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ABSTRACT

Allison Christine Luengen 

Investigating the spring bloom in San Francisco Bay: Links between water chemistry, 

metal cycling, mercury speciation, and phytoplankton community composition

This dissertation addresses the relationship between two problems facing 

estuaries nationwide: nutrient enrichment and metal contamination. The focus is on 

the southern reach of San Francisco Bay, where high nutrient concentrations can 

control the magnitude of the predictably occurring spring phytoplankton bloom. The 

bloom in this study, in spring 2003, was one of the largest blooms on record, 

exceeding 150 pg L '1 of chlorophyll a. As the bloom grew, diatoms (e.g. 

Thalassiosira punctigera ) depleted dissolved nutrients from the water column, 

including the silicate required for their frustules. Along with nutrients, the bloom 

depleted dissolved Mn, Ni, Pb, and methyl mercury (MeHg). That depletion was 

statistically significant when the water chemistry data were reduced into three factors 

by principal component analysis, and the effect of those factors on trace metal 

concentrations was examined. Algal uptake of trace metals could entrain those 

metals within the estuary and affect their bioavailability to higher trophic levels 

through bloom dilution. Consistent with bloom dilution, we calculated that MeHg 

concentrations in phytoplankton decreased when the bloom peaked. However, that 

decrease was a transient event, caused by depletion of MeHg from the water column. 

Concentrations of MeHg and other dissolved metals returned to pre-bloom values, 

and even exceeded those values, as phytoplankton decayed. The decomposition of
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phytoplankton presumably caused suboxic conditions in surficial sediments and led to 

release of trace metals from historically contaminated sediments. Because sediments 

contain large reservoirs of metals, the most important impact of the recently observed 

increase in algal biomass in the estuary could be release of metals from sediments 

during algal decomposition. As the diatoms decayed following nutrient depletion, 

small phytoplankton (e.g., Synechocystis sp.) increased. Statistical analyses 

(multidimensional scaling) found significant spatial and temporal differences in 

phytoplankton communities. Those community patterns were linked to water 

temperature and dissolved ammonium concentrations, demonstrating the myriad 

effects of nutrient enrichment in this system. However, algal community composition 

was not related to dissolved metal concentrations. This research shows that nutrient 

enrichment affects the magnitude of the bloom and thereby alters metal cycling, but 

the relationship is unidirectional because metals do not shape algal community 

composition.
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INTRODUCTION

Every spring, as terrestrial plant life blooms, a similar phenomenon occurs in

many marine systems: microscopic phytoplankton rapidly increase in abundance.

This rapid increase, relative to background conditions, is called the spring

phytoplankton bloom. The spring bloom has been recognized since the late 1800s,

when German botanist Franz Schtitt described phytoplankton abundance in the Baltic

Sea (Mills 1989, p. 125):

“One form appears, grows and vanishes yet again from 
the surface waters and makes way for another form, 
which now asserts its dominance for its own time, yet 
again to fade away, and this play repeats itself year 
after year with the same regularity as every spring the 
trees turn green and in autumn lose their leaves; with 
just such absolute certainty as the cherries bloom before 
the sunflowers, so Skeletonemas arrive at their yearly 
peak earlier than the Ceratiums.”

Schtitt described a classic spring bloom that begins with diatoms, or eukaryotic algae

characterized by siliceous cell walls. Since that time, it has been recognized that

phytoplankton blooms can occur at any time of year and that many different types of

phytoplankton can bloom (Cloern 1996). Some of these phytoplankton blooms

produce harmful toxins and have been termed harmful algal blooms or red tides for

those blooms that discolor the water (with or without toxins). However, this research

focuses on a classic spring diatom bloom, composed of species that are generally not

toxic to humans.

1
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Although classic spring blooms have not received as much media attention as 

harmful algal blooms, they are important for several reasons. Spring blooms play an 

important ecological role as a food source (Smayda 1997). As the first step in the 

food chain, phytoplankton can serve as a vector for transfer of pollutants from water 

to higher trophic levels (Cloern et al. 2006). Those pollutants include methyl 

mercury, which is a toxic form of mercury that bioaccumulates in the food chain 

(Mason et al. 1996). In addition to pollutants, phytoplankton accumulate nutrients 

that are needed for cellular processes, such as nitrate, phosphate, silicate, and some 

trace metals (Morel et al. 2004). Phytoplankton utilize enough of these nutrients to 

alter concentrations in the surface waters of the oceans (Bruland et al. 1991). Thus, 

quantifying the uptake of nutrients and metals by blooms may help us understand the 

movement and partitioning (cycling) of nutrients and trace metals in the environment.

Finally, studying blooms in estuaries, which are unique and highly productive 

habitats where rivers meet the ocean, may provide insights into the effects of 

anthropogenic nutrient enrichment. Between 1960 and 1990, nutrient inputs have 

increased dramatically in many estuaries (Cloern 2001). The resulting ecological 

impacts and biogeochemical changes are broadly defined as eutrophication (Cloern 

2001). One obvious effect of eutrophication is algal growth and subsequent depletion 

of dissolved oxygen, but effects can also include subtle changes in biological species 

composition, changes in the timing or magnitude of blooms, and alterations in the 

biogeochemical cycling of nutrients and metals (Cloern 2001).

2
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Understanding these myriad effects of eutrophication is especially important 

at our field site, in the southern reach of San Francisco Bay (South Bay), because 

recent research shows that phytoplankton biomass has increased throughout the 

estuary (Cloern et al. 2006). Chlorophyll a concentrations in the estuary were 

relatively low (<10 pm L'1 under non-bloom conditions) until the late 1990s, despite 

multiple anthropogenic stressors (Cloern et al. 2006). Those stressors include fresh 

water diversions, introduction of exotic species, habitat losses, additions of 

contaminants, and inputs of nutrients from wastewater treatment plants (Cloern 1996; 

Nichols et al. 1986; Smith and Hollibaugh 2006). There is now a need to understand 

how the increase in algal abundance will interplay with the existing stressors in the 

estuary, particularly metal contamination.

Cobalt, copper, nickel, lead, mercury, and zinc are enriched in the estuary due 

to anthropogenic activities (Conaway et al. 2003; Flegal et al. 2005). In South Bay, 

historically contaminated sediments are a source of all of these metals (Flegal et al. 

2005; Gee and Bruland 2002; Rivera-Duarte and Flegal 1997). Many of these metals 

also have current sources, such as inputs from wastewater treatment plants (e.g., 

cobalt, copper, nickel, and zinc) or slow release from contaminated watersheds (e.g., 

lead and mercury) (Flegal et al. 2005; Steding et al. 2000; Tovar-Sanchez et al. 2004). 

However, some of these metals (e.g., copper) are complexed to organic ligands, 

which limits their bioavailability to phytoplankton and diminishes their potential to 

alter the ecosystem (Beck et al. 2002; Buck and Bruland 2005; Buck et al. in press).

3
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Of the metals in the estuary, mercury is the chief concern due to its potential 

impacts on human health and wildlife. There are currently fish consumption 

advisories in the estuary because methyl mercury bioaccumulates in fish to levels that 

exceed the human health screening value of 0.23 parts per million (Thompson et al. 

2000). Those elevated concentrations may affect fetal brain development and result 

in neuromotor, visual, and sensory impairments in children (Mahaffey 2000). Methyl 

mercury is also a threat to the endangered California Clapper Rail (Rallus longirostris 

obsoletus) because it decreases its egg viability. The last -1000 breeding individuals 

live in the tidal marshes of the estuary, with about 600 in South Bay (Schwarzbach et 

al. 2006). To protect people and wildlife, it is useful to look at processes affecting 

methyl mercury transfer between water and phytoplankton because most of the 

bioaccumulation occurs at that level (Mason et al. 1995).

This study is the first to consider how the recent increase in algal biomass in 

the estuary will affect the transfer of mercury and other metals to the food chain. To 

address that question, this research combines trace metal chemistry with a study of 

the ecology of the bloom. Because both the metals and the bloom are 

anthropogenically perturbed, this work also explores the connection between multiple 

environmental disturbances. The three chapters to follow will explore the 

interrelationship between nutrient inputs, trace metal enrichment, mercury pollution, 

and phytoplankton community structure.

The first chapter, Contrasting biogeochemistry o f six trace metals during the

rise and decay o f a spring phytoplankton bloom in San Francisco Bay, sets the stage
4
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for the rest of the work by characterizing the environmental conditions surrounding 

the bloom. That characterization consisted of using principal component analysis 

(PCA) to reduce the water chemistry data into three composite factors: 1) a bloom 

factor that described growth of the bloom, 2) a sorbent factor that characterized the 

amount of material available for metal sorption, and 3) a decay factor that described 

the decomposition of the bloom. The chapter details how the unique 

biogeochemistries of each metal explained their differing responses to the bloom, the 

amount of sorbent, and the decay. The effects of phytoplankton on trapping metals 

within the estuary were also quantified by calculating that about 75% of the nickel 

discharged annually to the lower South Bay cycles through the phytoplankton. 

Overall, the observed alterations in metal concentrations were evidence of 

eutrophication in South Bay and indicated that changes in phytoplankton biomass 

affect metal cycling.

The second chapter, Depletion o f dissolved methyl mercury by a 

phytoplankton bloom in San Francisco Bay, shows that dissolved methyl mercury 

concentrations in the water column significantly decreased during the bloom, 

indicating that phytoplankton assimilated methyl mercury. Calculated concentrations 

of methyl mercury in phytoplankton decreased at the peak of the bloom. That result 

was consistent with the bloom dilution hypothesis (Pickhardt et al. 2002), which 

states that high algal biomass decreases algal mercury concentrations. However, in 

this study, the decrease in dissolved methyl mercury was only transitory.

5
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The most important aspect of an increase in algal biomass may be the decay of 

that material. During bloom decay, dissolved methyl mercury concentrations 

increased. Presumably some of that increase was due to the production of methyl 

mercury in surface sediments under the low oxygen conditions created by decaying 

phytoplankton. Accordingly, the decay of the bloom could be a source of methyl 

mercury to overlying waters. The decay of the bloom also enhanced the partitioning 

of total mercury onto particles, potentially retaining that mercury within the estuary 

where it could be later methylated. These changes in partitioning and dissolved 

methyl mercury concentrations indicate that the decay of the bloom an important 

period of mercury mobilization in the estuary.

The third chapter, Fine scale changes in phytoplankton community

composition and water chemistry during a spring bloom in San Francisco Bay,

examines how the phytoplankton community changes temporally and spatially by

using a statistical approach called multidimensional scaling. The focus is not on

large-scale drivers of biomass, but instead it is on understanding the composition of

the entire community, including small and less abundant species. The chapter then

explores the links between phytoplankton community composition, water chemistry

data, and trace metal concentrations. The results show that the concentration of

dissolved trace metals does not directly shape algal communities. However, there are

spatial and temporal changes in the phytoplankton communities that could affect

which phytoplankton species are most exposed to trace metals. Those spatial and

temporal changes in phytoplankton communities are explained in part by temperature
6
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and dissolved ammonium concentrations. The importance of temperature and 

ammonium is an example of phytoplankton communities both modifying and 

responding to their environment.

Overall, this work examines the links between phytoplankton, nutrients, and 

trace metal concentrations during the 2003 spring bloom in South San Francisco Bay. 

The bloom, which was one of the largest on record for South Bay, began with growth 

of centric diatoms, such as Thalassiosira punctigera. As it grew, the bloom depleted 

some metals, including methyl mercury, from the water column. After depleting all 

of the nutrients, the diatoms crashed and the community changed to favor 

cyanobacteria and cryptophytes. Simultaneously, concentrations of dissolved 

manganese, cobalt, zinc, lead, and methyl mercury rapidly increased and were thus 

potentially available to those phytoplankton species. Although this work does not 

address the impact of these changes in metal concentrations on higher trophic levels, 

it may begin to illuminate the complexity of eutrophication in an estuary. This study 

also serves as a reminder that looking at only a single component of the ecosystem 

cannot fully uncover the impact that myriad anthropogenic stressors have upon 

estuaries.

7
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Contrasting biogeochemistry of six trace metals during the rise and decay of a spring 
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Abstract
The spring 2003 phytoplankton bloom in South San Francisco Bay (South Bay) affected the cycling of Mn, Co,

Zn, Ni, and Pb, but not Cu. We followed this diatom bloom for 2 months, capturing a peak in chlorophyll a (Chi a) 
of >150 gg L-1 and then an increase in dissolved organic carbon of >400 gmol L 1 as phytoplankton 
decomposed. To determine how the stages o f  the bloom affected metal concentrations, we used principal component 
analysis to reduce our 15 water chemistry variables into a bloom factor, a sorbent factor, and a decay factor.
Increasing values of the bloom factor, which was a composite of dissolved oxygen, Chi a, and other variables, 
significantly accounted for reductions in dissolved Mn, Ni, and Pb. We attributed those declines to microbial 
oxidation, phytoplankton uptake, and sorption onto phytoplankton, respectively. In contrast, dissolved Cu 
concentrations were not explained by either the bloom or decay factors, consistent with previous studies showing its 
strong organic complexation and limited bioavailability in South Bay. The decay factor significantly accounted for 
increases in dissolved Mn, Co, Zn, and Pb. Decomposing bloom material presumably caused suboxic conditions in 
surface sediments, resulting in release o f metals to overlying waters during reductive dissolution of Mn and Fe (hydr) 
oxides. These alterations in metal cycling during a nutrient-enriched bloom were evidence of eutrophication.
Annually, phytoplankton productivity has the potential to affect metal retention in the estuary; in 2003,75% of Ni 
discharged into lower South Bay by wastewater treatment plants was cycled through phytoplankton.

M etal contam ination and  eu trophication , o r  biological 
changes th a t result from  excessive nu trien t inputs, are two

1 Corresponding author (luengen@etox.ucsc.edu).
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interrelated problem s affecting m any estuaries, including 
San Francisco Bay (C loern 2001; Flegal et al. 2005). T he 
Bay (Fig. 1), w hich is one  o f  the largest estuaries on  the 
western coast o f  N o rth  Am erica, is an ideal field site to 
investigate the  in terac tion  betw een m etal cycling and 
phy toplankton bloom s fo r several reasons. T he southern 
reach o f  the estuary  (Sou th  Bay) is contam inated with trace 
metals, including C o , Z n , C u, Ni, and Pb (Flegal e t al. 
2005). T he S outh  Bay also has a  predictable, nutrien t- 
enriched spring  p hy top lank ton  bloom , which has been well 
characterized (C loern  1996). D uring  the b loom , p hy to 
p lankton can  take  u p  som e m etals, thereby increasing m etal 
bioavailability to  th e  food chain and trapping those m etals 
w ithin the estuary  (Lee and  L uom a 1998; L uom a e t al. 
1998).

S ou th  Bay h a s  seasonally  h igh  c o n cen tra tio n s  o f  
m any trace m etals (Flegal e t al. 1991). M etals such as 
Co, Ni, Cu, Z n , an d  P b  are elevated as a  result o f  dia- 
genetic rem obilization from  contam inated  sedim ents (Riv- 
era-D uarte  a n d  F legal 1997; Squire e t al. 2002) and  
desorption from  resuspended sedim ents (G ee an d  B ruland
2002). M etal concen tra tions typically peak in sum m er, 
when freshw ater flow from  the S acram ento  an d  San 
Joaquin  R ivers is low (Flegal e t al. 1991). T hose  rivers 
em pty in to  th e  n o rth e rn  reach o f  the estuary (Fig. 1) and
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Fig. 1. The USGS stations in South San Francisco Bay 
(South Bay) that we sampled during this study were site 21 (Bay 
Bridge), site 32 (Ravenswood Point), and site 36 (Calaveras Point).

exchange with South Bay only during  periods o f  high river 
flow.

A lthough S outh  Bay has elevated m etal concentrations, 
the bioavailability o f  some m etals can  be limited by 
com plexation to  organic ligands, as described in the free 
ion m odel developed by Sunda and H untsm an (1998). In 
th a t model, the  free metal ion (e.g., C u 2+) is the form  
equilibrating with cellular receptors. M etals com plexed to 
charged organic ligands do no t dissociate rapidly enough 
for the free m etal ion to  be com plexed to receptor sites and 
then transported  in to  the cell (Sunda an d  H untsm an 1998). 
T hus, m ost organically complexed m etals are no t readily 
bioavailable to  phytoplankton. F or exam ple, C u is strongly 
com plexed to  organic ligands in S outh  Bay (Buck and 
Bruland 2005; H urst and Bruland 2005). A s a  result o f  th a t 
com plexation, dissolved Cu was no t depleted from  South 
Bay w ater by a  spring bloom  in 1994 (Luom a et al. 1998) or 
by a  laborato ry  sim ulation o f  the South Bay b loom  (Beck 
et al. 2002).

T he S outh  Bay bloom  occurs predictably every spring 
(February-A pril), a lthough its tim ing and  m agnitude vary 
annually on  the basis o f  freshw ater input, w inds, tides, and 
nu trien t concentrations (C loem  1996). In  early spring, 
freshw ater input an d  warm , calm  w eather stratify  the water 
colum n an d  create conditions for the  b loom  by isolating 
phy top lank ton  from  benthic grazers an d  increasing light 
exposure (C loem  1996). T he b loom  is dom inated  by

diatom s, including Thalassiosira rotula, Thalassiosira hen- 
deyi, Thalassiosira punctigera, Chaetoceros socialis, Chae- 
toceros debilis, Skelelonema costatum, Ditylum brightwellii, 
and Coscinodiscus oculus-iridis (C loem  and D ufford 2005). 
The bloom  typically occurs during  neap tides when reduced 
mixing bo th  helps m aintain  stratification and  prevent 
phy toplankton  from  being adverted  out o f the estuary. 
The m agnitude o f  the bloom  may also be affected by the 
am ount o f nutrients, w hich have elevated concentrations in 
the heavily urbanized S outh  Bay as a  result o f  w astew ater 
treatm ent p lan t inputs (H ager and Schemel 1996). Previous 
phy toplankton  bloom s in South Bay have been observed to 
crash after depletion o f  nutrients from  the w ater (H ager 
and Schemel 1996; G renz et al. 2000).

Along w ith  nutrients, trace  m etals have also been 
depleted by bloom s in South Bay (Luom a e t al. 1998), 
the Scheldt estuary  (Zwolsm an and van Eck 1999), coastal 
waters (Schoem ann et al. 1998; Ingri et al. 2004), and 
laboratory  mesocosm  studies (Beck et al. 2002; R iedel and 
Sanders 2003; W ang et al. 2005). In  South Bay, the 1994 
spring bloom  depleted dissolved C d, Ni, and Z n  (b u t not 
C u) from  the w ater (L uom a et al. 1998). S im ilarly, 
Zwolsm an and  van  Eck (1999) observed a depletion o f  
dissolved C d and Zn but n o t C u -  during a b loom  in 
the Scheldt estuary. Studies in coastal waters have show n 
that metals (e.g., M n o r Fe) can then be rem obilized as 
blooms decay (T ham drup et al. 1994; Schoem ann et al. 
1998). However, the  num ber o f  such studies is lim ited by 
both the difficulty o f  cap turing  a  bloom  in the field and 
attributing  any observed changes in m etal concentrations 
to  bloom  processes (Luom a e t al. 1998). Because o f  these 
difficulties, som e researchers have used m esocosm  studies 
(Beck et al. 2002; Riedel and  Sanders 2003; W ang et al. 
2005) o r  large field enclosures (M uller et al. 2005) to  study 
the effect o f  phytop lank ton  bloom s on metal concen tra
tions.

In add ition  to previous bloom  studies, we used the 
oceanic d istribu tions o f  our trace elements to  determ ine 
how the m etals were likely to  be affected by bloom  
processes. F o r  exam ple, the oceanic profile o f  dissolved 
M n is shaped by geochem ical scavenging and  redox activity 
(Bruland e t al. 1991). M axim um  concentrations o f  dis
solved M n in surface w aters are  m aintained by pho to re
duction  o f  m anganese oxides an d  p h o to in h ib itio n  o f 
bacteria, w hich oxidize dissolved M n to  particulate M n 
(Sunda and  H untsm an  1988). O n  the basis o f  this cycling o f 
M n between dissolved an d  particulate  form s and  a  past 
study (Beck e t al. 2002) indicating th a t bacteria can  oxidize 
dissolved M n during  S outh  Bay bloom s, we expected th a t 
dissolved M n w ould by depleted by m icrobial oxidation 
during o u r bloom . Because C o  is oxidized by the same 
m icrobial pathw ay  as dissolved M n (M offett and  H o 1996), 
we also hypothesized  th a t dissolved Co would be  depleted 
by bacterial oxidation.

On the basis o f  the  oceanic d istributions o f  Zn, N i, and 
Pb, we hypothesized th a t  those m etals would also be 
depleted during  a  phy top lank ton  bloom . Both Z n  an d  Ni 
have nu trient-type d istributions characterized by  depletion 
in surface oceanic w aters as a  result o f  phy top lank ton  
uptake (B ruland a n d  L ohan 2004). W e expected those two
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metals to  be assimilated by phy top lank ton  during our 
bloom , unless they were highly com plexed to organic 
ligands. In contrast, because Cu is strongly complexed in 
South Bay (Buck and Bruland 2005), we hypothesized 
th a t the bloom  would no t deplete th a t m etal from  the 
water. Finally, because Pb is a  scavenged-type element 
(K ozelka et al. 1997; Bruland and L ohan 2004), we hypo
thesized that it would decrease because o f  sorption to 
phytoplankton.

F o r those metals that were likely to  be depleted by the 
bloom  (M n, C o, Zn, Ni, and Pb), we developed qu an tita 
tive hypotheses to determ ine how' m uch m etal could be 
taken up  by a  theoretical bloom th a t reached 65 p L ~ l 
o f  chlorophyll a (Chi a). A bloom  o f  th a t m agnitude 
(which was the average Chi a a t o u r sites 32 and 36) 
would result in a  decrease o f 0.19 m m ol C  L -1 in water, 
given a [C ]: [Chi a] ratio  o f  35 (C loern et al. 1995), as shown 
below:

I I
I S

/6 5  pg  C hi <A /  35 pg  C \  ( \  m ol C 't 
V L )  V/<g Chi a )  \  1 2 g  C )

0.19 m mol C

By multiplying 0.19 mmol C L -1 by [m etal]: [C] ratios, we 
calcu la ted  th e  po ten tia l depletion  o f  each  m etal by 
phy top lank ton  during  the bloom  (Table 1). T hen, to 
determ ine how  the bloom  affected those  m etals, we 
collected w ater samples a t weekly intervals from  mid- 
F ebruary  to the beginning o f  May.

By com bining frequent field sam pling with principal 
com ponent analysis (PCA), we were able to  address the 
challenge o f  following the biogeochemical cycling o f  metals 
during a  bloom  in the field. W ith these approaches, we 
sought to  ( 1) distinguish the effect o f  b loom  grow th versus 
decay, (2) determ ine whether the b loom  depleted dissolved 
N i given previous conflicting results (L uom a et al. 1998; 
Beck et al. 2002) regarding the bioavailability  o f  N i in the 
South Bay, (3) m ake the first m easurem ents o f  C o and  Pb 
during a  S outh  Bay bloom, and (4) con trast the cycling o f 
these m etals to  elucidate their differing biogeochemistries. 
To explore these objectives, we focused on representative 
metals w ith nutrient, scavenged, an d  hybrid  profiles (B ru
land and L ohan 2004; M orel e t al. 2004) and  different 
degrees o f  organic complexation.

M e th o d s

Sampling design—W ater samples were collected a t three 
sites in the  central channel o f  S outh  Bay (Fig. 1) during 
cruises designed to capture the spring 2003 phytop lank ton  
bloom . D uring  the first cru ise  on  19 F eb ru ary , all 
pa ram eters show n in Table 2 were m easured , except 
dissolved organic carbon (D O C ). Beginning 24 F ebruary , 
all param eters listed in Table 2, as well as dissolved 
(< 0 .4 5  gm ) a n d  to ta l (unfiltered) trace  m etals, were 
m easured. Cruises on 24 February , 04 M arch, 12 M arch, 
an d  27 M arch  captured trace m etal concen trations and  
associa ted  w ate r chem istry  d u rin g  a  p erio d  o f  h igh  
phy top lank ton  biom ass. The 01 A pril, 17 A pril, 23 April, 
an d  01 M ay cruises traced the decline o f  the  bloom . The 27 
A ugust cruise was tim ed to  provide a  low  phy top lank ton
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Table 2. Parameters measured during the spring 2003 bloom.

Variable Explanation

Chi a Chi a measured from discrete sample
Phaeo Phaeophytin measured from discrete sample
Chi ratio Chi a/(Chl a + Phaeo)
SPM Suspended particulate matter calculated from

optical backscatter
Salinity Salinity
DO Percentage of dissolved oxygen that would be

present if in atmospheric equilibrium
r Temperature

Water density
DOC Dissolved organic carbon
DRP Dissolved reactive phosphate
DSi Dissolved silicate
DIN Dissolved inorganic nitrogen (nitrate, nitrite, and

ammonium)
UFFe Total (unfiltered iron)
UFMn Total (unfiltered manganese)
Tide Tidal amplitude

biom ass contrast to the spring data. All sam ples were taken 
aboard  the  U.S. Geological Survey (USGS) R/V Polaris.

