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Sodium dodecyl sulfate-polyacrylamide gel analysis of lipooligosaccharide (LOS) from Neisseria meningitidis
has demonstrated considerable microheterogeneity in the variable region of LOS due to the presence of novel
glycoforms. As a step toward understanding the basis for the expression of these novel glycoforms, we have ex-
amined the LOS structures and UDP-glucose 4-epimerase (epimerase) activity levels in two strains (NMB and
MA-1) and their respective galE mutants. Strain NMB was found to have low epimerase activity and to contain
multiple glycoforms, some of which appear to contain only glucose sugars. The galE mutant had only the oligo-
glucose glycoforms. Strain MA-1 had higher epimerase activity at both log and stationary phases (2- and 12.5-
fold, respectively) and one glycoform with a putative lactosyl structure. Strain MA-1 galE had two glycoforms
that contained one or two glucose residues. To understand the molecular basis for the different epimerase
activities, we examined the predicted amino acid sequences of the respective galE open reading frames and de-
termined the relative amounts of GalE protein. We found no significant differences between the predicted
amino acid sequence of the GalE protein in NMB and that in MA-1. We observed no significant differences in
the level of GalE protein between MA-1 and NMB at exponential or stationary phase. We also observed an 8.2-
fold drop in epimerase activity in NMB between the log and stationary phases that was not due to the GalE
protein level or low glucose levels.

Pathogenic Neisseria species are gram-negative obligate hu-
man pathogens. Neisseria meningitidis, the causative agent of
meningococcal meningitis, possesses a number of virulence
factors. One of these virulence factors is the lipooligosaccha-
ride (LOS). This molecule is composed of a variable oligosac-
charide portion and a conserved core-lipid A structure (1).

The assembly of the LOS molecule is a complex anabolic
process involving an array of biosynthetic enzymes including
kinases, transferases, and isomerases. One of the isomerases is
the UDP-glucose 4-epimerase (galactowaldenase, EC 5.1.3.2).
This enzyme carries out the reversible epimerization of UDP-
glucose to UDP-galactose, the cognate substrate for galacto-
syltransferases. The Escherichia coli UDP-glucose 4-epimerase
has been purified and studied in detail at both the biochemical
and the structural level. The holoenzyme is a homodimer held
together by hydrophobic interactions and contains one NAD1

molecule per subunit (4).
The number of unique LOS species expressed by a menin-

gococcal strain can vary widely (24, 29). We have previous-
ly reported on the LOS microheterogeneity of serogroup B
N. meningitidis NMB and its galE mutant NMB-SS3 (14). The
basis of this microheterogeneity was the presence of three
novel glycoforms that contained two to four glucose residues.
In the galE mutant NMB-SS3, only the oligoglucose glyco-
forms were detected, and the relative amounts of some of these
novel glycoforms were significantly increased compared to
those in NMB. Also, in N. meningitidis MC58 galE, a second

glycoform with two glucose molecules was observed (33). It is
not known if the diglucose glycoform was present in the parent
strain. Pathogenic Neisseria species cannot utilize exogenous
sources of galactose, and thus the only source of UDP-galac-
tose is UDP-glucose. This suggests an important role for UDP-
glucose 4-epimerase in determining the UDP-glucose and
UDP-galactose concentrations and thereby perhaps influenc-
ing the activity of cognate glycosyltransferases. In this report,
we present the LOS structures of MA-1 and its galE mutant
MA-1 galE, and we compare the UDP-glucose 4-epimerase
activity level of strain NMB to that of strain MA-1. We also
present evidence demonstrating growth phase-dependent vari-
ation of epimerase activity levels in NMB.

MATERIALS AND METHODS

Materials. Chemicals and antibiotics were obtained from Sigma Chemical Co.
(St. Louis, Mo.). Restriction enzymes and DNA-modifying enzymes were pur-
chased from New England Biolabs, Promega Co., and Boehringer Mannheim
Biochemicals.

Bacterial strains and plasmids. The bacteria and plasmids used in this study
are described in Table 1.

Growth of bacteria. E. coli was grown at 37°C in Luria-Bertani medium with or
without 1.5% agar and supplemented with antibiotics as needed. Wild-type
N. meningitidis was grown either on gonococcal agar with 1% IsoVitaleX sup-
plement (BBL Laboratories) or in brain heart infusion (BHI) broth supple-
mented with 2.5% heat-inactivated fetal calf serum and 1% IsoVitaleX. Kana-
mycin-resistant N. meningitidis was grown on supplemented BHI agar with 45 mg
of kanamycin/ml or in supplemented BHI broth with 5 (for strain MA-1) or 25
(for strain NMB) mg of kanamycin/ml. N. meningitidis on agar plates was cultured
in the presence of 5% CO2 at 85% relative humidity.

Recombinant DNA and transformation methods. All recombinant DNA tech-
niques were used as outlined elsewhere (23). Transformations of N. meningitidis
were performed as previously described by Catlin (4) and modified by Stephens
et al. (25). Electroporations were carried out by using the GIBCO-BRL Cell-
Porator under the recommended conditions.

* Corresponding author. Mailing address: 3-401 Bowen Sciences
Building, Department of Microbiology, College of Medicine, Univer-
sity of Iowa, 51 Newton Rd., Iowa City, IA 52242. Phone: (319) 335-
7807. Fax: (319) 335 9006. E-mail: michael-apicella@uiowa.edu.
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DNA sequencing. The nucleotide sequences of cloned genomic DNA frag-
ments were determined at the DNA Facility at the University of Iowa by using
an ABI373A automated sequencer.

