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Abstract

We study the properties of a logconcavity operator on a symmetric, unimodal
subset of finite sequences. In doing so we are able to prove that there is a large
unbounded region in this subset that is ∞-logconcave. This problem was motivated
by the conjecture of Boros and Moll in [1] that the binomial coefficients are ∞-
logconcave.

1 Introduction

In this paper we study the asymptotic behavior of the logconcavity operator on finite
sequences. Before we can state the problem we will need a few definitions.

We say that a sequence {c0, c1, ...cn} is 1-logconcave (or logconcave) if ci ≥ 0 for
0 ≤ i ≤ n and c2

i − ci+1ci−1 ≥ 0 for 1 ≤ i ≤ n − 1.
We can extend this idea of logconcave as follows: Since {ci} is a finite sequence of

length n we define ci = 0 for i < 0 and i > n + 1, then define the operator

L{ci} = {c2
i − ci−1ci+1}. (1)

If {ci} is logconcave then L{ci} is a new non-negative sequence. We now define a
sequence {ci} to be ∞-logconcave if Lk{ci} is a non-negative sequence for all k ≥ 1.

While studying a new class of integrals related to Ramanujan’s Master Theorem, Boros
and Moll proposed that a particular family of finite sequences of coefficients {dl(m)} were
∞-logconcave. Boros and Moll then point out that showing that the binomial coeffi-
cients are ∞-logconcave (project 7.9.3 in [1]) would go a long way in showing the se-
quence {dl(m)} is ∞-logconcave. Kauers and Paule in [3] show that the {dl(m)} are
1-logconcave. These conjectures motivated us to investigate the operator L on the space
of finite sequences.

∗The first author is partially supported by NSF grant DMS-0405724. Thanks to Cameron Morland
for making better figures and to the referee for a very close reading.
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Numerical experiments suggest that the binomial coefficients are ∞-logconcave. More-
over, many sequences “near” the binomial sequence also appear to be ∞-logconcave.
These numerics led us to take an alternative approach. We begin to study the properties
of L on the subset of finite sequences of the forms

{. . . , 0, 0, 1, x0, x1, . . . , xn, . . . , x1, x0, 1, 0, 0, . . .}

{. . . , 0, 0, 1, x0, x1, . . . , xn, xn, . . . , x1, x0, 1, 0, 0, . . .}
We will refer to the first sequence above as the odd case and to the second sequence

as the even case because of the repetition of the middle term in the sequence. Notice that
all the binomial coefficients belong to one of the above cases.

Our approach to the problem is the following: for a given sequence of the form above
of length 2n +3 or 2n+ 4 we analyze the dynamics of L on the subset of Euclidean space
R

n with all non-negative coordinates. This differs from the approach of Moll in [4].
Our main result in this paper is to show that there is a large unbounded region R

in this orthant that contains only ∞-logconcave sequences. Moreover R can act like a
trapping region for ∞-logconcave sequences, i.e., sequences not starting in R can land in
R after a number of iterates of L.

The paper is organized as follows: In section 2 we present some of the simple cases
along with some numerical evidence. The general arguments are presented in detail for
the even case in section 3 and the odd case is briefly covered in similar fashion in section
4.

2 Low Dimensional Cases

2.1 The one dimensional cases, {1, x, 1} and {1, x, x, 1}
For these two cases the underlying dynamics of L is rather easy to compute explicitly.
We first consider the sequence {1, x, 1}.

Theorem 2.1. L{1, x, 1} = {1, x2 − 1, 1}. Thus the positive fixed point for this sequence

is x = 1+
√

5
2

. Moreover, if x ≥ 1+
√

5
2

then our sequence is ∞-logconcave and not otherwise.

