in their development projects.

OAK should implement LTO GHG emissions into their city CAP. By omitting them from their city GHG emissions inventory, they are missing a key emissions source and overall GHG mitigation potential. The other strategies in the Planning Strategies section should be used to help focus the existing environmental efforts of the City of Oakland on all large sources of GHG emissions, including LTO GHG emissions.

# Conclusions

The Bay Area has three large to medium sized international airports that each have a significant impact on the environment. As noted in figure 5, the transportation industry makes up a large portion of global anthropogenic GHG emissions sources. By quantifying the exact emissions that these airports have on the local environment, the exact areas that should be focused on can be highlighted. At all airports studied, CO<sub>2</sub> emissions represented the overwhelming majority of impact in terms of GWP. Operational strategies to mitigate emissions should specifically target CO<sub>2</sub> reductions compared to of GHGs.

SFO contributes the majority of GHG emissions from aircraft in the LTO phase in the Bay Area. Due to the higher emissions and traffic volume, operational mitigation strategies conducted there should be more focused on total reduction than on cost. SFO has set in place a Climate Action Plan and has undergone gate renovations to reduce local GHG emissions as noted in the Bay Area Airports section. SFO should focus on the larger operational strategies noted in Table 7, such as carbon offset programs and emissions-based landing fees. These will have a larger impact on emissions and do not conflict with the spatial restrictions SFO faces.

OAK does not have as much emissions volume as SFO, but is still a large GHG producer. OAK has implement some airport renovations to reduce GHG emissions at several of the gates; however the City of Oakland has not incorporated the aircraft GHG emissions as part of its Climate Action Plan. OAK should implement the more planning focused strategies described in Table 7, such as conducting regular GHG emissions inventories and using GHG impact as a part of their decision making strategies, in addition to incorporating OAK in the City of Oakland's Climate Action Plan.

SJC has the smallest volume of emissions in the airports evaluated in this study, but has proven that they are growing. SJC has utilized the VALE program to fund many GHG reduction efforts including undergoing runway construction. SJC should further evaluate the strategies that are listed in Table 7. As SJC is beginning to have a stronger presence in Bay Area air travel, they should especially consider strategies that involve airport construction, such as evaluating airfield design and reducing taxiing distances, before their implementation gets more difficult with increasing air traffic.

## Acknowledgements

I'd like to acknowledge both Professor Chris Ruehl and Maggie Winslow and MSEM Program director Stephanie Ohshita for their help and guidance on this research project. The work completed by the FAA's ACRP was critical in developing operational best practice recommendations. I would like to acknowledge the work done by all three Bay Area airports, on which this paper was based. I would also like to thank the remaining USF faculty that taught me the skills that I used on this master's project. I would also like to thank Stanford University for their support and generous contributions to my education and research. Lastly I'd like to thank my loved ones for their love and support throughout my studies.

# References

Airbus (2014). A320 Dimensions and Key Data. http://www.airbus.com/aircraftfamilies/passengeraircraft/a320family/a320/specific ations/

Boeing 737 (2014) 737 Family Technical Information. <u>http://www.boeing.com/boeing/commercial/737family/specs.page</u>?

Boeing 777 (2014) 777 Family Technical Information. <u>http://www.boeing.com/boeing/commercial/777family/specs.page</u>?

CDM & Synergy Consultants, Inc (2012) ACRP Report 56: Handbook for considering practical greenhouse gas emission reduction strategies for airports (No. ACRP Project 02-10).

City of Oakland (2012). City of Oakland Energy and Climate Action Plan.

City of San Jose (2011). Norman Y. Mineta San Jose International Airport Master Plan Update Project, San Jose, CA, Ninth Addendum to the Environmental Impact Report. Climate Registry (2014). 2014 Climate Registry Default Emissions Factors.

EPA (2012). Air and Radiation, National Ambient Air Quality Standards. <u>http://www.epa.gov/air/criteria.html</u>

FAA (1997). Air Quality Procedures for Civilian Airports and Air Force Bases

FAA (2005). Aviation & Emissions: A Primer. Office of Environment and Energy

FAA (2012). Airport Categories – Airports.

Gil, M., W. Yan (2013). Is environmental innovation worth it? The case of the civil aviation industry of emerging markets, *AMPS 2013, Part II, IFIP AICT.* **415**, 294-301.

