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ABSTRACT

It is commonly assumed that the ariival process of cus-
tomers to a service system is o nonhomogeneous Poisson
process. Call center data often refute this assumption,
and several authors have postulated a doubly-stochastic
Poisson process for arrivals instead We develop approx-
imations for both the long-run fraction of calls answered
quickly, and the distribution of the fiaction of calls an-
swered quickly within a short period We also perform
a computational study to evaluate the approximations
and improve our understanding of such systems

1 INTRODUCTION

Workforce management in telephone call centers is
largely dependent on strong workforce planning and
management {Mehrotra 1997, Cleveland and Mayben
1997), as typically 60-80% of a call center’s budget is
spent on the labot costs associated with the agents who
handie customer phone calls. Conversely, it is well doc-
umented that in many call center environments there
are significant hidden costs and risks associated with de-
livering service quickly (Ittig 1094, Ittig 2002, Pullman
and Moore 1999)

Call center workforce planning and management
involves three levels of analysis and decision-making:

e “Long Run" Planning (typically 6-12 months
in advance),

e “Short Term" Scheduling (typically 1-2 weeks
in advance), and

e “Real Time" Schedule Adjustments

All of these workforee management processes de-

pend explicitly on the ability to accurately translate
demand for service {measured in terms of call volumes
and call handiing times) into a demand for agents {which
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depends on waiting time distribution objectives defined
by management as well as forecasted workload)

The conventional approach to this transiation is to
model call queues as “Stationary, Independent Period-
by-Peticd,” (SIPP) as described in Green et al (2001)
The SIPP approach divides the planning horizon into
a series of periods {time intervals), eg, Monday 8 -
8:30am Within each period a stationary queueing model
is analyzed to provide estimates of performance in that
period

The artival processes within periods are usually
modeled as independent Poisson Processes, with an ar-
rival rate that is assumed to be deterministic and fixed
throughout the period. Agent requizements for each
period are then determined from steady state equations
that are based on the forecasted arrival and service rates,
and target service objective for that period.

There are & number of potentially significant prob-
lems associated with the SIPP approach. We beliave
that the most significant problem is the assumption of a
detenninistic arrival rate for each period Recent empir-
ical studies (notably Brown et al 2005 and Avramidis
etal 2004) have suggested that there is often significant
variability in call center arrival rates. We show that if
this variability is not accounted for in the determination
of the number of servers, then understaffing and poor
service quality (that is, long customer waiting times and
high abandonment rates) can resuls.

In this paper we examine the impact of randomly
varying arrival rates on call center system performance
In particular, we compute performance approximations
for the case where, in each instance of a particular period,
the arrival rate is first sampled from a distribution,
and then arrivals in the period oeccur according to a

hemegencous—Roisson-prosess—with-that-aeeival-rater———m0—

Our performance approximations are related to the
fraction of calls answered within a given time Hmit In
contrast, Harrison and Zeevi (2005) and Whitt (2004)
adopt an “economic” mode! where costs are assumed
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for abandoned calls, waiting thnes of customers and
agents They then minimize cost over the choice of
staffing levels

It is important to distinguish the randomiy-varying
arrival rate bebavio: discussed in this paper from the
randomness arising from forecast uncertainty In such
a case, the arrival rate for a period is assumed to be a
deterministic quantity, but it is not known with certainty
This case often arises in one-time planning, when, for
exanple, a new pmoduct is introduced The appropriate
long-run performance measure may differ in this case, as
discussed in Steckley, Henderson, and Meluotia (2005)
{This case is called the “uncertain arrival rate” case in
that paper } We do not discuss that case further here.