Vertical profiles o f  the w ater colum n were taken with 
a Sea-Bird Electronics (SBE) underw ater unit (SBE-9 plus) 
according to established m ethods (Caffrey et al. 1998). The 
instrum ent package included SBE conductivity-tem pera- 
tu re -d ep th  (C TD ) sensors, biospherical photosynthetically 
active rad iation  (PA R) light sensor, SC U FA  fluorom eter, 
SBE-43 dissolved oxygen sensor, and D&A Instrum ents 
o p tica l b ackscatter for suspended p articu la te  m atte r 
(SPM ). The la tter three sensors were calibrated each cruise 
w ith discrete samples (from  2 m depth via the ship’s flow
through system) a t six USGS sites, including sites 21, 32, 
and 36, where the samples fo r this study were collected. F o r 
Chi a  discrete samples, duplicate aliquots were filtered on to  
G F F  filters. The filters were then  frozen immediately, 
stored a t -8 0 °C , acetone-extracted, and  analyzed with 
a T u rn e r TD 700 fluorom eter (Parsons e t al. 1984). 
Dissolved oxygen (DO) samples were analyzed by W inkler 
titration  (G raneli and  G raneli 1991). SPM  was m easured

by gravim etric analysis o f  samples collected on to  0.45-pm 
polycarbonate filters (H ager 1994).

Surface (1 m) w ater was collected w ith the use o f  two 
peristaltic pum ps equipped w ith acid-cleaned Teflon tubing 
attached to  an  alum inum  pole extended o u t from  the boat, 
as per the m ethods that the W IG S group (U niversity o f 
C alifornia a t Santa  Cruz) had  previously used in San 
Francisco Bay (Flegal et al. 1991). The m etal sam ples were 
collected w ith clean techniques into 1-liter acid-cleaned 
low-density polyethylene bottles. A dditional sam ples were 
collected for nutrients, D O C, C hi a, and  phaeophytin  
(Phaeo). F iltered (0.45 pm ) w ater fo r dissolved m etals was 
obtained by attaching an  acid-cleaned Osmonics poly
propylene filter (Calyx Capsule) to  the tubing o f  one pum p. 
The second pum p was used to collect unfiltered w ater for 
to tal m etal samples.

Trace m eta l analyses— T race  m etal sam ples (bo th  
dissolved an d  to tal) were acidified in the labo ra to ry  
approxim ately 3 m onths before analysis by add ition  o f 
4 mL o f  6 m ol L ~ 1 high-purity (Optima®) hydrochloric 
acid (HC1) to  a 1-liter sample. A  30-mL aliquot o f  acidified 
sam ple was then ultraviolet (UV) digested (N dung’u et al.
2003). C oncen trations o f  Co, Cu, Ni, Z n, and  Pb were 
m easured by high-resolution inductively coupled plasm a 
magnetic sector m ass spectrom etry (ICP-M S) w ith a  Finni- 
gan  E lem ent IC P-M S and  a  F innigan  m icrosam pler, 
according to  established m ethods (N dung’u et al. 2003). 
These m ethods included an online preconcentration step 
w ith a chelating resin (A F-C helate 650M) to concentrate 
and  remove the m etals from  the saltw ater m atrix  (W arnken 
e t al. 2000). N ational R esearch Council C anada certified 
reference m aterials (C R M s) CASS-4, SLEW -2, and  SLEW - 
3 for trace elem ents in w ater were used to  quantify 
recoveries (Table 3).

Acidified (pH  <  1) samples were analyzed fo r dissolved 
and  to ta l M n and to tal F e  by inductively coupled plasm a 
optical em ission spectrom etry (ICP-OES) with a  Perkin- 
E lm er 4300D V  in radial mode. C R M s SLEW -2 an d  SLRS- 
1 were analyzed concurrently  to quantify accuracy (Ta
ble 3).

Particulate m etal concentrations were calculated as the 
difference between the to ta l an d  dissolved samples. The

Table 3. Trace metal analyses figures of merit, showing mean ± 1 standard deviation.*

Material Co Ni Cu Zn Pb Fe Mn
Elementt type (nmol L_l) (nmol 1 ') (nmol I ') (nmol L"1) (nmol L_1) (nmol 1. 1) (nmol L“1)

DL (3(7) 0.048 2.0 0.21 0.56 0.001 .43 7.1
CASS-4 Measured 0.39±0.02 4.9±0.6 9.5+0.3 6.9±0.5 0.050±0.005

Certified 0.44 ±0.03 5.35±0.26 9.32+0.43 5.83 ±0.44 0.047 ±0.009
SLEW-2 Measured 13.1±0.9 26.8 + 1.0 19.5 ±0.9 0.11 ±0.02 298 ±2

Certified 12.1 ±0.5 25.5+0.9 16.8±1.1 0.13 ±0.01 311 ± 10
SLEW-3 Measured 0.76±0.03 21.8±0.6 26.4+0.4 2.5±0.3 0.035±0.005

Certified 0.71 ±0.08 21.0+0.6 24.4+0.9 3.07±0.28 0.043 ±0.003
SLRS-1 Measured

Certified
633 ±32 
564+19

32±1
32±0.2

* Alt m easured an d  certified values were w ithin one s tan d ard  deviation  o f  each  o ther, except SLE W -2 fo r Zn, SLEW -3 for Cu, and SLRS-1 for Fc. Those 
values were within two standard deviations o f each other. 

f DL, detection limit; CASS-4, SLEW-2, SLEW-3, and SLRS-1 are certified reference materials provided by the National Research Council o f Canada for 
ocean water, estuarine water, and river water, respectively.
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distribu tion  coefficient, K&, was then given as moles o f  
p a rticu la te  m etal per gram  o f  SPM  divided by the 
concentration  o f  dissolved metals. Accordingly, K,j values 
w ere given in units o f  liters per kilogram.

N utrien ts a n d  D O C —Dissolved reactive p h o sp h a te  
(D R P), dissolved inorganic nitrogen (D IN ), an d  dissolved 
silica (DSi) were analyzed with a  Technicon A utoanalyzer 
II, according to  established colorim etric m ethods (H ager 
1994). D IN  was the sum o f  N O  J , N O  J ,  and  N H ^ . M ost 
samples were frozen and thawed overnight before analysis.

D O C  samples were analyzed w ith a  D ohrm ann D C -190 
(R osem ount Anaytical, tem perature 680°C, catalyst 0.5% 
IHAI2O 3) according to  established m ethods (Sharp  e t al. 
1993). Typical precision was 2.5-4.5 pm ol L 1 (SD ) o r  1- 
5%  o f  th e  certified  value. T h e  detec tion  lim it was 
2.9 irniol L ~ '.

Data analyses— Results from  the concurrent vertical 
profiles (e.g., C hi a, SPM , salinity) can be found on  the 
U SG S w eb site a t http://sfbay.wr.usgs.gov/access/wqdata. 
Instrum ent results fo r SPM  and D O  were used ra ther than  
discrete sam ples because instrum ent d a ta  were available a t 
1 m , the depth  a t which the trace m etal sam ples were 
collected. Results from  discrete Chi a  sam ples collected 
from  the peristaltic pum p were used in the d a ta  analyses 
instead o f  U SG S discrete o r  instrum ental data.

A n additional variable, tidal am plitude, w as calculated 
w ith d a ta  from  Y erba Buena Island, D um barton  Bridge, 
an d  C alaveras Point corresponding to  sites 21, 32, and 36 
from  W W W  Tide and C urrent P redictor (h ttp ://tbone. 
biol.sc.edu/tide/). O n the basis o f  the tim e a t w hich samples 
w ere collected, tidal am plitude was calculated as the 
absolute value o f  the difference between the  nearest high 
an d  low tide. Then, outgoing tides were given a  negative 
value an d  incom ing tides a  positive value for statistical 
analyses.

P C A — T o address the challenge o f  characterizing the 
b loom  in the  field, we employed PCA  (with Systat Version 
10.2.05, SPSS) to  develop com posite factors th a t described 
b loom  processes. A  sim ilar approach  w as used by O senberg 
et al. (1992) to  derive factors th a t described the spatial 
variability  o f  infaunal taxa in relation  to  distance from  
a  p roduced  w ater outfall. W e first log-transform ed SPM , 
D O C , D R P , C hi a, and  Phaeo to  satisfy assum ptions o f  
norm al statistics. Then we used PC A  to  reduce the 15 
variables (Table 2) to  a  bloom  factor, a  so rben t factor, and  
a  decay fac to r (Table 4). T he corre la tion  between original 
variables an d  derived factors was given by the  com ponent 
loadings (T ab le 4). Original variables w ith com ponent 
loadings > 0.6 o r  s —0.6 were in terpreted  according to  
T abachnick  an d  Fidell’s (2001) discussion o f  cutoffs for  
loadings.

General linear models—T o determ ine w hether the  three 
P C A  factors an d  the  categorical variable (site) affected 
dissolved m etal concentrations, a n  analysis o f  covariance 
(A N CO V A ) w as perform ed with a  general linear m odel 
(G L M ) rou tine . These analyses illustrate  the pow er o f  PC A

Table 4. Three PCA factors were formed by the water 
chemistry variables. The water chemistry variables that 
composed each factor are listed and their loadings are given in 
parentheses.

Bloom factor* Sorbent factor) Decay tact or)

D0(0.703) log SPM(0.748) log DOC(-0.657)
71-0.622) <r ,(—0.646) log Phaeo(0.697)
Salinity(—0.620) log DRP(0.832)
DIN(—0.607) UFFe(0.819)
DSi(-0.834) UFMn(0,775)
log Chi a(0.864)
* High values of the bloom factor corresponded to high values of both Chi 

a and DO and low values of DIN, DSi, T, and salinity. Those low I and 
salinity values were probably the result of cold freshwater from fluvial 
inputs.

’ High values of the sorbent factor characterized high concentrations of 
SPM, DRP (which is particle reactive), and Fe and Mn (hydr)oaides. 
Additionally, the sorbent factor included water density, which was 
inversely related to that factor likely because fluvial inputs contained 
high particulate concentrations.

* Decreasing values of the decay factor corresponded with increasing DOC

in G L M s because all factors are, by definition, indepen
dent. In  contrast, original variables are  com m only collin- 
ear, which would violate assum ptions o f  any G L M  model. 
All dissolved m etals were norm ally distributed, except M n 
and Zn. Those two dependent variables were square roo t 
and log transform ed, respectively. W ith the use o f  GLM s, 
the four-way interaction between the categorical variable 
(site) and  the three covariates (PCA factors) was tested for 
hom ogeneity o f  surfaces and  rem oved when its probability  
was >0.05.

A m odel-building approach  was used to  select models 
th a t were m ost predictive o f  dissolved m etal concentrations 
and  th a t used the fewest num ber o f  variables. In that 
approach, we ran  backw ard  m odels th a t first included all 
three covariates and the categorical variable, site. V ariables 
with p  >  0.15 were then successively dropped. The r2 values 
from  different m odels were also used to  assess the effect o f  
d ro p p in g  variab les. In  som e m odels, site , th e  only  
categorical variable, was rem oved, an d  G L M s were then 
used to  perform  m ultiple linear regression. In the final 
m odels (Table 5), m ean square errors o r  t values were used 
as estim ates o f  the relative con tribu tion  o f  different factors.

A  m odel-building approach  was also used to determ ine 
the best predictors o f  distribu tion  coefficients (Kd values) 
for all m etals except M n. Because to tal M n was in
corpora ted  in to  the sorbent facto r, we could n o t look a t the 
effect o f  the PC A  factors o n  M n partitioning. O u r model- 
building app ro ach  used b o th  backw ard  and forw ard  
m odels. In  con trast to  backw ard  m odels th a t sequentially 
rem ove variables, forw ard  m odels successively ad d  vari
ables. W hen the forw ard an d  backw ard  m odels did no t 
converge, the m odel w ith the  highest r2 value was selected 
(Table 6).

R esulting m odels o ften  contained m ultiple predictor 
variables. T o  graphically represent m ultiple linear regres
sion results fo r dissolved m etals, we ran  the m odel w ith all 
bu t one o f  the factors an d  then  p lo tted  the residuals against 
the missing fac to r (partia l residual plots). W e repeated this
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Table 5. Reduced models for dissolved metal concentrations. These results were generated by running general linear models with the 
categorical variable (site) and the three PCA factors (bloom, sorbent, and decay). Then, a model-building approach was used to reduce 
the models to include only the independent variables that best predicted dissolved metal concentrations.*

Effect Coefficient SE Std Coef Tolerance t p  (two-tail)

Reduced model for square root Mn r2 = 0.72
Constant 0.607 0.044 0.000 13.8 <0.01
Sorbent factor 0.245 0.045 0.582 1 5.46 <0.01
Decay factor -0.255 0.045 -0.605 1 -5.68 <0.01
Bloom factor -0.090 0.045 -0.213 1 -2.00 0.058
Reduced model for Co r2 -= 0.77
Constant 4.10 0.194 0.000 21.2 <0.01
Sorbent factor 1.39 0.198 0.697 1 7.04 <0.01
Decay factor 1.08 0.198 -0.538 1 -5.44 <0.01
Reduced model for log Zn r2 = 0.66
Constant 0.927 0.028 0.000 33.5 <0.01
Sorbent factor 0.107 0.028 0.463 1 3.78 0.001
Decay factor -0.153 0.028 -0.664 1 -5.43 <0.01
Reduced model for Pb, r2 = 0.93
Constant 0.135 0.00492 0.000 27.4 <0.01
Sorbent factor 0.049 0.00501 0.547 1 9.79 <0.01
Decay factor -0.068 0.00501 -0.758 1 -13.5 <0.01
Bloom factor -0.022 0.00501 -0.240 1 -4.30 <0.01
Source Sum of squares df Mean square F-ratio P
Reduced model for Cu r ’ == 0.86
Site 3247 2 1623 69.4 <0.01
Decay factor 114 1 114 4.88 0.038
Error 515 22 23.4
Reduced model for Ni, r2 -= 0.92
Site 1742 2 871 98.5 <0.01
Decay factor 36.9 1 36.9 4.18 0.054
Bloom factor 261 1 261 29.5 <0.01
Error 186 21 8.84
* Std Coef, standard coefficient; df, degrees o f freedom.

Table 6. Reduced models for K<t, the distribution coefficient between the dissolved and solid phases. A model-building approach that 
included both forward and backward stepwise approaches was used to generate these reduced models.*

Source Sum of-squares df Mean square /■-ratio P
Reduced backwards model for log Co Aj. r- = 0.55
Site 1.05 2 0.525 12.7 <0.01
Error 0.865 21 0.0412
Reduced backward model for log Cu KA. r2 = 0.45
Site 2.68 2 1.34 8.42 0.002
Error 3.34 21 0.159
Reduced forward model for log Ni A'j, r- — 0.63
Site 0.259 2 0.130 7.64 0.004
Sorbent factor 0.0761 1 0.0761 4.49 0.049
Decay factor 0.108 1 0.108 6.37 0.022
Bloom factor 0.0481 1 0.0481 2.84 0.110
Error 0.288 17 0.0170
Reduced backward model for log Pb KA, r2 =  0.73
Site 0.963 2 0.481 17.7 <0.01
Decay factor 0.118 1 0.118 4.36 0.051
Bloom factor 0.160 1 0.160 5.90 0.026
Error 0.489 18 0.027
Effect Coefficient SE Std Coef Tolerance t p  (two-tail)
Reduced forward model for log Zn A',], r2 =  0.35
C o n s t a n t  5 .2 0 0 .0 3 8 9 0 13 3 <0.01
Sorbent factor —0.0850 0.0379 -0.406 1 -2.24 0.036
Decay factor 0,0909 0.0396 0.415 1 2.30 0.033
* Std Coef, standard coefficient; df, degrees of freedom.
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Fig. 2. The bloom factor was correlated with log Chi a (linear 
regression F, J4 = 71, p  < 0.01, r2 = 0.75).

process until each factor was individually p lo tted  against 
the o ther sets o f  partial residuals. T he resulting graphs 
show ed how  the om itted factor explained variation  in the 
d a ta  and hence its contribution  to  the m odel. T he slope o f  
the relationship showed w hether the facto r negatively o r  
positively  affected m etal concen trations. T he relative 
con tribu tion  o f  the factors was indicated by the range o f  
the y-axis, which showed the num ber o f  stan d ard  devia
tions o f variation  explained by th a t factor.

R e su lts

PC A factors—The 15 water chem istry variables (Ta
ble 2) clearly separated in to  three PCA  factors (Table 4). 
The separation  o f  original variables in to  derived factors 
illustrates the utility o f  PC A  for these types o f  analyses; 
groups o f  assorted original variables m ake up  derived 
factors th a t often relate to  ecological (o r o ther) phenom 
ena. The three derived factors collectively explained 77% o f  
the variance.

T he first PCA  factor was a  bloom  facto r, com prising log 
Chi a  (+), D IN  ( - ) ,  DSi ( - ) ,  D O  (+), tem peratu re ( - ) ,  and  
salinity ( —) (Table 4). The bloom  facto r was directly 
corre la ted  w ith  Chi a, o u r p roxy fo r p h y to p lan k to n  
biom ass (Fig. 2). H ow ever, it w as a  m o re  com plete 
representation o f  the rise o f  the bloom  th an  C hi a alone 
because it included o ther variables.

T he second PCA factor was a  so rben t facto r th a t 
represented the am ount o f  particulate m aterial, including 
SPM  and  Fe and M n (hydr)oxides, available fo r m etal 
sorption (Table 4). W e use the term  sorp tion  to  include 
m etals th a t were adsorbed on to  SPM , coprecip itated  w ith 
Fe and M n  (hydr)oxides, o r  incorporated  in to  organic 
m atrices surrounding particles, as per M orel an d  H ering’s 
(1993, p. 556) definition o f  sorption: “ the  partition ing  o f  
solutes between the solution and the w hole o f  a  particulate 
phase.”  In  o u r sorbent factor, SPM  an d  w ater density (crt) 
were inversely related, m ost likely because S P M  increased 
w ith freshw ater inputs that sim ultaneously decreased w ater 
density. D R P , which is particle reactive, also increased as 
SPM  increased.

The th ird  PCA  factor was a  decay factor. Declining 
values o f th a t facto r represented decom position o f  phy to
plankton. As the algae decayed, Phaeo decreased and  D O C  
increased. The form er was a  particulate m easure o f  Chi 
a  breakdow n, whereas the  la tter increased as organic 
m aterial was rem ineralized in to  the dissolved phase.

M odels describing m etal concentrations—Table 5 show s 
which term s best explained the dissolved m etal concen tra
tions. Spatial term s (the categorical variable, site, o r  the 
sorbent factor) were p art o f  the models fo r all m etals. In 
m any ways, the variable site and the sorben t facto r 
m odeled the sam e variance structure; the am oun t o f  
particulates often accounted fo r the observed differences 
in m etal co n cen tra tio n s betw een the  sam pling  lo ca 
tions. However, th e  variable site predicted dissolved Ni 
and  Cu concentrations better than  the sorbent factor. 
Thus, some site-specific param eters no t m easured in this 
study contributed  to  variations in dissolved N i and C u 
concentrations.

The bloom  facto r accounted  for variability  in the  
concentrations o f  only three dissolved metals: M n, Pb, 
and  Ni (Table 5). T he bloom  factor did not affect dissolved 
Cu concentrations. T hat result was consistent with o u r 
hypothesis th a t organic com plexation would lim it algal 
uptake o f  dissolved Cu. C on trary  to o u r hypothesis th a t C o 
and Z n would be depleted, concentrations o f  those two 
metals were no t affected by the bloom  factor. A subsequent 
discussion addresses three possible reasons for th a t lack o f  
depletion.

The decay factor was an  im portan t variable governing 
concentrations o f  dissolved M n, C o, Z n, and  Pb, as 
dem onstrated  by the m ean  square e rro r  o r  t values 
(Table 5). Because the  m ean square erro r was an estim ate 
o f  the variance a ttribu tab le  to  the term  o f interest (e.g., the 
decay factor), it can  be  used to  roughly  assess the 
contribution  o f  the term  to  the model fit. F o r  example, in 
the dissolved N i an d  C u models, the relatively low  m ean 
square erro r indicated th a t the decay factor was com par
atively u n im portan t relative to  the o ther term s in those 
models. Sim ilar to  the m ean square erro r, the t value 
indicated the variance explained by individual variables in 
a  m ultiple linear regression model. In  the dissolved M n 
model, the t value fo r the decay factor was -5 .6 8 , whereas 
for the bloom  factor, it w as -2 .0 0  (Table 5), indicating th a t 
the decay factor explained m ore o f  the variability in 
dissolved M n concentrations th an  the bloom  factor.

K j values—O ur log KA values (L kg -1 , m ean ±  SD ) were 
5.01 ±  0.63 fo r M n, 4.68 ±  0.29 for C o, 5.21 ±  0.22 for Z n , 
4.11 ±  0.51 fo r C u, 4.54 ±  0.19 for N i, an d  5.93 ±  0.28 
fo r Pb. T he log KA values fo r Zn were consistent w ith 
the value (—5.3 L  k g -1) given by Luom a e t al. (1998) fo r 
sp rin g  b lo o m  p a r tic le s  b u t h ig h e r th a n  th e  valu e  
(4.S2 L kg-1) m easured by G ee and Bruland (2002) for 
their S outh  Bay sam ples. Gee and B ruland (2002) also 
m easured K a values for N i and  C u in South Bay o f  3.65 and  
3.88 L  k g -1 , respectively, w hich were low er th a n  o u r 
values. H ow ever, o u r  com paratively high KA values were 
consistent w ith reports (G ee an d  Bruland 2002) o f  higher
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Fig. 3. Parameters measured during the spring 2003 bloom at sites 36, 32, and 21. (A) Chi a peaked at site 36 at >150 pg I. 1 on 04 
March. (B) DOC began to increase at the beginning of April after Chi a declined. Although the 23 April DOC value at site 21 was 
unusually high, we did not dismiss that datum because high N il j was also observed, and both observations might have been the result of 
wastewater treatment plant inputs. (C) SPM was high on 19 February but decreased once trace metal sampling began on 24 February. 
(D) Temperature and (E) salinity were relatively constant during the bloom.

Ks values in o ther S outh  Bay studies and  w ith results (Lee 
and  Luom a 1998) th a t showed high algal biom ass increased 
m etal partitioning.

M odels describing values— A s show n by the m odels in
Table 6, no  single factor governed the partitioning o f  all 
m etals. T he bloom  facto r explained variability  in Ka values 
for two m etals: N i and  Pb. The sorben t factor, which was 
partially  com posed o f  SPM , was im portan t fo r only Zn and  
N i partitioning. W hen we used partia l residual plots to  look 
a t the  direction o f  th a t relationship, we found a  weak 
positive correlation  between the sorbent factor and  Ni, but 
a  negative correlation  for Zn. T he decay fac to r explained 
som e o f  th e  variability  in Ka values fo r Z n, N i, and  Pb. F o r 
those m etals, partia l residual plots show ed th a t Ka values 
decreased as th e  b loom  decayed. T he Kd values for C o, C u, 
Ni, and  P b  varied by site, w ith the  highest values a t site 21. 
The partitioning o f  m any o f  the  m etals (e.g., N i) was 
affected by m ultiple factors, which justified this statistical 
approach  because trends were n o t readily apparen t by 
looking a t  the raw  da ta . Clearly, the  partitioning o f  m etals 
was a  complex process specific to  each m etal.

Spring bloom conditions—The spring b loom  o f  2003 was 
one o f  the largest bloom s on record (http://sfbay.w r.usgs. 
gov/access/wqdata); C hi a  peaked a t > 150  pg  L -1 a t  site 36 
in the extrem e S outh  Bay (Fig. 3). O n 19 F ebruary , before 
dissolved m etal m easurem ents began, there was a  pulse o f 
SPM  (Fig. 3). However, by 24 F ebruary , w arm , calm  
conditions prevailed, an d  SPM  an d  salinity rem ained 
relatively constan t during  our sam pling (Fig. 3).

By bloom  peak o n  04 M arch, D IN  and  D Si declined to 
lim iting concentrations (Fig. 4). The b loom  consum ed 52- 
56 pm o l L -1 o f  D IN  an d  75-105 pm ol L ~ ‘ o f  DSi. 
Phytop lank ton  com position ratios by Brzezinski (1985) 
suggested th a t N  an d  Si should be consum ed —1:1 for 
a  d ia to m  bloom , and  the  d ep a rtu re  from  th is ra tio  
indicated th a t N  w as likely recycled. D R P  also declined 
from  6.99 an d  9.91 pm ol L “ * o n  19 F ebruary  to  2.65 and  
3.94 pm ol L _l on  04 M arch  (Fig. 4) a t  sites 32 and  36, 
respectively. H ow ever, D R P  was n o t com pletely depleted 
as were D IN  and  DSi.

By 12 M arch, C hi a began declining (Fig. 3). A m m oni
um  (N H 4 ), one indicator o f  bloom  decay, increased a t the 
end o f  A pril (Fig. 4). A s the b loom  decayed, D O C  also
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Fig. 4. Dissolved nutrients decreased during the bloom. DSi 
and DIN were completely depleted by the peak of the bloom on 04 
March, and that depletion caused the phytoplankton to crash. 
Nutrient concentrations from a related USGS cruise on 18 March 
were added to the graphs for illustrative purposes, although those 
limited data were not included in the statistical analyses.

increased, beginning 01 April (Fig. 3). F inally , D O C  
concentrations peaked 01 M ay (Fig. 3).