Hybridizations. Analyses of Southern blots were carried out with radiolabelled
random-primed probes at 65°C in 53 SSPE (13 SSPE is 0.18 M NaCl, 10 mM
NaH2PO4, and 1 mM EDTA [pH 7.7]), 53 Denhardt’s solution, 20 mM Na3P2O7,
0.1% sodium dodecyl sulfate (SDS), and 100 mg of heterologous DNA/ml. The
filters were washed twice at the hybridization temperature in 23 SSC (13 SSC
is 0.15 M NaCl plus 0.015 M sodium citrate) and 0.1% SDS for 15 min, followed
by two washes in 0.13 SSC and 0.1% SDS for 15 min. The radioactive blots were
exposed to Kodak XAR5 or BioMaxMR film at 270°C.

Hot-phenol LOS extraction. LOS was purified from N. meningitidis by a mod-
ified hot-phenol method (34) as previously described (14). The purified LOS was
analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) and visualized by
silver staining as described elsewhere (30).

Structural characterization of LOS. To determine the effects of UDP-glucose
4-epimerase activity on LOS biosynthesis, LOS from the wild-type strain MA1
and a galE mutant were partially characterized by mass spectrometry and com-
position analysis. Crude LOS preparations (;1 mg each) from the two strains
were first O deacylated by treatment with hydrazine under mild conditions (37°C
for 30 min), followed by precipitation with chilled acetone (10). For mass spec-
trometric analysis, O-deacylated LOS was dissolved in a stock water solution
(10 mg/ml) and analyzed by matrix-assisted laser desorption ionization (MALDI)
(7) and electrospray ionization (ESI) (8) mass spectrometry as previously de-
scribed. For the MALDI analyses, several dilutions were made of the original
stock (1/10 to 1/100), and ;0.1 mg or less of each O-deacylated LOS was added
to 1 ml of a matrix solution of 2,5-dihydroxybenzoic acid (DHB) and spotted on
a stainless-steel MALDI sample plate. Mass spectra were taken on a PerSeptive
Biosystems Voyager MALDI-time-of-flight mass spectrometer (PerSeptive Bio-
systems, Framingham, Mass.) fitted with a N2 laser operating at 337 nm. Typi-
cally, 50 to 100 single laser shots were averaged to obtain a single spectrum by
using a 100-ns delay time and a laser power setting of 1,800 to 2,000. Spectra
were smoothed (Savitsky-Golay procedure; 2 by 19 point) and externally cali-
brated with a close proximity standard consisting of the commercial peptides
bradykinin (Mavg 5 1,060.2) and ACTH 1-24 (Mavg 5 2,465.7). For ESI analyses,
a stock solution of each O-deacylated LOS preparation was diluted fivefold in
water-acetonitrile (1:1, vol/vol) containing 1% acetic acid to yield a final O-
deacylated LOS concentration of approximately 2 mg/ml. Five microliters of each
LOS sample was then injected via a Rheodyne valve and analyzed in the nega-
tive-ion mode on a Sciex API 300 triple quadrupole mass spectrometer (Perkin-
Elmer SCIEX, Mississauga, Ontario, Canada) with a flow rate of 3 to 4 ml/min.
Mass calibration was carried out with an external myoglobin reference by using
the commercial software supplied.

Monosaccharide composition analyses were carried out on O-deacylated LOS
preparations by two independent methods. For neutral sugar analysis, aliquots of
each O-deacylated LOS pool were hydrolyzed in 2 M trifluoroacetic acid for 3 h
at 100°C. Amino sugars were analyzed after hydrolysis in 6 N HCl for 3 h at
100°C. In both cases, aliquots of the final hydrolysates were evaporated to dry-
ness, redissolved in 20 ml H2O, dried, and then reconstituted in water. A 5% ali-
quot (1 of 20 ml) of each sample was analyzed by high pH anion-exchange
chromatography by using a Dionex high-pressure liquid chromatography system
equipped with a PA1 column as previously described (20). To identify and
quantify the monosaccharides from each hydrolysate, a standard mixture of mono-
saccharides containing equimolar amounts of fucose, galactosamine, glucos-
amine, galactose, glucose, and mannose was analyzed before and after each run.

Glucose supplement of stationary-phase culture. A fresh overnight culture of
N. meningitidis NMB grown in Morse’s defined medium with 20 mM glucose (18)
was used to inoculate 50 ml of fresh medium and incubated at 37°C with shaking.
Aliquots (15 ml) were removed at mid-log and early-stationary phases, and epi-
merase activities were determined. Glucose was added to the remaining culture

to a final concentration of 20 mM, and it was incubated for one additional hour,
after which the epimerase activity was determined.

Purification of recombinant meningococcal GalE. The NMB galE open read-
ing frame was cloned into plasmid pCYB2 of the IMPACT Protein Purification
System (New England Biolabs), and the recombinant meningococcal GalE was
purified according to the manufacturer’s recommendations. The purified protein
was verified by amino-terminal sequencing at the Protein Structure Facility,
University of Iowa.

Generation of polyclonal antibodies. Mouse polyclonal antibodies to recom-
binant meningococcal GalE were raised by coinjection with the RIBI Adjuvant
System (RIBI ImmunoChem Research, Inc.) according to the manufacturer’s
recommendations. The ascites fluid was harvested and assayed for reactivity to
the purified antigen by enzyme-linked immunosorbent assay.

