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PLANT ASSEMBLAGE COMPOSITION EXPLAINS AND PREDICTS HOW
BIODIVERSITY AFFECTS SALT MARSH FUNCTIONING

GARY SULLIVAN,1 JOHN C. CALLAWAY,2 AND JOY B. ZEDLER
3,4

1The Wetlands Initiative, 53 West Jackson Boulevard, Chicago, Illinois 60604 USA
2Department of Environmental Science, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117 USA

3Botany Department and Arboretum, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 USA

Abstract. Knowing that diverse plantings enhanced biomass and nitrogen (N) accumu-
lation in a restored California salt marsh, we asked if the ‘‘biodiversity effect’’ was due to
species selection or complementarity. In a two-year greenhouse experiment, we found positive
biodiversity effects on total, root, and shoot biomass, total and root N crop, and on biomass
and N allocation; negative effects on root and shoot N concentration; and no effect on shoot
N crop. Overyielding among trios and sextets was supported by significant deviations in
observed yield from that expected relative to solo yields (DT). However, both trios and sextets
strongly underyielded relative to the highest yielding solo in the assemblage (Dmax) in all
attributes, and to the dominant species in the assemblage (Ddom) in most attributes. When we
decomposed biodiversity effects on shoot characteristics, selection effects primarily drove
over- and underyielding. The only complementarity effect was underyielding of sextet shoot
biomass. These analyses were possible because we replicated assemblages and evaluated 11
response variables. One species (Salicornia virginica) dominated functioning when present;
when absent, another dominated (e.g., Frankenia salina). Effects varied with the response
tested, however. For both shoot biomass and N crop, S. virginica was the dominant
overyielding species (based on Dij and comparisons of trios 6 target species). For shoot N
concentration, however, the dominant was Triglochin concinna, a species that had low biomass
but was capable of reducing assemblage performance, presumably by concentrating N.

Evidence for strong species selection effects led us to predict that three species would
eventually dominate our parallel field experiment that tested the same assemblages. Exactly
that happened in nine years, but (we predict) without losing function, because the site retained
the three highest-performing species. Biodiversity loss was nonrandom in the field, and
because trios with two top performers sustained critical functions in the greenhouse, we
predict that many functions will not decline, even if the salt marsh becomes dominated by a
single species, e.g., S. virginica. Unmeasured functions (e.g., resilience) might not persist,
however. Knowing how assemblages perform made biodiversity–ecosystem function theory
both explanatory and predictive.

Key words: assemblages; BEF theory; biodiversity; biomass; complementarity; function; nitrogen;
root : shoot ratios; Salicornia virginica; salt marsh; selection effects.

INTRODUCTION

A wealth of research relating biodiversity to ecosys-

tem functioning recognizes a pattern that Darwin (1859)

observed: productivity seems higher where more species

co-occur. The need to understand such a relationship is

central to the argument that diversity must be conserved

for its functional value (reviewed by Srivastava and

Vellend 2005). A related concept is that the functions

provided by diversity should aid the persistence of

species-rich vegetation.

Experimentalists have shown that increased richness

of plant species is correlated with increased productivity

(Naeem et al. 1994, 1995, 1996, Hector et al. 1999,

Tilman et al. 2001, Fridley 2002, Callaway et al. 2003),

nutrient retention (Ewel et al. 1991), stability, resiliency,

and reliability (Chapin et al. 1992, Tilman and Downing

1994, Naeem and Li 1997, Yachi and Loreau 1999,

Cottingham et al. 2001, Loreau et al. 2002, Tilman et al.

2006), canopy complexity (Keer and Zedler 2002),

invasion resistance (Tilman 1997, Knops et al. 1999,

Naeem et al. 2000, Symstad 2000, Hector et al. 2001,

Kennedy et al. 2002, Lindig-Cisneros and Zedler 2002,

Fargione and Tilman 2005), and decreased foliar

pathogen loads (Mitchell et al. 2002). There now is

considerable consensus that biodiversity affects ecosys-

tem functioning in a range of ecosystems and environ-

mental conditions (Balvanera et al. 2006, Cardinale et al.

2006, Naeem 2006), although earlier studies indicated

that the relationship is weak or lacking (Wardle et al.

1997, Hector et al. 2000, Schwartz et al. 2000, Wardle

2001), or that the ability to detect richness effects

depends on additional variables, such as the diversity of

functional groups present (Aarssen 1997, Hooper and
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Vitousek 1997, Huston 1997, Tilman et al. 1997), the

response variable measured (Dukes 2002, Keer and

Zedler 2002), the concentration of atmospheric CO2

(Reich et al. 2001), soil fertility (Fridley 2002), the level

of phenological complementarity among member species

(Hooper and Vitousek 1997, Stevens and Carson 2001),

the interaction strengths of species included in the

experiment (Kokkoris et al. 2002), trophic levels

considered (Duffy et al. 2001, O’Connor and Crowe

2005, Cardinale et al. 2006), and the duration of

community development (Tilman et al. 2001).

Despite many tests of biodiversity–ecosystem function

(BEF) theory, Hooper et al. (2005) concluded that BEF

theory is not yet predictive, although it is explanatory,

and Srivastava and Vellend (2005) found little relevance

of BEF findings to conservation except in the restoration

arena. Three uncertainties related to conservation are (1)

which mechanisms underlie diversity–function relation-

ships (Diaz and Cabido 2001, Fridley 2001, Fukami et

al. 2001, Loreau et al. 2001, Cameron 2002, Cardinale et

al. 2002, Naeem 2002a, b, Hooper et al. 2005), (2) how

individual species or the individual characteristics of

species or functional groups affect function within and

across ecosystems (Schwartz et al. 2000, Leps et al. 2001,

Mittelbach et al. 2001, Walker and Langridge 2002), and

(3) how diversity contributes to ecosystem resilience and

sustainability (Wardle et al. 1997, Dukes 2001, 2002,

Fukami et al. 2001, Wardle 2001, Pfisterer and Schmid

2002, Srivastava and Vellend 2005, Tilman et al. 2006).

The southern Californian salt marsh plain is an ideal

natural system for exploring diversity effects and their

relevance to conservation, because the small species pool

aids the detection of effects (Vitousek and Hooper

1993), because eight halophytes naturally co-occur in

assemblages of one to six species per 0.1 m2 and 0.25 m2

(Zedler 1977, Zedler et al. 1999, Morzaria-Luna et al.

2004), and because the eight species have life history and

morphological attributes that suggest the potential for

complementarity effects (Sullivan and Zedler 1999). Our

field experiment tested BEF theory using 2 3 2 m plots

planted with one species (solos), three species (trios), or

six species (sextets). Established in April 1997 and

subsampled in January 2000, the field experiment

produced a ‘‘diversity effect’’ of greater biomass and N

crop for sextets than solos (Callaway et al. 2003).

Here, we used a greenhouse experiment to explore

mechanisms underlying that diversity effect, employing

the same 8 solos, 16 trios, and 16 sextets (each replicated

eightfold). We employed three overyielding analyses to

determine if multispecies assemblages performed better

or worse than expected in the absence of diversity

effects. We calculated three deviation indices (DT, Dmax,

and Ddom) to determine what processes might be

responsible for an over- or underyielding response

(Hector 1998, Loreau 1998, Loreau and Hector 2001,

Hector et al. 2002). In addition, we decomposed the

overall net biodiversity effect (NBE) on shoot charac-

teristics into selection and complementarity effects

(Loreau and Hector 2001). Selection effects (SE) occur

when an assemblage is dominated by one or more

species whose yields are either higher (positive SE) or

lower (negative SE) than the average monotypic yield

and is measured as the covariance between the

monotypic yield of species and their change in relative

yield when grown in mixture (Loreau and Hector 2001,

Spehn et al. 2005). Complementarity effects (CE)

primarily result from positive or negative species

interactions (e.g., resource partitioning, facilitating, or

interference) leading to species yields exceeding that

expected from their monotypes. SE may be caused by

sampling effects due to the increased probability of

having a dominant species in richer assemblages, but

they may also result from the increased probability of

having a complementary or facilitative pair or group of

species (Loreau and Hector 2001, Hooper and Dukes

2004). Because CE and SE are additive, positive or

negative species interactions may contribute to each

effect (Loreau and Hector 2001, Petchey 2003).

We also determined how each species affected

function, and we predicted the ability of diverse

assemblages to persist in the field, thus exploring both

the explanatory and predictive capabilities of BEF

theory, as called for by Hooper et al. (2005). To

establish predictions from BEF theory, we reasoned

that strong selection effects of a positive nature (e.g.,

overyielding due to the presence of a particular species)

would, over time, lead to dominance by the overyielding

species. Conversely, we reasoned that strong, positive

interspecific interactions (complementarity or facilita-

tion) would promote the persistence of diverse assem-

blages over the long term.

In this experiment, we hypothesized that (1) each

species grown solo would perform uniquely across the

range of characteristics considered, as in the field

experiment (Callaway et al. 2003); (2) sextets would

outperform solos, with trios intermediate, similar to

results in the field; (3) strong performers (in solo) would

greatly influence assemblage yield; (4) both selection and

complementarity effects would be detected where

measurable; and (5) the strength and magnitude of all

effects would vary with the attribute assessed. Last, we

used the greenhouse results to interpret outcomes in the

field experiment after nine years and to extend

predictions into the future.

METHODS

The greenhouse experiment (see Plate 1) tested the

same eight halophytes (Table 1) and the same randomly

drawn assemblages (Table 2) as in the field experiment

but added eightfold replication of each assemblage. We

did not consider functional group richness or identity,

because these eight species do not segregate into groups

(Sullivan and Zedler 1999). We tested in detail the effects

of the three most abundant marsh-plain species: the

regional dominant Salicornia virginica (Zedler et al.