D isc u ss io n

Role o f  nutrients in eutrophicalion— N u trien t inputs from  
w astew ater treatm ent p lants can con tribu te  to  the  m agni
tude  o f  South Bay bloom s (H ager and  Schemel 1996), and  
the bloom s can  in tu rn  alter trace m etal concentrations 
(L uom a e t al. 1998). Both alterations in  b loom  m agnitude 
a n d  m etal cycling are considered evidence o f  eutroph ication  
(C loern 2001). T he unusually large b loom  in spring 2003 
w as sustained by high concentrations o f  D IN  an d  DSi. 
Figures 3 an d  4  show  that depletion o f  those nu trien ts lead 
to  a  crash in C hi a. T he  result was sim ilar to  findings from  
H ager an d  Schemel (19% ) th a t show ed the 1990 a n d  1993 
bloom s declined afte r nutrient depletion. T he effect o f  
nutrien ts o n  th e  b loom  m agnitude w as o u r first piece o f  
evidence fo r eutroph ication  during  the  2003 bloom .

W c sought to determine whether nutrient depletion 
coincided w ith trace m etal draw dow n, w hich w ould be 
fu rther evidence o f  eutrophication. In  co n tra s t to  nutrients, 
w hich were present a t  m icrom ole per liter concen trations

and depleted by u p  to 105 pm ol L " 1, m ost trace m etals 
m easured during th is study only were present a t nanom ole 
per liter concentrations, and their fractional depletion w as 
likely to  be correspondingly small (Table 1). Accordingly, 
we first quantitatively evaluated the potential fo r m easur
ing relatively small decreases in dissolved m etal concen tra
tions.

Potential to observe changes in m etal concentrations— W e 
used know n enrichm ent factors for m etals in phy top lank
ton  to calculate potential m etal depletion during  o u r 
b loom  (Table 1). W e then com pared  those values to  
am bient concentrations o f  dissolved m etals to  determ ine 
whether trace m etal depletions could be readily observed by 
o u r experim ental design. F o r exam ple, phy top lank ton  
u p ta k e  cou ld  p o te n tia lly  decrease  d isso lved  P b  by 
0.06 nm ol L~> (Table 1), a  change th a t w as reasonable to 
measure, given th a t a  deviation o f  ±0.06 described 95% o f 
th e  d isso lv ed  P b  d a ta  f ro m  S o u th  B ay (0 .15  ±  
0.06 nm ol L~>) in years w ith in term edia te  freshw ater 
inputs between 1989 and  1999 (Squire et al. 2002). In 
contrast, a  phy toplankton depletion o f  dissolved C o  on  the 
order o f  0.1 nm ol L  1 (Table 1) would be difficult to detect 
because o f  the large range o f  C o values; only 66% o f 
dissolved C o d a ta  fo r San Francisco Bay fell w ithin 1.12 ± 
0.69 nm ol L “ ' (Tovar-Sanchez et al. 2004). T hus, we 
expected th a t we would no t be able to observe nu trien t 
depletion o f  dissolved C o  and M n and  th a t any m easur
able changes in their dissolved concentrations would be 
the  result o f  o th e r  processes, p a rticu la rly  m icrob ia l 
oxidation.

We also used concentration  factors (concentration per 
unit m ass o f  organism /concentration per unit m ass o f  
seawater, IA EA  2004) to  determ ine which m etals were 
highly particle reactive and  thus likely to  be depleted by 
sorption to phy top lank ton . F o r example, the  concentration  
factor o f  Pb in p h y to p lan k to n  is 105 (IA E A  2004), 
indicating th a t a  phy top lank ton  bloom  has the potential 
to  remove Pb. In  con trast, N i, Co, and  Z n are  less particle 
reactive than  Pb (concentration  factors on the o rder o f  103 
to  104, IA EA  2004) an d  hence were m ore difficult to  
observe by this experim ental design.

The question o f  w hether N i and  Z n  depletions could be 
theoretically observed w as com plicated by uncertainly in 
[metal] ;[C] ratios (Table I). F o r exam ple, Tw ining e t al. 
(2004) m easured an  o rder o f  m agnitude higher [Z n ]: [C] in 
d iatom s under h igh  iron  conditions in the Southern O cean 
than Bruland e t al. (1991) reported  for d iatom s under 
bloom  conditions in M onterey Bay o n  the  basis o f  d a ta  
from  M artin  an d  K nauer (1973). A s a  result o f  this 
uncertainty, there  w as an  o rder o f  m agnitude range in o u r 
calculated po tential u p take  o f  dissolved Z n  (Table 1). F o r 
m etals fo r which we observed algal depletion, we calculated 
our ow n [metal] :[C ] ra tios and  com pared  them  w ith 
previous studies. T hose  resu lts a re  p resen ted  in  the  
individual discussion o f  each m etal below.

Manganese—T he cycling o f  M n w as affected by the 
bloom , sorbent, an d  decay factors (Table 5). T he b loom  
factor accounted  fo r reductions in dissolved M n concen-
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used, and partial residual plots are presented in subsequent figures.

tra tions (Fig. 7). A round the time o f  the  bloom , the 
num ber o f  Mn-oxidizing bacteria in the w ater colum n 
presum ably increased as they consum ed carbon  generated 
by the  b loom . Those bacteria  cou ld  have  decreased 
dissolved M n by oxidizing soluble M n(II) to  m uch less 
soluble M n(III) and  M n(IV).

This bacterial oxidation m echanism  was proposed by 
Beck et al. (2002) to explain the loss o f 80% o f  the dissolved 
M n during  their m icrocosm  sim ulations o f  a  South Bay 
bloom . Those au thors investigated the  cause o f  the  M n 
draw dow n by adding C u to  the m icrocosm s a t concentra
tions tha t were toxic to  bacteria, bu t n o t to  diatom s. The 
resulting inhibition o f  M n oxidation was evidence th a t M n 
oxidation was bacterially m ediated.

Research by Sunda and  H untsm an (1987) also indicated 
a  m icrobial role in M n cycling. Those au th o rs  show ed th a t 
M n oxidation rates in seaw ater w ere too  rap id  to  be 
explained by abio tic m echanism s. O n  the basis o f  these 
studies, w e attribu ted  m ost o f  o u r observed M n  depletion 
during  the bloom  to  bacterial ox idation  and n o t to  nutrient 
uptake by diatom s, even though M n is needed as a  cofactor 
in photosynthetic enzymes (M orel et a l. 2004).

A lthough  the  bloom  factor explained a  sm all am ount o f  
the  variability  in  M n concentrations (Table 5), the  effect

m ight have been greater had  sam pling started  earlier in the 
season. W hen o u r sam pling began in February, dissolved 
M n was low: 42 and  11 nm ol L ~ 1 a t  sites 21 and  32, 
respectively (Fig. 5). A  m onth  before this study, concen tra
tions o f  dissolved M n  were higher: 112 and  397 nm ol L -1 
a t Y erba Buena Island  and  D um barton  Bridge, respectively 
(Buck an d  B ruland 2005). Those sites correspond  very 
closely o u r sites 21 and 32. Thus, it was likely th a t the 
sam pling scheme in this study did n o t cap tu re  the full 
extent o f  M n  draw dow n as the bloom  grew.

A s the  b loom  decom posed, dissolved M n significantly (p 
<  0.01, T able 5) increased (Fig. 7). D issolved M n concen
tra tions peaked a t 2,400 nm ol L _l a t site 36 on  23 A pril 
(Fig. 5). A t th a t  tim e, concentrations o f  particu late  M n 
(270 nm ol L _ I ; Fig. 6) an d  SPM  (12 m g L 1; Fig. 3) were 
low, indicating  th a t the increase was n o t due  to  resuspen
sion o f  sedim ents w ith high M n concentrations. Instead, 
sinking an d  decom position o f  the bloom  likely reduced and  
released M n  from  F e an d  M n  (hydr)oxides in surficial 
sediments. W hen the  b loom  m aterial sinks to  the bottom , 
bacteria first use 0 2 to  decom pose the  organic m aterial 
(Schoem ann e t al. 1998). The resulting increase in 0 2 
dem and has been observed in sedim ents below S outh  San 
Francisco Bay channels follow ing a  bloom  (C affrey e t al.
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Fig. 6. Descriptive plots o f particulate metal concentrations (on a per liter basis) during the spring 2003 bloom. Because most of the 
metals were associated with particles, minor changes in the concentration or composition of the SPM could alter the concentration of 
particulate metals and thus make it hard to discern the effects of the bloom. For example, at site 36, the concentration of particulate 
metals increased from 24 February to the peak of the bloom on 04 March, but at site 32, particulate metals decreased during that same 
growth period. It was unclear whether the discrepancy between sites was due to the larger magnitude of the bloom at site 36 or the loss of 
some components of the SPM. At site 36, the total SPM concentration (Fig. 3) did not change as the bloom grew between 24 February 
and 04 March, which means that the increase in bloom-derived material (Chi a plus Phaeo) of 14 mg L-1 was balanced by loss of other 
suspended material. During that period at site 32, bloom-derived material increased by only 2 mg I. !, which did not compensate for the 
decrease in SPM concentrations (13 mg L-1; Fig. 3). Thus, at both sites, some suspended material was lost between 24 February and 04 
March. If the composition of that lost material differed between the sites, it could explain why particulate metals increased at one site but 
decreased at the other. Because of the difficulty in interpreting the cause of changes in particulate metal concentrations, we focused our 
analyses on the dissolved fraction.

1998; G renz e t al. 2000). W hen conditions then become 
suboxic, bacteria  can  use o th e r  elem ents as electron 
receptors, such as M n(IV ) (Beck and  B ruland 2000). By 
reducing particulate M n(IV) to soluble M n(II), bacteria in 
suboxic conditions can  increase dissolved M n  concentra
tion  (Schoem ann et al. 1998; Beck an d  B ruland 2000).

R eduction  an d  dissolution o f  M n(IV ) in suboxic sedi
m ents was the mechanism proposed by Schoem ann e t al.
(1998) an d  R oitz  e t al. (2002) to  explain  increases in 
dissolved M n after a  phy toplankton b loom  in South San 
Francisco Bay an d  in the coastal w aters o f  the  N o rth  Sea, 
respectively. A lthough  R oitz e t  al. (2002) found  th a t 
a  num ber o f  different factors, including h igher tem perature 
in the  sum m er, could contribute to  fluxes o f  dissolved M n 
from  the sedim ents to  the w ater, they found  th a t intense 
rem obilization after a  phytop lank ton  b loom  w as responsi

ble fo r the  som e o f  the highest concentrations o f  d is
solved M n. Similarly, we concluded th a t reduction and  
d issolution o f  M n(IV ) during  b loom  decom position ex
plained w hy dissolved M n w as exceptionally high in A pril 
(Fig. 5).

The follow ing calculations also indicated th a t release o f  
M n from  sedim ents, and  n o t algal rem ineralization, was the 
m ajor m echanism  for the  increase in  dissolved M n  during 
April. By m ultiplying the increase in [C] o r  the decrease in 
[P] during  th e  b loom  by [m etal]: [C] o r  [m etal]: [P] ratios in 
phytop lank ton , w e calculated the  po tential am oun t o f  M n 
assim ilated by algae du ring  the b loom  (Table 1). W e 
determ ined AP fo r sites 32 an d  36 by quantifying the 
average decrease in D R P  from  19 February  to  04 M arch 
(8.45-3.29 =  5.16 pm ol L _ I ; Fig. 4). W e then m ultiplied 
AP by th e  average  [M n]:[P ] ra tio  in  p h y to p lan k to n
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Fig. 7. Partial residual plots showing how the three PCA factors that were significant in the 
model (Table 5) affected dissolved Mn concentrations. (A) The bloom factor, which 
characterized growth of the bloom, decreased dissolved Mn concentrations. (B) Dissolved Mn 
concentrations increased as sorbent increased. (C) During decay, which was indicated by, 
declining values of that factor, dissolved Mn concentrations increased. These plots display 
multiple linear regression results by graphing each factor on the x -axis versus the residuals when 
the model was run without that factor. The magnitude of the y-axis and the direction of the slope 
indicate the relative contribution of that factor to Mn concentrations and whether the 
relationship between the factor and dissolved Mn was positive or negative.

(Table 1). T he resulting calculation suggested that the 
b loom  could have a t m ost assimilated 1.7 nm ol L~* o f Mn:

/ 5 . 16 pm ol P \  /0 .3 4  mmol M n \  1.7 nm ol M n
V L J [  1 mol P J =  L

If  all 1.7 nm ol L~> o f  M n was la ter rem ineralized from  
phytop lank ton , it would have accounted fo r only 0. 1% o f  
th e  observed increase in dissolved M n between 24 F ebruary  
a n d  23 A pril (Table 1; Fig. 5). A  sim ilar result was 
ob tained with the use o f  [m etal]: [C] ratios (Table 1). W e 
concluded  th a t  rem obiliza tion  from  sedim ents likely 
accounted  for m ost o f  the increase in dissolved M n.

Cobalt— C obalt cycling during the b loom  differed from  
M n cycling because the bloom  facto r d id n o t m easurably 
affect dissolved C o concentrations (Table 5). T he differ
ence between the tw o m etals was unexpected. W e assum ed 
C o and M n  cycling w ould be linked because they are bo th  
m icrobially oxidized via the same pathw ay (Lee an d  Fisher 
1993; M offett an d  H o  1996). A ccording to  M offett and H o 
(1996), few studies com pare M n and  C o  in coastal waters, 
b u t because those areas typically have high rates o f  
m icrobial M n oxidation, the tw o elem ents should have 
sim ilar biogeochem istries in coasta l environm ents. In 
their study o f  the W aquoit Bay estuary , the au thors d id  
observe one difference between the tw o elements: M n 
oxidation was ~ 7 X  faster th an  C o  oxidation. In o u r study, 
it was possible th a t differing ox idation  rates explained 
w hy M n was depleted by the  bloom  factor, w hereas Co was 
not.

Alternatively, organic com plexation m ight have blocked 
d e p le t io n  o f  d is so lv e d  C o  by p re v e n tin g  C o  fr o m  b e in g  co- 
oxidized by M n-oxidizing bacteria. C om plexation  o f  C o 
and  resulting inh ib ition  o f  C o  ox idation  was argued to  be 
responsible fo r higher dissolved C o  th an  M n, w hich was

not complexed, in deep waters o f  the Sargasso Sea (Saito 
and M offett 2002).

Finally, it was possible th a t we did no t see a decrease in 
dissolved C o because o u r sam pling  began  to o  late. 
A lthough Table 1 indicated th a t a  depletion o f  dissolved 
Co by phy top lank ton  was too  small to  m easure, microbial 
oxidation o f  C o could have occurred b u t n o t been captured 
by o u r sam pling scheme. O u r group’s previous studies, 
conducted  as p a r t  o f  the  R egional M on ito ring  P ro 
gram  (R M P; http://w ww.sfei.org/rm p/2000/2000_Annual_ 
R e su lts .h tm  a n d  h ttp ://w w w .sfe i.o rg /rm p/2001 /2001_  
A nnual_R esults.htm ), suggested th a t dissolved Co con
centrations were higher when C hi a  w as < 10  fig L _l a t 
the beginning o f  F ebruary  in 2000 an d  2001. D uring  that 
time, dissolved C o  a t the  C oyote C reek an d  D um barton  
Bridge sites, which correspond well to  U SG S sites 36 and 
32, averaged 3.8 an d  3.1 nm ol L _ l, respectively. O n the 
basis o f  the R M P  d a ta  and  this study, we figured th a t in 
S outh  Bay, dissolved Co concentrations are  relatively high 
a t  the  beginning o f  February (~ 3 .4  nm ol L _ l), decrease 
before the b loom  peaks (—2.5 nm ol L -1), exceed baseline 
c o n c e n tra tio n s  d u rin g  b lo o m  d e c o m p o s itio n  (—6.4 
nm ol L~>), and  eventually retu rn  to  baseline levels in 
A ugust (—3.8 nm ol L _ l) o r  even exceed those levels in 
some years (e.g., 2000 an d  2001). E levated C o concen tra
tions in sum m er are  consistent w ith its inp u t from  sewage 
discharges an d  rem obilization from  contam inated  sedi
m ents in S outh  Bay (Tovar-Sanchez e t al. 2004).

U nlike the b loom  factor, the  decay fac to r significantly 
(p <  0.01; Table 5) affected dissolved C o  concentrations. 
D issolved C o  concen tra tions increased as th e  b loom  
decayed (Fig. 8), largely because o f  reductive dissolution 
o f  F e  an d  M n (hydr)oxides. A lthough th e  tim ing o f  our
p e a k  in  d is so lv e d  C o  (w e ll a fter  th e  C h i a  p eak ; F ig . 5) was 
consistent w ith observations by Lee an d  F isher (1992), 
show ing th a t decaying d iatom s release C o m ore slowly th an  
carbon , the  values in  Table 1 indicate th a t algal reminer-
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Fig. 8. Partial residual plots showing how the PCA factors 
that were significant in the model (Table 5) affected dissolved Co 
concentrations. (A) Dissolved Co concentrations significantly 
increased as sorbent increased. (B) During decay, which was 
indicated by declining values of that factor, dissolved Co 
concentrations increased. These plots display multiple linear 
regression results by running the model without one of the factors 
and then plotting the residuals against the omitted factor. Both 
the sorbent and the decay factors explained the variance in the 
residuals and were therefore im portant for determining 
Co concentrations.

alization accounted for <10%  o f  the observed Co increase. 
T he rem ainder o f the increase in dissolved C o from  24 
F eb ru ary  to  01 A pril (Fig. 5) w as likely caused by 
reduction  and  dissolution o f Fe and  M n (hydr)oxides in 
suboxic sediments. D issolution o f  M n (hydr)oxides releases 
C o because it is incorporated in to  (hydr)oxides when 
bacteria co-oxidize bo th  elements (M offett and H o  1996). 
T he proposed release o f  Co from  sediments was also 
consistent with the benthic rem obilization observed by 
R ivera-D uarte and Flegal (1997). T hose au thors showed 
th a t for C o an d  Zn, concentrations were 10-100 an d  1-100 
(respectively) times higher in porew ater th an  in surface 
w ater in the estuary.

A n o th e r  possib le  ex p lan a tio n  fo r  th e  increase in 
dissolved Co was th a t high D O C  in the decaying bloom  
caused C o to  desorb from  the particulate  phase, but th a t 
explanation was no t supported by o u r  JQ values. Tovar- 
Sanchez e t al. (2004) determ ined th a t desorption  from  the 
particulate  phase was a m ajor facto r controlling dissolved 
C o concentrations in San Francisco Bay. They also found 
th a t in San Francisco Bay, C o desorbed  a t  salinities > 20 . 
A lthough salinity ranged from  17 to  30 in this study, and 
dissolved C o as a  percentage o f  the to ta l d id n o t change 
w ith salinity. The C o  A j values changed only as a  function 
o f  site (Table 6). Furtherm ore, som e o f  o u r values for 
dissolved C o  were higher than  the  range o f  dissolved Co 
concentrations supported by particle desorp tion  in  Tovar- 
Sanchez e t al. (2004). Thus, the peak th a t we observed in 
dissolved C o  (Fig. 5) was tentatively a ttrib u ted  to  diage- 
netic rem obilization from  sediments, n o t from  C o de
sorption.

Z inc—Dissolved Z n  was no t m easurably affected by the 
b loom  factor according to  our G L M  (Table 5; Fig. 9). O ne

Fig. 9. Partial residual plots showing how the PCA factors 
that were significant in the model (Table 5) affected dissolved Zn 
concentrations. (A) Dissolved Zn concentrations significantly 
increased as sorbent increased. (B) During decay, which was 
indicated by declining values of that factor, dissolved Zn 
concentrations increased. The 1-axis shows the residuals when 
the factor on the a-axis was omitted from the model.

o f  the advantages o f  using m ultivariate statistics to  analyze 
the effects o f  the PCA  factors on  dissolved Z n  concen tra
tions (Table 5) is th a t the m odel m easures the variation  
associated with a  particular factor after accounting for the 
o ther term s in the  model. F o r example, the m odel w ould 
have accounted fo r conditions, such as a  pulse o f  SPM , 
which could have m ade a  dissolved Zn depletion difficult to 
detect. T herefore , we were confiden t th a t the G L M  
(Table 5) correctly  represented the sorbent an d  decay 
factors as the only two term s th a t affected dissolved Zn 
concentrations.

F urtherm ore, the d istribution  o f  dissolved Zn (Fig. 5) 
supported  o u r statistical analyses th a t showed the  b loom  
was n o t an  im portan t factor for describing dissolved Zn 
concentrations. A lthough the  concentration  o f  dissolved 
Zn a t site 36 declined from  the end o f  February  to  the 
beginning o f  M arch  (Fig. 5), its concentration  subsequently 
increased from  12 M arch to  27 M arch  and  then decreased 
to  01 A pril (Fig. 5). In contrast, dissolved Ni, which was 
significantly (p <  0.01; Table 5) depleted by the bloom  
factor, show ed a  steady decrease in concentration  (F ig . 5).

C onsequently , the facto rs (sorbent and decay) th a t 
affected dissolved Z n  concentrations were the sam e as 
those th a t affected dissolved C o concentrations (Table 5) 
and differed from  o u r hypothesis th a t phy top lank ton  
would deplete dissolved Z n  during  the bloom . P hy top lank
ton  bloom s have the po tential to  deplete first Zn an d  then 
Co because the elem ents are  used in the enzyme carbonic 
anhydrase (M orel e t al. 2004). T h a t enzyme is responsible 
for converting H C O  J  to  C 0 2 to  provide inorganic carbon  
during  the  dark  reactions o f  the Calvin cycle.

The lack  o f  a  m easurable decline in dissolved Zn 
concentrations in  this study also differed from  observations 
in previous field (Luom a e t  al. 1998; Zw olsm an an d  van 
Eck 1999) and  m esocosm  studies (Riedel and  Sanders 2003; 
W ang et al. 2005). In  a  field study o f  the  1994 S outh  Bay 
bloom , L uom a e t al. (1998) found th a t dissolved Z n  was 
depleted from  th e  w ater. Similarly, Zw olsm an and van  Eck
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(1999) observed a  decrease in dissolved Z n  in the  Scheldt 
estuary  during a  spring bloom. M esocosm  studies have 
confirm ed those findings by adding nutrients to  stim ulate 
a  b loom  under controlled conditions. F o r example, Riedel 
an d  Sanders (2003) found that dissolved Zn was depleted in 
m esocosm  studies w ith Patuxent River water, and W ang et 
al. (2005) show ed that phy toplankton accum ulated Zn 
from  H ong K ong  coastal waters. The contrasting results in 
o u r study could be because ( 1) sam pling started  too  late to 
cap ture  a  Zn draw dow n, (2) Z n  was rapidly repartitioned 
from  the particu late  phase, (3) organic com plexation 
lim ited Z n bioavailability, or (4) a com bination o f  these 
factors.

The relationship between when sam pling started  an d  
w hether the m etal was depleted m ight have been influenced 
by the kinetics o f  m etal repartitioning between dissolved 
and  particulate phases. Gee an d  Bruland (2002) showed 
th a t in S outh  Bay, the Zn equilibrium  between particulate 
an d  dissolved phases was established rapidly, in abo u t 
2 weeks, whereas N i repartitioned in about 1 m onth. Thus, 
it was possible that dissolved Z n  was initially depleted, bu t 
by the  tim e th is study began, Z n  d eso rp tio n  from  
particulates m asked any algal draw dow n. The possibility 
th a t Zn was redistributed between the tw o phases was 
supported  by o u r statistical results th a t show ed Zn Ka 
values decreased  w ith  th e  decay fac to r (Table 6). A 
redistribution o f  Z n  would also be consistent w ith its 
rap id  desorption  rates; Gee and B ruland (2002) showed th a t 
Z n  desorbed m ore rapidly than  it adsorbed (unlike Ni), and  
its dissolved concentration  could increase by roughly 20% 
in a  single day because o f  particle desorption. Therefore, in 
th is study, N i could have rem ained depleted in the w ater 
fo r a  longer tim e because o f  its slower kinetics. Its decline 
w as m ore easily observed in our experim ental design.

T o  determ ine the extent to  which organic com plexation 
could  have lim ited uptake o f  dissolved Z n, studies o f  Zn 
com plexation in S outh  Bay are needed. O n the  basis o f  the 
lim ited studies available (e.g., Brand e t al. 1983; Sunda et 
al. 2005), free Z n  concentrations govern grow th an d  uptake 
to  phytop lank ton , indicating th a t the Zn com plex m ight 
no t be readily bioavailable to  phy toplankton. Site-specific 
studies o f  Zn com plexation in San Francisco Bay are 
needed because Zn com plexation in estuaries is highly 
variable. F o r exam ple, Sunda et al. (2005) show ed th a t the 
am ount o f  free Z n  available for phy top lank ton  up take in 
the Elizabeth R iver estuary varied by 20,000 between 
samples. Similarly, K ozelka and B ruland (1998), found th a t 
the  percentage o f complexed Z n  in N arragansett Bay, 
R hode Island, ranged from  51% to  97% . T h a t com plexa
tion  could be by ligands released from  dying phy top lank ton  
(M uller e t  al. 2005). Consequently, the sequestration o f  Zn 
in unavailable complexes could explain why it was no t 
depleted by the  b loom  factor.