SDS-PAGE and Western blot analysis. Cultures of N. meningitidis MA-1 and
NMB were harvested and lysed by sonication. Total protein concentrations were
determined with the Bio-Rad Protein Assay Reagent system, and equivalent
amounts of total protein were fractionated by 12.5% SDS–12.5% PAGE. The
resolved proteins were transferred to nitrocellulose under standard conditions
and reacted with mouse polyclonal antisera to recombinant meningococcal GalE
that had been preabsorbed with paraformaldehyde-fixed MA-1 galE. The react-
ing bands were visualized with a horseradish peroxidase-conjugated anti-mouse
immunoglobulin G secondary antibody (Bio-Rad, Inc.) and the SuperSignal
Horseradish Peroxidase Detection System from Pierce Chemicals. The relative
intensities of the bands were estimated with Eastman Kodak (Rochester, N.Y.)
1D Image Analysis Software.

Preparation of cell extract. N. meningitidis strains were grown in supplemented
BHI broth with kanamycin as required. For each strain, a 50-ml culture was
inoculated with 0.01 volume of fresh overnight culture and incubated overnight
at 37°C with shaking. The washed pellets were resuspended in 2 ml of buffer
(0.125 M potassium bicinate [pH 8.5]–1 mM phenylmethylsulfonyl fluoride) and
lysed by sonication. The bacterial debris was pelleted by centrifugation at
15,800 3 g for 30 min at 4°C. The supernatants were transferred to prechilled
microcentrifuge tubes and kept on ice. The total protein contents of the cleared
cell extracts were determined by using the Bio-Rad Protein Assay Reagent
system following the microassay protocol. Equal amounts of total protein were
added to the two-step UDP-glucose 4-epimerase assay as described below.

Enzyme assays. The standard UDP-glucose 4-epimerase assays have been
published elsewhere (35). We modified the assay slightly to optimize it for
meningococcal extracts. The first step of the two-step assay was carried out in a
500-ml reaction volume (0.125 M bicinate [pH 8.5]–0.45 mM UDP-galactose) at
37°C for 15 min. The reaction mixture was then placed in a boiling water bath for
90 s, chilled on ice for 5 min, and then centrifuged at 15,800 3 g for 10 min at
4°C. A 400-ml aliquot of the supernatant was added to the second step of the
assay in 600 ml (0.125 M bicinate [pH 8.5]–1.25 mM NAD1–0.02 U of UDP-
glucose dehydrogenase). The reaction mixture was incubated at room tempera-
ture for 3 min in a methylacrylate cuvette, and the increase in absorbance was
measured at 340 nm at 15-s intervals. We were able to achieve a twofold increase
in sensitivity with the modifications compared to that of the standard two-step
method using the glycine buffer. All extracts, including appropriate controls,
were assayed in triplicate.

Determination of UDP-glucose 4-epimerase activity levels. The net absor-
bance was determined after adjustment for endogenous UDP-galactose and
UDP-glucose and for UDP-glucose contamination of exogenous UDP-galactose
preparations. The initial velocities of the second reaction (UDP-glucose to UDP-
glucuronic acid) were determined over the first 30 s. This initial reaction velocity
(Vi) is a function of the initial UDP-glucose concentration, which in turn is a
function of the UDP-glucose 4-epimerase activity level. These values were con-
verted to nanomoles of NADH generated per minute by using the Beer-Lambert
law and the equation εNADH 5 6.2 3 103 z M21 z cm21. The assay results were
analyzed by paired t tests using the Statview program (Abacus Concepts).

TABLE 1. Strains and plasmids used in this study

Strain or plasmid Genotype or selective marker Source or reference

Strains
E. coli XL1 BLUE recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F9 proAB lacIq

ZDM15 Tn10(Tetr)](Con)
Stratagene

N. meningitidis NMB Wild-type clinical isolate; serogroup B; L2, L3, L7, L9 14, 22, 25
N. meningitidis NMB DgalEt::npt This study
N. meningitidis MA-1 Wild-type clinical isolate; serogroup A; L8 This study
N. meningitidis MA-1 DgalEt::npt This study

Plasmids
pDEADII Kanamycin pZERO (Invitrogen) modified

by author
pBluescript II SK(2) Ampicillin Stratagene
pBSL14 Ampicillin and kanamycin 1
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Nucleotide sequence accession number. The nucleotide sequence the galE
region of strain MA-1 is listed under accession no. AF083467.

RESULTS

Analysis of LOS from MA-1 and MA-1 galE by SDS-PAGE.
MA-1 LOS migrated faster than the major NMB LOS species
on SDS-PAGE analysis and did not appear to be sialylated
(Fig. 1). The MA-1 LOS also migrated as a single band, in con-
trast to NMB LOS. The MA-1 LOS also reacted with mono-
clonal antibody 4C4, which recognizes Gal-Glc-Hep or Glc-
Hep structures (12) (data not shown).

A 4.2-kb DraI fragment that contained the galE gene and
three other open reading frames was cloned from strain MA-1.
The last three open reading frames were identified as galE,
rfbB, and rfbA homologues. The first open reading frame (ORF1)
was identical to the recently reported mynD (27). A FASTA
search of the protein database indicated that ORF1 (mynD)
had the highest similarity to a putative DNA-binding protein
from yeast (P 5 0.062 over 201 amino acids) (data not shown).

We placed a kanamycin cassette 647 bp into the galE open
reading frame and introduced the mutation into the chromo-
some by allelic replacement. A kanamycin-resistant transfor-
mant designated MA-1 galE was screened by Southern hybrid-
ization (Fig. 2a), SDS-PAGE analysis (Fig. 2b), and epimerase
enzyme assay (data not shown). The results confirmed the in-
sertion of the kanamycin cassette into the meningococcal ge-
nome through allelic replacement, resulting in a significant
decrease in UDP-glucose 4-epimerase activity. SDS-PAGE
analysis of isolated MA-1 galE LOS indicated the presence of
two bands. The majority of the LOS molecules appeared to be
the expected truncated form, but there was a minor band which
appeared to comigrate with wild-type LOS (Fig. 2b).