In Section 2, we develop our approximations for
long-run performance, and the distribution of perfor-
mance in a single period  In Section 3, we describe
a set of experiments desighed to evaluate the quality
of our performance approximations We then compare
these performance approximations with simulation re-
sults and explain the chserved f1ends Conclusions and
suggestions for futw e research are presented in Section 4

To better understand the model of call arrivals we
treat in this paper we describe a particular example
originally proposed in Whitt (1999) In this model, the
arrival process on a given day is Poisson with arrival
rate function B(A(s) : s = 0), whete (A(s): 5> 0} is
a “profile” describing the relative intensities of arivals,
and B is a random “busyness” parameter indicating how
busy the day is  To simplify the analysis we assume
that A() is constant within each period. We use this
model for the experiments in Section 3 but the analytic
results in Section 2 do not rely on this particular choice
of model

2 COMPUTING PERFORMANCE WITH
RANDOMLY VARYING ARRIVALRATES

For a given period the key long-run performance mea-
sure is the long-run fraction of customers that receive
satisfactory service. A customer receives satisfactory
service if her delay in queue is at most r seconds Com-
mon choices for 7 are 20 seconds (a moderate delay)
and 0 seconds (no delay) TFor much of what follows we
focus on a single peiiod {e g, 10am - 10 15am) in the
day, aibitrarily representing this time period as time 0
through time ¢. Let A; denote the real-valued random
arrival rate within this period on day i (A peiiod may
only occur once each week, such as the period Monday

from-8 S 180 T thic papa thio fopmy Selarr af oling]d
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Notice that here we consider any call that abandons to
be unsatisfactory Some planners prefer fo ignore calls
that abandon within very short time frames. There is
a difference, but it is not important for our discussion.
Over n days, the fiaction of satisfactory calls is

E:;l i
i
Z,‘:l Ni

Assume that days are iid, the staffing level is fixed
throughout, and EN) < oo, {Assuming days are i i d
ignores the inter-day correlations seen in Brown et al
(2005) and Steckiey, Henderson, and Mehrotra (2005)
More general dependence structures can be captured in
essentially the same framework ) The last assumption
holds if BA; < oo Dividing both the numerator and
denominator by n and taking the limit as n -+ oo, the
strong law then implies that the leng-run fraction of
satisfactory cails is

ES;
v {1)
EN,

This ratio gives performance as a function of staffing

level But how do we compute it?
First note that

fl

EN, EE[N,|A1]
E[A, 4]

= tEAI: (2)

i

so that ENy is easily computed Computing ES) is
more difficult.  We again condition on A; fto obtain
ES; = Es(A), whete s(A) is the conditional expected
number of satisfactory calls in the period, conditional
on Ay = A Qur initial goal is an expression for s(A)

Fix the artival rate to be deterministic and equal to
A{for now). Let X{; ) = (X{s;A} 1 s = 0) be a Markov
process used to model the call center when there is a
fixed anival rate A. In specialized cases one can take X
to be the process giving the number of customers in the
system, but it may be more complicated. Suppose that
a customer arriving at time s will receive satisfactory
service if and only if X (s; A) € B for some distinguished
set of states 3.

Example 1 A common model of a call center is
an M/M/e+ M queve, 1 e, the Erlang-A model. There
are ¢ servers, service times are exponentially distributed,
and the arrival process is Poisson. Custamers are willing
to wait an exponentially-distributed emount of time {the

THEH—r trihabr 7 Y LERt R

be interpreted as the ith reatization of the period.)
Let &; denote the number of satisfactory calls (calls

