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Vorticity dynamics and sound generation in two-dimensional
fluid flow

Raymond J. Nagema� and Guido Sandri
Department of Aerospace and Mechanical Engineering, Boston University, Boston, Massachusetts 02215

David Uminsky
Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215

�Received 12 December 2006; revised 10 April 2007; accepted 12 April 2007�

An approximate solution to the two-dimensional incompressible fluid equations is constructed by
expanding the vorticity field in a series of derivatives of a Gaussian vortex. The expansion is used
to analyze the motion of a corotating Gaussian vortex pair, and the spatial rotation frequency of the
vortex pair is derived directly from the fluid vorticity equation. The resulting rotation frequency
includes the effects of finite vortex core size and viscosity and reduces, in the appropriate limit, to
the rotation frequency of the Kirchhoff point vortex theory. The expansion is then used in the low
Mach number Lighthill equation to derive the far-field acoustic pressure generated by the Gaussian
vortex pair. This pressure amplitude is compared with that of a previous fully numerical simulation
in which the Reynolds number is large and the vortex core size is significant compared to the vortex
separation. The present analytic result for the far-field acoustic pressure is shown to be substantially
more accurate than previous theoretical predictions. The given example suggests that the vorticity
expansion is a useful tool for the prediction of sound generated by a general distributed vorticity
field. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2736513�

PACS number�s�: 43.28.Ra, 43.20.Rz �RMW� Pages: 128–134

I. INTRODUCTION

The prediction of aerodynamic sound depends on estab-
lishing a connection between an unsteady fluid flow, which is
most commonly modeled as incompressible, and the small
compressible fluctuations associated with an acoustic field.
The most successful approach to this fundamentally un-
solved problem has identified the vorticity of the incompress-
ible fluid flow as an important source for the generation of
sound. This theory, which takes its starting point from the
Lighthill acoustic analogy,1 has provided many examples of
sound generation by a given vorticity distribution in a fluid
flow.2

In this paper, we begin in Sec. II with the general equa-
tion for the time evolution of the vorticity in a two-
dimensional incompressible flow. We expand the vorticity
field in a series of derivatives of a Gaussian vortex. We then
derive a set of ordinary differential equations for the time-
dependent coefficients of our series. A solution of these or-
dinary differential equations provides a solution for the time-
dependent vorticity and velocity fields. In Sec. III, we apply
our method to analyze the motion of two corotating Gaussian
vortices, and show that the second-order term of our vorticity
expansion rotates in space with a frequency which reduces,
as the vortex core size and the viscosity approach zero, to the
rotation frequency predicted by the Kirchhoff point vortex
theory. In Sec. IV, we show how our solution of the vorticity
equation can be used in the Lighthill equation for sound
generation. We use the Lighthill equation to compute the
sound produced by the Gaussian vortex pair, and compare

our result to a previous high Reynolds number numerical
computation which is based on a numerical solution of the
compressible Navier-Stokes equations. It is shown that our
analytic result for the far-field pressure is substantially more
accurate than previous theoretical predictions.

Our example suggests that the second-order term of our
vorticity expansion is sufficient to provide a good approxi-
mation to the sound generated by a two-dimensional distrib-
uted vorticity field. The higher-order terms in our expansion,
which are not considered in detail here, may give additional
insight into the general structure �for example, vortex core
distortion and vortex core interaction� of two-dimensional
vortex dynamics.

II. VORTICITY DYNAMICS FOR TWO-DIMENSIONAL
INCOMPRESSIBLE FLOW

The continuity and momentum equations for two-
dimensional incompressible fluid flow can be written in the
form

�ui

�xi
= 0, �1�

�̇ + ui
��

�xi
= �

�2�

�xi�xi
, �2�

where ui�x1 ,x2 , t� is the fluid velocity vector, � is the kine-
matic viscosity, anda�Electronic mail: nagem@bu.edu
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��x1,x2,t� = � jk
�uk

�xj
, �12 = − �21 = 1, �11 = �22 = 0 �3�

is the single component of the fluid vorticity. Throughout this
paper, the superposed dot indicates the time derivative, al-
phabetic subscripts take the value 1 or 2, and the summation
convention for repeated subscripts is assumed.