Genetic analysis of the MA-1 galE gene. The organization of
the 4.2-kb fragment suggested that the MA-1 galE gene was
within an operon, perhaps contiguous with the previously de-
scribed myn operon (27). We introduced a kanamycin cassette
in polar and nonpolar orientations upstream of the galE open
reading frame at two different sites (Fig. 3). Analysis of these
mutants by epimerase enzyme assay and SDS-PAGE of their

LOS (Table 2) indicated that the presence of polar insertions
at EcoRI and NdeI sites (RKR and NKR, respectively) abro-
gated the expression of the galE gene.

The promoter for the galE gene of a serogroup B strain,
B1940, has been mapped previously (9). The nucleotide se-
quence upstream of the NMB galE gene is identical to the
sequence from B1940 (data not shown).

ESI mass spectrometric analysis of LOS isolated from N. men-
ingitidis MA-1 and MA-1 galE. Mass spectrometric analyses of
the O-deacylated LOS preparations from the wild-type strain,
MA-1, and the galE mutant are shown in Fig. 4 for the corre-
sponding MALDI spectra. For the wild-type strain, N. menin-
gitidis MA-1, two prominent, singly deprotonated molecular-
ion species were identified in the high-mass range (m/z .2,000)
with m/z values of (M 2 H)2 5 2,428.0 and 2,551.1, as well as
peaks related to these two major species through either loss of
water (218 Da), b-elimination of phosphoric acid (298 Da),
or noncovalent addition of one or more sodium (122 Da) or
magnesium (138 Da) ions or both. As shown in Table 3,
these masses are consistent with a LOS composition of a
Hep2-HexNAc-2 molecules of 3-deoxy-D-manno-octulosonic
acid (Kdo2)-lipid A core structure substituted with two hexoses
(galactose and glucose) and containing either one (LOS B; M
calculated 2,428.2) or two (LOS B9; M calculated 2,551.3)
phosphoethanolamine (PEA) groups (DM 5 123 Da).

The MALDI spectra of the galE mutant LOS were markedly
different from those of the wild-type MA-1 LOS. In the former
case, the two most abundant molecular-ion species were seen
at m/z;2,265 and 2,388, approximately 1 hexose lower in mass
(i.e., Hex 5 162 Da) than the two base peaks in the wild-type
MA-1 MALDI spectra. However, peaks corresponding to the
two wild-type molecular ions at m/z ;2,427 and 2,551 were also
present in the mutant LOS preparations, but at considerably
lower abundances. Electrospray analysis of the mutant and
wild-type LOS preparations (see Table 3) also supported these
assignments, containing both doubly and triply charged ions
for the LOS A and B glycoforms (with and without the addi-
tional PEA) for the mutant, and primarily the two LOS B
glycoforms in the wild type.

In addition to the prominent molecular-ion regions of these
two spectra, the low-mass regions of the two MALDI spectra
(m/z ,1,600) contained ions whose relative abundance was
dependent on the laser power. As reported previously (7),
these ions are “prompt fragments” and are generated primarily
from cleavage at the Kdo glycosidic bond to the lipid A moiety.
Figure 5 shows the likely fragmentation pathways for these
ions for MA-1, which give additional support for the assign-
ment of the major glycoform species. For example, in the
MA-1 spectra the peak at m/z 951.7 would correspond to the
deprotonated lipid A species containing two phosphate groups.
The small peak at m/z 1,031.7 suggests that a triphosphoryl
lipid A species is also present, but at a much lower abundance
(,10%) than the dominant diphosphoryl lipid A form. The
peaks at m/z 1,597.0 and 1,473.8 can be assigned as originating
from the same cleavage but with charge retention on the oli-
gosaccharide fragments, which can undergo further fragmen-
tation due to losses of 44 Da (2CO2; m/z 1,552.9 and 1,429.8)
and 220 Da for the terminal Kdo moiety (m/z 1,376.7 and
1,254.0). An analogous set of assignments can be made for the
galE strain; although in addition to the fragments arising from
the less-abundant LOS B glycoforms as just described, ions are
seen for the oligosaccharide fragments of the LOS A glyco-
forms that are now shifted down in mass by 1 hexose unit
(2162 Da).

Composition analysis clearly supported the loss of galactose
as underlying the shift in mass (MALDI spectra) and faster

FIG. 1. SDS-PAGE analysis of LOS isolated from N. meningitidis MA-1 and
NMB. This figure illustrates the multiple glycoforms observed in NMB LOS due
to variations in the oligosaccharide or PEA composition and the apparent ho-
mogeneity of MA-1 LOS. Lanes 1 and 2, N. meningitidis NMB LOS (2.0 and 0.2
mg, respectively); lanes 3 and 4, N. meningitidis MA-1 LOS (2.0 and 0.2 mg,
respectively).
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migration (SDS-PAGE) of galE LOS. As shown in Fig. 6, the
MA-1 wild-type LOS preparation contained glucosamine (from
the lipid A and oligosaccharide regions), galactose, and glu-
cose (oligosaccharide branch). In contrast, the MA-1 galE mu-
tant had significantly reduced levels of galactose, which was
barely detectable. Both MA-1 and MA-1 galE LOS prepara-
tions had residual amounts of mannose. The mannose appears
to be a contaminant in the LOS, since multiple washes of the
LOS result in its removal.