Proof. A simple calculation shows that x = 1+
√

5
2

is a fixed point of L for the sequence

{1, x, 1}. Moreover it is easy to see that if if x > 1+
√

5
2

then x grows under the iterates of

L and hence is always positive. It is also easy to see that the interval [1, 1+
√

5
2

] is mapped

over the interval [0, 1+
√

5
2

] monotonically so that any values of x ∈ [1, 1+
√

5
2

) are eventually
mapped below x = 1. Therefore our sequence is no longer unimodal and, hence, not
logconcave.

Notice that the binomial sequence {1, 2, 1} lies securely in this region thus we have
shown that {1, 2, 1} is ∞-logconcave. The sequence {1, x, x, 1} is handled in a similar
fashion.
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Theorem 2.2. L{1, x, x, 1} = {1, x2 − x, x2 − x, 1}, thus the fixed point for this sequence

is x = 2. If x ≥ 2 then our sequence is ∞-logconcave and not otherwise.

Proof. Nearly identical to the one above.

Notice that the key to the easy theorems above is finding the fixed points of L in our
underlying Euclidean space and then monotonicity leads us to the rest. Fixed “points”
will no longer remain the key in the general argument but as we will see in the 2-D cases
below we will have hypersurfaces that bound open regions of ∞-logconcavity.

2.2 The 2-D cases, {1, x, y, x, 1} and {1, x, y, y, x, 1}
The 2-D cases are more complicated than the 1-D cases but they give better insight
into how we might hope to find “regions” of ∞-logconcavity. To better see the general
techniques to finding such regions, we first focus on the even case.

If one is to investigate this question numerically one can compute the following picture.
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1 x y y x 1 Case

Figure 1: The filled region is the numerical region of ∞-logconcavity for the 2-D even
case. The X indicates the position of the binomial coefficient.

The first thing to notice is that the binomial coefficient x = 5, y = 10 is in the numerical
region of ∞-logconcavity. This picture also suggests that there is an ∞-logconcave region
bounded away from the origin, below by some line and above by some curve. This picture
is remarkably stable. The boundary points in the 1-D cases have now been replaced by
curves.

For the case {1, x, y, x, 1} the results are similar. The numerical picture looks as
follows.

Again, we notice that the binomial coefficient x = 4, y = 6 is in the numerical region
of ∞-logconcavity, which is quite encouraging. This picture also suggests that there is a
region of ∞-logconcavity bounded away from the origin. It is important to point out that
the regions in both cases are different with the odd case containing a wider region.
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Figure 2: The filled region is the numerical region of ∞-logconcavity for the 2-D odd case.
The X indicates the position of the binomial coefficient.

2.3 Note on a 3-D case

If one is to investigate the even 3-D case {1, x, y, z, z, y, x, 1}, we would arrive at the
following boundary hypersurfaces.

In this case the binomial coefficient sequence x = 7, y = 21, z = 35 is not in the region.
However its first iterate x = 28, y = 196, z = 490 is in the region of interest.

It is the observation of these hypersurfaces as boundaries of the ∞-logconcave region
that is important. As it turns out, we can construct these boundaries for arbitrarily long
finite sequences as will be shown in section 3 for the even cases and section 4 for the odd
cases. While the 1-D and 2-D cases seem to have an “exclusive” region of ∞-logconcavity,
this is not true in general as we saw in the 3-D case.

3 The General Case for Even Length

In this section we will prove the existence of an unbounded region of infinite logconcavity
for even length symmetric sequences. Before beginning in earnest, let us mention the main
steps. By looking at the leading order behavior we find hypersurfaces bounding the region
of infinite logconcavity. We proceed to show the region is nonempty and unbounded by an
explicit example, which we can control by matching all but one of the coordinates of the
example with each hypersurface in turn. Then we show that sequences within the region
are indeed ∞-logconcave by again matching with the hypersurfaces in turn and iterating.
The technical key to controlling the iteration is understanding the effect of increasing one
coordinate while decreasing all the others.
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Figure 3: The region of ∞-logconcavity for the 3-D even case. From the picture above
the region of interest is bounded on the left by the “vertical” plane (H0), below by the
“horizontal” plane (H2), and above by the curved surface (H1).