Gossling, S., G. Dubois, P. Peeters, W. Strasdas (2007). Volentary carbon offsetting schemes for aviation: efficiency, credibility and sustainable tourism. *Journal of Sustainable Tourism.* **15**, 3, 223-248.

IATA (2013). Air Transport Market Analysis: December 2012.

IPCC TAR WG3 (2001), Metz, B.; Davidson, O.; Swart, R.; and Pan, J., ed., Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 0-521-80769-7.

IPCC (2001). Good practice and guidance and uncertainty management in national greenhouse gas inventories. IPCC, Geneva, Switzerland.

IPCC (2006). IPCC, Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 3: Mobile Combustion, Table 2.7.

IPCC (2007). Climate Change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104pp.

KB Environmental Sciences, Inc., Environmental Science Associates, Inc., Synergy Consultants, Inc. & Stonefield Environmental Consulting (2013). ACRP Report 84: Guidebook for preparing airport emissions inventories for state implementation plans (No. ACRP Project 02-21).

Kim, B., I. Waitz, M. Vigilante, R. Bassarab (2009) ACRP Report 11: Guidebook on preparing airport greenhouse gas emissions inventories (No. ACRP Project 02-06).

Los Angeles International Airport (2013). LAX Specific Plan Amendment Study, Final EIR.

Macintosh, A., L. Wallace (2009). International Aviation Emissions to 2025: Can emissions be stabilized without restricting demand? Energy Policy. 37, 264-273.

Maurice, L. Q., H Lander, T Edwards, W.E Harrison III (2001) Advanced aviation fuels: a look ahead via a historical perspective. Fuel, 80 (5), 747-756, ISSN 0016-2361,

Metropolitan Airports Commission (2010). Greenhouse Gas Report. Minneapolis, MN.

Mineta San Jose International Airport (2014). Facts: Silicon Valley's Airport. http://www.flysanjose.com/fl/about/newsroom/AirportStats.pdf

OAK (2014). Oakland International Airport: Air Quality and Alternative Fuels.

Oakland Airport (2014). Year-end Airport Statistics Summary. <u>http://oaklandairport.com/airport\_stats\_yearend\_stats.shtml</u>

Olsthoorn, X. (2001). Carbon dioxide emissions from international aviation: 1950– 2050. Journal of Air Transport Management, 7(2), 87-93.

Peeters, Paul, E. Szimba, M. Duijnisveld (2005). European tourism transport and environment. Association for European Transport and contributors. Port Authority of New York & New Jersey (2010). Greenhouse Gas and Criteria Air Pollutant Emission Inventory for the Port Authority of New York & New Jersey. New York, NY.

SFO (2011). Environmental Sustainability Report

SFO (2012). FY2012 Climate Action Plan

Song, S., & Shon, Z. (2012). Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea. Atmospheric Environment, 61(0), 148-158.

San Francisco International Airport (2012). Welcome to SFO. http://media.flysfo.com.s3.amazonaws.com/pdf/about/brochures/sfowelcomebroc hure.pdf United States Department of Transportation (2012). Table 1-44: Passengers Boarded at the Top 50 U.S. Airports (a). Research and Innovative Technology Administration, Bureau of Transportation Statistics.

Wuebbles, D., Gupta, M., & Ko, M. (2007). Evaluating the impacts of aviation on climate change. Eos, Transactions American Geophysical Union, 88(14), 157-160.