Comparison of GalE activity in N. meningitidis MA-1 and
NMB. The epimerase activity levels in MA-1 and NMB at the
exponential and stationary phases were measured by the two-
step assay. At the exponential phase, there was a twofold dif-
ference in the epimerase activity level between MA-1 and
NMB (Table 4). In stationary-phase cultures, there was a 12.5-
fold difference in the enzyme activity levels. This difference was
not due to an increase in enzyme activity in MA-1, but rather
to an 8.2-fold decrease in NMB epimerase activity from the
exponential to the stationary phase. N. meningitidis MA-1 had
similar activity levels at both phases of growth. The addition of
20 mM glucose to a stationary-phase culture of strain NMB did
not increase the epimerase activity (1.7 6 0.3 versus 2.7 6 0.5
nmol of NADH generated per min [means 6 standard errors]
for NMB with and without glucose, respective; P 5 0.0377).

Comparison of predicted GalE amino acid sequences. We
cloned the galE genes from N. meningitidis MA-1 and NMB
and compared the predicted amino acid sequences of the galE
open reading frames alongside that of the previously cloned
FAM20 galE gene (14). There was a high degree of identity
among the putative NAD1 and UDP-sugar binding site resi-
dues (28) (mean 5 95.65%; 22 of 23 amino acids) and 91%
identity over the entire length of the polypeptide. There was
one binding site residue change at amino acid 300 (F in MA-1,
S in NMB, and F in FAM20) (Fig. 7). The corresponding res-
idue is a tyrosine (position 299) in the E. coli GalE polypep-
tide, and this amino acid is not conserved among the other
GalE proteins of gram-negative bacteria. In contrast, other
binding site residues are highly conserved between meningo-
coccal GalE and the E. coli GalE protein. Protein secondary-
structure analysis indicated a high degree of conservation in
the first 290 residues between MA-1 and NMB GalE polypep-
tides. This observation is consistent with the predicted amino
acid sequence, where the first 290 residues are highly con-
served (97.24% identity) and the last 49 residues are less con-
served (75.51% identity). The last 49 residues contain 3 of the
21 active-site residues.

Analysis of UDP-galactose epimerase activity in galEt dele-
tion mutants of strains MA-1 and NMB. The meningococcal
genome contains a second partially duplicated copy of the galE
gene (9, 11, 14, 15) that is not present in the gonococcal ge-
nome. This second copy is a duplication of the last 621 bp of
the full-length open reading frame and contains one of the two
putative hydrophobic domains involved in homodimer forma-
tion (3). To determine the contribution of the duplicated galE
gene to the UDP-glucose 4-epimerase activities in strains MA-
1 and NMB, all but the first 20 bp of the second galE open
reading frame was deleted and replaced with a kanamycin cas-
sette from pBSL14 (1). The deletion was introduced into the
chromosomes of N. meningitidis MA-1 and NMB by transfor-
mation. Kanamycin-resistant transformants were screened by
Southern blot hybridization and SDS-PAGE analysis of LOS
(data not shown).

Crude cell extracts from cultures of wild-type MA-1 and
NMB and their DgalEt::npt mutants at exponential and station-
ary phases were prepared, and epimerase activity levels were
measured. For both MA-1 and NMB, the UDP-glucose 4-

FIG. 2. Analysis of N. meningitidis MA-1 galE. (a) Southern blot analysis of
genomic DNA from N. meningitidis MA-1 galE. Genomic DNAs isolated from
N. meningitidis MA-1 and MA-1 galE were digested with DraI and transferred to
a nylon membrane after electrophoresis. Duplicate filters were probed with ei-
ther a galE gene probe (lanes 1 and 2) or a kanamycin cassette probe (lanes 3 and
4). The hybridization patterns indicated the incorporation of the kanamycin
cassette in the galE open reading frame. A genetic map of the N. meningitidis
MA-1 galE mutant is shown below. The MA-1 galE gene was cloned on a 4.2-kb
DraI fragment. This fragment had four open reading frames, as designated. To
construct MA-1 galE, a kanamycin cassette from pBSL14 was inserted into the
unique MunI site 647 bases into the galE coding region. This construct was in-
troduced into the chromosome of MA-1 by allelic replacement. Open arrows, me-
ningococcal open reading frames; solid arrow, kanamycin resistance cassette. (b)
SDS-PAGE analysis of MA-1 and MA-1 galE LOS. The wild-type LOS migrated as
a single band. The LOS from the galE mutant gave two distinct bands, of which the
upper band comigrated with the wild-type LOS molecule. The lower band is the
Hex-Hep2-GlcNAc-Kdo2-lipid A structure. Lanes 1 and 2, MA-1 LOS (2.0 and 0.2
mg, respectively); lanes 3 and 4, MA-1 galE LOS (2.0 and 0.5 mg, respectively).
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epimerase activity levels were not significantly different in the
wild type and the DgalEt::npt mutant at exponential phase (Ta-
ble 4). The growth curves of the wild-type and DgalEt::npt strains
were identical (data not shown). The deletion of the galEt gene
in MA-1 had no significant effect on epimerase activity at sta-
tionary phase. In NMB there was a 2.5-fold increase in enzyme
activity in the mutant compared to the wild type at stationary
phase (Table 4). The removal of the galEt gene was not able to
restore the 8.2-fold decrease in NMB epimerase activity be-
tween the exponential and stationary phases.