3.1 Leading order behavior

Consider the sequence of length 2n + 4:

s = {1, a0x, a1x
1+d1 , a2x

1+d1+d2 , . . . , anx1+d1+···+dn , anx1+d1+···+dn , . . . , a0x, 1}.

For the moment we are interested in the leading terms of elements of L(s) viewed as
polynomials in x. We will restrict ourselves to values of the di for which a2

i x
2(1+d1+···+di)

contributes to the leading term of the corresponding element in the first iteration

{1, x(a2
0x − a1x

d1), x2+d1(a2
1x

d1 − a2a0x
d2), x2+2d1+d2(a2

2x
d2 − a1a3x

d3), . . . ,

x2+2d1+···+2dn−1+dn(a2
nxdn − anan−1), x

2+2d1+···+2dn−1+dn(a2
nxdn − anan−1), . . . , 1}

(2)

and restrict ourselves to values of ai > 0 which give that the leading terms of L(s) have
the same form as s itself for some new x.

Using (2), the leading term condition is equivalent to

0 ≤ dn ≤ dn−1 ≤ · · · ≤ d1 ≤ 1

which we can view as defining a simplex. The values of ai may then be determined for
each face by solving the systems of equations arising from matching the coefficients of the
leading terms in L(s) with the coefficients of s.

Of greatest interest are the (n−1)-faces of the simplex since they define the boundaries
of what will be our open region of convergence. The (n − 1)-faces are defined by d1 = 1,
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dj = dj+1 for 0 < j < n, and dn = 0; in all cases the unspecified di are distinct and strictly
between 0 and 1.

For d1 = 1 the leading terms of L(s) are

{1, x2(a2
0 − a1), x

4a2
1, x

4+2d2a2
2, . . . , x

4+2d2+···+2dna2
n, x4+2d2+···+2dna2

n, . . . , 1}

so we are led to the system

a2
0 − a1 = a0

a2
1 = a1

...

a2
n = an

We are interested in positive solutions so ai = 1 for 0 < i ≤ n and a0 = (1 +
√

5)/2.
For dj = dj+1 the leading terms of L(s) are

{1, x2a2
0, x

2+2d1a2
1, . . . , x

2+2d1+···+2dj (a2
j − aj−1aj+1), x

2+2d1+···+4dja2
j+1, . . . ,

x2+2d1+···+4dj+···+2dna2
n, x2+2d1+···+4dj+···+2dna2

n, · · · , 1}

so we are led to the system

a2
0 = a0

...

a2
j−1 = aj−1

a2
j − aj−1aj+1 = aj

a2
j+1 = aj+1

...

a2
n = an

which has unique positive solution ai = 1 for i 6= j and aj = (1 +
√

5)/2.
Finally for dn = 0 the leading terms of L(s) are

{1, x2a2
0, x

2+2d1a2
1, . . . , x

2+2d1+···+2dn−1a2
n−1,

x2+2d1+···+2dn−1(a2
n − anan−1), x

2+2d1+···+2dn−1(a2
n − anan−1), . . . , 1}

so we are led to the system

a2
0 = a0

...

a2
n−1 = an−1

a2
n − anan−1 = an

which has unique positive solution ai = 1 for 0 ≤ i < n and an = 2.
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3.2 Interior

In the region of R
n+1 where the coordinates are all positive and increasing, consider the

following parametrically defined hypersurfaces:

H0 =

{(

1 +
√

5

2
x, x2, x2+d2 , . . . , x2+d2+···+dn

)

: 1 ≤ x, 1 > d2 > · · · > dn > 0

}

Hj =

{

(

x, x1+d1 , . . . ,
1 +

√
5

2
x1+d1+···+dj , x1+d1+···+2dj , . . . , x1+d1+···+2dj+···+dn

)

: 1 ≤ x, 1 > d1 > · · · > dj > dj+2 > · · · > dn > 0

}

Hn =

{

(

x, x1+d1 , . . . , x1+d1+···+dn−1 , 2x1+d1+···+dn−1
)

: 1 ≤ x, 1 > d1 > · · · > dn−1 > 0

}

for 0 < j < n. These are precisely the results of the leading order analysis of the previous
subsection.