| SFO                             |            |          |            |          |            |          |
|---------------------------------|------------|----------|------------|----------|------------|----------|
|                                 | 2011       |          | 2012       |          | 2013       |          |
| Aircraft                        | Departures | Arrivals | Departures | Arrivals | Departures | Arrivals |
| A320 - Airbus A320 All Series   | 30,513     | 30,458   | 34,845     | 34,836   | 32,475     | 32,522   |
| E120 - Embraer Brasilia EMB 120 | 22,130     | 22,074   | 21,385     | 21,356   | 20,072     | 20,061   |
| B752 - Boeing 757-200           | 21,207     | 21,076   | 19,598     | 19,563   | 17,488     | 17,405   |
| CRJ2 - Bombardier CRJ-200       | 16,020     | 15,968   | 16,280     | 16,273   | 15,740     | 15,747   |
| A319 - Airbus A319              | 15,680     | 15,634   | 15,927     | 15,885   | 14,223     | 14,166   |
| B737 - Boeing 737-700           | 13,961     | 13,972   | 15,154     | 15,117   | 16,948     | 16,937   |
| B738 - Boeing 737-800           | 12,756     | 12,751   | 16,577     | 16,516   | 21,072     | 20,905   |
| CRJ7 - Bombardier CRJ-700       | 11,825     | 11.784   | 14,422     | 14,421   | 12,400     | 12,398   |
| B744 - Boeing 747-400           | 7,370      | 7,268    | 7,228      | 7,185    | 7,198      | 7,213    |
| B763 - Boeing 767-300           | 5,251      | 5,167    | 4,648      | 4,610    | 3,410      | 3,401    |
| B772 - Boeing 777-200           | 4,230      | 4,206    | 3,724      | 3,718    | 3,146      | 3,144    |
| B733 - Boeing 737-300           | 4,146      | 4,153    | 3,683      | 3,684    | 2,998      | 2,999    |
| CRJ9 - Bombardier CRJ-900       | 3,216      | 3,218    | 2,415      | 2,409    | 2,648      | 2,650    |
| A321 - Airbus A321 All Series   | 2,574      | 2,571    | 3,253      | 3,266    | 2,979      | 2,988    |
| B77W - Boeing 777-300ER         | 2,143      | 2,144    | 2,283      | 2,311    | 2,609      | 2,660    |
| B739 - Boeing 737-900           | 2,124      | 2,111    | 3,446      | 3,461    | 7,696      | 7,688    |
| B762 - Boeing 767-200           | 2,024      | 2,011    | 1.724      | 1,719    | 1,292      | 1,288    |
| B734 - Boeing 737-400           | 1,687      | 1,694    | 2,347      | 2,354    | 1,974      | 1,974    |
| E190 - Embraer 190              | 1,598      | 1,602    | 1,164      | 1,166    | 1,145      | 1,143    |
| B753 - Boeing 757-300           | 1,378      | 1,380    | 1,430      | 1,412    | 2,598      | 2,534    |
| Total                           | 181,833    | 181,242  | 191,533    | 191,262  | 190,111    | 189,823  |