Western blot analysis of wild-type meningococcal strains.
We analyzed whole-cell extracts from wild-type N. meningitidis
MA-1 and NMB with polyclonal antisera in order to determine
the amounts of GalE protein in the respective strains at the
exponential and stationary phases. We detected a band that
was specific to the GalE protein which was not present in the
extract prepared from MA-1 galE. The Western blot analysis
indicated that there were equivalent amounts of the GalE pro-
tein in N. meningitidis MA-1 and NMB at exponential phase.
Similarly, at stationary phase, the amounts of GalE protein in
MA-1 and NMB appeared to be equivalent. Within NMB,
there was a slight increase in the amount of GalE protein at
stationary phase compared to exponential phase. A similar ob-
servation was made in strain MA-1 (Fig. 8). Compared to the
normalized band intensity of NMB GalE at log phase (taken as
1.0), the band intensity of NMB GalE at stationary phase was
1.3 (P 5 0.0099), that of MA-1 GalE at log phase was 1.0 (P 5

0.4639 for MA-1 GalE versus NMB GalE at log phase), and
that of MA-1 GalE at stationary phase was 1.8 (P 5 0.0025 for
MA-1 GalE at log phase versus stationary phase; P 5 0.1296
for MA-1 GalE versus NMB GalE at stationary phase). These
values are means of three calculations.

DISCUSSION

To further understand the role of UDP-glucose 4-epimerase
in the biosynthesis of oligoglucose glycoforms found in menin-
gococcal LOS, we examined the LOS from strain MA-1 and its
galE mutant by mass spectrometry. We compared the results
from these studies with the structure of LOS from NMB and
NMB-SS3, which we had previously characterized (14). We
also examined the epimerase activity levels in MA-1 and NMB
at the log and stationary phases of growth. The LOS of MA-1
was composed of one glycoform with one or two PEA groups.
The MA-1 galE LOS had two glycoforms with either one
or two glucose residues and PEA substituted for HepII. The
UDP-glucose 4-epimerase assay indicated a twofold difference
in epimerase activity at log phase and a 12.5-fold difference at
stationary phase between MA-1 and NMB (Table 3). Recently,
Wakarchuk et al. (33) reported the presence of a glycoform
with a diglucose structure in their galE strain. Pathogenic Neis-
seria species do not possess the accessory enzymes required for
the utilization of exogenous galactose. This implies that UDP-
glucose 4-epimerase is involved in controlling the ratio of
UDP-galactose to UDP-glucose. The meningococcal epimer-
ase, like the epimerases from yeast and E. coli, has an equilib-
rium constant favoring the formation of UDP-glucose (14).
These observations suggest that the oligoglucose glycoforms in
strain NMB and the absence of these glycoforms in strain
MA-1 may be linked to the level of UDP-glucose 4-epimerase
activity in the respective strains. The presence of the oligoglu-
cose glycoforms in NMB-SS3 and the diglucose LOS structure
in MA-1 galE and MC58 galE further support this interpreta-
tion.

The oligoglucose glycoforms in NMB-SS3 had up to two ad-
ditional glucose molecules, while the oligoglucose glycoforms
in MA-1 galE had one additional glucose. Similarly, MC58
galE had a novel glycoform containing an additional glucose
(33). The transfer of the additional glucose residue(s) could
occur by one of two pathways. The increased UDP-glucose
concentration could either activate an unidentified glucosyl-
transferase or induce its expression. Alternatively, in the ab-
sence of UDP-galactose, galactosyltransferase could use UDP-

FIG. 3. Positions and orientations of the kanamycin cassette (solid lines with arrows) in the region upstream of the galE open reading frame. The positions of the
restriction sites are given relative to the galE gene start codon. Open arrows, open reading frames. RKR and NKR, polar insertions of the kanamycin cassette at the
EcoRI and NdeI sites, respectively. RKF and NKF, respective nonpolar insertions.

TABLE 2. Genetic analysis of MA-1 galE gene

Strain,
positiona

nmol of NADH
generated/min

(6 SE)

LOS migration
patternb

(kDa)

MA-1 3.5 (0.2) Wild type (3.4)
RKF, 2624 2.7 (0.2)c Wild type (3.4)
RKR, 2624 0.4 (0.2)d Truncated (3.2)
NKF, 226 21.3 (0.4)e Wild type (3.4)
NKR, 226 0.0 (0.2)f Truncated (3.2)
MA-1 galE 0.2 (0.0)g Truncated (3.2)

a Position of the kanamycin cassette relative to the galE gene start codon.
b Relative to that of the wild type.
c P 5 0.0527 for this value versus that obtained with MA-1.
d P 5 0.0153 for this value versus that obtained with MA-1.
e P 5 0.0008 for this value versus that obtained with MA-1.
f P 5 0.0091 for this value versus that obtained with MA-1.
g P 5 0.0034 for this value versus that obtained with MA-1.
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glucose as a substrate. Based on our observations and that of
Wakarchuk et al. (33), the first glucose residue after the Glc-
HepI core structure could be added by the LgtE protein, a
galactosyltransferase. The detection of the tetraglucose glyco-
form in NMB and NMB-SS3 suggests that the addition of the
last two glucose residues to the core Glc-Hep structure in
NMB may have been performed by a second glucosyltrans-
ferase, perhaps the recently identified glycosyl transferase,
LgtG (2). This conclusion is supported by the observation that

NMB LOS has a glucose residue attached to HepII through an
a1-3 linkage in addition to the conserved N-acetylglucosamine
(6, 22). These observations suggest that the appearance of the
oligoglucose glycoforms in NMB but not in MA-1 may be a
combinatorial effect of low UDP-glucose 4-epimerase activity
and the presence of a second glucosyltransferase activity. This
gene does not appear to be present in the genome of serogroup
A meningococci. Recently, Kahler et al. (13) identified the lgtF
locus in strain NMB. An LgtF2 strain did not contain any

FIG. 4. Negative-ion MALDI-time-of-flight mass spectra of O-deacylated LOS preparations of wild-type MA-1 (A) and MA-1 galE (B).