2001), the second and third most abundant species at

GARY SULLIVAN ET AL.570 Ecological Monographs
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Tijuana River National Estuarine Research Reserve,

California, USA (hereafter Tijuana Estuary), Jaumea

carnosa and Frankenia salina (Zedler and West, in press),

plus Triglochin concinna, which negatively influenced

other species in previous experiments (Sullivan and

Zedler 1999). We assessed 11 response variables,

including above- and belowground attributes, and we

evaluated relative yields, as well as selection and

complementarity effects, expecting that the diversity

effect could differ with the variable assessed or the index

used to detect effects.

All plants were grown from seed in a greenhouse at

San Diego State University, San Diego, California,

USA, beginning in the same year as the field experiment

(1997). The experimental treatments (plantings of

different composition and richness) were maintained

for two growing seasons (1997 and 1998). We simulated

intertidal conditions and controlled water levels, salin-

ity, and nutrient inputs to reduce confounding factors

(Lamont 1995, Fridley 2002). All species became

sexually reproductive during the study, allaying con-

cerns about experimentation with immature vegetation

(Huston et al. 2000).

Experimental design

We used a randomized block design with each block

being a table in the greenhouse that held one replicate of

each treatment. Replicates were re-randomized within

blocks monthly throughout the experiment. Plants were

grown in one-, three-, and six-species assemblages (solos,

trios, and sextets) with evenness held constant at six

plants per pot; a non-planted control was used to sample

soil salinity (a destructive process). Our randomly drawn

assemblages included all eight of the most common

species found in nearby reference systems (Table 2).

Trios and sextets were selected by randomly choosing 15

of the possible 56 trios and 15 of the possible 28 sextets.

Our sextets contained 75% of the members of the eight-

species pool and thus had high overlap in composition

and low variability in performance (Cottingham et al.

2001). We added an additional trio and sextet that were

the most common in 0.25-m2 plots at Tijuana Estuary in

1974 (Zedler 1977) but missed by the random draws;

these were BmSbSv and BmFsJcSbSeSv (species codes in

Table 1). All of these assemblages occur naturally in salt

marshes within the region (Morzaria-Luna et al. 2004).

These 32 assemblages, plus the eight solos and an

unplanted control (41 treatments) were replicated

eightfold for a total of 328 microcosms.

Microcosms

Each microcosm consisted of a 23 cm diameter 3 38

cm deep plastic pot housed in a 19-L (5-gallon) bucket

without drainage. Each pot held 35 cm of low nutrient

sandy soil (13 500 cm3, 0.033 mg TKN/g soil, 70% sand,

19% silt, and 11% clay) that had been sifted over a 0.65

3 0.65 cm mesh screen. To insure that the assemblages

were grown in an environment with the same microflora

found in native marsh sediments, each microcosm was

inoculated with a homogenous slurry containing ;0.5 g

of native soil from the marsh plain of Tijuana Estuary.

Seeds of the eight species were collected from Tijuana

Estuary in December 1996; seeds were germinated in

flats and transplanted to microcosms after 8–9 weeks.

We planted seedlings in a circular array. For trios,

species’ positions were alternated to promote maximum

interspecific interaction. For sextets, position was

assigned randomly, but order was then held constant

for each replicate to standardize the initial local

competitive environment, just as it was among trios by

default.

TABLE 1. The eight common halophytes of the southern California marsh plain, with species codes
and descriptions. All but two species (Se, Sb) are long-lived perennials.

Halophyte Code Description

Batis maritima L. Bm trailing succulent forb
Frankenia salina (Molina) Johnston Fs suffrutescent subshrub
Jaumea carnosa Gray Jc trailing succulent forb
Limonium californicum Heller Lc leafy rosette forb
Salicornia bigelovii Torrey Sb upright succulent annual forb
Suaeda esteroa Ferren and Whitmore Se short-lived succulent forb
Salicornia virginica L. Sv upright succulent subshrub
Triglochin concinna Burtt Davy Tc graminoid succulent, ephemeral shoots

TABLE 2. Multispecies assemblages used in the experiment.

Trios Sextets

Bm Fs Lc Bm Fs Jc Lc Sb Sv
Bm Fs Sv Bm Fs Jc Lc Sb Tc
Bm Lc Se Bm Fs Jc Lc Se Tc
Bm Sb Sv Bm Fs Jc Sb Se Sv
Bm Sb Tc Bm Fs Jc Sb Sv Tc
Fs Jc Sb Bm Fs Jc Se Sv Tc
Fs Se Sv Bm Fs Lc Sb Se Sv
Fs Sv Tc Bm Fs Lc Se Sv Tc
Jc Lc Se Bm Jc Lc Sb Se Sv
Jc Lc Sv Bm Jc Lc Se Sv Tc
Jc Lc Tc Bm Jc Sb Se Sv Tc
Jc Sb Sv Fs Jc Lc Sb Se Tc
Jc Sb Tc Fs Jc Lc Sb Sv Tc
Jc Se Sv Fs Jc Sb Se Sv Tc
Lc Se Tc Fs Lc Sb Se Sv Tc
Se Sv Tc Jc Lc Sb Se Sv Tc

Notes: Trios were randomly chosen from the pool of 56
potential combinations; sextets were randomly chosen from the
pool of 28. Species codes are in Table 1.
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Soil salinity was increased over the first 16 weeks with

the biweekly addition of 1.0 L of seawater to the

microcosm well until it reached 34 parts per thousand

(ppt). Transpiration and evaporative losses were re-

placed with tap water to maintain the water level at 10–

12 cm above the bottom of each microcosm throughout

the experiment. Holes at the bottom of each pot allowed

water to drain or move up the soil column. To confine

shoots to their own microcosm, we attached two 25 cm

diameter galvanized wire rings to three bamboo stakes

at 10- and 25-cm heights in December 1997.

From 22 June 1997 through 26 October 1998, we

flooded each microcosm twice monthly for 24 hours

with dilute seawater (salinity 15 ppt) to mimic marsh-

plain flooding and keep soil salinities near field levels

(moderately hypersaline). Flooding covered the soil

surface to a depth of at least 3 cm, until it was drained

to 12 cm above the bottom of the bucket.

We fertilized microcosms on alternate flooding cycles

to mimic seasonal patterns of tidal nutrient inputs.

From 2 June through 2 October 1997, we fertilized

microcosms with a 500-mL solution of Peters soluble 21-

7-7 commercial fertilizer (J. R. Peters, Allentown,

Pennsylvania, USA) poured over the soil surface after

draining the flooding cycle. Concentration was initially

low at 0.2 g/L (20.60 mg NH4
þ/kg water, 20.93 mg

urea/kg water, 11.54 mg Kþ/kg water, 6.02 mg PO4
�/kg

water), then increased to 1.5 g/L after the second

addition (154.48 mg NH4
þ/kg water, 156.97 mg urea/kg

water, 86.58 mg Kþ/kg water, 45.16 mg PO4
�/kg water,

half the recommended dosage for maintaining potted

plants). Fertilization during the second year resumed 1

March 1998 and continued through 4 September 1998.

Concentration during year 2 was alternated monthly at

0.2 and 1.5 g/L.

Harvest, sample processing, and nitrogen analysis

We harvested biomass from 1 November to 4

December 1998. We separated aboveground biomass

(hereafter shoots) by species, then rinsed shoots over a

fine screen to remove surface salts. Detrital material that

sloughed off during the experiment was collected

separately. Belowground biomass (hereafter roots) in

multispecies assemblages could not be distinguished by

species and was composited within a pot, although roots

were separated into vertical strata. Before separating

roots from soil, we removed a 0.5-cm thick vertical

section of soil that was cut edge to edge from the top to

the bottom through the center of each pot. This section

was weighed and dried separately to calculate dry : wet

mass ratios and soil N concentration. The remaining soil

was sectioned into five 6-cm horizontal strata and

weighed wet (the original 35-cm column had settled to

;30 cm). Roots from each stratum were rinsed over a

USS 35 mesh screen (0.45-mm opening). Because

differences in root biomass among assemblages in the

upper three strata were not significant but were

significant in the lower two (waterlogged) strata, we

chose the proportion of roots allocated to the water-

logged soil strata as a single variable reflecting niche

space utilization.

Because species differed in dry mass (DM) due to

differences in ash content (e.g., Fs is a non-succulent

with 8% of DM in ash, while Jc and Sv are salt-

accumulating succulents at 29% and 23% ash, respec-

tively), we used ash-free dry mass (AFDM) as the

measure of biomass accumulation. Plant tissue was dried

at 658C, ground with a Wiley mill, and passed through a

40-mesh screen (420-l opening) before subsampling for

ash content and N concentration. Because ash-free dry

mass measures are extremely laborious, we determined

PLATE 1. Greenhouse experiment showing a trio in the upper right with Limonium californicum (broad leaves), Jaumea carnosa
(trailing stems with opposite leaves), and Triglochin concinna (dry grass-like leaves and fruiting stalks) and, in the lower right, the
sectioning of the root zones prior to root washing. Photo credit: G. Sullivan.
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AFDM ratios for 620 of the 2496 tissue samples

collected and used ratios of AFDM:dry mass to estimate

AFDM for remaining samples. Total Kjeldahl nitrogen

(hereafter N) concentration was measured after Kjeldahl

digestion of plant tissues and soil samples. All N

concentrations were measured with an autoanalyzer

(Lachat, Loveland, Colorado, USA) at the San Diego

State University Analytical Laboratory.

The 5-mm vertical section of soil from each micro-

cosm represented 4.0% 6 0.61% (mean 6 SE) of the

entire soil column. The section was immediately weighed

wet, then dried at 658C for 48 hours, weighed dry,

ground without separating roots to pass through a 40-

mesh screen, and stored in plastic bags for Kjeldahl

digestion. The proportion of root AFDM and N in the

vertical section was calculated from the microcosm

root : wet soil mass ratio and added to the root totals.