that are answered within the time limit 7) out of a total

of N; calls that are received i the period on day ¢

"matience ttme”} in the gueue, and abandon if they do
not reach a server by that time Here we take X {s;A)
Lo be the number of customers in the system at fime s
Then X 45 ¢ conlinuous-time Markov chain (CTMC).
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Suppose thal a service is considered satisfactory if and
only if the customer immediately reaches a server. Then
we can take B o= {0,1,2, ¢~ 1}, ie, a service is
satisfactory if and only if the number of customers in
the system is ¢ — 1 or less when the customer arrives
Example 2 Consider the same model as in the
previous example, but new define a service to be satis-
Jactory if and only if the customer reaches o server in al
most v > ) seconds so long as she doesn't abandon  The
state space of the CTMC defined in the previous esample
is no longer vich encugh to determine, upon a customer
arrival, whether thai customer will receive safisfactory
service or not  We lurn to a different Markov process
wn such a case  Without loss of generality, suppose that
as soom as a custormer arvives, the patience and ser-
vice times for that cugtomer are sempled and therefore
known  Since customers are served in FIFQ order we
can determine, for every customer that hos arrived by
time s, whether that customer will abondon or not, and
if not which agent the custorner will be served by. Let
Vi(s; A) denote the “work in process” for agend i af time
s,1=1, e The quantity Vi{s; \) gives the time re-
quired for agent i to complete the service of all customers
in the system atf time s that are, or will be, served by
agent i Let X{s;A) be the vector (Vi{s;A) 1 €i<¢)
The process X{; M) = (X(s:A): 5 2 O) is ¢ Markoy
process, albeil o rather complicated one, and we can take
B = {v:mini_, » £ 1}, so the! a service is satisfac-
tory if and only if at least one server will be available to
answer a call within v sevonds of a customer’s arrival
Let P,( ) denote the probability measure when the
Markov process has initial distribution ¢ Let vand « be,
respectively, the distiibution of the Markov process at
time 0 and the stationary distribution (assumed to exist
and be unigue). Proposition I sexves as a foundation for
the use of steady-state approximations for periormance
measures in both the deterministic and random arrivai
rate contexts The proof of this result is based on
an application of “Poisson muiivals see time averages”
results; see Steckley, Henderson, and Mehrotra (2005)
Proposition 1 Under the conditions above,

]
G{A) == z\/ﬁ P,(X{s;\) e B)ds

If v = &, so that the Markov process is tn sieady-state
at time 8, then

s(N) = Atf(A),

2.1 Steady-state approximations

Suppose that we adopt the steady-state approximation
s(A) = Mf(A) Here M is the expected nmumber of
customer arrivals in the period and f(A) is the long-run
fraction of customers thai receive satisfactory service
From (1} and (2), we see that

ES; _ Bs(Ay) _ ElArf(A)] (3)
EN, tEA; EM

The fact that one should weight f{A) by the arrival
rate in (3) is weil known. It is bmplicit (and at times
explicit) in the work of Harrison and Zeevi (2005) and
Whitt (2004) for example Chen and Henderson (2001)
did not perform this weighting in their analysis, so their
resuits do not directly apply to the RVAR case, in
contrast to what is claimed there

What are the consequences of ignoring a randomiy-
varying arrival rate when predicting performauce in a
call center? In that case we would fist estimate a
deterministic arrival rate  The most commonly used
estimates converge to EAy as the data size increases
We then estimate performance as f{EA;}

Together with {3), Proposition 2 below establishes
that if [ is decreasing and concave over the range of
Ay, then we will overestimate performance if a random
arrival rate is ignored. The function f is, in great
generality, decreasing in A For many models it is also
concave, at least in the region of interest; see Chen and
Henderson (2001).

Proposition 2 Suppose that f iy decreasing and
concave on the range of Ay Then

EjA; f{A4)] -
—EA, < f(BAg)
Proof: ‘We have that
E[Af(M)] £ (BAKES(ALD) (4)
< (EAEA)) (8)

establishing the result The inequality {4} follows since
fis decreasing (see, eg, Whitt 1976), and (5} uses
Jensen's inequality. 0

For certain models and distributions of A, we may
be able to compute (3) exactly. In general though, this
will not be possible In such a case we can use some
numerical integration technique. The problem is quite
straipghtforward since f is typically easily computed and

WHETE ] A = PR A (0 Ay € BT 78 te steady-state prot-
ability that the system is in state B We can interpret
f{A) as the long-run fraction of customers that receive
satisfactory service

the integal E[A; f(A1)} is one-dimensional

We now turn from long-run performance to short-
run performance. We want to determine the distiibution
of §;/Ny, the fraction of satisfactory calls in a single
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period [0,t] of a single day {We define 3/0 =1} Ow
appioach is to condition on A, the arrival rate for the
period