A particular solution of Eqs. �1�–�3� is the Gaussian
vortex3 defined by the vorticity and velocity fields

� = ����x1,x2,t� � �
e−r2/�2

��2 �4�

and

ui = �Ui
��x1,x2,t� � �

1 − e−r2/�2

2�r
�̂i = �

1 − e−r2/�2

2�r
�− �ijr̂ j�

�5�

where

� = ��0
2 + 4�t = �0

�1 + 4�t/�0
2, �6�

r=�x1
2+x2

2, and r̂i, �̂i are the ith components of the radial and
tangential unit vectors corresponding to the r, � polar coor-
dinate system in the x1, x2 plane. The vorticity distribution
����r , t� is a two-dimensional radially symmetric Gaussian
whose total integral over the x1, x2 plane is equal to the
constant �. The spatial broadness of the Gaussian at time t
=0 is characterized by the constant �0, and the spatial broad-
ness ��t� increases in proportion to �t. As �→0, ����r , t�
approaches the two-dimensional point vortex ���r�. The tan-
gential velocity �U� is zero at r=0, and has a radially sym-
metric core region in which the tangential velocity increases
to a maximum value of approximately �0.102�� /� at a radius
of approximately �1.121��. For r	�, the tangential velocity
�U� approaches the value � /2�r associated with the point
vortex ���r�.

To obtain a more general solution of Eqs. �1�–�3�, we
construct the series

� = 
�t��� + Dj�t�
�

�xj
�� + Qjk�t�

�2

�xj�xk
�� + ¯ , �7�

ui = 
�t�Ui
� + Dj�t�

�

�xj
Ui

� + Qjk�t�
�2

�xj�xk
Ui

k + ¯ , �8�

which satisfy Eqs. �1� and �3� identically. The series coeffi-
cients 
�t�, Dj�t�, and Qjk�t� are to be determined by vorticity
equation �2�. The coefficient Qjk is assumed, without loss of
generality, to be symmetric in j and k. A similar series for the
vorticity and velocities fields has been used previously to
derive long-time asymptotics of the two-dimensional Navier-
Stokes and vorticity equations.4

The series �7� is a convergent expansion in the two-
dimensional Gaussian derivatives, a complete and orthogonal
set of spatial basis functions for functions which have spatial
moments of all orders.5 Using the orthogonality property of
these basis functions, the first three time-dependent series
coefficients in Eq. �7� are given in terms of � by the mo-
ments


 =� � d2r� , �9�

Dj = −� � d2rxj� , �10�

Qjk =� � d2r� xjxk

2
−

�2� jk

4
	� , �11�

where � jk is the Kronecker delta.
We refer to the successive terms on the right-hand side

of Eq. �7� as the monopole, dipole, and quadrupole compo-
nents of the vorticity field. This terminology is conventional
when the two-dimensional Dirac delta function ��r� is used
in place of the Gaussian ���r , t�. The corresponding termi-
nology is used for the successive terms in the velocity field
given by Eq. �8�. By using ���r , t� instead of ��r�, we avoid
the singularities associated with the distribution ��r� and, as
shown in Eq. �14�, simultaneously account for the viscous
diffusion that is explicitly built into the function ���r , t� via
the parameter � defined in Eq. �6�.