Response variables

In all, we analyzed 11 assemblage response variables

(Table 3). Each species shoot AFDM and N concentra-

tion, and each assemblage root AFDM and N concen-

tration was used to calculate shoot, root, and total

AFDM and N crop, and root : shoot AFDM and N

ratios. From root AFDM per 6-cm horizon, we

calculated the proportion of root AFDM in the lowest

12 cm of soil as an indication of species or assemblage

use of waterlogged soil strata. AFDM, N concentration

and crop, and root : shoot ratios indicate biomass and N

accumulation and distribution patterns.

Overyielding

We examined overyielding within and among levels of

richness by analyzing the net deviation in yield from that

expected in the absence of interspecific interactions (DT),

the deviation in yield from the best yielding solo in the

assemblage (Dmax), or from the solo yield of the

dominant species within the assemblage (Ddom) (Loreau

1998, Loreau and Hector 2001, Hector et al. 2002; Table

4). DT deviations in yield are due to the net impact of all

biodiversity effects and thus provide a measure of net or

non-transgressive over- or underyielding (Hector et al.

2002). Dmax deviations may unequivocally demonstrate

transgressive overyielding, where richness effects are due

in part to positive interspecific interactions. That is, net

assemblage performance can exceed that of the best

performing species only if species are interacting

together in a complementary or facilitative fashion.

Ddom deviations are a less stringent, but more relevant,

measure of transgressive overyielding. Because Ddom is

calculated from the solo yield of the competitive

dominant within an assemblage, it is not skewed by

the presence of species that do quite well in solo, but

rarely do well in the face of interspecific competition

(Hooper and Vitousek 1997, Spaekova and Leps 2001,

Hooper et al. 2005). It is important to note that when

Dmax or Ddom � 0, assemblages may still overyield (i.e.,

DT . 0) if the positive effects of complementary or

facilitative interactions are offset by stronger dominant

species effects.

Because assemblages were replicated across blocks,

expected values were calculated individually for each

block to account for within block variation and

maintain statistical independence of samples (Wardle

et al. 1997). The expected yield of the ith species within a

multispecies assemblage in the jth block was calculated

as YEij¼ pijMij, where Mij is the monotypic performance

of the ith species in the jth block, and pij is its

proportional representation in the multispecies assem-

blage in the jth block (Table 4). Because we could not

separate root biomass or N by species in assemblages,

we used the observed yield of all species for each

microcosm in the jth block (RYOij ¼ YO(Ri)j) for

calculations involving root or total AFDM and N.

Others have estimated root biomass for each ith species

based on the assumption that the root : shoot ratios of

TABLE 3. Comparison of trios and sextets in the number of positive (þ) and negative (�) deviations, calculated as in Table 4.

No. deviations
among 16 trios
and 16 sextets

DT Dmax Ddom DCE DSE

Trios Sextets Trios Sextets Trios Sextets Trios Sextets Trios Sextets

þ � þ � þ � þ � þ � þ � þ � þ � þ � þ �

Total AFDM 7 2 14 0 0 11 0 15
Root AFDM 9 0 16 0 0 10 0 16
Shoot AFDM 2 4 3 2 0 14 0 16 0 7 0 10 0 2 0 2 5 5 7 0
AFDM R:S ratio 5 4 3 2 0 14 0 16
Percentage deep roots� 4 2 2 1 0 15 0 16
Total N crop 6 1 7 0 0 11 0 16
Root N crop 4 1 6 0 0 12 0 16
Shoot N crop 0 4 0 4 0 15 0 16 0 4 0 4 0 0 0 2 1 6 0 4
Root N concentration 1 6 0 10 0 12 0 16
Shoot N concentration 1 8 0 13 0 14 0 16 0 11 0 16 1 2 0 2 1 12 0 15
N R:S ratio 6 0 4 0 0 13 0 16
Totals 45 32 55 32 0 141 0 175 0 22 0 30 1 4 0 6 7 23 7 19

Notes:Note that Ddom, DCE, and DSE were determined only for shoot attributes because roots in mixed pots were inseparable by
species. Calculated deviations are in Appendices F, G, and H. Abbreviations: CE, complementarity effects; SE, selection effects;
AFDM, ash-free dry mass.

� Percentage of roots in waterlogged soil strata.
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species grown in solo allow one to predict root biomass

from the shoot biomass of each species grown in mixture

(as in Hooper 1998), but we found no evidence to

support the assumption that these ratios apply in

multispecies assemblages in the face of potentially strong

species interactions.

Species performance in assemblages

We calculated the net response of each species to

interspecific interactions using the individual measures

of each shoot variable (Oij) in multispecies assemblages.

This allowed us to calculate Dij, the proportional

deviation of the ith species in the jth block grown in

mixture (Table 4). Dij allows one to determine the

direction and magnitude of each species’ response to

interspecific interactions. Dij . 0 indicates overyielding

and Dij , 0 indicates underyielding for the ith species in

the jth block due to species interactions. The mean of all

Dij within an assemblage (D) can differ from the net

assemblage deviation (DTj) in that it gives equal weight

to each species regardless of its contribution to

assemblage performance.

Selection and complementarity effects

All deviations are influenced by the potentially

conflicting impacts of positive or negative selection

effects (SE) due to the presence of one or more species

on co-occurring assemblage members (e.g., a competi-

tive dominant), and positive or negative species interac-

tions due to differential partitioning of resource space,

facilitation, and interference or suppression. Because

complementary and facilitative interactions cannot be

distinguished from each other, nor from interference or

suppression where positive and negative interactions

occur together, they are collectively referred to as

complementarity effects, or CE (Loreau and Hector

2001, Hooper and Dukes 2004).

Because SE and CE can differ in sign and relative

magnitude, it is not possible to determine the relative

contribution of each through an analysis of net or

transgressive overyielding. However, where Dij can be

calculated, the net difference between observed and

expected yields can be decomposed into the changes in

yield due to SE and CE (Loreau and Hector 2001,

Petchey 2003, Hooper and Dukes 2004). Change in

expected yield due to CE is equal to DM , where M is the

average solo yield (Table 4). Change in expected yield

due to SE is equal to N cov(DRY, M), where N is the

number of species in an assemblage and cov(DRY, M) is

the covariance between the solo yield of species and their

change in relative yield when grown in mixture. CE and

SE sum to the total change in expected yield, equal to

TABLE 4. Indices calculated to characterize and test proportional deviations in yield from those expected relative to the
proportional contribution of different references.

Index Formula Components Deviation Based on

DT (R YOij � R YEij)/
R YEij

YOij ¼ observed yield;
YEij ¼ pijMij ¼ expected yield;
pij ¼ proportional representation;
Mij ¼ monotypic or solo yield

net deviation of assemblage yield
relative to the proportional yield of
each member species grown solo;
differences are due to the additive
effects of selection and ‘‘complemen-
tarity’’ (i.e., complementarity, facili-
tation, interference, and/or suppres-
sion); a measure of the ‘‘net
biodiversity effect’’ or ‘‘non-trans-
gressive overyielding’’

whole plants

Dmax (R YOij � max Mij)/
max Mij

max Mij ¼ best assemblage solo deviation of assemblage yield relative
to best solo yield of a member
species; a measure of ‘‘transgressive
overyielding’’

whole plants

Ddom (R YOij � dom Mij)/
dom Mij

dom Mij ¼ solo of assemblage
dominant

deviation of assemblage yield relative
to the solo yield of the dominant
assemblage species; another measure
of transgressive overyielding

shoots only

Di (YOij � YEij)/YEij deviation of individual species yield
relative to its yield in solo

shoots only

DCE DM=R YEij
�D ¼ mean Dij; �M ¼ mean Mij deviation in yield due to complemen-

tarity effects, also known as comple-
mentarity, facilitation, inhibition,
and suppression effects; an additive
component of DT

shoots only

DSE Ncov(DRY, M)/
RYEij

deviation in yield due to selection
effects (the covariance between
species solo yields and their change
in relative yield grown in mixtures);
an additive component of DT

shoots only

Notes: Subscripts i and j refer to the observed contribution of the ith species in the jth block. Where yield of an assemblage
required evaluation of each species’ contribution, only shoot attributes could be compared, as roots were not separable in mixed
pots. Note that DCE and DSE can only be algebraically derived from complementarity and selection effects given equal evenness at
planting (from Loreau and Hector 2001).
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DTRYEij. Because this relationship is additive under

circumstances where evenness is the same for each

assemblage species, SE can be calculated as the

difference between DTRYEij and DM . Deviations from

expected yield due to CE (DCE) and SE (DSE) can then

be calculated algebraically.

Data analysis

We performed ANOVA on (1) all assemblages; and

(2) all assemblages without Sv, using a randomized

block design with assemblage as the experimental factor,

and microcosm as the experimental unit. Because we

replicated assemblages with different numbers of spe-

cies, we could test hypotheses related to species number

and composition. For comparisons among assemblages

with different numbers of species, we performed specific

a priori contrasts, with Dunn-Sidak adjustments to

alpha (Underwood 1997). We carefully considered using

a crossed and nested randomized block analysis with

diversity, block 3 diversity, and assemblage nested

within diversity as additional factors. However, this

approach has little power to detect real differences

among the three levels of diversity, and our primary

purpose was to examine the effects of species and

assemblages. In balancing the probability of committing

Type II errors against an inability to make broad

inferences about diversity per se, we chose not to nest

assemblages within levels of diversity and to limit our

generalizations to this system.

We tested hypotheses regarding the presence or

absence of particular species in an analysis of trios.