Let R be the region with positive increasing coordinates defined as greater in the ith
coordinate than Hi. For example in the 3-D case handled in section 2.3, figure 3, the
region in question is above H2, below H1 and to the right of H0.

We say a sequence {1, x0, . . . , xn, xn, . . . , x0, 1} is in R if (x0, . . . , xn) ∈ R.
Before we discuss R further we must first recall that the nth triangular number,

T̃ (n), is defined as
T̃ (n) = T̃ (n − 1) + n,

with T̃ (0) = 0. The first few elements of the sequence are 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, . . ..
We will need the following lemma about triangular numbers.

Lemma 3.1. Define T (n) ≡ 2T̃ (n) for n ≥ 0. Then T (n) satisfies the following:

1. T (0) − T (1)
2

= −1

2. T (n + 1) = 2T (n) − T (n − 1) + 2

Proof. (1) is trivial. (2) follows since T (n) = n(n + 1).

We also need another straightforward result.

Lemma 3.2. Suppose x > 0 and

s = {1, x, x1+d1 , x1+d1+d2 , · · · , x1+d1+···+dn, x1+d1+···+dn , · · · , x, 1}.

Then s is 1-logconcave iff 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 with strict inequalities in the logconcavity

condition iff 1 > d1 > · · · > dn > 0.
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Proof. Compute x2 ≥ x1+d1 ⇔ 1 ≥ d1 and x2 > x1+d1 ⇔ 1 > d1. If 0 < j < n then
x2+2d1+···+2dj ≥ x2+2d1+···+2dj−1+dj+dj+1 ⇔ xdj ≥ xdj+1 ⇔ dj ≥ dj+1 and likewise with strict
inequalities. Finally x2+2d1+···+2dn ≥ x2+2d1+···+2dn−1+dn ⇔ xdn ≥ 1 ⇔ dn ≥ 0 and likewise
with strict inequalities.

We are now ready to prove some important properties of R.

Lemma 3.3. R is nonempty and unbounded.

Proof. Let {1, x0, . . . , xn, xn, . . . , x0, 1} be any 1-logconcave sequence with x0 > 0, for
instance the binomial sequence of appropriate length. Also, choose C such that 0 < C <

2
1+

√

5
and consider the following sequence:

s =

{

1, CT (0)ax0, C
T (1)a2x1, C

T (2)a3x2, . . . , C
T (n)an+1xn, CT (n)an+1xn, . . . , 1

}

for a > 2CT (n−1)−T (n).
Notice that a is dependent on n which is not a problem since n is fixed.
It is clear that s is 1-logconcave and, moreover, the inequalities are strict since

C2T (0)a2x2
0 = a2x2

0 ≥ a2x1 > CT (1)a2x1,

for 0 < j < n

C2T (j)a2j+2x2
j ≥ C2T (j)a2j+2xj−1xj+1 > CT (j−1)ajxj−1C

T (j+1)aj+2xj+1

by (2) of Lemma 3.1 and the fact that C < 2/(1 +
√

5) < 1, and

CT (n)an+1xn ≥ CT (n)an+1xn−1 > CT (n−1)anxn−1.

Define x̃ = ax0 > 0, define d̃1 so that x̃1+d̃1 = CT (1)a2x1, and continue recursively
so that, for 0 < j ≤ n, d̃j is defined so that x̃1+d̃1+···+d̃j = CT (j)aj+1xj. By Lemma 3.2,
1 > d̃1 > · · · > d̃n > 0.