B oth dissolved Z n  and C o concentrations significantly (p 
<  0.01; T able 5) increased with the  decay factor (Fig. 9). 
T h a t result w as consistent w ith previous research linking 
h ig h  D O C  a n d  e le v a te d  Z n  in  S o u th  B a y  (K u w a b a r a  e t  a l. 
1989). T he possible contribu tion  o f  rem ineralization o f 
phy top lank ton  to  th e  observed increase in dissolved Z n  
varied betw een 10% an d  100%, depending w hich num bers

were used (Table 1). However, the increase was m ost likely 
due to  reductive dissolution o f  Fe an d  M n (hydr)oxides,' 
which have been show n (Luom a and  Bryan 1981) to 
strongly bind Zn.

Copper—The categorical variable, site, was the m ost 
im portant term  explaining dissolved C u concentrations 
(p  <  0 .01), as dem onstrated  by its m ean square erro r 
(Table 5). C oncentrations o f  dissolved C u were highest at 
site 36, interm ediate at site 32, and  lowest a t site 21, which 
was consistent w ith previous research (Flegal e t al. 1991). 
Unlike som e o f  the o ther elements in this study, the decay 
factor was relatively u n im portan t fo r determ ining Cu 
concentrations (Table 5), and the bloom  factor was no t 
included in the model. W e a ttribu ted  these relatively stable 
dissolved C u  concentrations (Fig. 5) to  com plexation o f 
dissolved C u by organic ligands.

Previous research has dem onstrated  th a t between 80% 
and  >99%  o f  dissolved C u  is com plexed to  organic ligands 
in South Bay (D onat et al. 1994; Buck and Bruland 2005; 
H urst and  Bruland 2005). T h a t com plexation could  be by 
(1) ligands produced by cyanobacteria (M offett an d  Brand 
1996), (2) na tu ra l hum ic and  fulvic substances (K ogut and 
Voelker 2001), (3) synthetic chelating agents in surface o r 
wastewater inputs (Sedlak et al. 1997), o r (4) a  com bination 
o f  these ligands. M oreover, this com plexation o f  C u to 
strong chelating agents has been dem onstrated  in all 
seasons in S outh  Bay (Buck an d  Bruland 2005).

Previous studies have dem onstrated  th a t the strong Cu 
com plexation in South Bay limits C u uptake to  phyto- 
p lank ton . Beck e t al. (2002) found th a t > 99 .9%  of 
dissolved C u  was bound to  strong organic ligands in South 
Bay w ater samples collected in A pril 2000. A ccording to 
those authors, th a t com plexation explained why Cu was 
not depleted in their laborato ry  grow -out experim ents o f  
San Francisco Bay w ater isolated from  benthic grazers. 
Similarly, L uom a e t al. (1998) found th a t dissolved Cu was 
no t depleted during  the 1994 S outh  Bay spring bloom . A lso 
in a  South Bay field study, Buck and  B ruland (2005) found 
th a t C u concentrations and  speciation were n o t affected by 
the spring 2003 bloom.

Buck an d  Bruland (2005) sam pled in the same year as in 
this study, and  their da ta  also dem onstrated  th a t dissolved 
C u concentrations in January  2003 were com parable to 
concentrations m easured here. In  January , their m easured 
dissolved C u  concentrations a t Y erba Buena Island and 
D um barton  Bridge were 18.9 an d  33.7 nm ol L -1 , respec
tively. Those values were within the  range o f  concentrations 
(11.0-27.5 an d  33.7-45.4 nm ol L~>, respectively) th a t we 
m easured a t  o u r corresponding U SG S sites 21 and  32 
between February  an d  M ay. W e therefore concluded th a t it 
was unlikely th a t C u  depletion  occurred before o u r first 
sam pling date.

C o p p er Ka values w ere co n tro lled  by  site-specific 
processes, a s  they were fo r C o. In  the  final m odel, the only 
variable contro lling  C u Ka values w as the site from  w hich 
th e  sa m p les  w ere  c o lle c te d  (T a b le  6 ). T h e  im p o r ta n c e  o f  th e  
variable site indicates th a t C u  partition ing  was controlled 
by spatia l factors th a t are  n o t explained by the  sorbent 
factor.
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Fig. 10. Dissolved Ni concentrations were affected by both 
the bloom and site factors, which were significant (Table 5) 
factors in the Ni model. Within each site, growth of the bloom 
(increasing values of that factor) decreased dissolved Ni concen
trations, indicating uptake by phytoplankton.

N ickel—D issolved Ni was significantly  (p <  0.01; 
Table 5) depleted by the bloom  factor (Fig. 10), which 
followed from  its role as a  trace nutrient. The categorical 
variable, site, also significantly (p <  0.01; Table 5) affected 
dissolved N i concentrations. Those concentrations in 
creased from  our most oceanic site to o u r site in the 
extreme South Bay (Fig. 10). In  the N i m odel (Table 5), the 
decay fac to r was statistically significant (p =  0.054; 
Table 5), bu t its com paratively low m ean square erro r 
(Table 5) indicated that it accounted fo r only a  very small 
am ount o f  the variability. T hus, the  two principal terms 
controlling N i cycling were site and  the bloom  factor 
(Fig. 10).

The depletion o f  N i during this b loom  was consistent 
w ith a  decrease (75% reduction) in dissolved Ni concentra
tions observed during the 1994 S outh  Bay bloom  (Luom a 
et al. 1998) b u t contrasted w ith labora to ry  sim ulations o f  
the South Bay bloom  th a t show ed no  N i depletion (Beck et 
al. 2002). This discrepancy could be because o f  differences 
in the time o f  year the studies were conducted; seasonal 
changes in the relative con tribu tion  o f  w astew ater inputs 
an d  surface runoff sources m ight affect the  p roportion  o f  
com plexed N i (Sedlak e t al. 1997). A bout 25% o f  N i 
surface runoff is strongly com plexed by ethylenediam inete- 
traacetic acid (ED TA ), w hereas 75% o f  N i in w astew ater is 
bound to  ED TA  (Sedlak e t al. 1997; Bedsworth an d  Sedlak 
1999). Accordingly, in sum m er, w hen w astew ater is the 
dom inant source o f  freshw ater to  South Bay, a larger 
percentage o f  N i is complexed by E D TA . The Beck e t al. 
(2002) laborato ry  study could have contained  a  higher 
percentage o f  complexed N i th an  in th is study o r  the 
Loum a e t al. (1998) study because Beck and  colleagues 
collected w ater in A pril, 2 m onths la te r th an  field sam pling 
began in the o ther studies. Therefore, greater com plexation 
o f  N i in the Beck et al. (2002) study th an  in the field studies 
could explain why they d id  n o t observe N i depletion.

Alternatively, the difference between the  results o f  the 
studies could have been caused by U V  degradation  o f  the 
E D T A -N i complex, which has been observed by Sedlak et 
al. (1997). U V  degradation  could  have increased the

am ount o f  bioavailable N i in the field relative to  the Beck 
et al. (2002) lab o ra to ry  study , w hich used s ta n d a rd  
fluorescent lights to  culture the  phytoplankton. F u rth e r 
field sam pling and  laboratory  studies are needed to  resolve 
this disparity.

W e used the  average increase in Chi a  a t sites 32 an d  36 
from  24 F ebruary  to 04 M arch (65 pg  L -1 ) an d  the 
c o r re s p o n d in g  a v e ra g e  d e c re a se  in  d is s o lv e d  N i 
(5.8 nm ol L _ l) to  calculate the N i concentration  per m ass 
o f  phy toplankton. We m ultiplied the increase in C hi a  by 
the [C ]: (Chi a] ra tio  (C loem  et al. 1995) and  then divided 
by 0.3 to  convert [C] to  dry  weight o f  phy top lank ton  
(Luom a e t al. 1998) as follows:

/  65 Mg Chi / 3 5 p g C '\  J  0.3 p g C
\  L /  \F g  Chi a )  /  pg  phy toplankton

8 m g phytoplankton= _

W e divided the decrease in dissolved N i concentrations 
(5.8 nm ol L _ l ; Fig. 5) by the m ass o f  phy top lank ton  
produced (8 m g phy top lank ton  L_ l ) to  estim ate th a t 
phy toplankton  contained —0.7 pmol N i g _l d ry  weight. 
This estim ate was an o rder o f  m agnitude higher than  
concentrations o f  N i in phytop lank ton  reported by Luom a 
et al. (1998) fo r South Bay (0.04 pm ol g " 1) and  those cited 
by Bruland e t al. (1991) from  M onterey Bay (0.05 ± 
0.04 pm ol g -1 ). However, the results were m ore consistent 
with Tw ining e t al. (2004), who reported higher [m etal]; [C] 
ratios in phytop lank ton  than Bruland e t at. (1991), as 
shown in Table 1.

L ead—T h e b loom  fa c to r  significan tly  (p <  0.01; 
Table 5) depleted dissolved Pb. This depletion (Fig. 11) 
was presum ably due  to Pb sorption  on to  phytop lank ton  
surfaces because P b  is highly particle reactive. T he Ka 
values fo r Pb averaged —106 L kg -1 in this study, which 
w as c o n s is te n t w ith  p rev iously  re p o rte d  Ka va lues 
(10s-3 L  k g -1 ) for Pb in S outh  Bay (Squire e t al. 2002). 
The affinity o f  Pb for particles was also dem onstrated  by 
the o rder o f  m agnitude higher Pb concentrations in the 
particulate phase (Fig. 6) relative to  the dissolved phase 
(Fig. 5).

O ur hypothesis that Pb was sorbed to  phytop lank ton  
was also consistent with previous calculations show ing that 
surface area  determ ined the  Pb concentration  o f  planktonic  
organism s (M ichaels and  Flegal 1990). Lead so rp tion  to 
p h y to p lan k to n  w as a lso  dem o n stra ted  in  sh o rt- te rm  
labo ra to ry  experim ents w ith C onnecticut R iver w ater 
(M ylon e t al. 2003). In those experim ents, algal uptake 
rates o f  P b  spiked in to  C onnecticut R iver w ater were not 
affected by tem perature, indicating th a t m ost u p take  was 
caused by binding to  cell surfaces. F inally, it w as unlikely 
th a t algae to o k  up  dissolved P b  internally because > 9 5 %  of 
Pb is organically com plexed in San Francisco Bay (K ozelka 
et al. 1997).

W e ca lcu la ted  the  P b  c o n cen tra tio n  p er -m ass o f  
phy top lank ton  following the same m ethod we used to 
calculate the  N i concen tration  in phy top lank ton . We
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Fig. 11. Partial residual plots showing how the three PCA factors that were significant in the 
model (Table 5) affected dissolved Pb concentrations. (A) Dissolved Pb concentrations decreased 
during the bloom. (B) Dissolved Pb concentrations increased as sorbent increased. (C) During 
decay, which was indicated by declining values of that factor, dissolved Pb concentrations 
increased. The plots show the residuals when the model was run with two o f the three factors 
versus the remaining factor on the x-axis. The residuals on the y-axis are shown in terms of 
standard deviations. Accordingly, decay, which explained large standard deviations in the 
residuals, was more important to the model than bloom.

divided the  decrease in dissolved Pb (0.08 nm ol L _1; 
Fig. 5) from  24 February to 04 M arch a t sites 32 and 36 
by the m ass o f  phytoplankton produced (8 m g phytoplank
to n  L -* ) during  th a t time to determ ine that phy toplankton 
contained 0.01 pm ol Pb g ~ ‘ dry weight. T h a t estim ated 
concentration  was consistent with the single detectable 
value fo r P b  in phytoplankton (0.01 gm ol Pb g -1) with low 
A l (< 100  pg g ~ '; see Bruland et al. 1991) reported by 
M artin  an d  K nauer (1973). Similarly, in the Seine estuary, 
P b  concentrations in diatom s were 0.07 gm ol Pb g ~ ' 
(M iram and  e t al. 1998). O ur results were also consistent 
w ith culture studies tha t showed phytop lank ton  could 
accum ulate u p  to  1.7 X 104 m ore Pb per cell volum e than  in 
a n  equivalent am ount o f  am bient w ater, and  th a t the 
up take  was associated with the cell walls (F isher e t al. 
1983). F inally, by scavenging Pb, the bloom  could help 
retain  th a t m etal within the estuary, as has been observed 
fo r o ther m etals (Luom a et al. 1998).

A lthough the  bloom  factor accounted fo r depletion o f 
dissolved P b  concentrations, the m ost im portan t factor 
affecting dissolved Pb concentrations was the  decay factor 
(Table 5). D uring  decom position o f  the bloom , which was 
indicated by decreasing values o f  the decay factor, dissolved 
P b  concentrations increased (Table 5; Fig. 11). The increase 
in dissolved P b  was consistent with the diagenetic release o f  
P b  from  historically contam inated sediments, w hich are now 
the  m ajor source o f  P b  to  San Francisco Bay waters (Steding 
e t al. 2000; Flegal e t al. 2005).

Annual contribution o f  phytoplankton— W e calculated the 
am ount o f  N i from  w astewater treatm ent p lants th a t was 
cycled th ro u g h  p hy top lank ton  annually  to  determ ine 
w hether phytop lank ton  could be an  im portan t m echanism  
fo r trap p in g  an th ropogenically  derived m etals in the 
estu a ry . W e  focused on the region o f  the S outh  Bay south  
o f  the D u m b arto n  Bridge (lower S outh  Bay) because o u r 
sites 32 and  36 bracketed th a t area  (Fig. 1). Follow ing 
calculations in Luom a et al. (1998), we calculated the ra tio

o f  metal depleted ( J  M etal) to  D R P  depleted (A D R P) for 
the period between 24 F ebruary  and  04 M arch.

d M eta l 5.8 nm ol L _l l n _ i
W l = = , 750nmolL-l -  X

W e then  determ ined  th e  an n u a l D R P  consum ption , 
according to

( i ^ n j o l C  p roduction^  (3.4 x 107 m 2 surface area)

(  l -m0 l , V ) =  4.0 X  106 m ol P yr_l
\1 0 6  m ol C J

where the product o f  the annual South Bay net p roduction  
(Cole an d  C loem  1984) and  the  lower South Bay surface 
area (H ager an d  Schemel 1996) gave the South B ay annual 
prim ary production , and  division by the Redfield ratio  
converted the annual C production  to  annual P consum p
tion. T hen, we m ultiplied the annual P  consum ption  by 
7 Metai and  found th a t algae in lower South Bay have the 
po tential to  sorb  (adsorb  o r  assim ilate) 1.3 X 104 m ol o f  Ni 
each year.

The 1.3 x  104 m ol o f  N i cycled by the phy toplankton 
was abo u t 75% o f  the N i discharged into the lower South 
Bay by w astew ater treatm ent p lan ts in 2003. In  th a t year, 
the Palo A lto, San Jose and  S an ta  C lara, and  Sunnyvale 
w astew ater trea tm ent p lan ts released 1.8 x  104 m ol o f  Ni 
to  the low er S outh  Bay (R . E. Looker pers. com m .). The 
trapp ing  o f  discharged N i by phy top lank ton  was consistent 
with results from  Luom a e t al. (1998), w hich show ed that 
about 60%  o f  the N i discharged to  the entire S outh  Bay was 
assim ilated by phytoplankton. A s those au thors discussed, 
these calculations were rough  because [metal] :[P] uptake 
ratios by phy top lank ton  vary. Furtherm ore, o u r calcula
tion  o f  N i assim ilation w as conservative because we used 
the prim ary productivity  calculated for S outh  Bay, n o t the
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lower South Bay where bloom s are m ore intense. Despite 
these uncertainties, we concluded th a t (1) N i loadings to 
S outh  Bay from  wastewater treatm ent p lants are  relatively 
large, (2) phytoplankton trap  enough N i th a t changes in 
phy to p lan k to n  biom ass will affect m etal cycling and 
retention, and  (3) the bloom  has the potential to  introduce 
N i to the food chain because benthic organism s often take 
advantage o f  the bloom  to  grow and  reproduce (Thom pson 
and  Nichols 1988).

Phytoplankton play an  im portant role in m etal cycling in 
the  estuary  by trapping m etals, m aking those metals 
b ioava ilab le  to  th e  food  ch a in , a n d  a lte rin g  m etal 
concentrations during bloom  events. Accordingly, changes 
in phy toplankton biom ass (e.g., from  nutrient enrichm ent) 
are likely to  have complex effects on m etal cycling tha t 
m ight n o t be readily anticipated. T h a t conclusion is 
consisten t w ith  m odels by C lo em  (2001) th a t show 
eutrophication  has unique and  subtle m anifestations in 
each estuary, including alterations in m etal cycling in the 
San Francisco Bay.

By exploiting the predictability o f  the South Bay bloom, 
we were able to  determ ine which m etals were affected by 
nutrient-enriched blooms. Only 3 o f  the  m etals in this study 
(M n, N i, an d  Pb) were decreased by the bloom  factor 
(Table 5). D uring the bloom, N i was likely assim ilated by 
phytoplankton and  m ade bioavailable to  the food chain. 
C ontrary  to  o u r hypotheses, dissolved C o and  Zn were not 
m easurably depleted by the bloom  factor, possibly because 
( 1) sam pling started  too late to  cap ture the  draw dow n, (2) 
kinetics o f  ox idation  and  rep a rtitio n in g  m asked the 
depletions, (3) organic com plexation limited the bioavail
ability o f  the m etals, or (4) a  com bination  o f  these factors. 
C onsistent w ith o u r hypothesis, dissolved C u  was not 
affected by either the bloom  o r  decay factors, attesting to 
its strong organic com plexation th a t limits its bioavailabil
ity and toxicity in the estuary. T he decay o f  the bloom  
m aterial also affected cycling o f  o th e r  m etals. Dissolved 
M n, Co, Z n, and P b  were rem obilized, presum ably by 
reductive dissolution o f  Fe and M n (hydr)oxides in surficial 
sediments during  algal decom position. T he effects o f  the 
b loom  and  its decay on m etal concentrations in the estuary 
were consistent w ith the biogeochem istries o f  the m etals 
an d  dem onstrated that nutrient-enriched bloom s affect 
m etal cycling.
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CHAPTER 2: DEPLETION OF DISSOLVED METHYL MERCURY BY A 
PHYTOPLANKTON BLOOM IN SAN FRANCISCO BAY

Abstract

To study the effects of phytoplankton on mercury cycling, we followed the 

spring 2003 diatom bloom in San Francisco Bay as it grew and decayed. The growth 

and decay phases were characterized by principal component analyses of the water 

chemistry data. During growth of the bloom, dissolved (< 0.45 pm) methyl mercury 

(MeHg) concentrations significantly (p = 0.03) decreased in the water column. Then, 

those concentrations significantly (p = 0.04) increased during decay, likely due to 

mineralization of phytoplankton detritus and/or production in sediments. We used the 

dissolved MeHg depletion to calculate that the algal MeHg concentration was 3-10 

pmol g '1 (dry weight), with the lowest values at the bloom’s peak. In contrast to 

dissolved MeHg, dissolved total Hg (Hgx) concentrations were not measurably 

altered by bloom growth or decay. That difference corroborated previous culture 

studies in which phytoplankton accumulated more MeHg than inorganic Hg because 

MeHg uptake was active. As the bloom decayed, HgT Ka values significantly (p = 

0.012) increased, presumably because (1) more Hgi associated with particles when 

dissolved organic carbon concentrations were high and (2) particles (i.e., 

phytoplankton) with low Hgx concentrations were lost from the water column. Based 

on the relationship between HgT particulate concentrations and percent 

phytoplankton, the algal Hgx concentration was 0.5 nmol g"1 (dry weight). An
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increase in phytoplankton biomass in the estuary could affect mercury bioavailability 

by transferring MeHg from water to phytoplankton, increasing MeHg concentrations 

in water and particles as algae decay, and entraining HgT in the estuary through 

biogenic scavenging.
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Introduction

Studies in laboratories (Mason et al. 1996; Moye et al. 2002), mesocosms 

(Pickhardt et al. 2002), and lakes (Chen and Folt 2005; Watras and Bloom 1992) 

indicate that phytoplankton play a critical role in mercury uptake and bioavailability. 

For example, culture studies show that phytoplankton actively accumulate methyl 

mercury (MeHg) and concentrate it by a factor of 104 to 105 (Moye et al. 2002; 

Pickhardt and Fisher 2007). Because phytoplankton store MeHg in the cytoplasm, 

where it is readily assimilated by zooplankton, phytoplankton are responsible for the 

preferential accumulation of MeHg over inorganic forms of mercury in food chains 

(Mason et al. 1995; Mason et al. 1996).

Ultimately, the concentration of MeHg in fish may depend on the abundance 

of phytoplankton, based on studies with mesocosms and lakes that show an inverse 

correlation between algal abundance and MeHg concentrations in zooplankton and 

fish (Chen and Folt 2005; Pickhardt et al. 2002) . We sought to evaluate the role of 

phytoplankton in the San Francisco Bay estuary, where mercury concentrations are 

generally lower than in culture studies, and myriad other processes affect mercury 

cycling. To capture a change in phytoplankton biomass, we sampled during a 

predictably occurring spring diatom bloom in the southern reach of San Francisco 

Bay, or South Bay (Figure 2.1).

Sampling during a spring bloom is a strategy that has been previously used in 

South Bay to study the uptake of other metals (e.g., Cd, Cu, Mn, Ni, Pb, Zn) by
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phytoplankton (Luengen et al. 2007; Luoma et al. 1998). The conditions that setup 

the bloom— calm, stratified water and neap tides (Cloem 1996)— also minimize 

sediment resuspension and horizontal movement of water. Thus, changes in metal 

concentrations during a bloom may be attributed to biological activity. Luoma et al. 

(1998) used the 1994 spring bloom to show that Cd, Ni, and Zn were bioavailable 

because they were depleted from the water during the bloom, but that dissolved Cu 

was not depleted and not bioavailable. Additional research on the South Bay bloom 

in spring 2003 (Luengen et al. 2007) found that some metals (e.g., Mn, Co, Zn, and 

Pb) increased as the bloom degraded, demonstrating that decay of the bloom also 

impacted metal cycling. However, neither total Hg (Hgx), which includes both 

inorganic and organic forms of mercury, nor MeHg has been previously measured 

during a South Bay bloom, despite concerns with mercury pollution in the estuary 

(Thompson et al. 2000).

Concentrations of Hgx as high as 440 pmol L '1 (Conaway et al. 2003) in

unfiltered surface waters are primarily the result of both historic gold and mercury

mining in the estuary’s watersheds (Domagalski 2001; Thomas et al. 2002). Mercury

that enters the northern reach of the estuary via the Sacramento and San Joaquin

Rivers was transported to the Sierra Nevada during historic gold mining operations

(Domagalski 2001; Ganguli et al. 2000; Hornberger et al. 1999). That mercury was

originally mined in the Coast Range, and the now abandoned Coast Range mines

drain into South Bay through the Guadalupe River and other small tributaries (Alpers

et al. 2005; Cargill et al. 1980; Thomas et al. 2002). The combined mercury inputs
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from the Sierra Nevada and the Coast Range contribute up to several hundred 

kilograms of mercury to the estuary every year, far more than contemporary sources 

(e.g. atmospheric deposition, wastewater treatment plants, and surface water runoff) 

(Conaway et al. 2003; Domagalski 2001; Thomas et al. 2002). Although the cycling 

of this mercury in the estuary has been previously studied (Choe and Gill 2003; Choe 

et al. 2003; Conaway et al. 2003), the role of phytoplankton in mercury cycling needs 

further investigation (Choe et al. 2003).

Data from the northern reach of San Francisco Bay (Choe and Gill 2003;

Choe et al. 2003) along with field data from other studies indicate that phytoplankton 

can affect mercury cycling. For example, Choe et al. (2003) found a relationship 

between chlorophyll a (Chi a) and particulate HgT in some seasons in North Bay. 

Those variables were likewise correlated in a study of the Kara Sea, Siberia (Coquery 

et al. 1995), and the authors attributed that relationship to uptake of Hgx by 

phytoplankton. Field studies have also found evidence of uptake of MeHg by 

phytoplankton. For example, in Minnesota lakes MeHg concentrations increased in 

net plankton (> 300 pm) while simultaneously decreasing in water (Monson and 

Brezonik 1998). Finally, phytoplankton may be involved in Hg° formation, based on 

the correlation between phytoplankton pigments and Hg° in the Scheldt estuary, 

Netherlands (Baeyens et al. 1998). Our research expands on these field studies by 

following a specific bloom event, where inputs of mercury were likely minimal, 

across a large range of Chi a concentrations and by using principal component
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analyses (PCA) and general linear models to ascribe changes in mercury 

concentrations to specific processes.

By closely following the spring bloom, we sought to test in an estuary some of 

the hypotheses that were developed in mesocosms and lakes. First, we predicted that 

the bloom would deplete dissolved (< 0.45 pm) MeHg but not dissolved Hgx. That 

finding would corroborate previous culture studies that showed phytoplankton 

accumulate more MeHg than inorganic Hg, likely because only the former is actively 

(i.e., energy expended) taken up by phytoplankton (Moye et al. 2002; Pickhardt and 

Fisher 2007).

Second, we looked for evidence that MeHg concentrations in phytoplankton 

decreased when Chi a concentrations were high, which would be evidence of bloom 

dilution. According to the bloom dilution hypothesis, which has been tested in 

mesocosms (Pickhardt et al. 2002) and lakes (Chen and Folt 2005), an increase in 

algal biomass decreases the amount of MeHg per individual phytoplankter and thus 

the amount of MeHg accumulated in higher trophic levels. If bloom dilution occurs 

in South Bay, we would expect that the recently observed increase in algal biomass in 

San Francisco Bay (Cloern et al. 2006) would decrease MeHg availability to the food 

chain.