Sextets were not assessed because six of eight species

occurred in each assemblage, making isolation of the

effects of any one species difficult. We performed a

posteriori contrasts (df ¼ 1) among assemblages with

and without a subset of the eight species to examine the

effects of those individual species on assemblage

performance. To reduce the probability of Type I errors,

we limited the number of species examined to a subset of

the three dominants found in Tijuana Estuary, plus one

other found to limit species in a previous experiment

(Sullivan and Zedler 1999). This approach was validated

with a stepwise deletion procedure in a GLM analysis of

total AFDM and total N crop to rank species according

to their effect on the coefficient of determination (R2).

That analysis revealed that Sv, Jc, Fs, and Tc had the

greatest effect on AFDM and N. We then performed

separate a posteriori multiple contrasts among trios with

and without each of those four ‘‘target’’ species to

examine their effects on assemblage performance. The

effect of each species was evaluated by calculating the

Scheffé test statistic (S) and comparing it against the

critical value of the Scheffé adjusted F statistic (Sa) to

account for increased family-wise error (Winer 1971).

The performance of assemblages with a particular

species could be due to the performance of that species

or to its positive or negative impacts on other species. To

assess the impact of particular species on assemblage

performance, we examined the contribution of the four

species identified previously in each of the assemblages
in which they occurred. We regressed whole microcosm

shoot AFDM or N crop on the shoot AFDM or N crop
of each target species. Although this relationship is

autocorrelated, it serves to illustrate the impact of each
target species on the entire assemblage.

To determine whether any measure of overyielding
(proportional deviations of observed yield from expect-
ed) was significantly greater than, less than, or equal to

zero, 95% confidence intervals were calculated on each
assemblage. Confidence intervals were also calculated on

the assemblage means of trios and sextets to determine if
they differed significantly from zero. These analyses

allowed us to remove the effects of species composition
while comparing the relative yield of assemblages with

different numbers of species. This also allowed us to
examine differences among assemblages across response

variables differing in scale.
Dependent variables that did not meet the assump-

tions of parametric statistics were transformed: propor-
tions were arcsine square-root transformed to improve

normality, AFDM and tissue N crop were log-trans-
formed where variance was proportional to the mean or

to improve homoscedasticity. Alpha was set at 0.05
except where noted previously.

RESULTS

Attributes of species grown solo

Several results supported our first hypothesis that

each species grown solo would perform uniquely across
the range of response variables considered, with no two

species sharing the same performance characteristic
profile (Figs. 1 and 2). Three species, Fs, Jc, and Sv,

outperformed all others in total AFDM and total N
crop (Figs. 1 and 2), with Jc maximal in shoot AFDM

and shoot N crop and Fs maximal in root AFDM and
root N crop. Although tied with Fs and Jc for total

AFDM and total N crop, the regional dominant species
Sv did not rank first in any other attribute. Tc ranked or

tied for first in root and shoot N concentration, AFDM
root : shoot ratio, N root : shoot ratio, and the percent-
age of roots in waterlogged soil. Bm and Lc were also

tied for first in total N crop, while the annual Sb ranked
or tied for first in root and shoot N concentration.

Species differed strongly from one another in how
they allocated AFDM and N between roots and shoots.

AFDM and N root : shoot ratios were similar, ranging
from ;2.0 (Tc) to ;0.25 (Jc, Sb, and Se). There also

were differences in how species allocated AFDM to the
waterlogged soil strata, with Bm, Fs, Jc, and Tc

investing more than twice as much of their roots below
18 cm (.12%) than Lc, Sb, Sv, and Se (,6%). There was

less variation among species in root and shoot N
concentrations. The perennial graminoid Tc was tied

with the annual Sb and the short-lived Se for root N
concentration, and was tied with Sb for the highest

shoot N concentration; Tc and Sb were the only two
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FIG. 1. Individual assemblage means (left panel) and contrast means among assemblages with different numbers of species
(right panel) for AFDM variables. Assemblage means are shown for eight species in solo (clear bars), 16 randomly drawn trios
(gray bars), and 16 randomly drawn sextets (black bars). Species codes are in Table 1. Significant differences among solo means
(based on Tukey multiple comparisons) and among contrast means (based on post hoc multiple comparisons with Dunn-Sidak
adjusted alpha¼ 0.01695) are indicated by different letters. Error bars represent 6 SE.
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FIG. 2. Individual assemblage means (left panel) and contrast means among assemblages with different numbers of species
(right panel) for N crop and N concentration variables. Assemblage means are shown for eight species in solo (clear bars), 16
randomly drawn trios (gray bars), and 16 randomly drawn sextets (black bars). Species codes are in Table 1. Significant differences
among solo means (based on Tukey multiple comparisons) and among contrast means (based on post hoc multiple comparisons
with Dunn-Sidak adjusted alpha¼ 0.01695) are indicated by different letters. Error bars represent 6 SE.
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species with mature seed at harvest. The three most

productive species (Fs, Jc, and Sv) tied with Se for the

lowest shoot N concentration.

Responses to increasing species richness

As expected based on our earlier field experiment,

sextets generally outperformed solos, with trios inter-

mediate (hypothesis 2). Biodiversity effects were clear

for 10 of the 11 response variables, with eight variables

increasing with richness (Figs. 1 and 2; Appendix A).

Total AFDM and total N crop responded similarly,

with trios significantly greater than solos, despite root

and shoot N concentrations decreasing with richness.

The proportion of AFDM and N crop belowground

increased from solos to sextets, as did the percentage of

roots in waterlogged soil. Three of the 11 response

variables contradicted our hypothesis that sextets would

outperform solos; shoot N crop did not differ with

richness, while root and shoot N concentrations

decreased with richness.

We also examined richness effects in assemblages

without the regional dominant Sv, and found a similar

pattern of response (Appendix B). Total and root

AFDM, AFDM root : shoot ratio, percentage of roots

in waterlogged soil, root N concentrations, and N

root : shoot ratio increased with higher levels of richness,

i.e., sextets . trios . solos. Total N crop increased from

solos to multispecies assemblages, sextets . solos for

shoot N concentration and trios . solos for root N

concentration.

Variations within replicates of an assemblage

Replicates often varied greatly within an assemblage,

such that some effects might not have been detected

during statistical testing. Standard deviations for three

attributes (shoot AFDM, shoot N crop, and shoot N

concentration; Appendices C–E) were often 10–20% of

their respective means, and standard deviations for

biodiversity effects (NBE, CE, and SE) often exceeded

the index mean. Deviations also varied in sign. Even

though we later explain enhanced biomass or N

accumulation as due to SE or CE, a significant finding

is that replicates of trios and sextets were quite variable,

making it difficult to characterize biodiversity effects

even within a specific assemblage.

Transgressive and non-transgressive overyielding

Patterns of non-transgressive overyielding due to the

net of all biodiversity effects (NBE) varied across the 11

response variables and between trios and sextets (DT:

Tables 3 and 5, Appendix F). While most DT deviations

in total AFDM were positive due to the strongly positive

deviations in root AFDM, the response among shoots

was more idiosyncratic with relatively few positive or

negative deviations. There were fewer positive DT

deviations for all measures of N crop, primarily due to

the many negative deviations in root and shoot N

concentrations (Tables 3 and 5; Appendix F). However,

there was only one negative deviation in root N crop,

with positive deviations associated with strong positive

deviations in root AFDM. There were eight negative

and no positive deviations in shoot N crop. For total N

crop, there were 13 positive and one negative devia-

tion, the exception being an assemblage with negative

deviations in both root and shoot N concentration

coupled with no deviation in total AFDM. The

positive deviations in N root : shoot ratio were gener-

ally associated with positive deviations in AFDM

root : shoot ratio.

Mean DT deviations for trios and sextets in total and

root AFDM, total N crop, and N root : shoot ratio were

all positive, and positive for sextets in root N crop. No

deviation was observed among trios or sextets in shoot

AFDM, AFDM root : shoot ratio, or percentage of

TABLE 5. Mean DT, Dmax, Ddom, DCE, and DSE deviations for
trios and sextets.

Parameters Trios Sextets F P

DT

Total AFDM 0.095 0.168 27.999 ,0.001
Root AFDM 0.250 0.395 25.474 ,0.001
Shoot AFDM 0.014 0.038 1.532 0.217
AFDM R:S ratio 0.065 0.106 1.145 0.286
Deep roots (%)� 0.077 0.025 2.007 0.158
Total N crop 0.062 0.080 2.277 0.133
Root N crop 0.124 0.144 0.658 0.418
Shoot N crop �0.043 �0.076 3.351 0.069
Root N concentration �0.009 �0.066 17.133 ,0.001
Shoot N concentration �0.095 �0.165 33.160 ,0.001
N R:S ratio 0.173 0.215 0.917 0.340

Dmax

Total AFDM �0.161 �0.184 4.329 0.039
Root AFDM �0.202 �0.274 16.416 ,0.001
Shoot AFDM �0.284 �0.378 50.655 ,0.001
AFDM R:S ratio �0.402 �0.537 47.370 ,0.001
Deep roots (%)� �0.371 �0.393 1.005 0.317
Total N crop �0.115 �0.152 13.020 ,0.001
Root N crop �0.250 �0.316 12.077 ,0.001
Shoot N crop �0.267 �0.389 80.065 ,0.001
Root N concentration �0.169 �0.274 75.185 ,0.001
Shoot N concentration �0.244 �0.401 146.60 ,0.001
N R:S ratio �0.347 �0.490 37.921 ,0.001

Ddom

Shoot AFDM �0.162 �0.170 0.141 0.708
Shoot N crop �0.057 �0.092 1.270 0.161
Shoot N concentration �0.199 �0.299 45.342 ,0.001

DCE

Shoot AFDM �0.019 �0.031 0.553 0.458
Shoot N crop 0.007 �0.045 2.534 0.113
Shoot N concentration �0.001 �0.028 4.422 0.037

DSE

Shoot AFDM 0.033 0.069 7.174 0.008
Shoot N crop �0.049 �0.031 0.119 0.731
Shoot N concentration �0.096 �0.137 19.853 ,0.001

Notes: Values in bold differ significantly from zero; values .
0 are italic. Determinations are based on 95% CI (n¼ 16). Also
reported are F and P values of the contrasts (df ¼ 1) between
trios and sextets from a randomized block ANOVA (n ¼ 256,
error df¼ 217). Because roots could not be assessed by species,
Ddom, DCE, and DSE deviations are only reported on shoot
characteristics.