Suppose that conditional on A, the petiod is long
enough that the fraction of calls answered on thne is
close to its steady-state mean f{A) This transformation
of the random variable A is our first approximation It
ignores the “process variability” that atises even for &
fixed arrival rate

We can refine this approximation to fake into ac-
count process variability The key to the refinement is a
central limit theorem (CLTE) for §;/N, assuming a fixed
4 The CLT should hold in great genetality, as aigued
in Steckley, Henderson, and Mehrotra (2005) Here we
establish the CLT under stiong conditions, and provide
a computable expression for the variance in the process

Let the arrival rate ) be fixed Suppose that our
goal is to answer calls immediately. Suppose further that
the number-in-systen process X = (X{s): s > 0) can
be modeled as an hreducible continuous-time Markoy
chain on the finite state space {0,1, . ,d}, whered > ¢
{It is not essential that the state space be finite, but
it allows us to avoid verlfying regularity conditions }
Let M(s) be the number of transitions by time s, and
let ¥ = (¥, : n = 0} be the embedded discrete-time
Markov chain Then we can write

S UM(t) (6)
N7 Vg
where
1 it ; .
s = =Y I(¥i=Yi + LYo Sc=1) and
D=1
1 il
Vo= Ik )

Here U, gives the fraction of the first n transitions that
correspond to an aniving customer finding a server
available. Similarly, V,, gives the fraction of the first n
transitions that correspond to an arrival joining the sys-
tern  Notice that V;, does not count blocked customers
This is why the relation in {6} is not an equality. When
d is large enough that few customers are turned away,
the approximation should be very good

Theorem 1 Under the assumptions given above,
Uny u 9
VA Vire, = N0, 0°(\)

Proof: The proof has 3 steps The key step is to
establish the joint CLT

A((%)-(2))=rem o

as 1 -+ 00, where N{0, £) denotes a Gaussian 1andom
vector with mean 0 and covariance matiix X, and w, v
and ¥ are specified below The final 2 steps consist
of applying & random $ime change and then the delta
method

To establish (7) we apply a Markov chain CLT {see,
e g., Meyn and Tweedie {1993), Theoremn 17 44} That
result applies only to univariate processes, but the result
easily extends to muitivariate processes through an ap-
plication of the Cramér-Wold device {see, e g, Billingsley
{1968), Theorem 7.7) Consider the (irreducible, finite-
state-space) Markov chain ¥ = (¥ : i > 0), where
Vie (Yi, Yie1) We can wiite

n-1}
Uw—n = Zhl (V;} and
n—} _
Vi—v = Zhg SOR
where
hi(zy) = Iy=z+1l,z<c~1)~uand
falw,y) = Hy=z-+1}—uv

Let 7 be the stationary distribution of ¥ We choose
u and v to be steady-state means, so that *h; =
Doy Tl whiz,yy = 0 for i = 1,2. Let P be the
transition matrix of ¥, and let §; and §z solve Poisson's
equation

P, ) = gilz,y) ~ halz, y),
for i = 1,2 and all {z,y) We then obtain (7), where

El‘j

i H
= =
ETRET
[T
:_:\ o
- e
<

The second equality follows as in Meyn and Tweedie
(1993), Equation 17 47
In fact, we obtain a stronger result, namely a func-

as s — o0, wherew, v and a*(A) ave specified in the proof
below

tional CLT. This latter observation, together with the
random-time-change result {Billingsley 1968, Theoem
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17 1}, allows us to conclude that

(i )-(1)) e

M{s)
as § — oa Now, M(s)/s — v as ¢ — oc as, whae
v is the long-run rate of transitions in the continuous-

time Markov chain X The converging-together lemmma
(Billingsley 1968, Problem 1, p 28) then implies that

v )-(2))
- = N0,
v (e ) ©0,5)
a8 § —+ 00
The hnal step applies the delta method (eg,
Billingsiey (1968), Pioblem 2, p 34, using the func-
tion ¢(x, ¥} = x/y, to conclude that