Third, we calculated the concentration of MeHg and Hgx in South Bay

phytoplankton to provide regulators with site-specific bioaccumulation factors that

can be used to model mercury transport in the estuary. Finally, we wanted to

determine if the decay of the bloom affected MeHg and HgT concentrations or
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partitioning, as has been observed for other metals during that period (Luengen et al. 

2007). Based on these studies, we expected that the growth and decay of the bloom 

would alter mercury cycling in San Francisco Bay and that processes affecting 

phytoplankton biomass (e.g., eutrophication) could impact mercury bioavailability in 

estuaries.

Methods

Sampling— Samples were collected at three sites in the channel of South Bay (Figure

2.1) as part of a previously described study focused on the 2003 phytoplankton bloom 

(Luengen et al. 2007). Sampling began 19 February 2003 and continued at 

approximately weekly intervals until 01 May 2003, well after the peak of the bloom.

A subsequent cruise on 27 August 2003 provided a non-bloom contrast to the spring 

data at those sties. All samples were taken aboard the United States Geological 

Survey (USGS) R/V Polaris.

Using trace metal clean techniques previously employed in San Francisco Bay 

(Flegal et al. 1991), surface water for mercury analyses was collected via two 

peristaltic pumps equipped with acid-cleaned Teflon tubing. One pump was equipped 

with an acid-cleaned Osmonics polypropylene filter (Calyx Capsule) to collect 

dissolved (< 0.45 pm) samples. The second pump was used to collect total 

(unfiltered) samples. Samples were immediately frozen on dry ice and stored frozen
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until analysis. Particulate MeHg and HgT concentrations were later calculated as the 

difference between total (unfiltered) and dissolved concentrations.

In addition to the mercury samples, we measured 15 water chemistry 

variables: Chi a, phaeophytin (Phaeo), Chi a /(Chi a + Phaeo), suspended particulate 

matter (SPM), salinity, dissolved oxygen, temperature, water density (ct), dissolved 

organic carbon (DOC), dissolved reactive phosphate, dissolved silicate, dissolved 

inorganic nitrogen, tidal amplitude, and total (unfiltered) Fe and Mn. The techniques 

for collecting and analyzing those samples, including the use of a Sea-Bird 

Electronics underwater unit (SBE-9 plus) to take vertical profiles, are described 

elsewhere (Caffrey et al. 1998; Luengen et al. 2007)

PCA factors—As described previously (Luengen et al. 2007), principal component 

analysis (PCA) was used to reduce the 15 water chemistry variables to three 

composite factors. The purpose of this step was to create new factors that were, by 

definition, independent (i.e. non-collinear) and could be used in subsequent analyses 

in place of the original variables, many of which were collinear and would therefore 

violate the assumptions of multivariate analysis. The contribution of the original 

water chemistry variables to the derived PCA factors was given by the component 

loadings in Luengen et al. (2007).

The first derived factor was a bloom factor. Increasing values of the bloom

factor described declining temperature and salinity, decreasing concentrations of

dissolved inorganic nitrogen and silicate, rising dissolved oxygen values, and growth
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of Chi a. Thus, the bloom factor characterized both the environmental conditions that 

set the stage for that phytoplankton bloom and the resultant increase in Chi a.

The second composite factor represented the amount of material available for 

mercury sorption. Increasing values of the sorbent factor were characterized by 

increasing concentrations of the following: SPM, unfiltered Fe and Mn, and dissolved 

reactive phosphate, which is particle reactive. Increasing values of the sorbent factor 

were also characterized by declines in ot, which was likely the result of fluvial inputs 

with high SPM concentrations.

The third factor was a decay factor, with deceasing values of that factor 

associated with decomposition of the bloom. Decreasing values of the decay factor 

represented declining values of Phaeo and increasing values of DOC, as organic 

matter decomposed from the particulate to the dissolved phase.

Analyses ofMeHg andHgT— Dissolved and total (unfiltered) water samples for 

MeHg analyses were preserved by addition of 0.02% sulfuric acid (Parker and Bloom 

2005). Samples were then analyzed by distillation, aqueous phase ethylation, volatile 

organic trapping, and quantification by CVAFS (Bloom 1989; Bloom and Von Der 

Geest 1995; Horvat et al. 1993). The detection limit was 0.041 pmol L '1. Because no 

certified reference material for MeHg in water existed, we analyzed a diluted 

digestion of a dogfish reference material (DORM-2) from the National Research 

Council, Canada. Recovery was 86%. Our matrix spike recoveries averaged 94%.
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Dissolved and total (unfiltered) water samples for HgT analyses were thawed 

and oxidized by addition of 0.5% bromine monochloride for at least 2 hours.

Samples were then pre-reduced with hydroxylamine hydrochloride, reduced with tin 

chloride, and then analyzed by cold vapor atomic fluorescence spectrophotometry 

(CVAFS) and two-stage gold amalgamation trapping (Bloom and Fitzgerald 1988; 

Gill and Fitzgerald 1987).

At the University of California, Santa Cruz (UCSC), Hgx samples were 

analyzed with a Tekran 2600, as described in Conaway et al. (2003). The instrument 

was calibrated using a five point curve with an rL> 0.99. We checked accuracy by 

running ORMS-3, a certified reference material from the National Research Council, 

Canada that consisted of river water spiked with inorganic Hg. The certified value 

(x ± 2o ) was 62.8 ± 5.5 pmol L'1, and our measured value was 59.6 ± 4.5 pmol L '1. 

We also ran matrix spikes with quantitative (82 - 100%) recoveries. Sample 

concentrations were above detection limits (3o of the blanks), which were 0.43 pmol 

L 1 for dissolved samples and 3 .7 pmol L’1 for total (unfiltered) samples. For 

dissolved samples, the relative standard deviation (RSD) of laboratory duplicates was 

15%, and the RSD of duplicate field samples was 17%. For total (unfiltered) 

samples, the RSD of laboratory replicates was 4%, and the RSD of duplicate field 

samples was 6.5%.

Development o f multivariate models—The first goal of our statistical analysis was to

determine if the composite factors developed by PCA were associated with MeHg
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concentrations or partitioning. Because most of our MeHg samples were from site 

36, our statistical analysis focused only on that site. We began by examining the 

dissolved MeHg and MeHg Kd data for normality, and we log transformed the MeHg 

Kd values to achieve a normal distribution. We then used a general linear model 

routine (GLM) in Systat (Version 10.2.05) to run multi-linear regression analyses 

with the dependent variable as either dissolved MeHg concentrations or MeHg Kd 

values. The composite factors were by definition independent, and we therefore 

initially included all of them in the analysis. Composite factors with p  > 0.15 were 

then successively dropped from the model to develop models that described the 

dependent variables with the fewest number of variables, an approach that we used 

previously (Luengen et al. 2007) for other metals.

We also a used model-building approach to look at the effects of the three 

PCA factors and the categorical variable, site, on dissolved Hgx concentrations and 

HgT Kd values. Both of those dependent variables were normally distributed.

Because this model included a categorical variable (site), we used the GLM routine to 

run an analysis of covariance (ANCOVA). We first ran a “full” model that included 

that four way interaction (factor l*factor 2*factor 3*site) to test the assumption of 

homogeneity of complex shapes. If the p  value was >0.15, we dropped the 

interaction term and ran the “reduced” model (Quinn and Keough 2002). As in our 

approach to the MeHg data, we then dropped factors with p  > 0.15 to build models 

that best described dissolved Hgx concentrations and Hgx Kd values.
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By developing these multivariate models, we were able to account for co

occurring processes, such as decay of phytoplankton and a simultaneous pulse of 

SPM. Thus, this approach was critical to allowing us to work in an estuary where 

processes cannot be isolated, as they are in culture studies. To graphically depict 

these multiple processes, we used partial residual plots, which showed the 

contribution of a single term by removing it from the model and plotting the residuals 

against the omitted factor. The contribution of the omitted term was then judged by 

the extent to which it accounted for variability in residuals.

Results

MeHg concentrations—Concentrations of dissolved MeHg ranged from below the 

detection limit (0.041 pmol L '1) to 0.13 pmol L '1 and averaged 0.060 pmol L '1 (Figure

2.2). Those concentrations were consistent with the range of dissolved MeHg 

concentrations (0.05 - 0.4 pmol L '1) measured in South San Francisco Bay between 

1999 and 2001 (Choe and Gill 2003; Conaway et al. 2003). Concentrations of total 

(unfiltered) MeHg in this study ranged from 0.12 to 1.3 pmol L 1 and averaged 0.45 

pmol L '1 (Figure 2.2). Those values were also consistent with concentrations (0.10 to 

1.2 pmol L '1) recently measured in South Bay (Choe and Gill 2003; Conaway et al.

2003).

Most of the MeHg measured in this study was bound to particles, as evidenced 

by our MeHg distribution coefficients (Kd values) shown in Table 2.1. As indicated
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by the high Kj values, MeHg associated with particles comprised 63-96% of the total 

(unfiltered) MeHg. That result was consistent with those of Choe and Gill (2003), 

who found that 85% of total (unfiltered) MeHg was associated with particles at their 

site in the extreme South Bay. Our highest value of total (unfiltered) MeHg, of 1.3 

pmol L '1 on 19 February at site 32 (Figure 2.2), was associated with a pulse of SPM 

(Table 2 .1), attesting to the importance of MeHg associated with resuspended 

particles in this system.

Statistical models fo r  MeHg— Dissolved MeHg concentrations were significantly 

ip < 0.05) affected by both the bloom and decay factors (Table 2.2). The contribution 

of those two factors to dissolved MeHg concentrations was roughly equal, based on 

the comparable t values, which can be used to assess the relative contribution of the 

terms in the model. To determine the direction and magnitude of the relationship 

between the PCA factors and dissolved MeHg concentrations, we used partial 

residual plots. Those plots (Figure 2.3) showed that increasing values of the bloom 

factor (growth of the bloom) explained decreases in dissolved MeHg concentrations. 

Similarly, decreasing values of the decay factor (decay of the bloom) explained 

increases in dissolved MeHg concentrations (Figure 2.3).

The Kd values for MeHg at site 36 were significantly (p = 0.021) affected by 

the bloom factor (Table 2.3). As the bloom grew (increasing values of the bloom 

factor), the MeHg Kd values increased (Figure 2.4). That increase was likely due to
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phytoplankton uptake of MeHg, which would have increased MeHg concentrations in 

the particulate phase.

Hgr concentrations— Concentrations of dissolved HgT in this study ranged from 1.5 - 

6.6 pmol L '1 and averaged 3 .9 pmol L '1 (Figure 2.2), which was consistent with 

concentrations (2.8 - 53 pmol L '1) observed in two previous studies in that reach of 

the estuary (Choe et al. 2003; Conaway et al. 2003). Concentrations of unfiltered Hgx 

in this study ranged from 8.1 - 150 pmol L '1 and averaged 40 pmol L '1 (Figure 2.2), 

which also agreed with previous measurements (1.8 - 210 pmol L '1). Our highest 

value, 150 pmol L '1 was measured at site 32, near the Dumbarton Bridge. Choe et al. 

(2003) found that their highest concentration of unfiltered Hgx was in South Bay; 

they measured 163 pmol L '1 in the extreme South Bay in March 2001.

Concentrations at their other two South Bay sites were considerably lower (-20 and 

-40 pmol L '1), and consistent with average values reported by Conaway et al. (2003) 

for the southern and central reaches of the estuary.

Our Ka values for Hgx ranged from 1 x 105 to 7 x 105 L kg'1 (Table 2.2).

Those relatively high values demonstrated that most Hgx was associated with SPM. 

Strong particle association was also shown by Conaway et al. (2003), who reported 

Kd values ranging from 104 to 107 L kg'1 for Hgx throughout the estuary. Similarly, 

Choe et al. (2003) found that 88 + 7% of the unfiltered Hgx from their sites 

throughout the estuary was associated with particulates.
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Statistical models fo r  HgT— In our GLM for dissolved HgT, concentrations of Hgx 

were significantly (p < 0.01) affected only by location (Table 2.2). Concentrations of 

dissolved Hgx were highest at site 36, intermediate at site 32, and lowest at site 21 

(Figure 2.2). In contrast to dissolved MeHg concentrations, dissolved Hgx 

concentrations were not measurably affected by the bloom or decay factors.

In addition to looking at the effects of bloom processes on dissolved HgT 

concentrations, we developed a GLM to determine what processes affected HgT 

partitioning. Table 2.3 shows that the decay factor significantly (p = 0.012) affected 

Hgx Kd values. As the bloom decayed (decreasing values of the decay factor), Hgx 

Kd values increased (Figure 2.5), indicating that more Hgx became associated with 

SPM over that period. This result differed from MeHg Kd values, which were not 

measurably altered by the decay of the bloom, perhaps because Hg(II) reacts with 

cellular debris much more rapidly than MeHg (Mason et al. 1996).

The categorical variable, site, and the sorbent factor also had significant ip = 

0.048) and marginally significant (p = 0.068) effects, respectively, on HgT Kd values 

(Table 2.3). However, site and the sorbent factor were less important than the decay 

factor for describing Hgx Kd values, based on their comparatively lower p  values and 

mean-square values (Table 2.3). The mean-square values provide an estimate of the 

variance associated with each of the terms and can therefore be used to assess the 

relative contribution of each of the terms to the model fit. Accordingly, we concluded 

that the most important term explaining Hgx partitioning in the model was the decay 

factor.
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Discussion

Bloom affects dissolved MeHg concentrations—Dissolved MeHg was depleted during 

the bloom (Figure 2 .3), consistent with uptake of MeHg by phytoplankton. Depletion 

of dissolved Mn, Ni, and Pb (Luengen et al. 2007) has been previously observed 

during the 2003 bloom and depletion of dissolved Cd, Ni, and Zn occurred during the 

1994 spring bloom (Luoma et al. 1998). Depletion of some metals during 

phytoplankton blooms has also been observed in other bays, including dissolved Cd 

and Zn in the Scheldt estuary, Netherlands (Zwolsman and Van Eck 1999) and truly 

dissolved (< 1 kD) Al, Co, Cu, Mn, and Ni in Ekhagen Bay, Baltic Sea (Ingri et al.

2004).

MeHg in phytoplankton—-We calculated the concentration of MeHg in phytoplankton 

based on our observed depletion of dissolved MeHg. Because of the limited data 

from the other sites, we focused our calculations on site 36. At that site, Chi a 

concentrations were already at 62 gg L'1 (Table 2.1) by the time we made our first 

measurement of dissolved MeHg on 24 February. We accordingly looked for values 

in the literature to establish a winter pre-bloom value for our site. In February 2000, 

when Chi a concentrations were 4.9 pg L '1, Conaway et al. (2003) measured a 

dissolved MeHg concentration of 0.085 pmol L '1 at their corresponding site (37.470° 

N, 122.063° W) which was located less than 300 m from our site 36 (37.472°N, 

122.065°W). That value was in excellent agreement with our non-bloom (Chi a 6.3
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fag L'1) summer concentration of dissolved MeHg of 0.083 pmol L '1 at site 36. A 

slightly higher concentration of 0.11 pmol L '1 of dissolved MeHg was measured by 

Choe and Gill (2003) under low Chi a (4.09 pg L'1) conditions in March 2001 at their 

site (37.467°N, 122.062°W) in South Bay. Therefore, we used the average of those 

three values, which was 0.093 pmol L '1, as our best estimate of the pre-bloom 

concentration of dissolved MeHg at that site.

We then calculated that the algal bloom assimilated 0.067 pmol L '1 of 

dissolved MeHg, which was the difference between the pre-bloom concentration 

(0.093 pmol L '1) and the bloom concentration (0.026 pmol L '1). The bloom 

concentration was the value measured on both 24 February and 04 March (Figure 2.2) 

when Chi a concentrations were 62 pg L '1 and 169 pg L'1, respectively (Table 2.1). 

Under those rapid growth conditions, dissolved MeHg concentrations were depleted 

below our analytical detection limit of 0.041 pmol L 1. Accordingly, a value of half 

the detection limit (0.020 pmol L '1) would also have been a reasonable value for our 

calculation, but would have resulted in an assimilation of the same magnitude.

Although our calculated assimilation of 0.067 pmol L '1 of MeHg was small, it 

was above the background noise, based our detection limit and our precision from 

duplicate field samples. If we used the detection limit of 0.041 pmol L’1 as an 

indicator of the amount of change that we could measure, 0.067 pmol L '1 was above 

that threshold. Our precision from duplicate field samples was even lower; our 

dissolved field duplicates at site 32 on 04 March differed by only 0.006 pmol L"1 

(Figure 2.2).
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Accordingly, we calculated the MeHg concentration in phytoplankton by 

dividing the MeHg assimilation (0.067 pmol L"1) by the corresponding increase in 

bloom-derived material from pre-bloom conditions to 24 February. Then, we 

converted the increase in bloom derived material (58 pg L '1 of Chi a and Phaeo), to 

grams dry weight of phytoplankton, following ratios previously used for South Bay 

(Cloern et al. 1995; Luengen et al. 2007; Luoma et al. 1998):

^58 pg Chi f  35pgC ^ /  0.3 pgC 6.8 mg phytoplankton
I  L J ^pgChl /  pg phytoplankton L

Division of 0.067 pmol L '1 of MeHg by 6 .8 mg phytoplankton/L yielded a MeHg 

concentration in phytoplankton on 24 February of 10 pmol g '1 (dry weight). That 

result was consistent with previously reported concentrations in the estuary and 

elsewhere (Table 2.4).

We repeated the process to calculate the concentration of MeHg in 

phytoplankton from pre-bloom conditions to 04 March. We converted the algal 

increase in Chi a plus Phaeo concentrations (177 pg L'1) to 21 mg (dry weight) 

phytoplankton. Division of 0.067 pmol L '1 of MeHg by 21 mg of phytoplankton 

yielded a concentration of 3.2 pmol per g'1 phytoplankton. That 04 March algal value 

was lower than the 24 February value because Chi a concentrations nearly tripled 

between 24 February and 04 March while dissolved MeHg concentrations remained 

the same (Table 2.1, Figure 2.2). Thus, our calculated —30% decrease in 

phytoplankton MeHg concentrations was a result of an initial depletion of MeHg
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from the water column at the beginning of February, which subsequently limited the 

amount of MeHg available as the bloom continued growing.

Even if dissolved MeHg concentrations had been depleted to 0 pmol L '1 on 04 

March, the depletion of 0.093 pmol L 1 would have resulted in a MeHg concentration 

of 4.4 pmol g 1 (dry weight) of phytoplankton, a value still below that of 24 February. 

These results are consistent with bloom dilution. Bloom dilution has been previously 

observed in experiments where researchers varied nutrient concentrations in different 

mesocosms to create a range of bloom intensities (Pickhardt et al. 2002). The 

researchers then added different stable isotopes (CH3200Hg+ and 201Hg2+) of MeHg 

and inorganic Hg to the water and found that when Chi a concentrations were high, 

concentrations of MeHg in phytoplankton and zooplankton decreased.

One limitation to this study is that it was not possible to MeHg or HgT

concentrations directly in phytoplankton. Although our calculations indicated that

algal MeHg concentrations decreased during the bloom, if phytoplankton rapidly

assimilated MeHg from another source (e.g., production in sediments or desorption

from the particulate phase), the algal MeHg concentration could have remained

constant during the bloom. However, we think that desorption from the particulate

phase was unlikely, based on mesocosm experiments on tidal resuspension that

showed that dissolved MeHg and Hgx concentrations did not increase as a result of

sediment resuspension (Kim et al. 2004a). Furthermore, stratification of the water

column would have limited the flux of dissolved MeHg to the surface water that we

sampled. During the unusually warm, calm conditions of the bloom, the South Bay
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would have resembled the mesocosm conditions in previous bloom dilution 

experiments (Pickhardt et al. 2002) more closely than it would have at any other time 

of year. Accordingly, our results are consistent with bloom dilution, and demonstrate 

for the first time that bloom dilution could be an important process in an estuary. 

However, bloom dilution was a transient event, and as we will discuss in the next 

section, decay may have a larger impact on mercury cycling within the estuary 

because of the potential for MeHg production during bloom decay.

Decay increases dissolved MeHg concentrations—During decay of the bloom, which

was indicated by decreasing values of the decay factor, dissolved MeHg increased

(Figure 2.3). We attributed that increase to a combination of remineralization of

phytoplankton and production of MeHg in anoxic sediments. Previous research has

demonstrated that MeHg is produced in San Francisco Bay sediments (Marvin-

Dipasquale and Agee 2003; Olson and Cooper 1974), presumably due to methylation

of inorganic Hg by bacteria that reduce sulfate and/or Fe (Benoit et al. 2003; Gilmour

et al. 1998; Kerin et al. 2006). As the bloom decayed, conditions would have been

favorable for mercury methylation because the decomposing algae likely depleted

dissolved oxygen in sediments, as was seen following the South Bay bloom in 1996

(Grenz et al. 2000). Those low oxygen conditions would have facilitated the transfer

of MeHg to the water column, based on a study that showed MeHg fluxes to the

water column increased when dissolved oxygen concentrations decreased at night in

Lavaca Bay, Texas (Gill et al. 1999). A flux of MeHg from sediments to water under
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hypoxic conditions was also demonstrated in laboratory incubations of sediments 

from Baltimore Harbor (Mason et al. 2006). In that study, MeHg and sulfide co

occurred in the overlying water, indicating that sulfate reduction was producing 

MeHg. Our results support the conclusions of Mason et al. (2006) that production of 

MeHg at the sediment-water interface could be an important, yet overlooked, source 

of MeHg to the water column.

Our proposed production of MeHg in sediments following a bloom was also 

consistent with past studies showing that concentrations of other dissolved metals 

could be measurably increased by release from sediments following a bloom. For 

example, dissolved Mn increased following the spring 1996 bloom in South Bay 

(Roitz et al. 2002), and dissolved Co, Mn, Zn, and Pb increased after the spring 2003 

bloom (Luengen et al. 2007). In both cases, the increase was attributed to reductive 

dissolution of Fe and Mn hydr(oxides) in suboxic sediments. The release of Mn from 

surface sediments in hypoxic conditions has been demonstrated in laboratory 

experiments with sediment cores (Riedel et al. 1999). Furthermore, in South Bay, 

diagenetic remobilization from surface sediments is a known source of other trace 

metals (e.g., Cd, Zn, Co, Fe, Pb, and Zn) to the water column (Flegal et al. 1991; 

Rivera-Duarte and Flegal 1997). The remobilization of other metals during the decay 

of the spring 2003 bloom indicates that there were low oxygen conditions in surface 

sediments, which could have lead to the production and release of MeHg.
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Factors affecting dissolved HgT concentrations—Concentrations of dissolved Hgr 

increased from our most oceanic site (21) to our site in the extreme South Bay (36), 

as shown in Figure 2.2. We attributed that distribution to diagenetic remobilization of 

mercury from historically contaminated sediments within the estuary and ongoing 

mercury inputs to the extreme South Bay from abandoned mercury mines in the 

watershed (Conaway et al. 2003; Thomas et al. 2002). The extreme South Bay also 

has proportionately long residence times and seasonally high concentrations of many 

metals due to its limited hydraulic flushing (Flegal et al. 1991). These results further 

indicate that the concentrations of dissolved Hgx in the estuary are primarily 

controlled by physical processes, such as inputs and mixing.

Unlike dissolved MeFIg, dissolved Hgx was not significantly (p = 0.16, Table

2.2) depleted by the phytoplankton bloom, consistent with active uptake and

internalization of MeHg versus passive sorption of HgT onto cell surfaces. Because

most (90%) inorganic Hg sorbs onto cell surfaces (Mason et al. 1995; Pickhardt and

Fisher 2007), the phytoplankton bloom may have had a limited capacity to deplete

inorganic Hg. In contrast, phytoplankton actively uptake MeHg, although the

mechanism is not understood (Moye et al. 2002; Pickhardt and Fisher 2007). That

active uptake of MeHg could have explained why it was depleted from the water,

similar to dissolved nutrients (Luengen et al. 2007). Furthermore, the phytoplankton

presumably provided a new sink for MeHg because a large fraction (-60%) of MeHg

is accumulated in the algal cytoplasm (Mason et al. 1995; Pickhardt and Fisher 2007).

Because of these differences in uptake, volume concentration factors for MeHg in
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phytoplankton can be roughly an order of magnitude higher than those of inorganic 

Hg (Pickhardt and Fisher 2007). Accordingly, our observed depletion of dissolved 

MeHg, but not dissolved HgT, may due to active uptake of dissolved MeHg into the 

algal cytoplasm.

The magnitude of any Hgx depletion should have been large enough for us to 

detect, based on Hg: C ratios. A bloom of 65 pg L'1 Chi a (average Chi a increase at 

sites 32 and 36 between 24 February and 04 March) would have produced 0.19 mmol 

C L 1, given Chi a: C ratios used previously (Cloern et al. 1995; Luengen et al. 2007; 

Luoma et al. 1998):

65 pg Chi a

\

35 pg C r \mol C N 0.19 mmol C
pgChl a )y  12gC j

Multiplying 0.19 mmol C L '1 by a Hg: C ratio of 0.037 pmol mol'1 (Martin and

Knauer 1973) gave a potential depletion of 7 pmol Hg L'1, which was well within the

precision of our samples (Figure 2.2). Accordingly, the lack of a measurable

depletion was not an analytical artifact.