� Percentage of roots in waterlogged soil strata.
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roots in waterlogged soil, or for trios in root and shoot

N crop and root N concentrations. Mean deviations

were negative for root N concentrations among sextets,

and for shoot N concentration among trios and sextets.

Mean deviations in root and total AFDM were

significantly greater for sextets than trios. Conversely,

mean deviations in root and shoot N concentration were

significantly less for sextets than trios.

We found no evidence of transgressive overyielding

relative to the highest yielding solo of an assemblage

species (Dmax), with the majority of trios and all but one

sextet transgressively underyielding on all variables

(Table 3, Appendix G). On average, trios and sextets

both transgressively underyielded, with deviations

among sextets more negative than trios in 10 of the 11

attributes assessed (Table 5). The only differences

between trio and sextet deviations that were not

significant were in the percentage of roots in water-

logged soil.

Nor were there any positive deviations in our analysis

of transgressive overyielding relative to the solo yield of

the assemblage dominant (Ddom, shoot characteristics

only; Table 3, Appendix G). However in sharp contrast

to the results of the Dmax deviation analysis, shoot

AFDM and shoot N crop did not consistently under-

yield. Only eight assemblages transgressively under-

yielded in shoot N crop, and each of these was

associated with transgressive underyielding in both

shoot AFDM and shoot N concentration. The trio

and sextet Ddom deviation means for shoot AFDM and

shoot N concentration were both negative, while only

the mean sextet deviation in shoot N crop was negative

(Table 5).

Overyielding of species within assemblages

Some species were consistent within AFDM, N crop,

and shoot N concentration (overyielding, underyielding,

or not significant), although the response may not have

been the same across these variables (Dij; Di reported in

Appendices H–J). The response of other species was

more idiosyncratic and appeared to be related to its

biotic environment, i.e., the other species with which it

did or did not co-occur. With one exception among the

32 assemblages and three response variables, we found

only one overyielding species per treatment. In one

sextet, Fs and Tc both overyielded in shoot N crop.

The regional dominant Sv strongly overyielded in

shoot AFDM and shoot N crop, dominating the

assemblages in which it occurred (Appendices H and

I). In assemblages without Sv, the overyielding domi-

nant was Fs, Jc, Lc, or Tc. Sv did not dominate in shoot

N concentration, which was primarily dominated by Tc,

or by Lc or Bm in assemblages in which Tc did not occur

(Appendix J). The two short-lived species (Sb and Se)

and the dominant solo in shoot AFDM (Jc) under-

yielded in nearly all assemblages. Fs and Tc either

overyielded or yielded as expected in nearly all

assemblages. Bm underyielded in shoot AFDM and

shoot N crop, but along with Sv, yielded as expected in

shoot N concentration.

Selection and complementarity effects and deviations

Using the deviation of individual species yields from

expected based on their yields in solo on shoot

characteristics (Dij; Di reported in Appendices H–J),

we were able to decompose the NBE into complemen-

tarity effects (CE) and selection effects (SE; Loreau and

Hector 2001). In support of our fourth hypothesis, we

found highly variable SE and CE both within and

among assemblages (Appendices C–E). Despite this

variation, a large portion of the aboveground NBE

was clearly due to SE, or the covariation between species

performance in solo and their relative yield in trios or

sextets.

From the Dij deviations on shoot characteristics, we

were also able to calculate the deviations in NBE due to

CE and to SE (DCE and DSE: modified from Loreau and

Hector 2001). Few DCE deviations were significant, and

all but one were negative (Tables 3 and 6). Of the 14

positive DSE deviations, all but one were associated with

strongly positive DSv (Di for Sv) deviations and

nonsignificant DCE deviations (Appendices H–J). None

of these was associated with negative DT deviations.

For shoot AFDM (Table 6), there were four negative

DCE deviations, with five negative DSE and 12 positive

DSE deviations. All negative DT deviations occurred in

assemblages without Sv and were associated with

negative DCE and/or negative DSE deviations, while all

positive DT deviations occurred in assemblages with Sv

and were associated with positive DSE deviations

(Appendix H). Other species had positive Di deviations

(Fs, Jc, Lc, and Tc), all in assemblages without Sv, and

none was associated with positive DCE, DSE, or DT

deviations. Although the mean NBE was not significant

for trios or sextets (Table 5), the mean sextet CE was

negative, and the mean sextet SE was positive and

significantly greater than trios.

For shoot N crop (Table 6), there were only two

significant DCE deviations, both were negative and

among sextets. One trio had a positive DSE deviation,

and six trios and four sextets had negativeDSE deviations.

Negative DSE deviations for shoot N crop were each

associated with one of four overyielding species (Appen-

dix I). The mean NBE was negatively significant among

sextets, while the mean SE was negatively significant

among trios (Table 5). Differences among trio and sextet

NBE, CE, or SE means were not significant.

For shoot N concentration (Table 6), we found only

one positive DCE deviation among trios and two

negative DCE deviations each for trios and sextets.

Only one trio had a positive DSE deviation, while 27

assemblages had negative DSE deviations. Of these 28

assemblages with significant SE, only 12 were associ-

ated with an overyielding species (nine positive DTc and

three positive DLc; Appendix J). Due to the strongly

negative SE and relative lack of CE, mean NBE and
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mean SE were negative for both trios and sextets

(Table 5). Differences between trio and sextet NBE,

CE, and SE were all significant, with sextets more

negative than trios.

Effects of four target species on trios

Trios had lower overlap in composition and higher

variability in performance than sextets (because trios

had fewer species in common than did sextets). Further

analysis of trios lent additional support for hypothesis 3;

i.e., the characteristics of individual species strongly

influenced how assemblages performed. The function of

trios was strongly influenced by the identity of

component species when contrasting assemblages with

and without one of four target species (Fs, Jc, Sv, or Tc;

defined in Methods; Figs. 3 and 4, Table 7). The effect of

target species was generally related to their performance

in solo; e.g., Fs, Jc, and Sv tended to increase AFDM,

while Tc increased N concentrations.

Assemblages with Fs had greater root and total

AFDM, AFDM root : shoot ratios, percentage of roots

in waterlogged soil, root and total N crop, and N

root : shoot ratios. Assemblages with Jc had lower root

AFDM, AFDM root : shoot ratios, root N crop, and N

root : shoot ratios; and greater shoot and total AFDM,

and shoot N crop. Assemblages with Sv had more root,

shoot, and total AFDM; and lower percentage of roots

in waterlogged soil, root and shoot N concentrations,

and N root : shoot ratios. Assemblages with Tc had

lower shoot and total AFDM, percentage of roots in

waterlogged soil, root N crop; and greater root and

shoot N concentrations, and N root : shoot ratio.

Trios with these four species performed either better

or worse than those without. To determine if the

performance of the target species itself was responsible

for the increased or decreased yield in trios, we

correlated target species yield on assemblage yield for

shoot AFDM and shoot N crop. In trios in which Sv

occurred, it directly accounted for most of the shoot

AFDM and shoot N crop (Figs. 5 and 6). In contrast, in

trios in which Tc occurred, shoot AFDM or shoot N

crop decreased as Tc shoot AFDM or shoot N crop

increased. No impact of Fs or Jc shoot AFDM or N

crop was detected on trio shoot AFDM or shoot N crop.

DISCUSSION

Plant assemblages with more species or functional

groups typically have enhanced ecosystem functioning

relative to monotypes (Balvanera et al. 2006, Cardinale

et al. 2006, Worm et al. 2006); thus, much of the current

TABLE 6. Deviations in yield for shoot characteristics due to biodiversity effects for each trio and sextet.