# Appendix A

| OAK                                         |            |          |            |          |            |          |        |
|---------------------------------------------|------------|----------|------------|----------|------------|----------|--------|
|                                             | 2011       |          | 2012       |          | 2013       |          |        |
| Aircraft                                    | Departures | Arrivals | Departures | Arrivals | Departures | Arrivals |        |
| B737 - Boeing 737-700                       | 24,860     | 24,873   | 26,067     | 26,0     | 42 25,220  |          | 25,202 |
| B733 - Boeing 737-300                       | 10,317     | 10,296   | 8,408      | 8,4      | 94 8,028   |          | 8,036  |
| A319 - Airbus A319                          | 3,206      | 3,190    | 2,384      | 2,3      | 53 2,332   |          | 2,258  |
| A320 - Airbus A320 All Series               | 2,736      | 2,732    | 2,757      | 2,7      | 51 3,134   |          | 3,126  |
| MD11 - Boeing (Douglas) MD 11               | 2,348      | 2,341    | 2,223      | 2,2      | 17 2,067   |          | 2,069  |
| C208 - Cessna 208 Caravan                   | 1,985      | 2,003    | 1,859      | 1,9      | 77 1,995   |          | 2,014  |
| A306 - Airbus A300 B4-600                   | 1,858      | 1,864    | 1,754      | 1,7      | 51 1,609   |          | 1,605  |
| PA31 - Piper Navajo PA-31                   | 1,813      | 1,635    | 1,064      | 1.0      | 20 60      | _        | 30     |
| B738 - Boeing 737-800                       | 1,659      | 1,637    | 2,514      | 2,4      | 46 3,425   |          | 3,327  |
| DC10 - Boeing (Douglas) DC 10-10/30/40      | 1,522      | 1,534    | 1,639      | 1.6      | 48 1,650   |          | 1,652  |
| DH8D - Bombardier Q-400                     | 1,515      | 1,511    | 1,635      | 1,6      | 32 1,233   |          | 1,234  |
| CRJ2 - Bombardier CRJ-200                   | 1,296      | 1,301    | 1,042      | 1.0      | 42 36      |          | 32     |
| 8735 - Boeing 737-500                       | 1,240      | 1,238    | 882        | 8        | 33 33      |          | 32     |
| B763 - Boeing 767-300                       | 836        | 819      | 1,196      | 1.1      | 91 1.413   |          | 1,414  |
| BE99 - Beech Airliner 99                    | 791        | 796      | 427        | 4        | 40 30      |          | 23     |
| C750 - Cessna Citation X                    | 619        | 609      | 657        | 9        | 55 738     |          | 735    |
| GLF4 - Gulfstream IV/G400                   | 574        | 565      | 635        | 0        | 27 643     |          | 638    |
| E135 - Embraer ERU 135/140/Legacy           | 549        | 549      | 575        | 2        | 504        | _        | 488    |
| 8752 - Boeing 757-200                       | 543        | 551      | 726        | 2        | 31 731     |          | 731    |
| SW4 - Swearingen Merlin 4/4A Metro2         | 517        | 562      | 452        | 4        | 86 8       |          | 7      |
| CRJ7 - Bombardier CRJ-700                   | 533        | 536      | 444        | 4        | 45 1,583   |          | 1,501  |
| P180 - Piaggio P-180 Avanti                 | 527        | 524      | 457        | 4        | 51 170     |          | 170    |
| E50P - Embraer Phenom 100                   | 511        | 509      | 448        | 4        | 508        |          | 583    |
| H25B - BAe HS 125/700-800/Hawker 800        | 478        | 488      | 538        | 9        | 46 468     |          | 478    |
| MD83 - Boeing (Douglas) MD 83               | 481        | 475      | 1,296      | 1,3      | 02 817     |          | 818    |
| GLF5 - Gulfstream V/G500                    | 471        | 466      | 420        | 4        | 16 510     |          | 514    |
| PC12 - Pilatus PC-12                        | 473        | 464      | 431        | 4        | 19 371     |          | 337    |
| C56X - Cessna Excel/XLS                     | 452        | 447      | 463        | 4        | 55 462     |          | 461    |
| C560 - Cessna Citation V/Ultra/Encore       | 443        | 442      | 413        | 4        | 14 360     |          | 357    |
| LJ35 - Bombardier Learjet 35/36             | 436        | 438      | 438        | 4        | 34 379     |          | 375    |
| CL60 - Bombardier Challenger 600/601/604    | 442        | 428      | 536        | 9        | 32 508     |          | 208    |
| CL30 - Bombardier (Canadair) Challenger 300 | 435        | 427      | 512        | 5        | 12 562     |          | 558    |
| F900 - Dassault Falcon 900                  | 414        | 415      | 484        | 4        | 72 446     |          | 444    |
| BE40 - Raytheon/Beech Beechjet 400/T-1      | 344        | 336      | 287        | 2        | 331 331    |          | 331    |
| BE20 - Beech 200 Super King                 | 318        | 318      | 283        | 2        | 92 340     |          | 335    |
| CRU9 - Bombardier CRJ-900                   | 298        | 298      | 1,788      | 1.7      | a3 1,383   |          | 1,388  |
| C525 - Cessna CitationJet/CJ1               | 188        | 188      | 263        | 2        | 57 359     |          | 351    |
| B77L - Boeing 777-200LRF/LR                 | -          | -        | 69         |          | 70 348     |          | 348    |
| F2TH - Dassault Falcon 2000                 | 257        | 255      | 230        | 2        | 34 332     |          | 325    |
| Total                                       | 68,286     | 68,061   | 68,896     | 68,7     | 27 65,227  |          | 64,936 |