Upitsy
N (—“ﬂ—l . i‘-) N (O, 72),

Varsy v
where

0t = Ve(u,v)  TVe(y,v)
S - 20w/ (TL/‘U)zzzg
UZ

Setting a?{A) = An®/y yields the result ]

Equation (6) and Theorem 1 establish that con-
ditional on A, the fraction 5,/N: is approximately
normally distributed with mean f{A) and variance

a*(A)/At So we can approximate the distribution of

51 /Ny by the normal mixture N{f(A),o?(A)/A2)

Remark 1 The variance of this normal mixture
is

, LT (A)
Var f{AY4+E A

which can be viewed as a decomposition of the vari-
ance into contiibutions from arrival rate uncertainty
and process uncertainty respectively

Ta compute the distribution of this normal mixture
we need to be able to compute the constant o2(}),
whicli in twn depends on v and n? (which also depend
on A). The following formulae are useful in this regard
They exploit the strong relationships between the 2-step
Markov chain ¥ and the single-step Markov chain Y,
and between the continuous-time Markov chain X and
its embedded chain ¥ Let 8(i) denote the rate at which
the CTMC X leaves sbate i, and let #v and 7y dencte

respectively Since

o = T W)/By)
Tx{y) Sy (z}/B(=)

it follows that

o o -1
y=3 mx(y)By) = (Z Tf!’(z)/ﬂ(z))

ywl) 2220

Note that my or my are easily computed, and therefore
50 i5 ¥

We also need to compute u and v These are given
by

c—1i

u = Z my (i} Py{i,1+ 1) and
i=0
i1

vom Y wy(i)Py(ii+ 1),

iwl}

where Py is the transition matrix of ¥
Finally, 1ecall that for 1 <i,7 <2

Z; = Exigd

+hi(z, )8z, y) — R, )y (2, )

It remains to specify how to compute §;(x,y). Define

d
h'i(:l:) = E;jl,‘(fl:, .Yl} = Z hi(ml y}PY(:‘L‘s :U)

y=0

to be the “smoothed” version of by, for i = 1,2 and z =
0, ,d There are multiple solutions to the equations
defining 7;, all of which differ by an additive constant
In what follows we use one such solution for §;, which
is

haid -
> Bl i (Y Y1)
k=0

Gi(z )

e Ny, y) + Z Eepyhi(Ve, Yierr)
Jemz1

the steady-state distributions associated with X and ¥

oo
= hi{z,y) + z E(I‘y)h,'(yk)
k=1

= iz )+ aly),
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where
oo
gily) =Y Byha(Ve)
k=0
solves {Py — Igi(y) = ~hi(y) for all y, and has the

property that my¢; = 0. It is therefore possibie to com-
pute ¢; from these latter relations, and then substitute
bacl to obtain §;

2.2 Simulation-based estimates

The approximations for long-run and short-run per-
formance described above may be inappropriate, ei-
ther because the steady-state approximations for time-
dependent quantities may be inaccurate for a non-
negligible set of arrival rates, or because the true system
is not well modelled by simple models for which steady-
state results are 1eadily computed It is natural to then
turn to simulation fo compute performance measures

Iy terms of long-run performance, we have already
noted that the problem reduces to computing 5.5, the
expected number of safisfactory calls in a particular
period This is straightforward using simulation. One
can simply generate the arrival rate process, A say, and
then conditional on the realized value, simulate the call
center for the day, giving a realization of 5y Repeating
this process in iid. fashion gives Sy, . ., S, say, which
can be averaged to give an estimate of ES;.

For short-1un performance we wish to compute the
distribution of S;/N; This random variable does not
have a {Lebesgue) density since it is supported on the
rationals  Its probability mass function is also unin-
formative Therefore, we would probably estimate n
moderately comse histograim (say, with bins of width
Awx =001} The height of the bin [z, x4 Ax] is propor-
tional to F(z+ Ax) — F(x), where F is the distribution
function of 51/N;. Hence, estimating this histogram
is equivalent to estimating the distribution function at
the fixed set of points Az,2Az, . .,1 This estimation
is straightforward based on i i d observations (S, N;),
and one can apply standard results (eg, Ross 1996,
PR 360-363) to compute tolerance bounds for F

3 EXPERIMENTAL INSIGHTS

We conducted experiments to examine performance
given uncertainty in the arrival rate  Specifically, we
wanted to determine which factors impact the perfor-
mance measures discussed in §2, assess the quality of

in the {Poisson) arrival rate; (b} the duration of the
(exponential) service times; and (c) the {exponential)
rate at which customers abandon the system.