Assemblage

Shoot AFDM Shoot N crop Shoot N concentration

DCE DSE DCE DSE DCE DSE

Bm Fs Lc �0.111 �0.046 �0.102 �0.069 0.017 �0.043
Bm Fs Sv �0.034 0.047 �0.003 �0.028 0.038 �0.088
Bm Lc Se �0.101 �0.017 0.021 �0.002 0.142 0.000
Bm Sb Sv 0.040 0.311 0.021 0.047 �0.065 �0.203
Bm Sb Tc 0.006 �0.073 0.110 �0.176 0.043 �0.092
Fs Jc Sb �0.076 �0.033 �0.045 �0.123 �0.044 �0.093
Fs Se Sv �0.032 0.088 �0.037 0.046 �0.044 �0.001
Fs Sv Tc �0.013 0.076 0.008 0.034 0.041 �0.170
Jc Lc Se �0.070 �0.053 �0.002 �0.043 0.062 �0.004
Jc Lc Sv 0.010 �0.022 �0.018 �0.115 �0.053 �0.093
Jc Lc Tc �0.002 0.017 0.038 �0.069 0.059 �0.186
Jc Sb Sv 0.055 0.120 0.037 �0.066 �0.146 �0.106
Jc Sb Tc �0.024 0.189 0.037 �0.019 0.044 �0.276
Jc Se Sv 0.043 �0.037 0.029 �0.105 �0.100 0.022
Lc Se Tc �0.015 �0.192 �0.041 �0.141 0.007 �0.040
Se Sv Tc 0.018 0.153 0.054 0.042 0.016 �0.162
Bm Fs Jc Lc Sb Sv 0.004 0.128 �0.015 �0.032 �0.059 �0.141
Bm Fs Jc Lc Sb Tc �0.169 �0.020 �0.111 �0.086 0.054 �0.136
Bm Fs Jc Lc Se Tc �0.126 �0.053 �0.041 �0.091 0.083 �0.080
Bm Fs Jc Sb Se Sv �0.052 0.040 �0.105 �0.063 �0.140 �0.066
Bm Fs Jc Sb Sv Tc �0.020 0.092 �0.013 �0.052 �0.070 �0.142
Bm Fs Jc Se Sv Tc �0.047 �0.044 �0.008 �0.119 0.062 �0.148
Bm Fs Lc Sb Se Sv �0.032 0.186 �0.008 0.032 �0.037 �0.125
Bm Fs Lc Se Sv Tc �0.007 0.090 �0.034 �0.018 0.009 �0.179
Bm Jc Lc Sb Se Sv �0.048 0.101 �0.024 �0.008 �0.016 �0.117
Bm Jc Lc Se Sv Tc 0.026 0.058 �0.043 �0.056 �0.025 �0.188
Bm Jc Sb Se Sv Tc �0.013 0.148 �0.026 �0.021 �0.068 �0.173
Fs Jc Lc Sb Se Tc �0.048 �0.056 0.009 �0.132 �0.009 �0.086
Fs Jc Lc Sb Sv Tc 0.004 0.069 0.011 �0.069 �0.014 �0.189
Fs Jc Sb Se Sv Tc 0.058 0.069 0.072 �0.082 �0.090 �0.122
Fs Lc Sb Se Sv Tc �0.034 0.108 0.003 �0.044 �0.021 �0.144
Jc Lc Sb Se Sv Tc 0.015 0.183 �0.029 �0.009 �0.106 �0.157

Notes:Key to abbreviations: DCE, deviation due to CE (D when species evenness is constant); DSE, deviation due to SE (modified
from Loreau and Hector [2001]). Deviations in bold differ significantly from zero; values . 0 are italic. Determinations are based
on 95% CI (n ¼ 8).
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debate is whether responses are due to selection effects

(covariance between solo yields and DRY) and/or com-

plementarity effects (e.g., resource partitioning, facilita-

tion, interference and/or suppression; Hector 1998,

Loreau 1998, Loreau and Hector 2001, Petchey 2003,

Fox 2005, Hooper et al. 2005). Our study contributes to

the debate by exploring variation among replicates (n¼
8) of each assemblage, assessing a broad range of

functions (11 response variables), quantifying comple-

mentarity effects (CE) and selection effects (SE) on

shoot response variables, evaluating influences of

individual species in detail, and comparing outcomes

of greenhouse and field experiments that tested the same

32 assemblages. Because these species exhibit unique

character sets with low trait redundancy (Sullivan and

Zedler 1999), we considered functional diversity among

species rather than among groups (Petchey and Gaston

2006).

Eight halophytes had unique functional profiles

The eight halophytes of the southern California salt

marsh plain exhibited individuality in this experiment, in

support of our first hypothesis. That is, each had a

unique profile based on 11 attributes, and no species was

maximal in all attributes (Figs. 1 and 2). Even though

the congeners, Sb and Sv, seemed redundant in an

earlier one-year experiment (Sullivan and Zedler 1999),

FIG. 3. AFDM responses for trios with and without four target species. The panels show post hoc contrasts (df¼ 1) between
trios with and without Sv, Tc, Fs, or Jc for root AFDM, shoot AFDM, total AFDM, AFDM root : shoot ratio, and the percentage
of roots utilizing waterlogged soil strata. Significance was determined with the Scheffé adjusted F statistic to reduce family-wise
error. Species codes are in Table 1; n.s., not significant.
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they differed significantly in every attribute assessed at

two years (see Results). More similar were Sv, Jc, and

Fs, which produced the most ash-free biomass (and dry

mass; data not shown), had similar root and shoot N

concentrations, and similar total N crops. But of these

three, the succulent (Jc) and non-succulent (Fs) were

more similar to one another than were the two

succulents (Jc and Sv). As cautioned earlier (Sullivan

and Zedler 1999), functional differences need to be

measured, not extrapolated from morphology.

Other attributes became important in interpreting

these species’ persistence in the field experiment. These

were life history (Sb is an annual; Se is short-lived; Tc

has ephemeral shoots but perennial roots; the rest are

FIG. 4. Responses of N crop and N concentrations for trios with and without four target species. The panels show post hoc

contrasts (df¼ 1) between trios with and with no Sv, Tc, Fs, or Jc for root N concentration (mg/g AFDM), shoot N concentration

(mg/g AFDM), root N, shoot N, total N, and N root : shoot ratio. Significance was determined with the Scheffé adjusted F statistic

to reduce family-wise error. Species codes are in Table 1; n.s., not significant.
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evergreen perennial forbs or subshrubs), potential to

recruit from seeds (Sv, Sb, and Se recruit readily; the

others do so very rarely), reproductive mode (only Sb

and Se must recruit seedlings to persist), growth form

(Sv, Fs, Se, and Sb are upright; Jc and Bm are trailing

with long runners; Lc forms a basal rosette; Tc forms

tufts; Fs is non-succulent; the rest are succulent) (Zedler

et al. 2001, Lindig-Cisneros and Zedler 2002). While

some might consider the salt marsh a single functional

group of salt-tolerant species, we disagree, just as we

would not consider a desert community with annual,

perennial, succulent, and non-succulent species to be a

single drought-tolerant functional group.

TABLE 7. Contrasts between trios with and without four target
species (Fs, Jc, Sv, or Tc) evaluated with the Scheffé test for
multiple contrasts.

Parameters S P

Fs

Total AFDM 8.97 ,0.001
Root AFDM 14.177 ,0.001
Shoot AFDM 2.129 ns
AFDM R:S ratio 9.367 ,0.001
Deep roots (%)� 5.299 ,0.05
Total N crop 5.822 ,0.01
Root N crop 11.734 ,0.001
Shoot N crop �3.312 ns
Root N concentration �4.324 ns
Shoot N concentration �2.381 ns
N R:S ratio 8.014 ,0.001

Jc

Total AFDM 5.285 ,0.05
Root AFDM �5.226 ,0.05
Shoot AFDM 8.836 ,0.001
AFDM R:S ratio 7.683 ,0.001
Deep roots (%)� �3.791 ns
Total N crop 1.071 ns
Root N crop �7.228 ,0.001
Shoot N crop 6.282 ,0.01
Root N concentration �3.453 ns
Shoot N concentration �3.821 ns
N R:S ratio �7.256 ,0.001

Sv

Total AFDM 17.275 ,0.001
Root AFDM 5.575 ,0.05
Shoot AFDM 12.918 0.001
AFDM R:S ratio �4.258 ns
Deep roots (%)� �6.241 ,0.01
Total N crop 0.281 ns
Root N crop �4.999 ns
Shoot N crop 4.207 ns
Root N concentration �18.608 ,0.001
Shoot N concentration �13.749 ,0.001
N R:S ratio �5.175 ,0.05

Tc

Total AFDM 14.737 ,0.001
Root AFDM �4.797 ns
Shoot AFDM 10.825 ,0.001
AFDM R:S ratio 3.38 ns
Deep roots (%)� 5.173 ,0.05
Total N crop �4.677 ns
Root N crop 4.07 ns
Shoot N crop �7.046 ,0.001
Root N concentration 15.557 ,0.001
Shoot N concentration 5.565 ,0.05
N R:S ratio 5.94 ,0.01

Notes: The Scheffé test statistic (S) was evaluated against the
Scheffé critical value (Sa). Sa is the square root of the product of
the factor df (assemblage) and the critical value of F at a given
alpha with 15 df (assemblage) and 105 df (error) from the
randomized block ANOVA of trios with ‘‘assemblage’’ and
‘‘block’’ as factors. S values in bold indicate significant
differences between trios with and without target species. All
variables were transformed as noted in Appendix A. For P �
0.05, F15, 105¼1.76, S¼5.138; for P � 0.01, F15, 105¼2.21, S¼5.
758; for P � 0.001, F15, 105¼ 2.82, S¼ 6.504; ns, not significant.

� Percentage of roots in waterlogged soil strata.

FIG. 6. Effect of a target species’ shoot N crop on
assemblage shoot N crop in trios where the target species was
present. Sv, Tc, Fs, and Jc are defined in Table 1.

FIG. 5. Effect of a target species’ shoot AFDM on
assemblage shoot AFDM in trios where the target species was
present. Sv, Tc, Fs, and Jc are defined in Table 1.
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Richness effects

Our eight-species salt marsh system was no exception
to the general rule that species-rich assemblages enhance

function (Hooper et al. 2005, Balvanera et al. 2006), as
eight of the 11 response variables were significantly

greater for sextets than solos. Richness effects (NBE)
were observed in all five measures of biomass plus two

measures of N accumulation (root and total N crop) and
one measure of allocation (root : shoot N crop),

supporting our second hypothesis. Nitrogen concentra-
tion among roots and shoots decreased with richness

because biomass increased more than N crop. Shoot N
crop did not respond because assemblages were allocat-

ing more N belowground with increasing richness,
indicated by greater root : shoot N ratios. This also

suggests a saturating effect without an increase in shoot
biomass, shoot N, or total N between trios and sextets.

These findings illustrated a change in function with
increasing richness, but they do not reveal the underly-
ing mechanisms responsible, nor do they allow us to

detect richness effects where assemblage performance
potentially resulted from both positive and negative

species interactions.