| 210                                         |            |          |            |          |            |          |       |
|---------------------------------------------|------------|----------|------------|----------|------------|----------|-------|
|                                             | 2011       |          | 2012       |          | 2013       |          |       |
| Aircraft                                    | Departures | Arrivals | Departures | Arrivals | Departures | Arrivals |       |
| 8737 - Boeing 737-700                       | 17,60      | 3 17,606 | 17,742     | 17,74    | 7 18,528   | 18       | ,523  |
| B733 - Boeing 737-300                       | 6,06       | 6,058    | 5,543      | 5,54     | 3 4,622    | 4        | .625  |
| B738 - Boeing 737-800                       | 4,36       | 4 4,343  | 4,423      | 4,31     | 4 4,958    | 4        | 841   |
| E135 - Embraer ERU 135/140/Legacy           | 4,29       | 8 4,290  | 3,821      | 3,82     | 0 1,331    | -        | ,327  |
| DH8D - Bombardier Q-400                     | 2,80       | 9 2,819  | 3,085      | 3,09     | 3 2,964    | 2        | 964   |
| A319 - Airbus A319                          | 2,21       | 1 2,185  | 2,101      | 2,05     | 8 2,303    | 2        | ,331  |
| A320 - Airbus A320 All Series               | 1,61       | 3 1,611  | 1,291      | 1,29     | 9 2,521    | 2        | 40    |
| CRJ2 - Bombardier CRJ-200                   | 1,58       | 2 1,571  | 1,570      | 1,55     | 7 2,551    | 2        | ,538  |
| MD83 - Boeing (Douglas) MD 83               | 1,47       | 4 1,469  | 1,004      | 1,00     | 6 776      |          | 774   |
| C750 - Cessna Citation X                    | 1,23       | 8 1,227  | 1,279      | 1,27     | 0 1,307    | -        | 314   |
| C56X - Cessna Excel/XL5                     | 1,15       | 1 1,137  | 1,170      | 1,16     | 3 1,171    | -        | 168   |
| CRJ7 - Bombardier CRJ-700                   | 1,13       | 1 1,128  | 1,219      | 1,21     | 6 2,087    | 2        | 084   |
| GLF4 - Gulfstream IV/G400                   | 79         | 7 799    | 857        | 88       | 5 872      |          | 872   |
| GLF5 - Gulfstream V/G500                    | 75         | 7 750    | 776        | 11       | 7 855      |          | 859   |
| F900 - Dassault Falcon 900                  | 73         | 5 740    | 709        | 71       | 1 852      |          | 657   |
| B735 - Boeing 737-500                       | 67         | 674      | 399        | 40       | 1 36       |          | 37    |
| F2TH - Dassault Falcon 2000                 | 67         | 7 659    | 637        | 8        | 2 816      |          | 831   |
| MD90 - Boeing (Douglas) MD 90               | 61         | 3 613    | 519        | 51       | 8 466      |          | 466   |
| B752 - Boeing 757-200                       | 58         | 909      | 487        | 48       | 6 351      |          | 353   |
| GALX - IAI 1126 Galaxy/Gulfstream G200      | 58         | 5 582    | 607        | 60       | 3 653      |          | 642   |
| B734 - Boeing 737-400                       | 53         | 538      | 501        | 50       | 3 587      |          | 583   |
| H25B - BAe H5 125/700-800/Hawker 800        | 53         | 2 528    | 547        | 55       | 5 529      |          | 522   |
| MD82 - Boeing (Douglas) MD 82               | 51         | 615      | 636        | 62       | 809 808    |          | 609   |
| CL30 - Bombardier (Canadair) Challenger 300 | 51         | 6 511    | 559        | 55       | 689 689    |          | 682   |
| C560 - Cessna Citation V/Ultra/Encore       | 49         | 0 510    | 536        | 5        | 4 460      |          | 459   |
| BE40 - Raytheon/Beech Beechjet 400/T-1      | 49         | 8 494    | 437        | 43       | 5 466      |          | 472   |
| C680 - Cessna Citation Sovereign            | 48         | 9 485    | 389        | 39       | 5 421      |          | 417   |
| P180 - Piaggio P-180 Avanti                 | 46         | 9 460    | 422        | 41       | 8 159      |          | 158   |
| B763 - Boeing 767-300                       | 43         | 9 439    | 692        | 89       | 2 768      |          | 787   |
| GLEX - Bombardier BD-700 Global Express     | 42         | 1 430    | 397        | 4        | 8 429      |          | 438   |
| ES0P - Embraer Phenom 100                   | 34         | 2 349    | 472        | 47       | 3 776      |          | 782   |
| CRU9 - Bombardier CRJ-900                   | 24         | 8 246    | 436        | 43       | 8 682      |          | 678   |
| E45X - Embraer ERJ 145 EX                   |            | 0        | •          |          | 0 720      |          | 718   |
| B739 - Boeing 737-900                       | 13         | 9 139    | 316        | 31       | 6 462      |          | 464   |
| Total                                       | 56,61      | 3 56,511 | 55,579     | 55,42    | 1 57,577   | 5        | 7,363 |