Note that we continue to focus our analysis on a
single period. The design of the experiment is discussed
in §3.1 and the results are presented in §3 2

3.1 Experimental Design

For our experiments, we model the call center as an
MMfe+ M queue (ie, the Erlang-A model) with a
random arrival rate A We adopt the Whitt (1599)
model discussed earlier in which the arrival rate in the
ith instance of the period is given by B; A, where the B;s
areiid Wemodel B; asuniform withmean 1sothat Ais
uniform with mean A 'We chose the uniform distribution
because it is simple and it effectively illustrates the
essential ideas One could essily substitute a more
realistic distribution The choice of the endpoints of
the uniferm distribution are discussed below

For these experiments, we have set the length of the
period at one hour A call is defined to have received
satisfactory service if it is answered iminediately, ie,
=)

Using both the analytic approximations discussed
above and the corresponding simulation models, we es-
timate the performance measures discussed in §2 1 and
§2 2 for a number of scenarios The simulations were
modelled and run using software developed by Eric Buist
and Pierre L'Ecuyer (Buist and L'Ecuyer 2005), which
was chosen for its ease of modeling call center operations
and capturing the desired performance statistics, as well
as its very fast simulation run times.

The scenarios are spmmarized in Table T We vary
the expected number of calls per hour (A} We also vary
the variability in the arrival rate in terms of a quantity
we call the variance factor The variance factor is defined
as the ratio of the variance of the number of calls per
hour under the random arival rate A and the variance
of the number of calls per hour given a deterministic
arrival rate A The level of the variance factor then
determines the endpoints of the uniform distribution
for A and thus determines the variability of A Finally,
we allow the mean service time and mean abandonment
time to vary

The range of variance factors (as well as arrival 1ates
and average handle thmes) included in these experiments
is based on the actual historical data from four diverse
call centers that we have studied; additional details and

examplos—from—thisdataset nre prosentod in Steclkley,

the approximations as compared to the simulation-based
estimates of performance, and learn more about the be-
havior of systems with arandom airival rate Thefactors
we chose to examine included (a) the leve] of variability

Henderson, and Mehrotia {2005).

In Table 1 a variance factor of one coiresponds to
the case in which the arrival rate is deterministic and
equal to A An sbandonment rate of 0 corresponds to
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the case in which thetre is no abandonment, in which
case the call center is modeled as an M/M/c queue

Table 1: Experimental Design

Factor Levels
Mean number of calls per hour {A) 250
1000
4000
Varviance factor 1
3
6
Service rate per hour {i2) 12
8
Abandonment rate per hour(d} ¢
6
12

For each scenario, we selected the number of servers
¢ to be the minimum value so that the long-run fraction
of calls that are served immediately for a system with
a deterministic arrival 1ate A is at least 90%

For the shmulations, we used an extensive warm-up
period  The parameter settings {arival rate, service
time distribution, abandonment time distribution) for
the warm-up period were identical to those used in
the simulation of the actual period for which data was
captured Therelore, our data reflects steady-state per-
formance.