We had expected that because Hgx is surface-reactive (see Kd values in Table

2.1), it would be depleted by sorption onto phytoplankton during growth of the

bloom, as we previously observed for dissolved Pb during this bloom (Luengen et al.

2007). However, dissolved HgT behaved similarly to dissolved Cu, which was not

measurably affected by the growth or decay o f  the bloom (Luengen et al. 2007).

While dissolved Cu was presumably bound to strong organic ligands (Buck and

Bruland 2005), dissolved Hgx may have preferentially sorbed to non-bloom particles.
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As we will discuss later, non-bloom particles have higher HgT concentrations than 

phytoplankton, and Hgx partitioning has been shown to be controlled by its 

association with sediments, not with biotic particles like MeHg (Kim et al. 2004a). 

This study suggests that growth of a phytoplankton bloom does not measurably alter 

dissolved HgT concentrations, unlike dissolved MeHg concentrations.

Cycling of dissolved HgT also differed from that of MeHg because dissolved 

Hgx concentrations did not increase as the bloom decomposed (Table 2.2). Previous 

studied attributed increases in dissolved trace metal concentrations during decay to 

release of metals associated with Fe and Mn (hydr)oxides, which were presumably 

reduced during the suboxic conditions created by decomposing organic matter (Flegal 

et al. 1991; Luengen et al. 2007; Roitz et al. 2002). In those studies, algal 

remineralization accounted for only a small amount (e.g., < 1% for Mn) of the 

increase in dissolved trace metals, indicating that release from sediments was the 

main source of the metals during decay. Thus, the increase in other trace metals, but 

not Hgx, suggested that HgT was not strongly associated with Fe and Mn 

(hydr)oxides. Lack of association between Hgx and Fe and Mn (hyrd)oxides was 

previously demonstrated in laboratory incubations that quantified flux of metals from 

Baltimore Harbor sediments to overlying waters (Mason et al. 2006). In the 

Baltimore Harbor sediment incubations, fluxes of Fe and Mn to the overlying waters 

were not related to Hgx fluxes, suggesting that dissolution of Fe and Mn hydr(oxides) 

did not release Hgx.
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HgTpartitioning— HgT Kd values were only marginally (Table 2.3) impacted by the 

sorbent factor, which was a factor partially derived from concentrations of SPM and 

unfiltered Fe and Mn. That result indicated that SPM was not a driving predictor of 

Hgx Kd values, unlike previous studies (Choe et al. 2003; Stordal et al. 1996) that 

found a negative correlation between SPM and Hgx Kd values (the particle 

concentration effect). The particle concentration effect occurs when proportional 

increases in both SPM and colloidal material are associated with additional metals in 

both phases, but the colloidally bound metals pass through a 0.45 pm filter and are 

thus counted in the dissolved fraction (Benoit 1995). One of the assumptions of the 

particle concentration effect is that changes SPM concentrations are proportional to 

changes in colloidal material (Benoit and Rozan 1999), an assumption that may not 

have been true during a bloom when growing algae rapidly increase the amount of 

particulates. In our study, the composition of the SPM changed whereas previous 

studies on the particle concentration effect focused on a change in SPM 

concentrations (Benoit 1995; Benoit and Rozan 1999). As a result, our study was not 

well-suited for observing the particle concentration effect, and different processes 

likely governed HgT partitioning in our study.

Consistent with past studies demonstrating that organic matter controlled HgT

partitioning (Hammerschmidt and Fitzgerald 2004; 2006; Turner et al. 2004), Hgx Kd

values in our study were explained primarily by the decay factor (Table 2.3), which

was a composite factor that characterized DOC and Phaeo concentrations. As the

bloom decayed and DOC increased, HgT partitioning onto particles increased (Figure
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2.5). Similarly, Hgx Kd values were positively correlated with the amount of organic 

matter in sediments (Hammerschmidt and Fitzgerald 2004; 2006; Sunderland et al. 

2006). Enhanced partitioning in the presence of organic matter could decrease the 

amount of inorganic Hg available for uptake by methylating bacteria 

(Hammerschmidt and Fitzgerald 2004; Hammerschmidt and Fitzgerald 2006). 

However, in this study, that effect could be counteracted if partitioning on particles 

helped entrain Hgx within the estuary where it could undergo further chemical 

transformation and eventual methylation. To explore the potential consequences of 

the enhanced partitioning, we considered four potential causes of the increase in Hgx 

Kd values during decay: (1) an increase in the surface area available for metal 

sorption as a result of increased particulate surface area during the decay of the 

bloom, (2) sorption of Hgx to organically coated clay particles, (3) loss of colloidal 

organic matter containing HgT, and (4) change in composition of the SPM, as 

summarized in the following paragraphs.

First, Hgx Kd values could have increased during the decay as a result of 

increased surface area from the growth of bacteria. As the cells degraded, the release 

of organic matter presumably stimulated microbial activity, as has been observed 

following the addition of glucose or arginine during phytoplankton growth and decay 

experiments with Chesapeake Bay waters (Miller et al. 1997). That additional surface 

area could have accounted for the increase in HgT Kd values observed in this 

experiment.
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Second, Kd values could have increased if DOC generated from decomposing 

algae sorbed onto clay surfaces, creating an organic coating that favored Hgx binding. 

DOC created during decomposition would have tended to sorb onto clays because 

clays have a net negative surface charge that attracts organic matter (Stumm and 

Morgan 1996). In studies where fulvic acid was added to inorganic particles, creation 

of an organic coating enhanced Hg(II) sorption (Gagnon and Fisher 1997; Xu and 

Allard 1991). Studies that studies removed organic matter, instead of adding it, found 

that less (up to 2 orders of magnitude) Hg(II) sorbed to sediments and calcite after 

digestion with H2 O2 and UV-irradiation, respectively (Bilinski et al. 1991; Turner et 

al. 2001).

Third, Kd values could have increased during decay if the addition of DOC 

facilitated removal of colloidal organic matter and associated Hgx. Because a 

substantial (38 -  57%) amount of the dissolved Hgx is San Francisco Bay is 

associated with colloids (Choe et al. 2003), flocculation of colloidal material could 

affect Hgx Kd values. Previous research found that colloidal humic acids and 

associated trace metals flocculated along a salinity gradient, either because the 

seawater ions (principally Ca2+ and Mn2+) bound to the colloids and caused 

coagulation (Sholkovitz and Copland 1981) or because addition of seawater ions 

decreased the number of water molecules available to solvate the organic matter, 

causing salting out of mercury-organic complexes (Turner et al. 2001).

Although we did not have a large change in salinity during the decay of the

bloom (Table 2.1), it was possible that our observed increase in DOC during decay
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functioned similarly. For example, Turner et al. (2001) found a positive relationship 

between the amount of Hg(II) sorbed to estuarine particles and DOC concentrations 

in laboratory mixing experiments with river water of varying DOC concentrations 

from three U.K. estuaries. They mixed river water and seawater in various portions, 

spiked the waters with radioactive 203Hg(II), added sediments, and then followed the 

concentrations of Hg(II) in the dissolved and particulate phases. In our study, the 

increase in DOC could have facilitated flocculation of colloidal material and thus 

contributed to the increase in Hgx Kd values during decay.

Fourth, Hgx Kd values could have increased during decay if the phytoplankton 

that were lost from the water column had lower Hgx concentrations than the 

remaining particles. Figure 2.6 supports that hypothesis by indicating that Hgx 

particulate concentrations were highest when most of the material in suspension was 

not bloom derived. There was a significant (p = 0.011, F  = 7.5, linear regression) 

negative relationship when we excluded the outlier (the datum with > 50% bloom 

material) and log transformed the percent bloom derived material to normalize the 

data. Dilution of SPM by phytoplankton has been previously observed for other 

metals (e.g., Al, Co, Cr) in the Scheldt estuary, Netherlands (Zwolsman and Van Eck 

1999).

Although there are not many studies on HgT partitioning to different types of

particles, two field studies from estuaries in France (Laurier et al. 2003; Schafer et al.

2006) suggest that phytoplankton could dilute Hgx Kd values. In the Lot-Garonne

Estuary, France, Hgx particulate concentrations (1.0 -  2.4 nmol g '1) were lower
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during an intense algal bloom than concentrations (> 2.5 nmol g '1) during non-bloom 

conditions (Schafer et al. 2006). In another study of a French estuary (Laurier et al. 

2003), Hgx in particles leaving the high turbidity zone of the Seine estuary were 

diluted in summer by phytoplankton with low mercury concentrations (0.2 -  0.8 nmol 

g '1 dry weight in net-collected plankton, Table 2.4). Laurier et al. (2003) suggested 

that living phytoplankton had fewer functional groups available to bind Hgx than 

degraded organic material. In our study, a decrease in phytoplankton biomass and a 

change to degraded material during the decay of our bloom could have accounted for 

the increase in HgT Kd values.

HgT in phytoplankton—Results from our study suggested that Hgx concentrations in 

non-bloom particles in the estuary were ~1.8 nmol g'1 (dry weight), higher than 

concentrations in phytoplankton of 0.47 nmol g'1 (dry weight). The value for Hgx in 

non-bloom particles in this study, from the Y-intercept of the linear regression 

(Figure 2.6), was 1.8 nmol g'1. That value agreed with previous results (Conaway et 

al. 2003) that showed the average concentration of Hgx in suspended particles 

collected throughout the estuary under generally low Chi a conditions (median Chi a 

of 3 pg L '1) was 1.8 ± 0.6 nmol g'1. Phytoplankton would dilute that suspended 

material, based on our linear regression, which showed that when there was -100% 

phytoplankton (i.e., a log-transformed X value of 2.0), the concentration of Hgx in 

suspended material would be 0.47 nmol g '1 (dry weight).
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Our calculated concentration of 0.47 nmol g'1 HgT in pure phytoplankton 

agreed with previous values shown in Table 2.4. Kim et al. (2004a) calculated a 

concentration of Hgx in phytoplankton of 0.3 to 0.5 nmol g '1 (dry weight), using 

equations derived from culture studies by Mason et al. (1996). Two field studies in 

California bays also indicated that Hgx concentrations in phytoplankton were in that 

range, although both had contamination from suspended sediments. Martin and 

Knauer (1973) measured concentrations of Hgx in phytoplankton collected under 

bloom conditions in Monterey Bay. To minimize contamination by suspended 

sediments, we selected data from that study with low Al concentrations (as per 

Bruland et al. 1991). Accordingly, the best estimate of HgT concentrations in 

phytoplankton from that study was 0.98 ± 0.4 nmol g"1 (dry weight). Finally, Flegal 

(1977) calculated that phytoplankton from San Francisco Bay contained 0.5 to 1.5 

nmol Hgx g'1 (dry weight) by performing regression analyses and simultaneous 

equations on seston samples from the estuary. These analyses indicated that HgT 

concentrations in phytoplankton from the estuary were 0.3 to 1.5 nmol g '1 (dry 

weight), which agreed with our calculated value of 0.47 nmol g '1.

Implications o f an increase in phytoplankton biomass—Recent research in San

Francisco Bay (Cloern et al. 2006) indicates that within the last decade,

phytoplankton biomass, as measured by Chi a, has increased within all reaches of the

estuary (i.e., North, Central and South Bays). That increase has manifested as (1)

higher baseline Chi a concentrations, (2) greater magnitude of the annual spring
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bloom, and (3) addition of a new fall bloom (Cloern and Dufford 2005; Cloem et al. 

2006). Although the estuary has relatively high nutrient concentrations, primarily 

from wastewater treatment plant inputs (Smith and Hollibaugh 2006), the additional 

phytoplankton biomass is not related to nutrient concentrations, which have remained 

constant or slightly decreased (Cloem et al. 2006). The exact cause of the 

phytoplankton increase is uncertain, but may be due to a variety of factors including 

greater water clarity (Cloern et al. 2006).

That increase in algal abundance is a concern because of the potential for 

algae to transfer MeHg to the food chain, thus exacerbating the existing mercury 

impairment in the estuary. Currently, high mercury concentrations (>1.1 nmol g '1 

wet weight) in fish are responsible for consumption advisories in the estuary 

(Thompson et al. 2000). Mercury pollution also threatens wildlife, particularly the 

reproductive success of the endangered California Clapper Rail, Rallus longirostris 

obsoletus (Schwarzbach et al. 2006). To protect fish and wildlife from mercury 

exposure, we need to understand the relationship between Chi a concentrations and 

MeHg concentrations in phytoplankton and subsequent trophic levels.

In this study, our calculated algal MeHg concentrations were lowest during

the peak of a phytoplankton bloom. That result suggests that bloom dilution can

occur in the estuary, as has been previously demonstrated for freshwater mesocosms

(Pickhardt et al. 2002; Pickhardt et al. 2005). In contrast to the mesocosm

experiments, bloom dilution in this study was the result of depletion of dissolved

MeHg from the water column, indicating that the concentration of MeHg is an
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important variable in this system. Bloom dilution has also been observed in lakes in 

the northeastern United States, where high zooplankton concentrations were 

correlated with low HgT concentrations in fish (Chen and Folt 2005). However, in 

San Francisco Bay, benthic organisms consume extra food during blooms (Thompson 

and Nichols 1988), potentially counteracting any beneficial effects of bloom dilution. 

The effect on higher trophic levels may also be limited because bloom dilution is 

transient. Thus, additional studies are needed to determine how MeHg concentrations 

in higher trophic levels respond to the growth of a phytoplankton bloom.

Mercury bioavailability in the estuary may also be altered by the decay of the 

bloom, which is a component of high algal biomass that has received relatively little 

attention. Our maximum concentrations of dissolved and particulate MeHg occurred 

when the bloom was almost completely decayed, on 23 April (Table 2.1, Figure 2.2). 

The MeHg associated with that decayed material is bioavailable to at least some 

organisms, based on experiments showing that amphipods can assimilate MeHg from 

phytoplankton cells that are highly decayed (Lawson and Mason 1998). Moreover, if 

decaying algal material causes production of MeHg in sediments (Figure 2.3), an 

increase in algal abundance could boost MeHg production in the estuary. Finally, we 

observed an increase in HgT partitioning onto particles during the decay of the bloom, 

which could serve to entrain Hgx in the estuary, where it may be eventually 

methylated. In conclusion, although both the growth and decay of the bloom have the 

potential to alter mercury cycling, the most readily observable and long-lasting effects

of an increase in algal abundance may occur when that material decays.
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Table 2.1. Water chemistry variables and distribution coefficients (Kd values) for 

MeHg and Hgi at three locations in South San Francisco Bay during a spring bloom 

in 2003.

D ate S ite

P a r t ic u la te  

M e H g  

(p m o l g '1 

S P M )

P a r tic u la te  

H g T 

(n m o l g '1 

S P M )

L o g

H g x K d

( L k g 1)

L o g  

M e H g  IQ  

( L k g 1)

S P M  C h i  a  P h a e o  

(m g  L '1)  (p g  L 1)  (p g  L '1)

% o f b lo o m -  

d e rv ie d  

m a te r ia l  in  

S P M

D O C  

(p m o l 

L '1 C ) S a l in i t

19 F eb 21 1.9 5 .8 6 5 .9 2.1 16 2 5 .8

2 4  F e b 21 1 .0 5 .4 2 4 2 8 4.1 16 3 1 0 2 4 .3

0 4  M a r 21 2 .9 0 .4 5 5 .4 4 .8 25 14 3.1 8 108 2 4 .9

12 M a r 21 1.1 5 .6 5 7 .9 0 .8 2 0 179 2 3 .7

2 7  M a r 21 0 .8 8 5 .6 18 17 1.7 12 164 2 5 .9

01 A p r 21 0 .8 5 5 .8 14 12 3 .6 13 2 8 5 2 7 .4

17 A p r 21 1.4 5 .7 19 7 .2 2 .2 6 170 2 6 .8

23  A p r 21 7 .2 1.6 5 .7 5 .5 13 3 .5 1.1 4 8 4 3 27.1

01 M ay 21 1.4 5 .6 14 7 .0 2 .8 8 3 9 3 2 6 .0

2 7  A u g 21 0 .4 0 5 .0 13 8 .0 4.1 11 107 2 9 .8

19 F eb 3 2 1.5 103 35 7 .4 5 1 9 .9

2 4  F eb 32 1.1 5 .3 4 6 5 9 8 .7 17 2 1 .2

0 4  M a r 32 7 .9 1.0 5 .4 5 .4 33 84 1.8 3 0 2 7 7 2 1 .6

12 M a r 32 0 .8 25 45 3.1 23 2 3 8 2 1 .2

2 7  M a r 3 2 1.5 5 .7 4 2 2 8 3 .4 9 3 5 4 2 3 .0

01 A p r 32 1.2 5.5 4 0 16 3.1 6 6 0 4 2 3 .4

17 A p r 32 1.5 5 .6 30 7 .8 2 .8 4 4 2 8 2 2 .7

23  A p r 32 1.2 5 .4 10 4 .3 0 .9 6 6 0 9 2 2 .6

01  M ay 32 2.1 15 7 .7 2 .6 8 5 7 7 2 3 .8

2 7  A u g 32 7 .6 0 .8 3 5.1 5.1 37 10 11 7 2 1 7 2 8 .5

19 F eb 36 245 32 19 2 17.2

2 4  F eb 3 6 0 .9 3 5 .3 5 .4 42 6 2 5 .0 19 2 6 2 2 0 .7

0 4  M a r 3 6 14 1.8 5 .4 5 .7 4 2 169 17 52 2 8 3 19 .2

12 M a r 36 0 .3 8 4 .8 32 75 4 .9 29 2 7 5 19.8

2 7  M a r 36 7 .7 1.4 5 .6 5.1 65 48 4 .7 9 2 2 5 21 .1

01 A p r 36 9 .4 1.0 5 .3 5.1 3 0 16 2 .4 7 383 2 1 .6

17 A p r 36 15 1.7 5 .7 5 .2 37 6.1 3 .4 3 2 8 9 19 .6

2 3  A p r 3 6 21 1 .6 5.5 5 .2 12 3 .8 1 .0 5 5 2 0 18.8

01 M ay 3 6 1.5 5 .5 15 3 .7 1.8 4 6 8 6 2 1 .2

2 7  A u g 36 5 .5 1.2 5 .3 4 .8 65 6 .3 5 .2 2 2 6 6 2 7 .2
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Table 2.2. Best fit models relating the factors that best describe concentrations o f  

dissolved MeHg and Hgx in our study o f the 2003 spring diatom bloom in San 

Francisco Bay. The bloom and decay factors are composite variables, formed by 

principal component analysis o f the water chemistry data, which describe the 

conditions surrounding the growth and decomposition o f the bloom. The categorical 

variable, site, is the location where the samples were collected.

Best fit model for dissolved MeHg, adjusted r a=0.77
Effect Coefficient SE Std Coef Tolerance t p (2-tail)
Constant 0.0708 0.00708 0 . 10.0 <0.01
Decay factor -0.0170 0.00570 -0.587 0.97 -2.99 0.040
Bloom factor -0.0174 0.00549 -0.624 0.97 -3.18 0.034

Best fit model for dissolved HgT r2=0.51
Source Sum-of-Squares df Mean-Square F-ratio p
Site 20.7 2 10.4 12.2 <0.01
Error 19.6 23 0.852
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Table 2.3. Best fit models relating the factors that best describe MeHg Kd values and 

Hgi Kd values in our study o f the 2003 spring diatom bloom. The Kd values, or 

distribution coefficients, are calculated as: (concentration o f particulate metal per 

gram o f SPM)/(concentration o f dissolved metal).

Best fit model for MeHg Kd, adjusted r 2=0.63
Effect Coefficient Std Error StdCoef Tolerance t p(2 Tail)
Constant 5.17 0.0645 0 80.2 <0.01
Bloom fector 0.170 0.0509 0.830 1 3.33 0.021

Best fit model for HgT Kd, r2=0.37
Source Sum-of-Squares df Mean-Square F-ratio P
Site 1.09 x lO 11 2 5.46 x 1010 3.57 0.048

Sorbent factox 5.73 x 1010 1 5.73 x 1010 3.75 0.068
Decay factor 1.18 x 10u 1 1.18 x lO 11 7.73 0.012
Error 2.90 x lO 11 19 1.53 x lO 10
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Table 2.4. Mercury concentrations in phytoplankton (dry weight) from various water 

bodies. We selected studies that minimized non-phytoplankton particulates. For 

example, Kuwabara et al. (2005) found no detritus when they examined their samples 

microscopically. Laurier et al. (2003) used nets to collect a size fraction (150pm -  1 

mm fraction) that favored large biological material. Other studies focused on lakes 

with low SPM (Kainz and Mazumder; Watras and Bloom 1992). Results from Back 

et al. (2003) are shown as the average o f four size fractions of seston (<35,35-63, 

63-112, and >112 pm) sieved from Lake Superior in spring and summer.

MeHg HgT
System____________(pmol g'1) (nmol g~')____________ Reference__________

Mason et al. (1996); Kim et al. (2004) 
Watras and Bloom (1992)
Back et al. (2003)
Kainz and Mazumder (2005)
Kainz and Mazumder (2005) 
Kuwabara et al. (2005)
Laurier et al. (2003)
Martin and Knauer (1973)
Flegal (1977)
Present study
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Culture studies of coastal diatom 5-30  0.3 - 0.5
Wisconsin lake 200 1.5
Lake Superior 10-80 —
Vancouver Island, Canada lakes 35 ± 15 —
Vancouver Island, Canada reservoirs 95 ± 100 —
Guadalupe Reservoir <7.5 0.86
Seine estuary, France 23 ± 17 0.2 - 0.8
Monterey Bay diatom bloom — 0.98 ± 0.4
San Francisco Bay, CA — 0.5 - 1.5
South San Francisco Bay, CA 3 -10 0.47
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Central
Bay

South Bay

Figure 2.1. Samples were collected in the southern reach of San Francisco Bay 
(South Bay) at sites 21 (Bay Bridge), 32 (Ravenswood Point), and 36 (Calaveras 
Point).
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Figure 2.2. Descriptive plots o f dissolved (< 0.45 pm) and total (unfiltered) MeHg 
and HgT concentrations. DL = detection limit. Dissolved MeHg duplicate field 
samples are shown on 04 March at site 32. Total MeHg duplicate field samples and 
a distillation replicate are shown for that same site and date. Dissolved HgT dupli
cate field samples are shown on 04 March and 27 August for site 32 and on 01 
April and 23 April for site 21. Total HgT duplicate field samples are shown on 04 
March, 01 May, and 27 August for site 32, and on 01 April for site 21.
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Figure 2.3. Partial (studentized) residual plots showing 
the effects o f the bloom and decay factors on dissolved 
MeHg concentrations. Values are the residuals 
(standardized by dividing by the standard deviation), when 
the model was run without the factor on the x-axis, plotted 
against the omitted factor.
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Figure 2.4. Partial (studentized) residual plot 
showing that as the bloom grew (increasing values 
o f the bloom factor), MeHg Kd values increased, 
indicating that more MeHg was associated with 
particles.
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Figure 2.5. Partial (studentized) residual plot showing 
that during decay, which was indicated by decreasing 
values of that factor, HgT Kd increased.
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Figure 2.6. Particulate H g j concentrations (normalized to 
SPM) were significantly (p = 0.011, F = 7.5, linear 
regression) correlated with amount of bloom derived 
material in the SPM when the datum with > 50% 
phytoplankton at site 36 was excluded from the data set. 
The relationship suggests that phytoplankton have 
relatively low H g j concentrations compared to other types 
of suspended particles.
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CHAPTER 3: FINE SCALE CHANGES IN PHYTOPLANKTON 
COMMUNITY COMPOSITION AND WATER CHEMISTRY DURING A 
SPRING BLOOM IN SAN FRANCISCO BAY

Abstract

Phytoplankton community composition in South San Francisco Bay changed 

significantly over small spatial and temporal scales during the spring 2003 

phytoplankton bloom. Phytoplankton communities, which included all species 

present on a given day and site combination, were assessed along with water quality 

over ten cruises and three sites. Analysis of algal abundance data by multi

dimensional scaling demonstrated that small species contributed to broad-based 

differences in communities. Although the large, centric diatom Thalassiosira 

punctigera dominated the bloom by biomass, small phytoplankton (e.g., the 

euglenophyte, Eutreptia lanowii, and cyanobacteria, Cyanobium sp.) bloomed along 

with the diatoms, indicating the bloom was a diverse assemblage. As the bloom 

decayed, algal community composition changed weekly. Those changes were 

attributed to a combination of community succession, physical exchange (e.g., 

movement of the benthic species Nizschia closterium into the water column), and 

alterations in water chemistry. Water chemistry variables that best matched patterns 

in algal community composition were water temperature (primarily) and dissolved 

ammonium concentrations (secondarily), based on BIO-ENV analysis. Dissolved 

ammonium concentrations increased as the diatoms decayed and corresponded with 

growth of Synechocystis sp., indicating those cyanobacteria disproportionately
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responded to that nutrient. BIO-ENV analysis also showed that algal community 

composition was not linked to trace metal concentrations, despite the known toxicity 

of some metals (e.g., Cu) to phytoplankton. The absence of a relationship between 

metals and algal communities was consistent with previous studies demonstrating that 

organic complexation limits the bioavailability of toxic metals to phytoplankton.
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Introduction

In the southern reach of San Francisco Bay (South Bay), phytoplankton bloom 

predictably every spring when the water column stratifies (Cloern 1996). Past studies 

have investigated the factors (e.g., nutrient enrichment and turbidity) that control the 

magnitude of the bloom and the amount of primary production within the estuary 

(Cloern 1996; Jassby et al. 2002; May et al. 2003). In this study, we analyzed 

abundance data for 83 species of phytoplankton collected during the spring 2003 

bloom. We looked for changes in algal community composition over weekly time 

scales as the bloom grew and then decayed. Then, we sought to relate those changes 

to measurements of water quality, including dissolved (< 0 .45 pm) metal 

concentrations, to evaluate the impact of anthropogenic modifications of the estuary.