Substitution of the series �7� and �8� into Eq. �2� gives


̇�� + 
�̇� + Ḋj
���

�xj
+ Dj

��̇�

�xj
+ Q̇jk

�2��

�xj�xk
+ Qjk

�2�̇�

�xj�xk

+ ¯ +
�

�xi

�
Ui

� + Dj

�Ui
�

�xj
+ Qjk

�2Vi
�

�xj�xk
+ ¯ 	

� �
�� + Dm
���

�xm
+ Qmn

�2��

�xm�xn
+ ¯ 	�

= �
�2

�xi�xi
�
�� + Dj

���

�xj
+ Qjk

�2��

�xj�xk
+ ¯ 	 , �12�

where we have used

ui
��

�xi
=

�

�xi
�ui�� �13�

on the basis of Eq. �1�. Since

�̇� = �
�2

�xi�xi
��, �14�

Eq. �12� reduces to the much simpler equation


̇�� + Ḋj
���

�xj
+ Q̇jk

�2��

�xj�xk
+ ¯ +

�

�xi

�
Ui

� + Dj

�Ui
�

�xj

+ Qjk

�2Ui
�

�xj�xk
+ ¯ 	�
�� + Dm

���

�xm
+ Qmn

�2��

�xm�xn

+ ¯ 	� = 0. �15�

Differential equations for the temporal functions 
�t�,
Dj�t�, and Qjk�t� can now be obtained from Eq. �15� by using
the orthogonality properties of the two-dimensional Gaussian
derivatives, as discussed earlier in conjunction with Eqs.
�9�–�11�. Integration of Eq. �15� over the entire x1 ,x2 plane
gives
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̇ = −� � d2r
�

�xi
�ui�� , �16�

which after an integration by parts gives


̇ = 0. �17�

The coefficient 
, according to Eq. �9�, is the total spatial
integral of the vorticity field. Equation �17� thus states the
known result that this total spatial integral of the vorticity is
constant in time.

Taking the first spatial moment of Eq. �15� gives

Ḋj =� � d2rxj
�

�xi
�ui�� = − �ij� � d2rui� , �18�

where the last equality is obtained by an integration by parts.
It is shown in Appendix A that the integral on the right-hand
side of Eq. �18� vanishes, so that

Ḋj = 0. �19�

We thus obtain the known result that the dipole coefficient Dj

in the series �7�, which according to Eq. �10� is the negative
of the first spatial moment of the vorticity field, is also con-
stant in time.

The time derivative of the quadrupole coefficient Qjk in
Eq. �7� is obtained from Eq. �15� as

Q̇pq = −� � d2r� xjxk

2
−

�2� jk

4
	� �

�xi

�
Ui

� + Dp

�Ui
�

�xp

+ Qpq

�2Ui
�

�xp�xq
+ ¯ 	 � �
�� + Dm

���

�xm

+ Qmn
�2��

�xm�xn
+ ¯ 	� . �20�

Each term in the infinite series on the right-hand side of Eq.
�20� can be integrated in closed form. We have evaluated the
terms up the quadrupole order explicitly; the result of these
evaluations is

Q̇jk = −
Qii

8��4 �Qjm�mk + Qkm�mj� +



8��2 �Qjm�mk

+ Qkm�mj� +
1

16��2 �DjDm�km + DkDm� jm� . �21�

If we set j=k in Eq. �21�, we obtain

Q̇kk = 0, �22�

so that

T = Qkk = Q11 + Q22 = Tr�Q� = constant. �23�

Equations �21�–�23� are based on a truncation of the series
�7� and �8�, but it can be shown directly from Eq. �11� �see
Appendix B� that the result Tr�Q�=constant remains valid
when the entire series �7� and �8� are retained.

The constants 
 and Dj, together with a solution of Eq.
�21�, give, via Eqs. �7� and �8�, an approximate solution for
the vorticity and velocity fields. The values of the constants

 and Dj and the initial values of Qjk are obtained in terms of

the initial value of the vorticity distribution by means of Eqs.
�9�–�11�. At t=0, the parameter � reduces to the constant �0,
which is chosen on the basis of the length scale associated
with the initial vorticity distribution.