3.2 Results

Both the simulation-based estimates and steady-state
approximations for long-run performance (long-run fiac-
tion of satisfactory calls) are reported in Table 2. The
simulation results are accurate to approximately 2 dec-
imal places, and so are reported only to that accuracy
Due to space considerations we present only selected
scenarios  This selection illustrates the essential char-
acteristics and trends seen in the results as a whole

The approximations and simulation-based estimates
are very similar - We expect such agreement since the
simulated period should exhibit steady-state behavior
after the extensive warm-up we used

When the variance factor is one so that there is no
variability in the arrival 1ate, the long-run fraction of
satisfactory calls is very close to 09 This is because
the number of servers ¢ is specifically chosen so that the
long-run fraction of satisfactory calls will be at least 0 9

— mthis-ease—Whenthevarianeefaetorisstriethypreater

than one, 50 that there is variability in the arrivai rate,
the jong-run fraction of satisfactory calls is less than 0 9
as suggested by Proposition 2 We also see that the more
variable the arrival rate, the worse the performance We

Table 2: Simulation-Based Estimates and Appioxima-
tions (in Parentheses) of Long-Run Performance

Variance factor
N oop b 1 3 6
012 0| oo 081 (os)
1000 12 0 (gﬁgg) (g.gg) (g'gg)
4000 12 0O (gg{l}) (823} (ggg)
00 60| o) 08y (o)
TR
IEEIEE

see that the degradation can be significant 1t is on the
order of 5% - 10% for some of the cases

The results also indicate that abandonment reduces
the negative impacts of variability in the arrival rate
To understand this, note that in a no-abandonment
model, customers with long waiting times remain in
the system, creating a “chain reaction” of waiting for
future customers  In contrast, with abandonment, these
customers leave the system quickly, thereby avoiding the
chain reaction encountered in a no-abandonment model
This reasoning suggests that the same trend would be
observed if we had instead defined a call to have received
satisfactory service if the cali does not abandon and is
answered within 7 > 0 seconds Although we believe
this trend holds in general, in some cases in which 7 is
very large and the rate of abandonment # is also very
large, the abandoning calls may actually drive down the
long-run fraction of satisfactory cails

For short-run performance, we turn to the distri-
bution of §;/Np, the fraction of satisfactory calls in
a single instance of the period We have two possi-
ble approximations for this distribution. The Rrst is
given by the distribution of f(A} The second is given
by the distribution of N(f(A), e*(A)/AL)  Figure 1
plots the simulation-based estimate of the distribution
{histogram) along with the the density of the two ap-
proximations for a particular case. The final bar of the
histogram corresponds to the observed 5 /N ratios that
were exactly one. The density of N(f{A), 0?(A)}/At) has

cated region has been plotted as a “histogram” bar just
to the right of one The density of f(A} is ebtained
by smoothing a histogram of f{A), which explaing its
slightly hiregular appearance
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Figure 1: Plots of the Distribution Estimates when
A=1000, g = 12, ¢ = 97, 0 = 0, and the Variance
Factor = 3

The simulation-based histogram shows that the dis-
tribution of 8 /N has a spike around one and a skewed
left tail for the given staffing level. We saw the same
general shape for all the scenatios in which there is vari-
ability in the arzival rate The shape indicates that it is
quite likely that performance for a single instance of the
period will be excellent with the fraction of satisiactory
calls greater than 0.9 But with a significant probability,
the fraction of satisfactory calls will be less than 0.9 and
can be as bad as 0.5

The approximations in Figure 1 track the
simulation-based results fairly well The normal mix-
tare approximation is & much better estimate in the left
tail

To hetter understand the general shape of the dis-
tribution when there is variability in the arrival 1ate,
consider Figure 2 which plots the mean f{ ) and variance
a2()/( )t of the normal mixture over the support of the
arrival rate distribution for the case plotted in Figure 1
When the anival rate is small, the mean is very close to
one and the variance is very small. This cortesponds to
the situation in which the call center is comfortably over-
staffed and nearly all calls receive satisfactory service
For such A, N{f{A),c2(A)/ M) bas a very concentrated
density in the neighborhood of one. The larger arrival
rates result in lower means and higher variances. This
corresponds to a situation in which the call center is
understaffed and performance becomes more variable.
In such cases, N{f(7),o2(A)/At) takes on small values

and s meredicnarcad
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Figure 2: Plot of f() and o?()/#(") for the Scenario of
Figue }

simulation-based estimale
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Figure 3: Plots of the Distribution Estimates when