Previous studies on algal biomass in the estuary have shown that the amount 

of algal biomass is shaped by environmental perturbations as well as physical and 

biological processes. Environmental disturbances that have altered primary 

productivity include introduction of the clam Potamocorbula amurensis in the 

northern reach of the estuary (Jassby et al. 2002; Kimmerer 2005) as well as climate 

variation and water diversion (Lehman 2000). The most extensive effort to evaluate 

environmental impacts on phytoplankton biomass in San Francisco Bay has focused 

on the effects of nutrient enrichment (Cloern 2001; Cloern et al. 2006; Hager and 

Schemel 1996). That research has demonstrated that the response of phytoplankton 

to nutrient enrichment in the estuary is modulated by biological and physical factors,
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such as turbidity (Cloern 2001; Cloern et al. 2006). For example, since the late 

1990s, phytoplankton biomass has increased throughout the estuary in spite of 

reduced nutrient loadings, presumably due to decreased turbidity and predation 

(Cloern et al. 2006). Such changes in the amount algal biomass are important 

because phytoplankton are a critical food source to the planktonic food web in the 

estuary due to their high bioavailability compared to detrital carbon (Sobczak et al. 

2002).

To complement these past studies on biomass, we used multidimensional 

scaling (MDS) to analyze the composition of algal communities, where a community 

includes all of the species present in any sample (Clarke 1993). MDS is a 

community-level approach that is designed to look for spatial and temporal patterns in 

biological surveys with large numbers of organisms (Field et al. 1982). Patterns in 

the biological community data can then be matched with environmental data, 

allowing assessment of the effect of anthropogenic disturbances (Clarke and 

Ainsworth 1993).

We focused our MDS analysis on algal abundance data because changes in

community composition can occur without a measurable change in algal biomass.

For example, we hypothesized that small cyanobacteria were most likely to be

affected by elevated concentrations of some trace metals (e.g., Cu); an analysis based

on biovolume would be weighted towards large diatoms and would likely miss

changes in cyanobacterial populations. Similarly, high silicate concentrations could

alter algal communities by favoring diatoms over flagellates (Egge and Aksnes 1992),
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and high ammonium concentrations could favor cyanobacteria (Paerl 1999). We 

compared the species that discriminated between algal communities in our MDS 

analysis with those that dominated by the bloom by biovolume. In that comparison, 

we explored the role that large species play in driving biogeochemical changes versus 

the role that all species play in contributing to community diversity and community 

succession. The goal was to investigate the links and feedbacks between algal 

community composition, water quality data, and anthropogenic modifications of the 

estuary.

South Bay (Figure 3.1) is heavily modified by anthropogenic activities, 

including water diversions (Nichols et al. 1986), discharges of nutrients from 

wastewater treatment plants (Hager and Schemel 1996; Smith and Hollibaugh 2006), 

and historic and current inputs of trace metals (Flegal et al. 1991). Metals such as Co, 

Zn, Cu, Ni, Pb, and Hg have relatively high concentrations in South Bay sediments as 

a result of historic contamination and can be released to the water column by benthic 

remobilization (Conaway et al. 2003; Rivera-Duarte and Flegal 1997; Tovar-Sanchez 

et al. 2004) and desorption from resuspended sediments (Gee and Bruland 2002). 

Some of these metals (e.g., Co, Zn, Cu, and Ni) have additional on-going industrial 

inputs from wastewater treatment plant discharges (Bedsworth and Sedlak 1999; 

Flegal et al. 1996; Tovar-Sanchez et al. 2004). Aqueous concentrations of these 

metals are then affected by biogeochemical scavenging and hydraulic flushing; 

concentrations are generally highest at the most southerly sites where digenetic

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



remobilization may be highest and hydraulic residence time is longest (Flegal et al. 

1991).

Anthropogenically enriched metal concentrations in South Bay are of concern 

because of their potential toxicity to phytoplankton, especially cyanobacteria (Palenik 

and Flegal 1999). In laboratory experiments, cyanobacteria were the most sensitive 

to Cd and Cu toxicity, followed by dinoflagellates and then diatoms (Brand et al. 

1986). High concentrations of Cd and Cu inhibit cellular growth by interfering with 

uptake of dissolved Mn, which is an essential nutrient (Sunda and Huntsman 1996; 

Sunda and Huntsman 1998a). Such competition between metals for cellular uptake is 

a relatively common mechanism of toxicity (Sunda and Huntsman 1998b; Sunda and 

Huntsman 1998c). Accordingly, it is appropriate to evaluate algal toxicity in the 

estuary as a combination of multiple metals.

The toxicity of those metals could be limited if they are strongly complexed to

organic ligands in the estuary. For example, > 99% of dissolved Cu in the estuary is

strongly bound to organic ligands and thus not readily bioavailable for algal uptake or

algal inhibition (Beck et al. 2002; Buck and Bruland 2005; Hurst and Bruland 2005).

Instead, the pool of Cu that is in equilibrium with cellular uptake receptors is a much

smaller pool that consists of Cu bound to inorganic complexes and Cu2+, as described

in the free ion model (Sunda and Huntsman 1998c). Although there are some

measurements of Ni and Pb complexation in South Bay (Kozelka et al. 1997; Sedlak

et al. 1997), the complexation of many of other metals has not been characterized in

the estuary, making it impossible to predict the toxicity of those metals to algal
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communities. A primary goal of this project was, therefore, to indirectly assess the 

role of metals (Co, Cu, Hg, Mn, Ni, Pb, and Zn) on phytoplankton community 

structure to determine if these metals exhibit inhibitory effects on different types of 

phytoplankton (e.g., cyanobacteria vs. diatoms).

Methods

Collection and measurement— Surface (~ lm) water samples from three sites were 

collected for phytoplankton species composition, trace metal concentrations, and 

water chemistry during our studies of the 2003 spring bloom (Luengen et al. 

submitted; Luengen et al. 2007). The three sampling sites were located in the channel 

of South Bay (Figure 3 .1). Sampling began on 19 February 2003, when we collected 

water from sites 21 and 32 only. Thereafter, sampling continued (ca. weekly) at all 

three sites until 01 May 2003. Another sampling of the three sites was conducted on 

27 August 2003 to provide a non-bloom contrast to the spring data. All samples were 

collected aboard the R/VPolaris in conjunction with a United States Geological 

Survey (USGS) research program that has monitored phytoplankton dynamics in the 

estuary since 1968 (Cloern 1996).

Phytoplankton samples were analyzed as described by Cloern and Dufford 

(2005). Briefly, samples were preserved with acid Lugol’s solution and then counted 

with a phase-contrast inverted microscope. Relatively large cells (>30 pm) were 

counted at 125x magnification whereas smaller cells (< 30 pm) were counted at
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1250x magnification. Identification of diatoms and dinoflagellates occurred after 

removal of cellular contents by digestion with 30% hydrogen peroxide. Mean 

cellular volumes for each algal species were calculated by applying biovolume factors 

based on geometric formulas (Wetzel and Likens 1991) using length (size) estimates 

obtained from 50 -  100 cells.

We previously reported dissolved (< 0.45 pm) and total (unfiltered) trace 

metal concentrations during this bloom (Luengen et al. submitted; Luengen et al. 

2007). Samples for both dissolved and total Mn, Co, Zn, Cu, Ni, Pb, and Fe (total 

only) were acidified (pH < 1) in the laboratory prior to analyses. Then, dissolved Co, 

Zn, Cu, Ni, and Pb were measured by high resolution inductively coupled plasma 

magnetic sector mass spectrometry (Luengen et al. 2007). Dissolved and total Mn 

and total Fe were measured by inductively coupled plasma optical emission 

spectrometry (Luengen et al. 2007). Samples for total Hg (Hgx), which included both 

organic and inorganic species, were oxidized with 0.5% bromine monochloride, pre

reduced with hydroxylamine hydrochloride, reduced with tin chloride, and then 

analyzed by cold vapor atomic fluorescence spectrophotometry (Luengen et al. 

submitted).

We also quantified 13 environmental variables: Chi a, phaeophytin (Phaeo), 

Chi a /(Chi a + Phaeo), suspended particulate matter (SPM), salinity, dissolved 

oxygen, temperature, water density (ot), dissolved organic carbon (DOC), dissolved 

reactive phosphate, dissolved silicate, dissolved inorganic nitrogen, and tidal

amplitude. Analyses techniques were described in our earlier work (Luengen et al.
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2007). Water quality data were collected by both discrete samples and vertical 

profiles of the water column taken with a Sea-Bird Electronics underwater unit 

(Cloern and Dufford 2005; Luengen et al. 2007).

PCA factors—We (Luengen et al. 2007) previously reported the results of principal 

component analysis (PCA) on the 13 environmental variables as well as total 

(unfiltered) Mn and Fe concentrations. The goal of PCA analysis was to develop 

three independent factors which, unlike the original variables, did not covary with 

each other. PCA produced three independent factors: 1) a bloom factor that described 

the growth of the bloom, 2) a sorbent factor that characterized the amount of sorbent, 

including SPM and Mn and Fe hydr(oxides), 3) a decay factor that characterized the 

decomposition of the bloom material. The contribution of original environmental 

variables to each of the PCA factors was previously given by the component loadings. 

We utilized these 3 PCA factors for analysis of environmental variables versus 

phytoplankton community composition for this study.

Statistical analyses— The goals of our statistical analyses were to 1) determine if 

phytoplankton communities changed over space and time and, if so, to identify 

species responsible for those differences and 2) relate patterns in community 

composition to our environmental variables (i.e., water quality data and trace metal 

concentrations). These analyses were conducted with the statistical package from
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Plymouth Routines in Multivariate Ecological Research (PRIMER 5, Clarke and 

Warwick 1994).

For our statistical analyses, we used fourth root transformed abundance data. 

Fourth root transformed abundance data are frequently used in MDS and were 

previously used in an MDS analysis of diatom communities in Greece (Clarke and 

Ainsworth 1993). In our study, the use of abundance data was consistent with our 

interest in the role of small phytoplankton (e.g., cyanobacteria) in algal communities. 

The fourth root transformation allowed us to minimize the impact of common species 

because it would be both difficult and undesirable to distinguish communities by 

using only common species (Clarke and Warwick 1994).

In the first phase of our statistical analyses, we tested the hypothesis that the 

phytoplankton species composition varied temporally and spatially by using non

metric MDS. MDS uses similarities between samples to graphically represent the 

relationship of samples to each other (Clarke and Warwick 1994). We began by 

establishing the similarities by creating a Bray-Curtis similarity matrix. This method 

of looking at relative similarities was particularly well-suited for our biological data, 

which contained numerous zero values, because it did not make any assumptions 

about the distribution of the data (Clarke and Warwick 1994). Then, we ran MDS on 

our Bray-Curtis matrix to visualize the relationship of sites and dates to each other.

To decide if the groups were statistically different from each other, we ran an

analysis of similarities, ANOSIM (Clarke and Warwick 1994) on our Bray-Curtis

matrix. The ANOSIM analysis compared the similarity of the data within groups
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(i.e., sites and dates) to the similarity between groups to determine if the groups 

differed statistically. Because ANOSIM evaluated the distances between samples 

given in Bray-Curtis matrix, the ANSOIM output reflected the true differences 

between samples, unlike MDS. We ran ANOSIM for a 2-way crossed case with no 

replication, where each date and site combination was treated as a separate sample. 

We chose that layout because we expected that the phytoplankton composition would 

change both spatially and temporally, meaning that the dates would not be replicates 

of each site. Because the results then showed that site was significant, we 

decomposed the site effect by running a 1-way ANOSIM with dates as replicates. By 

sequentially removing one site and evaluating the significance of the remaining 

pairing, we determined which sites were most different from each other.

To evaluate the contribution of individual phytoplankton species to 

differences in site and date, we used a procedure called SIMPER (Clarke and 

Warwick 1994). SIMPER, or similarity percentages, sequentially removed species 

and quantified the degree to which that removal made the sites or dates more similar 

to each other (as defined by Bray-Curtis). Species that consistently contributed to the 

differentiation in groups for all pairings within that group (e.g., for every date within 

the sites) were discriminating species (Clarke and Warwick 1994). When multiple 

species contributed a small amount to the differences between dates or sites, the 

overall communities were found to have broad-based differences.

In the second phase of our statistical analyses, we tested the hypothesis that

changes in environmental variables (water chemistry data and trace metal
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concentrations) explained patterns in the phytoplankton communities using the BIO- 

ENV procedure. That procedure matched biotic data to environmental data by 

generating a series of environmental matrices based on all combinations of 

environmental variables, comparing those matrices to the single biological similarity 

matrix, and then ordering the environmental data to achieve the best correlation with 

the biological matrix (Clarke and Ainsworth 1993). We ran BIO-ENV using 

normalized Euclidean distances to identify any correlations between the 

phytoplankton similarity matrix and our PCA factors. Based on those results, we 

decomposed the PCA factor that was best correlated with the phytoplankton data back 

into its original environmental variables to assess the contribution of each of those 

original variables. We then ran BIO-ENV with those original variables and the trace 

metal concentrations to look for any correspondence between the phytoplankton 

similarity matrix and the environmental variables.

Results

Algal abundance and biomass—The spring 2003 phytoplankton bloom was a month

long period of high Chi a concentrations (Figure 3 .2). By biovolume, diatoms were 

the dominant group; 24 of the 25 greatest biovolumes measured for each species on 

each date and site were diatoms. The diatoms were dominated by Thalassiosira 

punctigera, which alone accounted for 17 of the top 25 biomass measurements, 

because it bloomed for an extended time at the 3 sites. When the maximum
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biovolume reached by each species was used to derive a list of the top bloom species 

by biovolume (Table 3 .1), T. punctigera, topped the list with a maximum biovolume 

of 82,500,000 pm3 mL'1. Thalassiosira punctigera accounted for 99% of the algal 

biovolume on 04 March at site 36, when the bloom peaked (Table 3 .1).

Concurrent abundance data showed that Nannochloropsis sp. was the most 

numerous species; 23 of the 25 greatest measurements of abundance for each species 

on each date and site were Nannochloropsis sp.. Because of its small size (< 5 pm), 

Nannochloropsis sp. was never among the top 10 species by biovolume. However, 

those picoeukaryotic phytoplankton topped the list of species with maximum 

abundances (Table 3.2).

Spatial and temporal effects on phytoplankton communities— Phytoplankton 

community composition differed significantly between sites (rho = 0.472, p  = 0.007) 

and between dates (rho = 0.531 , p  = 0.001) in the ANOSIM analysis. By sequentially 

removing each site from the analysis, we decomposed the site effect and determined 

that sites 21 and 36 were the most distinct from each other, then sites 21 and 32, and 

then sites 32 and 36. That progression was consistent with the geographic locations 

of the sites; site 21 was our most northerly site with the greatest oceanic influence 

whereas site 36 was our most southerly (estuarine) site (Figure 3.1).

SIMPER analysis was subsequently used to identify the role of species

composition in temporal and spatial variability. No single species contributed more

than 7.6% to the dissimilarity between sites, and the top ten species contributed
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similar amounts to the variation between the sites (Table 3.3). Similarly, no single 

species contributed more than 12% to the dissimilarities between dates (Table 3.4), 

when we compared the beginning of the bloom (19 February), the peak of the bloom 

(04 March), the early decay of the bloom (01 April), advanced decay (01 May), and 

non-bloom conditions (27 August). Differences between both dates and sites were 

caused by multiple species each contributing a small amount, which indicated that 

there were broad-based differences between the communities.

Relating algal communities to environmental data—By running the BIO-ENV 

procedure in PRIMER with the three PCA factors, we found that the PCA factor that 

best matched patterns in algal community composition was the bloom factor 

(correlation = 0.445). The bloom factor was originally composed of dissolved 

oxygen (+), temperature (-), salinity (-), dissolved inorganic nitrogen (-), dissolved 

silicate (-), and log transformed Chi a concentrations (+), where the sign in 

parentheses indicates the direction of the correlation between the bloom factor and the 

original variables. Of the original variables, we selected temperature, salinity, and 

nutrients for further analysis because we assumed that they were forcing community 

response, while the remaining variables were responses to those environmental 

drivers. We also divided the inorganic nitrogen pool into 1) nitrate plus nitrite and 2) 

ammonium. Subsequently, we ran a second BIO-ENV procedure with these selected 

variables and the trace metal concentrations.
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We evaluated the results of the BIO-ENV procedure according to how the 

addition of environmental variables improved the correlation between the biological 

and environmental data (Table 3 .5). Based on the differences between the one- 

variable and the two-variable models (and between the two-variable and three- and 

four-variable models), dissolved ammonium concentrations matched some of the 

variation in algal communities, and temperature data best matched the algal 

community patterns. The contribution of metals was negligible, and the choice of 

metal was not statistically important, based on the improvements in model fit.

Discussion

Algal abundance and biomass—By biovolume, diatoms dominated the phytoplankton 

and were presumably responsible for the depletion of dissolved nutrients and trace 

metals from the water column. The dominance of diatoms by biovolume (Table 3 .1) 

was consistent with a decadal study (1992 - 2001) that found diatoms accounted for 

81% of the total biomass in samples collected throughout the estuary (Cloern and 

Dufford 2005). Those large cells likely depleted the nitrate, based on research in the 

northern estuary showing that high rates of nitrate uptake were primarily associated 

with cells > 5 pm (Wilkerson et al. 2006). We also attributed the drawdown of 

dissolved silicate (Figure 3), inorganic nitrogen (Figure 3), phosphate (not shown), Ni 

(Luengen et al. 2007), Pb (Luengen et al. 2007), and MeHg (Luengen et al.
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submitted) during the bloom primarily to large diatoms, particularly Thalassiosira 

punctigera.

Past South Bay blooms have been composed of other diatom species, 

including Thalassiosira rotula, T. hendeyi, Chaetoceros socialis, C. debilis, 

Skeletonema costatum, Ditylum brightwellii, Coscinodiscus oculus-iridis, C. 

curvatulus, C. radiatus, andEucampia zodiacus (Cloern and Dufford 2005). The 

prevalence of T. punctigera during this bloom was an example of the stochastic 

nature of which species was present when conditions were ideal for a bloom. This 

high variability among bloom species was not surprising, given that even within a 

single species, populations of differing genetic makeup bloom at different times 

(Rynearson et al. 2006).

Although diatoms clearly dominated algal biomass, we focus the remainder

our discussion on fourth root transformed abundance data to include both small and

rare species. This focus addresses current interest in the effects of species diversity

on pelagic ecosystem function (Duffy and Stachowicz 2006). A community with

high species diversity may function differently than a monoculture, even if primary

productivity is dominated by a single organism (Duffy and Stachowicz 2006). By

taking an organismal approach, it is also possible to evaluate the trophic

consequences of blooms (Smayda 1997). For example, highly abundant

N annochloropsis sp. are too small to be included in analyses of biomass, but they are

an important part of a community analysis because they are highly nutritious

(Mourente et al. 1990; Wacker and Von Elert 2004). Another reason for focusing at a
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species level is that factors driving the biomass may not be the same as those driving 

community succession.

Community succession during the bloom— The SIMPER analysis (Table 3 .4) 

identified species that distinguished the algal community on 19 February, when the 

bloom was beginning, from the community on 04 March when the bloom peaked 

(Figure 3 .2). Differences between communities were shaped partially by an early 

bloom (> 25 cells mL'1 on 19 February at site 32) of Chaetoceros didymus. That 

early bloom of a small (10-40 pm) chain-forming diatom was consistent with 

classical succession theory (Margalef 1958), which says the spring bloom begins with 

small diatoms, such as Chaetoceros socialis and Skeletonema costatum, and then 

transitions to larger diatoms. The subsequent community on 04 March was 

distinguished partially by a bloom of the large (40-190 pm), centric Thalassiosira 

punctigera (Table 3 .4), which is common in the Pacific Ocean and regularly blooms 

in the bay (Cloern et al. 2006). That diatom peaked at > 400 cells mL'1, and its 

abundance remained high for over a month, mirroring Chi a concentrations at site 36.

In addition to diatoms, the SIMPER analysis identified several other groups of

phytoplankton that contributed to differences in communities as the bloom grew

between 19 February and 04 March (Table 3.4). Those groups included

euglenophytes (Eutreptia lanowii) and cyanobacteria [Cyanobium sp., which are

closely related to Synechococcus (Komarek et al. 1999)]. Both E. lanowii and

Cyanobium sp. are very small (11 and < 6 pm, respectively) species that reached peak
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abundance on 04 March, like Thalassiosira punctigera. In contrast to T. punctigera, 

their blooms were transient. Specifically, Cyanobium sp. reached a peak abundance 

of 500 cells mL'1 on 04 March at site 36 but was not otherwise found at that site. 

Similarly, E. lanowii reached an abundance of 120 cells mL'1 on 04 March at site 36, 

whereas at all other times during the study it was present at < 10 cells mL'1. Because 

E. lanowii is mixotrophic and often found in waters contaminated with organic matter 

(Nikolaides and Moustaka-Gouni 1990), its presence during the peak of the bloom 

suggested that it capitalized on organic matter produced by other species. The 

contribution of E. lanowii and Cyanobium sp. to temporal differences in communities 

demonstrated that this spring bloom was a diverse assemblage.

As the bloom decayed in April, the SIMPER analysis identified Synechocystis 

sp. as a species that distinguished the decay community from the bloom community 

(Table 3 .4). Synechocystis sp. are picoplanktonic (< 5 pm) cyanobacteria that rely on 

their large surface area to volume ratio to uptake nutrients because they do not fix N2 

(Paerl 1999). Synechocystis sp. reached peak abundances (1250 cells mL'1) on 01 and 

17 April at site 36 (Figure 3.4), well after peak Chi a concentrations (Figure 3.2).

Growth of Synechocystis sp. during decay of the diatom bloom could have

been a response to high DOC concentrations during decay, low dissolved silicate

concentrations, or the increase in dissolved ammonium. DOC generated by the

decaying bloom (Figure 3.2) could have enhanced the growth of Synechocystis sp.,

which would be consistent with the possibility that DOC supports cyanobacterial

growth (Paerl 1999). Alternatively, the depletion of dissolved silicate by 04 March
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(Figure 3 .3) could have favored cyanobacteria or other non-siliceous phytoplankton 

over diatoms. Synechocystis sp. may have also responded to the increase in dissolved 

ammonium (Figure 3 .3) as the diatoms decayed, as we will discuss later.

Between 01 April and 01 May, the bloom continued to decay, and differences 

in the communities were partially due to changes in the abundance of Synechocystis 

sp., Dolichomastix sp., Cyclotella sp., and Teleaulax amphioxeia (Table 3.4). At the 

beginning of May, the abundance of Synechocystis sp. was lower than in April 

(Figure 3 .4). In contrast, the small cryptophyte T. amphioxeia reached its greatest 

abundance on 01 May (Figure 3.4). Because the cryptophyte is a mixotrophic species 

(Cloem and Dufford 2005), we hypothesized that it could have grazed upon the 

cyanobacteria.

This community analysis indicated that the bloom was not monolithic, but was 

composed of multiple species that changed on weekly time scales. Even at the peak 

of a massive bloom of Thalassiosira punctigera, other algal groups were thriving, 

including cyanobacteria (Cyanobium sp.) and euglenophytes (Eutreptia lanowii). The 

question of how multiple phytoplankton species can co-exist, competing for the same 

resources was first raised by the classic Hutchinson (1961) paper “the paradox of the 

plankton.” Since that time, researchers have shown that external forces (e.g., habitat 

variability, predation, mixing, and exchange with other compartments) contribute to 

the diversity of phytoplankton (Cloern and Dufford 2005; Scheffer et al. 2003). As 

previously reported, the variable physical and chemical conditions during the bloom

(Luengen et al. 2007) undoubtedly contributed to the diversity of algal species.
87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The diverse algal communities also could have been sustained by interactions 

between the species, even in a homogenous environment (Scheffer et al. 2003). 

Mathematical models have shown that if three different species compete for three 

separate resources, their abundance can oscillate and those oscillations can sustain 

other species (Huisman and Weissing 1999). With five or more resources, chaos can 

occur, making community composition unpredictable and highly dependent on the 

initial conditions (Huisman and Weissing 1999). Based on these mathematic models, 

in our study of the spring bloom, the diversity of plankton could be sustained by 

competition for a handful of resources. Because species that are not dominant by 

biomass (e.g., Cyanobium sp. and Eutreptia lanowii) are presumably still competing 

for resources, those species could play an important functional role in the community 

by creating interactions that keep the community diverse.

Temporal changes in algal communities related to physical exchange—Some of the 

diatoms identified in this study contributed to temporal differences in algal 

communities (Table 3.4), but were not responding to the diatom bloom. For example, 

we attributed the peak in abundance of Nizschia closterium (Figure 3 .4), which is a 

highly mobile benthic diatom (Cloern and Dufford 2005; Smithsonian Environmental 

Research Center 2007), to the shallow depth of the estuary and movement of that 

pennate diatom into the water column. These results were consistent with previous 

research demonstrating the importance of physical transport within the estuary and
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interconnectivity of habitats on primary production and species composition (Cloem 

2007; Cloem and Dufford 2005).