III. MOTION OF A GAUSSIAN VORTEX PAIR

As an example, we consider the initial vorticity distribu-
tion

��x,y,0� = ��a�x1 − �,x2� + ��a�x1 + �,x2� , �24�

where the function �a is defined by Eq. �4� with � equal to
the constant value a. Equation �24� represents two equal
corotating Gaussian vortices on the x1 axis, separated by the
distance 2�. The initial core size of the vortices is determined
by the parameter a. If the core size a is zero, the Gaussians
become point vortices. In the absence of viscosity, the Kirch-
hoff theory of two-dimensional point vortex motion6 predicts
that two such point vortices will rotate around the origin of
the x1 ,x2 plane on a circle of radius 2� with angular velocity
� /4��2. We will use the series �7� to predict the approximate
time evolution of the Gaussian vortices, including the effects
of viscosity and the finite size of the vortex core regions.

For the initial vorticity distribution �24�, Eqs. �9�–�11�
give, with �0=�, the monopole, dipole, and and initial quad-
rupole coefficients,


 = 2� , �25�

D1 = D2 = 0, �26�

Q11�0� = ��a2

2
+

�2

2
	 , �27�

Q12�0� = 0, �28�

Q22�0� = ��a2

2
−

�2

2
	 . �29�

Here

T = Q11 + Q22 = �a2, �30�

and the components of Eq. �21� become

Q̇11 =
Q12

4��2� T

�2 − 
	 , �31�

Q̇12 = −
Q11 − Q22

8��2 � T

�2 − 
	 , �32�

Q̇22 = −
Q12

4��2� T

�2 − 
	 . �33�

Letting

S = Q11 − Q22, �34�

Eqs. �31�–�33� imply that

Ṡ =
Q12

2��2� T

�2 − 
	 , �35�
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Q̇12 = −
S

8��2� T

�2 − 
	 , �36�

which in turn imply that

− 4Q12Q̇12 = SṠ , �37�

or

S2 + 4Q12
2 = 4C1

2, �38�

where C1 is a constant. Equations �36� and �38� now give

dQ12

�4C1
2 − 4Q12

2
=

dt

8��2� T

�2 − 
	 . �39�

Equation �39� can be integrated to give Q12, and Eq. �36�
then gives S. Using Eq. �23�, the results for the quadrupole
coefficients are, assuming C1�0,

Q11 =
Q11�0� + Q22�0�

2
+

Q11�0� − Q22�0�
2

cos 2�t

+ Q12�0�sin 2�t , �40�

Q12 = Q12�0�cos 2�t +
Q11�0� − Q22�0�

2
sin 2�t , �41�

Q22 =
Q11�0� + Q22�0�

2
−

Q11�0� − Q22�0�
2

cos 2�t

− Q12�0�sin 2�t , �42�

where the time-dependent frequency � is given by

� =
1

8�

 


4�t
ln�1 +

4�t

�0
2 	 −

T

�0
4

1

1 + 4�t/�0
2� . �43�

For the initial conditions of our example, Eqs. �40�–�44� re-
duce to

Q11 =
�a2

2
+

��2

2
cos 2�t , �44�

Q12 =
��2

2
sin 2�t , �45�

Q22 =
�a2

2
−

��2

2
cos 2�t , �46�

� =
1

8�

 �

2�t
ln�1 +

4�t

�2 	 −
�a2

�4

1

1 + 4�t/�2� . �47�

Equations �40�–�42� can be written as


Q11 Q12

Q12 Q22
� = 
cos �t − sin �t

sin �t cos �t
�
Q11�0� Q12�0�

Q12�0� Q22�0� �
�
 cos �t sin �t

− sin �t cos �t
� . �48�

Equation �48� has the familiar form of the transformation
equation for a second-rank tensor under a rotation of spatial
coordinates. The quadrupole term in the vorticity expansion
(7) rotates in space at the frequency �. For small viscosity �,

the frequency � in Eq. �43� decreases slowly with time. In
the inviscid point vortex limit �→0 and a→0, the rotation
frequency � reduces to the Kirchhoff theory value

� =
�

4��2 . �49�

Thus, the quadrupole term in our vorticity expansion �7� is
sufficient to capture the rotation associated with the Kirch-
hoff point vortex model. For finite vortex core size a and
nonzero viscosity �, the quadrupole term of our expansion
also captures the modification of the rotation frequency due
to the finite core size, the viscous retardation of the rotation
frequency, and the viscous diffusion of the vorticity field.