Let us next consider each Hj in turn. For 0 < j < n choose x = x̃, di = d̃i for i < j,
dj = (d̃j + d̃j+1)/2, and di = d̃i for i > j + 1. Consequently 1 > d1 > · · · > dj > dj+2 >
· · · > dn > 0 and these choices match all the coordinates of s with the corresponding
coordinates of Hi except possibly for the jth. But x1+d1+···+2dj/x1+d1+···+dj−1 = x2dj , so

Cx1+d1+···+dj = Cx1+d1+···+dj−1

√

x1+d1+···+2dj

x1+d1+···+dj−1

= C
√

x1+d1+···+dj−1x1+d1+···+2dj .

Comparing with s we have that

CT (j)aj+1xj ≥ CT (j)aj+1√xj−1xj+1

=
√

C2T (j)−T (j+1)−T (j−1)CT (j−1)ajxj−1CT (j+1)aj+2xj+1

= C−1
√

x1+d1+···+dj−1x1+d1+···+2dj

>
1 +

√
5

2
x1+d1+···+dj
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where the fourth line follows from (2) of Lemma 3.1, thus s is on the correct side of Hj.

For H0 choose x =
√

CT (1)a2x1 = x̃(1+d̃1)/2 > 0 and, for 2 ≤ j ≤ n, dj = 2d̃j/(1 + d̃1).
Consequently 1 > d2 > · · · > dn > 0 and

CT (j)aj+1xj = x̃1+d̃1+···+d̃j = x2+d2+···+dj

hence matching all the coordinates of s other than the 0th with H0. So we check,

CT (0)ax0 ≥ CT (0)
√

a2x1 = CT (0)C−
T (1)

2 x = C−1x >
1 +

√
5

2
x

Thus s is on the correct side of H0.
For Hn simply choose x = x̃ and di = d̃i for i < n, which gives 1 > d1 > · · · > dn−1 > 0

and matches all the coordinates of s other than the nth. Then x2
n ≥ xn−1xn giving

CT (n)an+1xn ≥ CT (n)an+1xn−1

= aCT (n)−T (n−1)x1+d1+···+dn−1

> 2x1+d1+···+dn−1 .

So s is also on the correct side of Hn. Consequently s is in R. So we see that R is
nonempty, and, by the freedom to increase a, is unbounded.

Definition 3.1. Let H be a hypersurface in R
n+1. We say we view H as a function

f : R
n → R with the jth variable as the dependent variable if for (x0, . . . , xn) a point on

H we have xj = f(x0, . . . , xj−1, xj+1, . . . , xn).

Definition 3.2. Let H be a hypersurface in R
n+1. Call it j-monotone if when H is

viewed as a function f : R
n → R with the jth variable as the dependent variable then

f(y1, . . . , yn) ≥ f(z1, . . . , zn) if yi ≥ zi for all i.

Lemma 3.4. Let H be a j-monotone hypersurface in R
n+1. Let (x0, x1, . . . , xn) be a point

on H. Then for εi > 0, η > 0,

(x0 − ε0, . . . , xj−1 − εj−1, xj + εj, xj+1 − εj+1, . . . , xn − εn)

and

(x0, . . . , xj−1, xj + η, xj−1, . . . , xn)

lie on the same side of H.

Proof. View H as f : R
n → R with xj as the dependent variable. Then

f(x0 − ε0, . . . , xj−1 − εj−1, xj+1 − εj+1, . . . , xn − εn)

≤ f(x0, . . . , xj−1, xj−1, . . . , xn) = xj < xj + εj

So both points lie on the side of H which is greater in the jth coordinate.
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Lemma 3.5. Each of the Hj is j-monotone.

Proof. For H0, x0 is determined by x1 and increases when x1 increases, so H0 is 0-
monotone. For Hn, xn is determined by xn−1 and increases when xn−1 increases, so Hn is
n-monotone. For Hj, 0 < j < n, xj is (1 +

√
5)
√

xj−1xj+1/2 which increases when either
xj−1 or xj+1 increase so Hj is j-monotone.

Theorem 3.3. Any sequence in R is ∞-logconcave.