Overyielding

Relative to the weighted average of member species

grown solo (NBE indicated as DT), assemblages strongly
overyielded in total and root biomass and N crop, while

they generally underyielded in root and shoot N
concentrations and shoot N crop. The mean response

among trios or sextets reflected these trends, with sextets
overyielding more strongly in root and total biomass,

and underyielding more strongly in root and shoot N
concentration, a pattern reflected in the results of the

richness effects analysis. These trends were not signifi-
cant where assemblage response was more idiosyncrat-
ically related to assemblage composition (Appendix F),

and in particular, the presence or absence of particular
species, e.g., Sv in shoot biomass. Although others have

suggested that such idiosyncratic effects become more
likely as richness is reduced (Naeem et al. 1995), this

trend was observed among some characteristics at the
highest level of richness examined due to strong

sampling effects (Fridley 2001, Petchey 2003), a conclu-
sion further supported by the species effects analyses

(Figs. 3 and 4).
Our analyses of transgressive overyielding (Dmax and

Ddom) provided no evidence that overyielding due to
NBE resulted from positive species interactions, al-

though this did not preclude such interactions being
masked by sampling or SE (Loreau 1998, Hooper et al.

2005). Transgressive underyielding in sextets exceeded
that of trios in 11 of the 14 mean comparisons,

suggesting sampling effects due to the greater probabil-
ity of including a species who might dominate or
negatively influence the yield of the entire assemblage.

Dmax deviations were overwhelmingly negative because
the highest yielding solos generally exceeded the yields of

trios and sextets, while performing poorly in mixture due

to sampling or SE. Many Ddom deviations were also

negative, while others were neither negative nor positive

because the net of all species interactions resulted in

assemblage yields equaling that of the dominant solo.

It seems intuitive that the relative strength and

balance among species interactions and their effects on

assemblage performance may differ among experiments

due to the response variable measured and the biotic and

abiotic environments in which it is measured. In this

experiment, resource partitioning or other positive

species interactions were not strong enough to result

in positive Ddom or Dmax deviations, while others have

found assemblage yields often exceeding that of the

dominant solo within a given system (e.g., Hector et al.

2002). Neutral Ddom deviations in shoot N crop

occurred in 75% of trios and sextets, suggesting that

the availability of N may also have influenced species

interactions and ultimately limited the yield of solos,

trios, and sextets alike (Spaekova and Leps 2001,

Hooper and Dukes 2004), while others have found that

low fertility resulted in a strong underyielding response

(Fridley 2002).

Selection and complementarity effects (SE, CE)

A unique understanding of assemblage overyielding

patterns across response variables was possible through

the deviations in yield due to CE and SE: DCE and DSE.

This allowed us to compare the relative strength of CE

and SE within and among assemblages in three shoot

characteristics differing in scale: AFDM, N crop, and N

concentration. We found that selection was the domi-

nant effect responsible for the NBE (relating to our third

hypothesis), and negative SE more common on N

characteristics due to the strong influence of species with

lower than average yields in solo. Others have reported

differences in the relative balance between CE and SE,

with CE most often stronger than SE, and where it was

measured, the balance between them fluctuating through

time (Dukes 2001, Leps et al. 2001, Polley et al. 2003,

van Ruijven and Berendse 2003, Hooper and Dukes

2004, Caldeira et al. 2005, Roscher et al. 2005, Spehn et

al. 2005). Here, despite species characteristics thought to

promote resource niche partitioning (Hooper et al. 2005,

Spehn et al. 2005), CE were rarely significant and

contributed little to the NBE. The relative strength and

direction of either CE or SE differed with the attribute

being assessed, supporting our fourth hypothesis.

With replicated assemblages, it became apparent that

the dominance of a species yielding above or below

average in solo does not always result in a predictable

SE. Positive SE are predicted to occur when species with

higher than average solos dominate mixtures (Lambers

et al. 2004, Caldeira et al. 2005, Spehn et al. 2005).

However the presence of an overyielding species with

higher than average solo yield (a positive sampling

effect) did not result in positive SE in 43 of 56

assemblages across the three variables. The 13 positive
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SE were all associated with strongly positive DSv

deviations, although other positive DSv deviations did

not result in positive SE. Conversely, negative SE are

thought to occur when species yielding less than the

average in solo dominate mixtures, but nine of 16

assemblages dominated by species yielding less than

average in solo did not result in negative SE. Most

negative SE occurred in assemblages where the NBE was

negative and there were no CE; i.e., the negative effects

of diversity were entirely due to selection. Negative SE

also occurred in assemblages in which no species

overyielded, indicating that negative SE do not require

overyielding by a species yielding less than average in

solo.

These findings do not lend themselves to ready

interpretation, and they suggest that, even when the

contribution of individual species is available, the

mechanisms underlying diversity effects may not be

clear. For example, the regional dominant Sv strongly

overyielded in both shoot AFDM and N crop (positive

DSv deviations) in all but one of 42 assemblages,

resulting in strong underyielding among five of the

species co-occurring with Sv, one of which (Jc) yielded

significantly greater than Sv in solo. However two

species did not underyield (Fs and Tc), but either

overyielded or more commonly yielded as expected.

Although positive CE were not measured, this suggests

Fs and Tc had access to sufficient resources despite the

dominance of Sv. That both species had high AFDM

and N root : shoot ratios, and greater use of the

waterlogged soil strata (..Sv) further suggests that

they were able to avoid competition with Sv through

resource niche partitioning belowground, positive com-

plementarity that did not show up in the analysis of

shoot AFDM or N crop. This interpretation was only

possible through the investigation of species allocation

above- and belowground; simply evaluating above-

ground productivity would not have identified the

mechanisms underlying diversity effects. Detailed

knowledge of individual species’ resource allocation

and utilization of niche space, such as in this experiment,

enhanced our understanding of the mechanisms under-

lying diversity effects.

Impacts of target species on trios

Our analyses of target species provided new insights

into how individual species influence biodiversity effects.

Four species strongly influenced trio performance, but

not in the same way (Fig. 3). Highly productive species

(Sv, Fs, Jc) led to highly productive trios, but one species

(Tc) actually reduced trio biomass. Despite its low

biomass, Tc appeared to inhibit the growth of other

species through its superior ability to take up N. The

species with superior root production (Fs) produced

assemblages with exceptionally high root biomass, and

two species that sent many roots into waterlogged soil

(Fs, Tc) produced trios that performed similarly. But

one pattern was not so straightforward. A species with

high shoot biomass (Jc) increased trio shoot biomass,

but otherwise, it was almost always outcompeted by

another species in the trio. Our explanation draws on

additional observations of growth form. Jc is a trailing

succulent that never grows tall, so its leaves are usually

in the shade of its neighbors.

The roles of individual species were further supported

by analyses of individual deviations, which are unique to

our study. Dij identified a major overyielding species

(Sv), which strongly overyielded in shoot biomass and N

crop and was responsible for most of the shoot biomass

and N crop of the trios in which it occurred. Dij showed

that another productive species (Jc) strongly under-

yielded in shoot biomass and N crop, indicating its poor

competitive ability in mixture, a context-specific sam-

pling effect (Dukes 2001).

Because Dij identified a major overyielding species

(Sv), we expected the biodiversity effect to be weak in

assemblages that lacked this species. However, the

biodiversity effect not only persisted in assemblages

without that species, it was stronger. The analysis of

individual species showed why—another high performer

(Fs) became the overyielder in the absence of the top

performer.

Although our analysis of CE did not attribute NBE to

positive species interactions (niche partitioning or

facilitation), the Dij analyses indicated that two species

(Fs, Tc) were unaffected by the strongest performer (Sv).

Thus, some resource space could have been used

differently among these species (e.g., Sv sent fewer roots

into waterlogged soil than Fs and Tc). We suggest that

such CE were masked by the overwhelmingly negative

responses of other species to the dominant Sv.

Variables that affect net biodiversity effects (NBE)

Our fifth hypothesis, that the strength and magnitude

of all effects would vary with the attribute assessed, was

more limited in scope than indicated by the results of

our detailed evaluations. Not only did NBE differ with

the response variable, but also with the assemblage

tested and even among replicates within an assemblage

(Figs. 1 and 2).

Differences among response variables suggest using

caution in extrapolating NBE from a single process

(such as aboveground productivity). For example, the

assumption that shoot biomass represents total plant

productivity, food availability, habitat structure for

wildlife, or overall ecosystem functioning might not be

justifiable. To allow generalization, response variables

need to match the functions of interest (Giller et al.

2004). In our greenhouse experiment, NBE depended on

the response variable assessed; e.g., N crop increased,

but root and shoot N concentration decreased. Thus,

our interpretation of how roots improve soil or trap

nutrients would be positive if the response variable were

N crop but negative if based on root N concentration.

Similarly, in our parallel field experiment (same 32

assemblages), shoot biomass and canopy layering
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increased with richness, while canopy cover and canopy

height did not (Keer and Zedler 2002). In this case, our

evaluation of support for an endangered bird (Belding’s

Savannah Sparrow, Passerculus sandwichensis beldingi)

would be positive if extrapolated from biomass but

neutral if extrapolated from height. The height response

could be the more critical one, because male birds perch

on tall stems to defend their nesting territories. In many

southern California salt marshes, Sv monotypes provide

tall canopies and nesting habitat, suggesting that plant

diversity might not be critical to this endangered species.

Differences among assemblages helped us understand

species’ roles in ecosystem functioning. For example,

one species (Tc) readily accumulated N belowground

but yielded the lowest shoot biomass and never

dominated an assemblage. A more productive species

(Sv) had a higher N crop but lower concentrations of N

in both roots and shoots. If N were more limiting than in

our experiment, Tc might be the superior competitor. In

fact, Morzaria-Luna (2004) showed that Tc could reduce

Sv biomass when N was limiting and that Sv outgrew Tc

when she added N in her greenhouse experiment. Others

have found that outcomes can reverse, for example,

when some disturbance intervenes. Cardinale and

Palmer (2002) showed that a periodic disturbance

prevented dominance by a productive animal species;

Mulder et al. (2001) found a richness effect on moss

productivity when assemblages (1–32 species) were

exposed to drought, but not under constant conditions;

and Pfisterer and Schmid (2002) showed that drought

favored species-poor assemblages in a grassland exper-

iment (1–32 species) measuring vascular plant biomass.