A =1000, g = 12, ¢ == 97, 0 = (}, and the Variance

Factor = 6

that there is higher probability of disastrous performance
for a single instance of a period In fact, as variability in
the arrival rate becomes extremely large {variance factor
= 50}, the distribution of S1/N) becomes bimodal with
one mode at I and the other at 0 Intuitively, the
arrival rate distribution is so spread out that it rarely
takes on values that our staffing level is designed to
handle, instead taking values that are either very large,
or very small relative to the staffing level Therefore,
performance is either very poor, or very good, with little
chance of moderate performance.

Further examination of Figures 1 and 3 sugpests that

In Figure 3, we present a plot of the various estimates
for the case in which all parameters are the same, except
the variance factor which has increased to 6 There is
now an even pgreater skew in the left tail, which means

theapproximations Tmprove oS variatAtty T tiearrivat
1ate increases. Indeed, we saw this trend in the other
scenarios in our experimental design. To understand
this trend, first note that the normal approximation
for Sy1/Ni is provably good when the periods are long,
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Figure 4: Plot of N{f(A),0*(A)/At) when # = 0 and
@ = 12, with A == 1000, pt = 12, ¢ = 97, and the Variance
Factor = 6

but deteriorates as the periods become shorter For
shorter periods, Ny can be small with high piobabil-
ity. As & consequence, the actual distribution of §) /N,
will exhibit a right skew Note that the right skew will
be less for small A since Sy/N; then clusters arcund
one DBut for any deterministic A, there will be a dis-
crepancy in the symmetiic normal approximation and
the right-skewed actual distribution. When the arrival
rate A is random we smooth the normal approximation
over the possible values of A to get our approximation
N{f(A), o (A)/AL) The approximation is essentially a
kerne! density esthnate with local bandwidth o2 )/t()
Figure 2 shows that for large A, where the discrepancy
between the nonnal approxinsation and actual distri-
bution is significant, a2(A)/t{A) is 1elatively large and
we smooth more heavily For smaller A when the dis-
crepancy is less significant, we do less smoothing As a
resuit, the approximation gets visually tighter.

Tao examine the effect of abandonment on short-run
performance, we plot the density of N{f{A), c?{A)/AtL)
for o particelar scenario with, and without, abandeon-
ment in Figure 4 The densities are very shmilar around
one but the density corresponding to abandonment s
less skewed to the left Similar characteristics are seen
in the simulation-based histogram and the distribution
of f{A} The intuition here is the same as for the effect
of abandonment on long-run performance

4 CONCLUSIONS

performance (a single number) and short-run perfoi-
mance {2 distriibution), where performance is measured
in terms of the fraction of calls answered within a reason-
able time frame The long-run approximations perform

very well The short-tun approximations are good, and
improve as the variability i the airival rate increases
For many parameter regimes it is important to take
into account the process variability exhibited through
the Tunction ¢2{) Not doing so lends to underestima-
tion of the tail behavior

The short-run performance measures provide valu-
able infor mation to managers, partly because they clarify
the variability in perforinance that one might expectina
single period: We expect good periods and bad pericds,
and our results quantify how oftern good and bad periods
will arise. They aie also valuable because financial con-
tracts aze often based on short-run performance figures,
and therefore the distribution of short-run performance
is extremely important

Several avenues for future research suggest them-
selves

o Service times are often better modeled as lognor-
mal random variables than exponential random
variables  For such cases, can one obtain ex-
act values 01 approximations for the mean and
variance functions f and o27

s Can one oblain the functions f and o when
performance is measured instead as the fraction
of calls that are answered within r > ( seconds?
(We only freated the v = () case )

¢ How does employvee absenteeism fit into this
framework? Presumably, with a randem num-
ber of servers, in addition to & random ariival
rate, the strong-law approximation would be
even better. This seems to be the view of Har-
rison and Zeevi (2005) and Whitt {2004) who
use fluid-model approximations, which are akin
to our strong-law approximation, in their work
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