Proof. Suppose s = {1, y0, . . . , yn, yn, . . . , y0, 1} is in R. Then for any 0 < j < n, by the
definition of R, we can choose x, ε > 0, and the di, i 6= j + 1, such that

s =

{

1, x, . . . , x1+d1+···+dj−1 ,
1 +

√
5

2
x1+d1+···+dj + ε, x1+d1+···+2dj , . . . ,

x1+d1+···+2dj+···+dn , x1+d1+···+2dj+···+dn , . . . , 1

}

.

Iterate to get

L(s) =

{

1, x2 − x1+d1 , . . . , x2+2d1+···+2dj−1

−1 +
√

5

2
x2+2d1+···+2dj−2+dj−1+dj − εx1+d1+···+dj−2 ,

(

(

1 +
√

5

2

)2

− 1

)

x2+2d1+···+2dj + (1 +
√

5)x1+d1+···+dj ε + ε2,

x2+2d1+···+4dj − 1 +
√

5

2
x2+2d1+···+3dj+dj+1 − εx1+d1+···+2dj+dj+1 , . . . ,

x2+2d1+···+4dj+···+2dn − x2+2d1+···+4dj+···+dn ,

x2+2d1+···+4dj+···+2dn − x2+2d1+···+4dj+···+dn , . . . , 1

}

Since (1 +
√

5)/2)2 − 1 = (1 +
√

5)/2 by using x2 in place of x in the definition of Hj

and applying Lemma 3.4, which is valid in view of Lemma 3.5, we can conclude that L(s)
is on the side of Hj which is larger in the jth coordinate. This is the same side which s
is on.

Similarly for H0 we can choose x, ε > 0, and the di, such that

s =

{

1,
1 +

√
5

2
x + ε, x2, . . . , x2+d2+···+dn , x2+d2+···+dn , . . . , 1

}

.
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Iterate to get

L(s) =

{

1,

(

(

1 +
√

5

2

)2

− 1

)

x2 + ε(1 +
√

5)x + ε2, x4 − 1 +
√

5

2
x3+d2 − εx2+d2 , . . . ,

x4+2d2+···+2dn − x4+2d2+···+dn , x4+2d2+···+2dn − x4+2d2+···+dn , . . . , 1

}

which, by Lemmas 3.4 and 3.5 shows that L(s) is on the same side of H0 as s is, as above.
Finally for Hn choose x, ε > 0, and the di, such that

s =

{

1, x, . . . , x1+d1+···+dn−1 , 2x1+d1+···+dn−1 + ε, 2x1+d1+···+dn−1 + ε, . . . , 1

}

.

Iterate to get

L(s) =

{

1, x2 − x1+d1 , . . . , x2+2d1+···+2dn−1 − 2x2+2d1+···+dn−1 ,

(4 − 2)x2+2d1+···+2dn−1 + 4εx1+d1+···+dn−1 + ε2,

(4 − 2)x2+2d1+···+2dn−1 + 4εx1+d1+···+dn−1 + ε2, . . . , 1

}

which again by Lemmas 3.4 and 3.5 shows that L(s) is on the same side of Hn as s is.
Consequently L(s) is in R. Since R is a subregion of the region of R

n+1 with positive
coordinates, this implies that any sequence in R is ∞-logconcave.

4 The General Case for Odd Length

4.1 Leading order behavior

Consider the sequence of length 2n + 3

s = {1, a0x, a1x
1+d1 , a2x

1+d1+d2 , . . . , anx1+d1+···+dn , . . . , a0x, 1}

Again we are interested in the leading terms of elements of L(s) viewed as polynomials
in x. We will restrict ourselves to values of the di for which a2

i x
2(1+d1+···+di) contributes

to the leading term of the corresponding element in the first iteration:

{1, x(a2
0x − a1x

d1), x2+d1(a2
1x

d1 − a2a0x
d2), x2+2d1+d2(a2

2x
d2 − a1a3x

d3), . . . ,

x2+2d1+···+2dn−1(a2
nx2dn − a2

n−1), . . . , 1}
(3)

and to values of ai > 0 which give that the leading terms of L(s) have the same form as
s itself for some new x.
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Using (3), the leading term condition is equivalent to

0 ≤ dn ≤ dn−1 ≤ · · · ≤ d1 ≤ 1

which we can again view as defining a simplex. The (n − 1)-faces are defined by d1 = 1,
dj = dj+1 for 0 ≤ j < n, and dn = 0; in all cases with the unspecified di distinct and
strictly between 0 and 1.