We note that Eq. �48� is the solution of Eq. �21� for any
initial conditions that imply Dj =0. For Dj�0, the solution of
Eq. �21� consists of Eq. �48� plus a particular solution corre-
sponding to the nonhomogeneous dipole term.

IV. LIGHTHILL EQUATION FOR SOUND GENERATION

The Lighthill equation for sound generated by a homen-
tropic low Mach number fluid flow is2

� 1

c0
2

�2

�t2 − �2	p = 0
�2�uiuj�
�xi�xj

, �50�

where p is the acoustic pressure perturbation, 0 is the den-
sity of the undisturbed fluid, c0 is the speed of sound in the
undisturbed fluid, and ui is the incompressible component of
the fluid velocity vector. The source term on the right-hand
side of Eq. �50� can be written as

S = 0
�2�uiuj�
�xi�xj

= 0 � · �� � u� + 0�2�1

2
u2	 , �51�

where � is the vorticity vector corresponding to the velocity
vector u. It is argued in Ref. 2 that the first term on the
right-hand side of Eq. �51� is the principal source of sound at
low Mach numbers. Our series expansions for � and u in
Sec. II can therefore be used directly in the Lighthill equa-
tion to compute the sound generated by a two-dimensional
vorticity field. We will use the Lighthill equation to compute
the sound produced by the Gaussian vortex pair in the pre-
vious section, and compare our result to a previous result2,7

which assumes the Kirchhoff theory of point vortex motion.
In order to obtain a far-field solution for the acoustic

pressure p in Eq. �50�, we expand the principal source term
on the right-hand side as

S = 0 � · �� � u� = S�0��t���r� + Sp
�1��t�

�

�xp
��r� + Spq

�2��t�

�
�2

�xp�xq
��r� + ¯ , �52�

where

S�0��t� =� � d2rS , �53�

Sp
�1��t� = −� � d2rxpS , �54�
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Spq
�2��t� =� � d2r

xpxq

2
S . �55�

For the Gaussian vortex pair, the coefficients S�0�, Sp
�1�, and

Spq
�2� in Eqs. �53�–�55� become

S�0� = 0, �56�

Sp
�1� = 0, �57�

Spq
�2��t� =

0�pq

24�
�− 3
2 +

3
Qkk

�2 −
�Qkk�2

�4 −
QklQkl

12��4	
+ 0�−


Qpq

4��2 +
QkkQpq

12��4 +
QpkQkq

6��4 	 , �58�

where 
 and Qjk are given for this example by Eqs. �25� and
�44�–�46�, respectively. The terms proportional to �pq in Eq.
�58� are nonoscillatory in time, and thus will not contribute
to a propagating sound field.

The solution of the three-dimensional wave equation
�50� is2

p�R,t� =� � � d3R�
S�R�,t − �R − R��/c0�

4��R − R��

=
�2

�xp�xq
�

−�

�

dx3�
Spq

�2��t − �x1
2 + x2

2 + �x3 − x3��
2/c0�

4��x1
2 + x2

2 + �x3 − x3��
2

,

�59�

where R= �x1 ,x2 ,x3�, R�= �x1� ,x2� ,x3��, and the source S de-
fined by Eqs. �51� and �52� has been used. For small viscos-
ity, the source expansion term Spq