Spatial and temporal differences between algal communities were also shaped 

by Cyclotella striata (Tables 3 .3 and 3 .4). The abundance of that centric diatom was 

similar in August and February at site 36 (Figure 3.4), indicating that conditions other 

than the bloom favored the species. Marshall and Alden (1990) described C. striata 

as a freshwater species that gradually declines during the transition to from freshwater 

to estuarine waters in the Chesapeake Bay. Therefore, the high abundance of C. 

striata at sites 36 and 21 and its low abundance at site 32 in South Bay (Figure 3.4) 

could have been caused by freshwater inputs from the Guadalupe River at site 36 and 

exchange of freshwater from the Sacramento and San Joaquin Rivers at site 21. 

However, freshwater inputs did not explain the high abundance of C. striata in 

August (Figure 3 .4), a time when the primary source of freshwater to South Bay is 

wastewater treatment plants (Smith and Hollibaugh 2006). Its abundance may have 

been shaped by factors other than freshwater exchange; Prasad and Nienow (2006) 

described C. striata as a marine, rather than a freshwater species, and Cloern and 

Dufford (2005) describe it as a meroplanktonic species that is common in surface 

sediments. Regardless of its origin (i.e., sediments or freshwater), its distribution was 

likely not a response to the bloom, demonstrating that physical exchange processes 

shape algal distributions.
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Algal communities and temperature—The BIO-ENV procedure showed that 

temperature was the environmental variable that best matched patterns in algal 

communities (Table 3.5). As shown in Figure 3.3, temperature was warmest (e.g.,

23.1 °C at site 32) in August, intermediate (14.99 -  16.69 °C at site 32) from mid- 

March to May, cooler on 04 March (14.15 °C at site 32) and coolest on 19 and 24 

February (e.g., 12.94 and 12.97 °C, respectively at site 32). The coolest temperatures 

occurred during the peak of the bloom.

Algal communities and ammonium—The BIO-ENV procedure showed that dissolved 

ammonium concentrations were also related to patterns in algal community 

composition, although they did not contribute as much to the model as did 

temperature (Table 3.5). Dissolved ammonium concentrations (Figure 3.3) were low 

(<1.1 pmol L '1) at sites 32 and 36 when Chi a concentrations (Figure 3.2) were high. 

Then, in April, dissolved ammonium concentrations increased as the bloom decayed, 

as observed elsewhere (e.g., Nova Scotia, Kim et al. 2004b).

In northern and central San Francisco Bay, ammonium has been suggested to 

limit primary productivity by inhibiting algal uptake of nitrate (Wilkerson et al.

2006). However, in the field, it is difficult to distinguish whether limited nitrate 

uptake is caused by ammonium inhibition or by algal preference for ammonium 

(Dortch 1990). The question of inhibition versus preference was beyond the scope of 

this study. However, we did observe that the increase in dissolved ammonium
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coincided with growth of cyanobacteria, Synechocystis sp. (Figure 3.4), which was 

consistent with a preference of small cells for ammonium (Dortch 1990).

High ammonium concentrations could have benefited Synechocystis sp. more 

than other algal groups, based on mesocosm experiments with water from the Neuse 

River Estuary, North Carolina (Paerl 1999). In those experiments, equimolar 

concentrations of nitrate and ammonium were added to an assemblage of 

cyanobacteria, diatoms, and cryptomonads. Of those groups, cyanobacteria increased 

the most in response to the ammonium additions. Moreover, during field studies in 

that estuary, dissolved ammonium reached high concentrations as a result of anoxic 

conditions following a hurricane, and blooms of cyanobacteria were subsequently 

observed (Paerl 1999).

We proposed that in South San Francisco Bay, suboxic conditions created by 

decay of the Thalassiosira punctigera bloom caused the increase in dissolved 

ammonium (Figure 3 .3) and enhanced growth of Synechocystis sp.. Synechocystis sp. 

consistently contributed to differences between both sites and dates (Tables 3.3 and 

3.4), indicating that it was a discriminating species (Clarke and Warwick 1994).

Thus, if Synechocystis sp. responded to changes in ammonium concentrations, it 

could have contributed to the community relationship with ammonium.

The complex linkages between nutrient concentrations and algal community

composition in the estuary were evidence of eutrophication in San Francisco Bay.

High nutrient concentrations initially set the stage for the large diatom bloom, which

then depleted the nutrients. The decay of the bloom subsequently increased dissolved
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ammonium concentrations, favoring non-diatom species. Although it was difficult to 

determine if the bloom drove the water chemistry, or vice-versa, nutrient 

concentrations helped shape algal community composition in the estuary. Changes in 

algal community composition as a result of nutrient enrichment are considered 

evidence of eutrophication (Cloern 2001; Pinckney et al. 1997).

Algal communities and dissolved metal concentrations—The BIO-ENV result 

showing that dissolved metal concentrations were not linked to phytoplankton 

community composition (Table 3 .5) was consistent with previous studies 

demonstrating that the toxicity of metals to phytoplankton in the estuary was limited 

by organic complexation. In previous studies, > 99% of dissolved Cu in the estuary 

was strongly complexed to organic ligands (Buck and Bruland 2005; Hurst and 

Bruland 2005) and not readily available for algal uptake (Beck et al. 2002; Luengen 

et al. 2007; Luoma et al. 1998). As a result, diverse populations of cyanobacteria 

have been observed in the estuary, indicating that plankton were not impaired by the 

relatively high concentrations of dissolved Cu (Palenik and Flegal 1999).

Similar to dissolved Cu, > 95% of dissolved Pb in the estuary is complexed, 

primarily to strong ligands (Kozelka et al. 1997). Although the spring 2003 

phytoplankton bloom depleted dissolved Pb from the water column, that depletion 

was likely the result of sorption of Pb to algal surfaces, as opposed to internalization 

in the cellular cytoplasm (Luengen et al. 2007; Michaels and Flegal 1990).

Accordingly, that metal was unlikely to impair phytoplankton growth.
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In contrast to Cu and Pb, Ni may be bioavailable at some times of year 

because of seasonal variations in the amount of its complexation. For example, 

strong Ni complexation in South Bay in 1997 varied from 0 - 91% seasonally in 

response to the amount of wastewater treatment plant discharge (Bedsworth and 

Sedlak 1999). That variation was consistent with contrasting results from previous 

investigations of Ni uptake by phytoplankton in South Bay. In that previous work, 

Luengen et al. (2007) and Luoma et al. (1998) found that Ni was bioavailable to 

phytoplankton in field studies whereas Beck et al. (2002) showed that Ni was not 

taken up by phytoplankton in laboratory microcosm studies.

Although there are have been no studies on Zn complexation in this estuary, 

its bioavailability is also likely dictated by organic complexation, based on laboratory 

studies elsewhere (Brand et al. 1983). The amount of organic complexation in South 

Bay may vary considerably, given that there is wide range (51 - 87%) in the amount 

of complexed Zn in Narragansett Bay, Rhode Island (Kozelka and Bruland 1998). 

Similar variation in complexation in San Francisco Bay may explain why Zn was 

depleted during the 1994 spring bloom (Luoma et al. 1998), but not during the spring 

2003 spring bloom (Luengen et al. 2007).

In summary, this statistical approach allowed us to look for a relationship

between metal enrichment and algal community composition without measuring

metal speciation. To chemically characterize the complexation of all metals in this

study would have been extremely difficult because complexing ligands have various

binding strengths (Bedsworth and Sedlak 1999; Buck and Bruland 2005), originate
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from myriad sources (Bedsworth and Sedlak 1999; Buck et al. in press), and some 

(e.g., dithiocarbamate fungicides) could even enhance algal uptake of metals if they 

were present in the estuary’s waters (Phinney and Bruland 1997a; 1997b). This 

statistical approach also allowed us to simultaneously consider the multiple metals 

that are enriched in the estuary to potentially toxic levels. We concluded, however, 

that the patterns of metal enrichment in South Bay were not measurably linked to 

algal community composition.

Conclusions

This study highlights the complexity and diversity of the spring bloom over relatively 

short temporal scales (order of weeks) and spatial scales (kilometers). Functional 

consequences of high algal diversity is currently an area where more research is 

needed (Duffy and Stachowicz 2006), but our results suggest that one consequence is 

the presence of species that are poised to take advantage of changes in environmental 

conditions (such as the increase in dissolved ammonium). Dissolved ammonium 

concentrations are linked to algal community composition, indicating that the high 

nutrient concentrations in the estuary have measurable biological effects (i.e., 

eutrophication). Algal community composition is also linked to temperature, 

suggesting that changes in water temperature from global warming could affect algal 

community composition in the estuary. In contrast, anthropogenically enriched metal 

concentrations in South Bay do not measurably shape algal community composition.
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Despite the sensitivity of cyanobacteria to high metal (e.g., Cu) concentrations, 

cyanobacteria are present in the estuary and help distinguish algal communities over 

space and time. Accordingly, these results were consistent with previous studies 

showing that organic complexation of dissolved Cu limits its bioavailability and 

toxicity in the estuary.
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Table 3.1. Top ten bloom species by biovolume, calculated as the maximum 

biovolume attained by each algal species at any given site and date in 2003. Blooms 

o f species such as Thalassiosira nodulolineata were small (e.g., only 3 percent o f the 

biovolume in that sample) relative that o f T. punctigera (which accounted for the 

remaining 97% o f the biovolume in that sample).

P e rc en t o f  

to ta l

M a x iu m u m  b io v o lu m e  

A b u n d a n c e  b io v o lu m e  in  th a t  

T ax o n ____________________________________________________ G ro u p _____________D a te  S ite  (ce lls  m L '1)  (p m 3 m L 1) sa m p le  (% )

Thalassiosira punctigera (C a s tra c a n e )  H asle D ia to m s 0 4  M a r 36 408 8 2 ,5 0 0 ,0 0 0 9 9

Thalassiosira gravida C lev e D ia to m s 01  A p r 36 52 1 2 ,0 0 0 ,0 0 0 9 7

Thalassiosira hendeyi H asle  &  F ryxe ll D ia to m s 17 A p r 21 2 4 3 ,5 0 0 ,0 0 0 4 6

Coscinodiscus curvatulus G ru n o w D ia to m s 17 A p r 21 6 3 ,0 0 0 ,0 0 0 44

Alexandriumftmdyense B alech D in o flag e lla te s  2 7  A u g 32 2 9 0 1 ,6 2 0 ,0 0 0 74

Thalassiosira nodulolineata D ia to m s 12 M a r 3 6 6 1 ,0 0 0 ,0 0 0 3

Corethron hystrix H en  sen D ia to m s 12 M a r 21 1 1 ,0 0 0 ,0 0 0 29

Ditylum brightwellii (T . W es t)  G ru n o w D ia to m s 19 F eb 21 2 9 0 0 ,0 0 0 32

Coscinodiscus concirmus W . S m ith D ia to m s 2 7  A u g 21 4 9 0 0 ,0 0 0 33

Dactyliosolen fragilissimtis (B e rg o n ) H a s le D ia to m s 0 4  M a r 21 5 6 0 0 ,0 0 0 5
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Table 3.2. Top ten bloom species by abundance, calculated as the maximum 

abundance attained by each algal species at any given site and date in 2003.

P e rc e n t o f  

to ta l

M a x im u m  b io v o lu m e

ab u n d an c e  B io v o lu m e  in  th a t  

T ax o n ____________________________________________________ G ro u p _______________ D a te  S ite  (ce lls  m L '1)  (u m 3 mL~1) sa m p le  (% )

Narmochloropsis sp. E u stig m a to p h y ta 2 4  F eb 21 7 2 ,7 5 0 1 0 9 ,0 0 0 0 .33

Plagioselmis prolonga v a r. n o rd ic a  N o v a rin o C ry p to m o n a d s 2 7  A u g 21 7 ,6 8 0 4 7 4 ,0 0 0 18

Dolichomastix sp. P ra s in o m o n ad s 01 A p r 36 1 ,500 3 ,2 0 0 0 .0 3

Skeletonema costatum (G re v ille )  C lev e D ia to m s 2 7  A u g 32 1,480 2 6 1 ,0 0 0 12

Synechocystis salina W islo u ch C y a n o b ac te ria 01 A p r 36 1 ,250 1 ,440 0 .01

Teleaulax amphioxeia (C o n ra d )  H ill C ry p to m o n ad s 01 M a y 32 1,040 4 3 0 ,0 0 0 33

Cyclotella sp. D ia to m s 2 4  F eb 32 8 0 0 2 7 0 ,0 0 0 0 .4 0

Pyramimonas orientalis B u tch e r P ra s in o m o n ad s 12 M a r 21 7 2 0 2 8 ,0 0 0 0 .65

Cyanobium sp. C y a n o b ac te ria 0 4  M a r 36 5 0 0 3 5 0 0 .0 0 0 4

Thalassiosira punctigera (C a s tra c a n e )  H asle D ia to m s 0 4  M a r 36 4 0 8 8 2 ,5 0 0 ,0 0 0 99
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Table 3.3. Results from the SIMPER analysis showing the phytoplankton species that contributed 

most to the observed differences in community composition between the three sites in South Bay 

in 2003. Species names given in bold face indicate greater abundance at the first site listed than 

the second site (e.g., Nannochloropsis sp. were more abundant at site 21 than site 32).

S p e c ie s  G ro u p ___________________C o n tr ib %  C u m .%

A v erag e  d is s im ila r ity  b e tw e e n  s ite  21  &  32  =  4 4 .9 3

Nannochloropsis SP- E u stig m a to p h y ta 5 .5 5 .5

Synechocystis sp. C y a n o b ac te r ia 5 .5 11

Skeletonema costatum (G re v ille )  C lev e D ia to m s 4 .8 16

Pyramimonas orientalis Butcher P ra sin o m o n ad s 4 .7 21

Cyclotella sp. D ia to m s 4 .5 25

Teleaulax amphioxeia (Conrad) Hill C ry p to m o n ad s 4 .0 2 9

Plagioselmis prolonga v a r . nordica N o v a rin o  L u ca s  &  M o rre ll C ry p to m o n ad s 3 .9 33

Thalassiosira punctigera (C a s tra c a n e )  H a s le D ia to m s 3 .8 3 7

Cyclotella atomus H u s te d t D ia to m s 3 .3 4 0

Nitzschia closterium (Ehrenberg) W. Smith D ia to m s 2 .8 43

Thalassiosirapacifica Gran & Angst D ia to m s 2 .6 45

Biddulphia alternans Bailey D ia to m s 2 .5 48

Cyclotella striata (Kuetzing) Grunow D ia to m s 2 .3 50

A v e rag e  d is s im ila r ity  b e tw e e n  s ite  21 &  3 6  =  4 5 .5 2

Synechocystis sp. C y a n o b ac te ria 6 .2 6 .2

Pyramimonas orientalis Butcher P ras in o m o n ad s 5.1 11

Nannochloropsis sp. E u stig m a to p h y ta 5 .0 16

Skeletonema costatum (Greville) Cleve D ia to m s 5 .0 21

Cyclotella sp. D ia to m s 4 .4 26

Thalassiosira punctigera (C a s tra c a n e )  H a s le D ia to m s 4 .4 30

Plagioselmis prolonga v ar. nordica N o v a rin o  L u ca s  &  M o rre ll C ry p to m o n ad s 3 .7 34

Cyclotella striata (K u e tz in g )  G ru n o w D ia to m s 3 .7 37

Teleaulax amphioxeia (Conrad) Hill C ry p to m o n ad s 3.1 41

Nitzschia closterium (Ehrenberg) W. Smith D ia to m s 3 .0 4 4

Thalassiosira nordenskioeldii Cleve D ia to m s 2 .7 46

Chaetoceros subdlis Cleve D ia to m s 2 .4 4 9

Thalassiosira visurgis Hustedt D ia to m s 2 .3 51

A v erag e  d is s im ila r ity  b e tw e e n  s i te s  3 2  a n d  3 6 =  4 1 .5 4

Synechocystis sp. C y a n o b ac te ria 7 .6 7 .6

Pyramimonas orientalis B u tch e r P ra s in o m o n ad s 5 .6 13

Teleaulax amphioxeia (C o n ra d )  H ill C ry p to m o n ad s 5 .5 19

Thalassiosira punctigera (Castracane) Hasle D ia to m s 5 .5 2 4

Nannochloropsis sp. E u stig m a to p h y ta 5 .4 2 9

Cyclotella sp. D ia to m s 5 .3 35

Cyclotella striata (K u e tz in g )  G ru n o w D ia to m s 4 .5 39

Skeletonema costatum (Greville) Cleve D ia to m s 4 .0 43

Nitzschia closterium (Ehrenberg) W. Smith D ia to m s 3 .6 4 7

Dolichomastix sp. P ra sin o m o n ad s 3 .4 50
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Table 3.4. Results from the SIMPER analyses showing the phytoplankton species that contributed 

most to temporal changes in algal community composition between the beginning of the bloom (19 

Feb), the peak of the bloom (04 Mar), the onset of decay (01 Apr), advanced decay (01 May), and non

bloom conditions (27 Aug). Species names given in bold face indicate greater abundance on the first 

date listed than the second date (e.g., Synechocystis sp. were more abundant on 19 Feb than 04 Mar).

Species Group Contrib (%) Cum (%)
Average dissimilarity between 19 Feb and 04 Mar =  39.07
Synechocystis sp. Cyanobacteria 7.0 7.0
Cyclotella striata (Kuetzing) Grunow Diatoms 5.7 13
Nannochloropsis sp. Eustigmatophyta 5.4 18
Skeletonema costatum (Greville) Cleve Diatoms 5 .3 23
Teleaulax amphioxeia (Conrad) Hill Cryptomonads 4.6 28
Cyanobium sp. Cyanobacteria 4.1 32
Eutreptia lanowii Steur Euglenoids 3.9 36
Nitzschia fontifuga Cholnoky Diatoms 3.8 40
Plagioselmis prolonga var. nordica Novarino, Lucas &Morrall Cryptomonads 3.8 44
Thalassiosira punctigera (Castracane) Hasle Diatoms 3.7 47
Chaetoceros dldymus Ehrenberg Diatoms 3.5 51

Average dissimlarity between 04 Mar and 01 Apr = 42.73
Synechocystis sp. Cyanobacteria 9.7 10
Dolichomastix sp. Prasinomonads 8.0 18
Pyramimonas orientalis Butcher Prasinomonads 5.1 23
Nannochloropsis sp. Eustigmatophyta 4 .7 27
Cyclotella striata (Kuetzing) Grunow Diatoms 4.7 32
Teleaulax amphioxeia (Conrad) Hill Cryptomonads 4.5 37
Pyramimonas disomata Butcher Prasinomonads 4.4 41
Skeletonema costatum (Greville) Cleve Diatoms 4.0 45
Thalassiosira punctigera (Castracane) Hasle Diatoms 3 .7 49
Nitzschia closterium (Ehrenberg) W. Smith Diatoms 3.4 52

Average dissimilarity between 01 AprandOl May = 47.15
Synechocystis sp. Cyanobacteria 12 12
Dolichomastix sp. Prasinomonads 7.3 19
Cyclotella sp  Diatoms 7.0 26
Teleaulax amphioxeia (Conrad) Hill Cryptomonads 5.9 32
Cyclotella atomus Hustedt Diatoms 4.9 37
Thalassiosira punctigera (Castracane) Hasle Diatoms 4.2 41
Nitzschia closterium (Ehrenberg) W. Smith Diatoms 3.9 45
Pyramimonas orientalis Butcher Prasinomonads 3.8 49
Skeletonema costatum (Greville) Cleve Diatoms 3.6 52

Average dissimilarity between 04 Mar and 27 Aug = 53.01
Cyclotella sp. Diatoms 8.0 8.0
Skeletonema costatum (Greville) Cleve Diatoms 6.2 14
Alexandriumfimdyense Balech Dinoflagellates 5.5 20
Thalassiosira punctigera (Castracane) Hasle Diatoms 5.1 25
Nannochloropsis sp. Eustigmatophyta 5.1 30
Plagioselmis prolonga var, nordica Novarino, Lucas & Morrall Cryptomonads 4.7 35
Teleaulax amphioxeia (Conrad) Hill Cryptomonads 4.4 39
Cymatosira belgica Grunow in Van Heurck Diatoms 4.0 43
Rhodomonas marina (Dangeard) Lemmermann Cryptomonads 3.8 47
Synechocystis sp. QO Cyanobacteria 3.7 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.5. Results from the BIO-ENV procedure showing the correlation between 

algal community composition and models with various numbers o f environmental 

variables. The increase in fit is the amount by which the correlation improved when 

an additional variable was added to the model. The best one-variable model was 

temperature (correlation = 0.395). The addition o f dissolved ammonium to the model 

increased the fit by 0.086, indicating that dissolved ammonium contributed to 

community response, but that temperature explained most o f the variability. The best 

three-variable model (temperature, ammonium, and silicate) increased the fit relative 

to the two-variable model by only 0.016, signifying that dissolved silicate did not 

contribute much to the model. Similarly, the contribution o f dissolved metals to the 

model was negligible (< 0.020).

Model Correlation Increase in fit
Pb, temperature, ammonium, silicate 0.517 0.020
Co, temperature, ammonium, silicate 0.500 0.003
Temperature, ammonium, silicate 0.497 0.016
Temperature and ammonium 0.481 0.086
Temperature 0.395 —
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Figure 3.1. Surface water samples for phytoplankton species composition were 
collected from the southern reach of San Francisco Bay (South Bay) at sites 21 (Bay 
Bridge), 32 (Ravenswood Point), and 36 (Calaveras Point).
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CONCLUSIONS AND FUTURE DIRECTIONS

This work addresses the combined environmental impacts of nutrient 

enrichment, phytoplankton blooms, and metal contamination in the southern reach of 

San Francisco Bay (South Bay). The bloom in this study, in spring 2003, was one of 

the largest blooms on record and crashed following depletion of dissolved nutrients. 

Thus, the magnitude of blooms can be limited by the amount of nutrients, which are 

elevated in the estuary as a result of inputs from wastewater treatment plants (Hager 

and Schemel 1996; Smith and Hollibaugh 2006).

Like nutrients, dissolved metals are enriched in the estuary as a result of 

anthropogenic inputs (Flegal et al. 2005). The potential of phytoplankton to uptake 

dissolved methyl mercury is a particular concern because that metal currently reaches 

concentrations in fish that require consumption advisories in the estuary (Thompson 

et al. 2000). This work demonstrates that although phytoplankton take up methyl 

mercury during a bloom, a potentially more important effect is production of methyl 

mercury in sediments as bloom material decays. Thus, there were unanticipated, yet 

consequential, links between algal concentrations and metal cycling.

Although the bloom affects metal concentrations, the metal concentrations do

not directly shape algal community composition. That result was consistent with

previous research demonstrating that organic complexation limits the bioavailability

of metals such as copper in the estuary (Buck and Bruland 2005; Sedlak et al. 1997).

However, there are spatial and temporal changes in phytoplankton communities
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during the bloom, which demonstrate the dynamic nature of algal blooms in the 

estuary.

The complex and dynamic nature of metal-algal interactions is a fascinating 

subject, where geochemistry interfaces with biology, and complex statistical models 

are often needed to analyze data. The study of single celled phytoplankton provides a 

perfect opportunity to understand metal accumulation in terms of process oriented 

studies. Of the metals in the estuary, process oriented studies are most needed for 

mercury. Despite potentially high concentrations of mercury in fish, the exact 

mechanisms of methyl mercury uptake by phytoplankton at the base of the food chain 

are still not understood (Pickhardt and Fisher 2007).

One method that has been successfully used to evaluate uptake of metals by 

phytoplankton is the use of radioisotope tracers (Pickhardt and Fisher 2007). In my 

future postdoctoral position with Professor Nicholas Fisher, Stony Brook University,

I will use mercury radioisotopes to evaluate how mercury uptake by phytoplankton is 

affected by its association with dissolved organic matter. Previous research has 

demonstrated that dissolved organic matter may alter processes that occur on 

phytoplankton surfaces (such as uptake of metals) by binding to cell surfaces 

(Campbell et al. 1997). Furthermore, the concentration of dissolved organic matter 

has been shown to increase methyl mercury uptake by phytoplankton in experiments 

with water from different sites in the San Francisco Bay Delta (Pickhardt and Fisher 

2007).
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The San Francisco Bay and Delta is an ideal place to conduct future studies on 

mercury uptake to phytoplankton. Not only is there a pressing need to understand 

mercury bioavailability there, it is also one of the most well-studied estuaries 

(Sanudo-Wilhelmy et al. 2004). Those previous studies, including this dissertation, 

make it possible to frame metal contamination in terms of complex estuarine 

processes. For example, my postdoctoral work in the estuary will leverage existing 

knowledge and samples of dissolved organic matter composition through 

collaboration with Dr. Brian Bergamaschi, United States Geological Survey (USGS).

The research presented here has benefited enormously from previous studies 

in the estuary, especially those on phytoplankton ecology (led by Dr. Jim Cloern, 

USGS) and metal speciation (conducted by Professor Ken Bruland, University of 

California at Santa Cruz, and his students). The San Francisco Bay estuary is an ideal 

place to conduct interdisciplinary research and evaluate the impacts of multiple 

anthropogenic stressors. Moreover, as a highly disturbed estuary, which is home to 

more than 7 million people (Smith and Hollibaugh 2006), San Francisco Bay is in 

need of our research efforts.
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