TABLE 3. Molecular weight analysis of O-deacylated LOS by electrospray MS for MA-1 and MA-1 galE

N. meningitidis
strain LOS Observed (calculated)

mol wta
Relative abundanceb

by MALDI (ESI) Proposed compositionc

MA-1 LOS B 2,428.0 (2,428.22) 50 (36) Hex2-Hep2-GlcNAc-PEA1-Kdo2-lipid A
LOS B9 2,551.1 (2,551.27) 100 (100) Hex2-Hep2-GlcNAc-PEA2-Kdo2-lipid A*

MA-1 galE LOS A 2,266.4 (2,266.07) 32 (43) Hex-Hep2-GlcNAc-PEA1-Kdo2-lipid A*
LOS A9 2,389.3 (2,389.12) 100 (100) Hex-Hep2-GlcNAc-PEA2-Kdo2-lipid A*
LOS B 2,427.8 (2,428.22) 20d (13) Hex2-Hep2-GlcNAc-PEA1-Kdo2-lipid A*
LOS B9 2,551.7 (2,551.27) 11 (12) Hex2-Hep2-GlcNAc-PEA2-Kdo2-lipid A*

a All molecular weights for O-deacylated LOS are reported from the MALDI data as their average mass values based on singly deprotonated charged molecular ions,
(M 2 H)2.

b Expressed as a percentage; determined from peak heights of the singly charged molecular ions for MALDI and of the doubly and triply charged ions for ESI.
c After O deacylation, the lipid A moiety is converted into diphosphoryl diacyl lipid A, containing two N-linked b-hydroxymyristic acid chains with an average Mr

of 953.0.
d In the MALDI spectrum, this glycoform peak partially overlaps the potassium adduct of the molecular ion for the more abundant glycoform LOS A9 resulting in

overestimation of this LOS B glycoform.
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detectable levels of glucose, suggesting that LgtF is responsible
for adding the glucose to HepI. The second glucosyltransferase
activity (GlcII to HepII; LgtG) requires the presence of the first
glucose residue on HepI, analogous to the Kdo-dependent
acyltransferases in E. coli lipid A biosynthesis (21).

Recently, further analysis of LOS from strain NMB was re-
ported by Rahman et al. (22). They were unable to detect oli-

goglucose glycoforms in the LOS prepared from wild-type NMB.
The detection of oligoglucose glycoforms in LOS preparations
from galE strains of NMB, MA-1, and MC58 (14, 15, 33) sug-
gests that they may be present in the wild type, albeit at low
levels, perhaps below the detector sensitivity. It is also possible
that different culture conditions led to differential expression
of various LOS glycoforms. Such observations have been pre-
viously reported by other investigators (19, 29).

The putative structure of LOS from strain MA-1 was deter-
mined as Gal-Glc-Hep2-GlcNAc-Kdo2-lipid A based on ESI-
mass spectrometric analysis. The absence of a sialylated deriv-
ative is consistent with the absence of sialic acid biosynthesis
genes in serogroup A meningococci (16). Serogroup A strains
are characterized by an (a1-6)-linked N-acetylmannosamine-
1-phosphate capsule (16), rather than the sialic acid-containing
capsules associated with other serogroups. It is interesting that
the galE gene and the genes for production of the N-acetyl-
mannosamine-1-phosphate capsule appear to be linked on the
same operon. Indeed, polar insertion of a kanamycin marker
into our ORF1 resulted in barely detectable levels of epimer-
ase activity. This is not the organization found in serogroup B
or C, where the capsule biosynthesis genes and the galE gene
are separated by more than 1,000 nucleotides (5). Based on
comparison of the nucleotide sequences upstream of galE
genes from strains of serogroup B (B1940) and C (FAM20), it
appears that the NMB galE gene is transcribed from its own
promoter. The significance of this observation is not clear at
the moment, but further investigation may yield explanations
for the organization of these genes as a potential operon in
serogroup A meningococci. The residual epimerase activity
detected in MA-1 RKR and MA-1 galE was not statistically
significant compared to that in MA-1 NKR. The high epimer-
ase activity in MA-1 NKF is likely due to expression from the
promoter for the kanamycin cassette.

The UDP-glucose 4-epimerase activity levels varied between
MA-1 and NMB by as much as 12.5-fold in stationary cultures
and as little as 2-fold in exponential cultures. This is the first
report we are aware of documenting strain variability in the
activity level of an enzyme important for the virulence of
pathogenic Neisseria species. The UDP-galactose is not only
used in LOS biosynthesis but also serves as the galactose donor
in glycosylation of the pilin subunit of N. meningitidis (32).
Although many LOS biosynthesis genes have been cloned and
mutated, the regulation or strain variability of gene expression
has not been observed, with the exception of the meningococ-
cal rfaC gene (36). Our evidence strongly suggests that UDP-
glucose 4-epimerase activity in N. meningitidis is different in

FIG. 5. Fragmentation pathways of the two prominent singly charged ions
corresponding to the LOS B and LOS B9 glycoforms. All masses are calculated
masses. See the spectra (Fig. 4) for the actual experimental masses.

FIG. 6. Composition analysis of MA-1 (A) and MA-1 galE (B) under triflu-
oroacetic acid conditions, compared with standard mixture (profile C) containing
galactosamine (peak 1), glucosamine (peak 2), galactose (peak 3), glucose (peak
4), and mannose (peak 5). The conserved core Kdo is destroyed under the
hydrolysis conditions; the L-glycerol-D-manno-heptose peaks are not shown and
elute much later (t . 25 min) under the gradient conditions (see Materials and
Methods).