�2��t� defined by Eqs. �58�
and �44�–�46� contains sinusoidal functions which vary
slowly in frequency and amplitude. The method of stationary
phase can thus be used to evaluate the far-field value of the
integral in Eq. �59�. Evaluation of Eq. �59� for each of the
three oscillatory terms in the second line of Eq. �58� gives

p =
0�2�2

4�2

�*2

c0
2�*2��c0

�*r
	1/2

cos
2�*�t −
r

c0
	 − 2� −

�

4
�

−
a2

�*2

0�2�2

8�2

�*2

c0
2�*2��c0

�*r
	1/2

cos
2�*�t −
r

c0
	 − 2�

−
�

4
� . �60�

In Eq. �60�, �* denotes � evaluated at the retarded time t
−r /c0, and �* denotes � evaluated at t−r /c0. In the inviscid
point vortex limit �→0 and a→0, the first term on the right-
hand side of Eq. �60� reduces to the previous result in Refs.
2 and 7. The second term on the right-hand side of Eq. �60�,
which comes from the second and third terms in the second
line of Eq. �58�, is a correction due to the finite vortex core
size a.

To test the accuracy of our result for the far-field acous-
tic pressure, we compare our formula with a computational
result presented in Ref. 8. In Ref. 8, the far-field acoustic
pressure generated by a corotating Gaussian vortex pair is
computed by a direct numerical simulation of the compress-

ible Navier-Stokes equations. In our notation, case two of
Ref. 8 corresponds to the following parameter values:

Re =
�

�
= 226 � 103, M0 =

�

2�a

c0
= 0.56,

a

�
= 0.402.

�61�

Numerical results are given in Ref. 8 for the nondimensional
pressure p /0c0

2 as a function of the nondimensional time
tc0 /�, at a distance r=63� from the origin. This value of r
corresponds to 3.6 acoustic wavelengths, or k0r=22.6, which
is a reasonable far-field distance for a numerical computa-
tion. Results for p /0c0

2 are given in Ref. 8 for the time
interval 40� tc0 /��120. For 80� tc0 /��120, the tran-
sients associated with the initialization of the computation
have vanished, and the computed nondimensional pressure is
very nearly sinusoidal. The amplitude of this sinusoidal pres-
sure can be compared with that predicted by our Eq. �60�.

For the numerical values given in Eq. �61�, the dimen-
sional viscous parameter 4�t /�0

2=4�t /�2 which appears in
Eqs. �6� and �47�, satisfies the inequality

4�t

�2 =
8�

Re

tc0

�

a

�
M0 � 3 � 10−3. �62�

The term 4�t /�0
2 is thus negligible in Eqs. �6� and �47�, and

viscous effects are unimportant in Eq. �60�. Therefore,

�* � �0 = � �63�

and

�* �
�

4��2�1 −
a2

2�2	 . �64�

The numerical value of the nondimensional pressure am-
plitude given by Eq. �60� is compared to the computational
result of Ref. 8 in Table I. Table I also shows the Kirchhoff-
Powell result, obtained by using the Kirchhoff point vortex
theory in the source S defined by Eq. �52�, which is equiva-
lent to Eq. �60� with �=a=0. Möhring’s equation for aeroa-
coustic sound, discussed in detail in Ref. 8, gives a result
which is essentially the same as Kirchhoff-Powell value. It is
seen from Table I that our result is substantially more accu-
rate than previous theoretical aeroacoustic predictions.

V. CONCLUSION

Our result for the corotating Gaussian vortex pair shows
that our vorticity expansion can be used in conjunction with
the Lighthill equation to provide an analytic prediction of

TABLE I. Comparison of results for the amplitude of the nondimensional
acoustic pressure produced by a corotating Gaussian vortex pair �k0r=22.6,
80� tc0 /��120�.

Nondimensional
pressure amplitude % error

Full numerical simulation �Ref. 8� 0.0014 ¯

Kirchhoff-Powell �Ref. 7� 0.0023 64
Present work 0.0017 21
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vortex generated sound that is substantially more accurate
than previous theoretical results. Viscosity is unimportant for
the case that we have considered, so our improvement over
previous theory must be attributed to the fact that our expan-
sion �7� makes direct use of the vorticity equation �2� to
derive the dynamics of the Gaussian vortices with finite core
size. While we obviously do not capture all the fluid phe-
nomena included in the numerical computation of Ref. 8, the
result of our example suggests that our expansion is a gen-
erally useful tool for the prediction of sound generated by a
distributed vorticity field.
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APPENDIX A: PROOF THAT THE DIPOLE
COEFFICIENT Dj IS CONSTANT IN TIME