| Table 4                                                       |          |        |         |  |
|---------------------------------------------------------------|----------|--------|---------|--|
| - rypical ETO Emissions for Aircraft Type (climate Registry 2 | <u> </u> | СНА    | N2O     |  |
|                                                               | (kg/IT_  | (kg/IT | (kg/LT_ |  |
| Aircraft                                                      | 0)       | 0)     | 0)      |  |
| A300                                                          | 5450     | 0.12   | 0.2     |  |
| A310                                                          | 4760     | 0.63   | 0.2     |  |
| A319                                                          | 2310     | 0.06   | 0.1     |  |
| A320                                                          | 2440     | 0.06   | 0.1     |  |
| A321                                                          | 3020     | 0.14   | 0.1     |  |
| A330-200/300                                                  | 7050     | 0.13   | 0.2     |  |
| A340-200                                                      | 5890     | 0.42   | 0.2     |  |
| A340-300                                                      | 6380     | 0.39   | 0.2     |  |
| A340-500/600                                                  | 10660    | 0.01   | 0.3     |  |
| 707                                                           | 5890     | 9.75   | 0.2     |  |
| 717                                                           | 2140     | 0.01   | 0.1     |  |
| 727-100                                                       | 3970     | 0.69   | 0.1     |  |
| 727-200                                                       | 4610     | 0.81   | 0.1     |  |
| 737-100/200                                                   | 2740     | 0.45   | 0.1     |  |
| 737-300/400/500                                               | 2480     | 0.08   | 0.1     |  |
| 737-600                                                       | 2280     | 0.1    | 0.1     |  |
| 737-700                                                       | 2460     | 0.09   | 0.1     |  |
| 737-800/900                                                   | 2780     | 0.07   | 0.1     |  |
| 747-100                                                       | 10140    | 4.84   | 0.3     |  |
| 747-200                                                       | 11370    | 1.82   | 0.4     |  |
| 747-300                                                       | 11080    | 0.27   | 0.4     |  |
| 747-400                                                       | 10240    | 0.22   | 0.3     |  |
| 757-200                                                       | 4320     | 0.02   | 0.1     |  |
| 757-300                                                       | 4630     | 0.01   | 0.1     |  |
| 767-200                                                       | 4620     | 0.33   | 0.1     |  |
| 767-300                                                       | 5610     | 0.12   | 0.2     |  |
| 767-400                                                       | 5520     | 0.1    | 0.2     |  |
| 777-200/300                                                   | 8100     | 0.07   | 0.3     |  |
| DC-10                                                         | 7290     | 0.24   | 0.2     |  |
| DC-8-50/60/70                                                 | 5360     | 0.15   | 0.2     |  |
| DC-9                                                          | 2650     | 0.46   | 0.1     |  |
| L-1011                                                        | 7300     | 7.4    | 0.2     |  |
| MD-11                                                         | 7290     | 0.24   | 0.2     |  |
| MD-80                                                         | 3180     | 0.19   | 0.1     |  |
| MD-90                                                         | 2760     | 0.01   | 0.1     |  |
| TU-134                                                        | 2930     | 1.8    | 0.1     |  |

| TU-154-M         | 5960 | 1.32 | 0.2  |
|------------------|------|------|------|
| TU-154-B         | 7030 | 11.9 | 0.2  |
| RJ-RJ85          | 1910 | 0.13 | 0.1  |
| BAE 146          | 1800 | 0.14 | 0.1  |
| CRJ-100ER        | 1060 | 0.06 | 0.03 |
| ERJ-145          | 990  | 0.06 | 0.03 |
| Fokker 100/70/28 | 2390 | 0.14 | 0.1  |
| BAC111           | 2520 | 0.15 | 0.1  |
| Dornier 328 Jet  | 870  | 0.06 | 0.03 |
| Gulfstream IV    | 2160 | 0.14 | 0.1  |
| Gulfstream V     | 1890 | 0.03 | 0.1  |
| Yak-42M          | 2880 | 0.25 | 0.1  |
| Cessna 525/560   | 1070 | 0.33 | 0.03 |
| Beech King Air   | 230  | 0.06 | 0.01 |
| DHC8-100         | 640  | 0    | 0.02 |
| ATR72-500        | 620  | 0.03 | 0.02 |
|                  |      |      |      |

Source: IPCC (2006)