TABLE 4. UDP-glucose 4-epimerase activity levels
in N. meningitidis MA-1 and NMB and

their DgalEt::npt mutants

Phase
nmol of NADH generated/min (6 SE) in strain:

MA-1 MA-1 DgalEt::npt NMB NMB DgalEt::npt

Exponential 22.2 (1.4) 21.0 (1.6)a 11.3 (0.6)b 9.8 (1.0)c

Stationary 17.2 (2.0)d 12.0 (1.0)e 1.4 (0.5)f, g 3.4 (1.2)h

a P 5 0.4178 for MA-1 versus MA-1 DgalEt::npt values in the exponential
phase.

b P 5 0.0004 for MA-1 versus NMB values in the exponential phase.
c P 5 0.1352 for NMB versus NMB DgalEt::npt values in the exponential

phase.
d P 5 0.0514 for MA-1 values in the exponential versus the stationary phase.
e P 5 0.1365 for MA-1 versus MA-1 DgalEt::npt values in the stationary phase.
f P , 0.0001 for NMB values in the exponential versus the stationary phase.
g P 5 0.0002 for MA-1 versus NMB values in the stationary phase.
h P 5 0.009 for NMB versus NMB DgalEt::npt values in the stationary phase.
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FIG. 7. Predicted amino acid alignment of GalE proteins from various gram-negative bacteria. The consensus sequence is shown at the bottom. The meningococcal
polypeptide is 1 amino acid longer than the protein from gonococci, Haemophilus influenzae, or E. coli. According to the structural data from the E. coli epimerase (3,
17, 26, 28), the amino acids that form the binding pockets of NAD1 and UDP-sugar are boldfaced. The amino acids that form hydrogen bonds with NAD1 are italicized,
and those bonding with UDP-sugar are underlined. The residues involved in binding of both the cofactor and the substrate are italicized and underlined. S124 and Y149
of the E. coli protein are critical for catalysis, and these residues are conserved in both prokaryotes and eukaryotes. Nmn, N. meningitidis, Ngc, Neisseria gonorrhoeae;
H. influ, H. influenzae.
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different strains. In strain NMB, differences in epimerase ac-
tivity were also observed between phases of growth.

The strain variability of epimerase activity could be due to a
number of factors. The respective epimerases could be struc-
turally different or could have different residues at the binding
sites for the cofactor and substrate. This appears unlikely, since
the putative active-site amino acids are nearly identical in the
meningococcal GalE proteins (Fig. 7). It is also possible that
the genes could be transcribed, or that galE mRNA could be
translated, at different rates. In strain NMB, the galE gene ap-
pears to be the first gene of an operon containing rfb homo-
logues, whereas in MA-1 (Fig. 2a), it is likely the fifth gene of
a large operon containing the myn genes (27). We had noticed
that the region immediately upstream of the NMB galE open
reading frame start codon is very thymidine rich, whereas the
corresponding region in front of the MA-1 galE gene has a few
more adenines (Fig. 9). The 39 end of the meningococcal 16S
rRNA is purine rich, containing mostly guanines. The minor
differences in the putative ribosome binding sites of the MA-1
and NMB galE genes do not appear to be biologically signifi-
cant, since the difference in the relative amount of GalE pro-
tein between the strains at the exponential or stationary phase
was not statistically significant.

In addition to the strain differences in epimerase activity, we
observed an 8.2-fold decrease in enzyme activity in NMB be-
tween the two sampling time points. This difference was not
due to the NMB GalE protein level at stationary phase, which
was significantly higher than the protein level at exponential
phase. This suggested the presence of a putative inactive en-
zyme at stationary phase. The putative inactive enzyme did not
appear to involve a defective GalE protein from the second
partial galE gene, since its deletion in NMB, although it re-
sulted in a slight increase in the epimerase activity level, did
not restore the stationary-phase epimerase activity to the ex-
ponential-phase level. Previously, the expression of the partial
galE gene was not observed in Northern blot analysis (9).
Similarly, our results suggest that the expression of the partial
galE gene is minimal. These observations suggest a mechanism
other than regulation of expression or defective dimer forma-
tion as a possible explanation for the low epimerase activity at

stationary phase in strain NMB. Such a mechanism may be the
formation of abortive enzyme complexes. Abortive UDP-glu-
cose 4-epimerase complexes have been detected in E. coli (31).
They are homodimers of full-length GalE protein that con-
tain NADH and a uridine nucleotide (usually UTP) instead
of NAD1 and UDP-sugar. It is possible that the physiolog-
ical conditions in stationary-phase NMB favored abortive epi-
merase formation. The enzyme activity level was not dependent
on the amount of glucose in the culture medium at stationary
phase.

In this report we demonstrated that the absence of UDP-
glucose 4-epimerase activity resulted in the expression of de-
tectable levels of diglucose glycoforms in strain MA-1. Addi-
tionally, the level of epimerase activity may influence the
expression of oligoglucose glycoforms in strain NMB. We also
demonstrated the strain variability and growth phase-depen-
dent variability of UDP-glucose 4-epimerase activity in menin-
gococci. Based on our investigation, the difference in epimer-
ase enzyme activity at the exponential and stationary phases
appears not to be linked to the level of GalE protein. In strain
NMB, the low epimerase activity may be due to allosteric inhi-
bition through the formation of abortive epimerase complexes.
Further biochemical analysis of UDP-glucose 4-epimerase
from stationary-phase cultures of NMB is required to deter-
mine the nature of the putative abortive epimerase complexes.
We do not know if the oligoglucose glycoforms are assembled
throughout growth phase at a constant rate or assembled pre-
dominantly at late stages of growth.
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