Last, outcomes varied among replicates within an

assemblage. We found variation in magnitude and sign

of both effects and deviations, as well as in combinations

of positive and negative selection and interaction effects.

We know of no other results that show such wide

variations within naturally occurring assemblages of

plants that began as near equals, i.e., one young seedling

per species in sextets, two per species in trios). Such

variations could come about given slightly different

starting conditions, such as a more aggressive genotype

or a slightly larger seedling (analogous to different

sequences of introduction investigated by Fukami and

Morin 2003).

Conclusions about biodiversity effects on ecosystem

functioning under spatially heterogeneous and dynamic

natural conditions should acknowledge that outcomes

can differ with many variables. We recommend (1)

assessing multiple functions; (2) replicating assemblages

to help represent the variability that occurs in nature

and to allow the testing of significance of CE and SE at

the assemblage level; and (3) testing a high proportion of

assemblages at each species-richness level. As noted by

others, the community considered is also a key factor (as

in 171 studies reviewed by Mittelbach et al. [2001] and

103 studies reviewed by Balvanera et al. [2006]).

Similar outcomes in greenhouse and field experiments

Our test of 32 assemblages in the greenhouse matched

those in our salt marsh restoration site (Callaway et al.

2003), even though each experimental approach has

unique limitations (Duffy et al. 2001, Cameron 2002,

Walker and Langridge 2002, Balvanera et al. 2006). In

both, sextet biomass and N crop were significantly

higher than solos, with trios intermediate (Callaway et

al. 2003). The long-term outcome, however, was

assessed only in the field. After nine years (in November

2005), we documented increased dominance by two

productive species (Sv and Jc; Zedler and West, in press)

and loss of the short-lived species (Sb, Se) and the low

biomass producer with ephemeral shoots (Tc). In 2005,

average richness was 2.8 species/0.25-m2 plot, compared

to the historical maximum for Tijuana Estuary of 4.2

species/plot (Zedler and West, in press). A system that

was planted with near-equal numbers of eight species

might have sustained evenness; instead, it lost richness

over time.

While strong positive CE would have predicted the

persistence of species-rich plots in the salt marsh, the

nine-year decline in diversity is better explained by a

preponderance of SE. The two species that became

dominant in the field (Sv, 96% frequency, 49% cover; Jc,

61% frequency, 29% cover) were top performers in the

greenhouse. Sv contributed up to 75% of the total

AFDM in trios, even though it did not perform highest

in any attribute when grown solo. Sv overyielded in total

shoot biomass at the expense of its neighbors. In

addition, it was the tallest perennial (average height 22

cm in pots), and in the field it sustained the tallest,

evergreen canopy (C. L. Bonin and J. B. Zedler,

unpublished data). High productivity, tall canopy, and

longevity explain Sv’s ultimate dominance as a mono-

type (few neighbors) in the experimental salt marsh, in

another Californian salt marsh (Ibarra-Obando and

Poumian-Tapia 1991), and in the region (Zedler et al.

2001). In contrast to Sv, Jc had many associates in the

field, and in the greenhouse it mostly underyielded and

invested its shoot biomass in long, flexible runners,

rather than height (14 cm). These behaviors suggest CE,

with Jc facilitating other species, including Fs with its

short canopy (12 cm) and third highest cover (8%). The

decline in diversity in the field, however, supports the

finding that SE outnumber CE.

Our findings of strong SE in California salt marsh

vegetation support those in serpentine grasslands of

California (Hooper and Vitousek 1997), European

grasslands (Leps et al. 2001, Kahmen et al. 2006), and

aquatic ecosystems (Duffy et al. 2001, O’Connor and

Crowe 2005, Cardinale et al. 2006). In other cases,

strong CE have been indicated. For example, Caldeira et

al. (2001) found high water use in species-rich mixtures.

Multispecies assemblages can enhance overall function-

ing by utilizing resources in different places (e.g., soil

strata, canopy strata) or at different times, although
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Stevens and Carson (2001) did not find evidence for

phenological complementarity.

Predictions for biodiversity conservation

Lack of consistency in the literature led Srivastava

and Vellend (2005) to conclude that BEF research has

‘‘little practical advice for conservation managers.’’ In

contrast, the results of meta-analyses by Worm et al.

(2006), Balvanera et al. (2006), and Cardinale et al.

(2006) overwhelmingly indicated that ecosystem services

decline with biodiversity loss but that various factors

influence the effect size. In particular, the loss of the

most productive species reduces productivity, via the

sampling effect (Cardinale et al. 2006). If biodiversity–

ecosystem function theory is to assist in conservation

efforts, we need to examine changes in function with

realistic examples of species loss (Schmid and Hector

2004). In our salt marsh experiment, richness declined to

2.8 species/0.25 m2 (Zedler and West, in press), similar to

trios in this experiment. If species were lost randomly, a

shift from sextets to trios should have reduced total

biomass, reduced root biomass, reduced root N crop,

increased shoot and root N concentrations, and reduced

root : shoot N ratio. But one cannot assume a random

loss of species and assemblages (Huston et al. 2000,

Schwartz et al. 2000, Giller et al. 2004). We argue that

species loss in the field experiment was nonrandom

because the three species that were most productive in

the greenhouse became most abundant; Sv, Jc, and Fs

ranked first, second, and third in both frequency and

cover (Zedler and West, in press). The species pool had

only two short-lived species (Sb, Se), and both dropped

out of the system, further indicating that diversity loss

was nonrandom.

Did we lose function with nonrandom loss of

diversity? The data for Sv, Jc, and Fs suggest that we

did not, although none of our random trios was SvJcFs;

however, at least two of those species were present in six

trios, all of which were highly productive (above-average

total AFDM). With productive species persisting, the

field experiment did not likely experience a reduction in

productivity over its first decade. In fact, the ability of

Sv, Jc, and Fs to sustain high productivity both as solos

and in assemblages suggests a cause–effect feedback

loop, i.e., more productivity by Sv, Jc, and Fs leads to

greater dominance. Also, because SE tended to out-

number CE and most CE were negative in the

greenhouse, we expect further diversity loss in the field

over the next decade. These predictions follow from our

use of environmental conditions that were similar to

those in nature, assemblage sizes (solos, trios, sextets)

that actually occur at small spatial scales (Morzaria-

Luna et al. 2004), and the natural pool of eight species.

Balvanera et al. (2006) found that experiments with

fewer than 10 species yield weaker biodiversity effects,

and our salt marsh pool naturally falls below that

threshold. Our study revealed strong selection effects,

with three species (Sv, Jc, and Fs) being highly

productive alone and in assemblages.

Although our data do not provide strong support for

functional consequences of diversity loss, there is risk in

extrapolating to all ecosystem functions. From other

studies, we know that the three most productive species

differ in microsite use (e.g., waterlogged soil subdues Sv

but sustains Sb; A. K. Varty and J. B. Zedler,

unpublished data), seed banks (Sv and Tc form persistent

seed banks; Morzaria-Luna and Zedler 2007), and

recruitment ability (Sv, Sb, and Se readily recruited

seedlings when the restoration site had ample open

space, but others did not; Lindig-Cisneros and Zedler

2001). Thus, loss of short-lived species that readily

recruit from seed banks should diminish resilience in salt

marshes that lack these species. A key to predicting

functional loss is measuring the critical response

variables. While productivity could be sustained by a

monotype of a productive species, the community’s

capacity to recover from disturbances might well have

declined. Thus, we agree with Worm et al. (2006),

Balvanera et al. (2006), and Cardinale et al. (2006) that

managers should preserve biodiversity as a precaution-

ary measure for sustaining ecosystem functions. In the

southern California salt marsh, this means restoring

microtopographic variability to recover plant species

that require specific microsites plus collecting and

storing seed to reintroduce species that rarely recruit.
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APPENDIX A

Randomized-block ANOVA for the effects of assemblage treatment on function, with a priori contrasts (df¼1) comparing solos
with sextets, solos with trios, and trios with sextets (Ecological Archives M077-016-A1).

APPENDIX B

Randomized-block ANOVA for the effects of assemblage treatment on function among the assemblages where Sv was absent,
with a priori contrasts (df¼ 1) comparing solos with sextets, solos with trios, and trios with sextets (Ecological Archives M077-016-
A2).

APPENDIX C

Observed yield in shoot AFDM, the net biodiversity effect, the complementarity effect, and selection effect for each trio and
sextet (Ecological Archives M077-016-A3).

APPENDIX D

Observed yield in shoot N crop, the net biodiversity effect, the complementarity effect, and selection effect for each trio and
sextet (Ecological Archives M077-016-A4).

APPENDIX E

Observed yield in shoot N concentration, the net biodiversity effect, the complementarity effect, and selection effect for each trio
and sextet (Ecological Archives M077-016-A5).

APPENDIX F

The deviation of assemblage yield from that expected from the performance of its member species grown in solo (Ecological
Archives M077-016-A6).

APPENDIX G

Non-transgressive overyielding, where Dmax is the deviation in assemblage yield from that expected relative to the member
species with the best solo yield, and Ddom is the deviation from expected relative to the best performing member species’ solo yield
(Ecological Archives M077-016-A7).

APPENDIX H

Comparisons of species’ shoot AFDM in trios and sextets (Ecological Archives M077-016-A8).

APPENDIX I

Comparisons of species’ shoot N crop in trios and sextets (Ecological Archives M077-016-A9).

APPENDIX J

Comparisons of species’ shoot N concentration in trios and sextets (Ecological Archives M077-016-A10).
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