For dn = 0 the leading terms of L(s) are

{1, x2a2
0, x

2+2d1a2
1, . . . , x

2+2d1+···+2dn−1a2
n−1, x

2+2d1+···+2dn−1(a2
n − a2

n−1), . . . , 1}

so we are led to the system

a2
0 = a0

...

a2
n−1 = an−1

a2
n − a2

n−1 = an

which has unique positive solution ai = 1 for 0 ≤ i < n and an = (1 +
√

5)/2.
For d1 = 1 and dj = dj+1 the systems are identical to the even case.

4.2 Interior

The hypersurfaces Hj, 0 ≤ j < n are the same.

Hn =

{

(

x, x1+d1 , . . . , x1+d1+···+dn−1 ,
1 +

√
5

2
x1+d1+···+dn−1

)

: 1 ≤ x, 1 > d1 > · · · > dn−1 > 0

}

Let R be the region with positive increasing coordinates defined as greater in the ith
coordinate than Hi.

As in the even case

Lemma 4.1. Suppose x > 0 and

s = {1, x, x1+d1 , x1+d1+d2 , · · · , x1+d1+···+dn , x1+d1+···+dn−1 , · · · , x, 1}.

Then s is 1-logconcave iff 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 with strict inequalities in the logconcavity

condition iff 1 > d1 > · · · > dn > 0.

Proof. The only case which differs from the proof of Lemma 3.2 is the nth. x2+2d1+···+2dn ≥
x2+2d1+···+2dn−1 ⇔ x2dn ≥ 1 ⇔ dn ≥ 0 and likewise with strict inequalities.
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Lemma 4.2. R is nonempty and unbounded.

Proof. The proof begins as before, but with a > (1 +
√

5)CT (n−1)−T (n)/2. We only need
consider Hn. For Hn choose x and di as before to match all the coordinates of s other
than the nth. Then x2

n ≥ x2
n−1 giving

CT (n)an+1xn ≥ CT (n)an+1xn−1 = aCT (n)−T (n−1)x1+d1+···+dn−1 >
1 +

√
5

2
x1+d1+···+dn−1

So s is also on the correct side of Hn. Consequently s is in R. So we see that R is
nonempty, and, by the freedom to increase a, is unbounded.

Lemma 4.3. Each of the Hj is j-monotone.

Proof. We only need to consider Hn, in which xn is determined by xn−1 and increases
when xn−1 increases, so Hn is n-monotone.

Theorem 4.1. Any sequence in R is ∞-logconcave.

Proof. Again, in view of the even case, we only need to check Hn. Using notation from
the even case choose x, ε > 0, and the di, such that

s =

{

1, x, . . . , x1+d1+···+dn−1 ,
1 +

√
5

2
x1+d1+···+dn−1 + ε, . . . , 1

}

.

Iterate to get

L(s) =

{

1, x2 − x1+d1 , . . . , x2+2d1+···+2dn−1 −
(

1 +
√

5

2

)

x2+2d1+···+dn−1 − x1+d1+···+dn−2ε,

(

(

1 +
√

5

2

)2

− 1

)

x2+2d1+···+2dn−1 + (1 +
√

5)εx1+d1+···+dn−1 + ε2, . . . , 1

}

which by Lemmas 3.4 and 4.3 shows that L(s) is on the same side of Hn as s is.
Consequently L(s) is in R. Since R is a subregion of the region of R

n+1 with positive
coordinates, this implies that any sequence in R is ∞-logconcave.
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