According to Eq. �18�, the time derivative of the dipole
coefficient Dj�t� is

Ḋj = − �ij� � d2rui� . �A1�

To evaluate this integral, we introduce the stream function �,
which is related to the velocity vector ui and the vorticity �
by

ui = �ik
��

�xk
, � = −

�2�

�xm�xm
. �A2�

Thus,

Ḋj = � jk� � d2r
��

�xk

�2�

�xm�xm
= − � jk� � d2r

�2�

�xk�xm

��

�xm

= − � jk� � d2r
�

�xk
�1

2

��

�xm

��

�xm
	 = 0. �A3�

The integration by parts and the final equality in Eq. �A3� are
valid because the velocity ui=�� /�xi decays at least as fast
as 1 /r as r→�.

APPENDIX B: PROOF THAT THE QUADRUPOLE
TRACE Qkk is constant in time

The time derivative of the quadrupole trace Qkk is given
by Eq. �20� as

Q̇kk = −� � d2r� r2

2
−

�2

2
	 �

�xi
�ui�� =� � d2rxiui� .

�B1�

We again introduce the stream function �, and write

� = �̂ + �̃ , �B2�

where �̂ is the stream function associated with the monopole

term in the series �7� and �̃ is the stream function associated
with all the remaining terms. We have

�̂ = C1 ln r , �B3�

and

�̃ → C2
f���

r
as r → � , �B4�

which is important for the integrations by parts that follow.
Equation �B1� becomes

Q̇kk = − �ij� � d2rxi
��̂

�xj

�2�̂

�xm�xm

− �ij� � d2rxi
��̂

�xj

�4�̃

�xm�xm

− �ij� � d2rxi
��̃

�xj

�2�̂

�xm�xm

− �ij� � d2rxi
��̃

�xj

�2�̃

�xm�xm
. �B5�

Since �̂ is a function of r only, the first two integrands on the
right-hand side of Eq. �B5� depend on the symmetric tensor
xixj; the integrals are thus symmetric in i and j, and the
contraction with the antisymmetric tensor �ij implies that the
first two integrals on the right-hand side of Eq. �B5� vanish.

The third integral on the right-hand side of Eq. �B5� is

− �ij� � d2rxi
��̃

�xj

�2�̂

�xm�xm

= �ij� � d2r
��̃

�xj
xi�

� = − �ij� � d2r�̃
�

�xj
�xi�

��

= − �ij� � d2r�̃��ij�
� + xixj

���

r
	 , �B6�

which is again zero due to the contraction of an antisymmet-
ric tensor with two symmetric tensors.

The fourth integral on the right-hand side of Eq. �B5� is

− �ij� � d2rxi
��̃

�xj

�2�̃

�xm�xm

= �ij� � d2r�̃
�

�xj
�xi

�2�̃

�xm�xm
	

= �ij� � d2r�̃��ij
�2�̃

�xm�xm
+ xi

�3�̃

�xj�xm�xm
	

= �ij� � d2r�̃xi
�3�̃

�xj�xm�xm

= �ij� � d2r
�2

�xm�xm
��̃xi�

��̃

�xj
= �ij� � d2r�2

��̃

�xm
�im

+
�2�̃

�xm�xm
xi	 ��̃

�xj
= 2�mj� � d2r

��̃

�xm

��̃

�xj
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+ �ij� � d2rxi
�2�̃

�xm�xm

��̃

�xj
= �ij� � d2rxi

�2�̃

�xm�xm

��̃

�xj
.

�B7�

The final line of Eq. �B7� states that the fourth integral on the
right-hand side of Eq. �B5� is equal to the negative of itself,
and is therefore zero. We have now shown that each of the
four terms on the right-hand side of Eq. �B5� vanishes, and
that Qkk is constant in time.
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