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Figure 7: The estimated local correlation function ρ̂ , local mean func-

tion m̂, local slope function m̂′, and local scedastic function σ̂ when

nonlinearly regressing Standardized OPS against Age.

The estimator in Equation (17) of the local correlation function is point-

wise asymptotically Gaussian, as stated in Theorem 2.2. To further establish the

notion that, for example, the estimate ρ̂(28) is approximately Gaussian even when

asymptotic conditions do not formally hold, we generate quantile-quantile (QQ)

and probability-probability (PP) plots for bootstrapped distributions of (the normal-

ized value of) ρ̂(28) against a standard normal distribution. The QQ and PP plots

adhere closely to the identity functions that are represented by dashed lines in those

plots. Hence, the bootstrapped values of ρ̂(28) are plausibly normal. For further in-

formation about QQ and PP plots, see the papers by Gnandesikan and Wilk (1968)

and Michael (1983), respectively, or a modern econometrics textbook like Thode

(2002).

Now that we are particularly confident that the test statistic for determining

if there is evidence in favor of H1: ρ(28) � 0 is approximately standard normal,

we proceed. For this hypothesis test, the test statistic is equal to approximately

1.65, which is less than the critical value of 1.96 necessary to reject H0 at the 5%

level of significance. We do not reject the null hypothesis of zero local correlation

between Age and Standardized OPS for baseball players who are 28 years old. In

fact, a more careful inspection of the graph of the local correlation function suggests
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Figure 8: Quantile-quantile (QQ) and probability-probability (PP)

plots for the bootstrapped distribution of (normalized values of) ρ̂(28)
against a standard normal distribution to support the hypothesis testing

in Section 3.2.

that ρ̂(28.25) is approximately equal to zero. In fact, a test of the null hypothesis

H0 : ρ(28.25) = 0 against the two-tailed alternative is not rejected—the test statistic

is −0.0279. In other words, there is fairly strong evidence that baseball players peak

in terms of offensive productivity around age 28.25.

Two issues should be noted about these hypothesis tests. First, consider a

test of the null hypothesis that the local slope is equal to zero for some value x0 (i.e.,

H0: β (x0) = 0). The associated test statistic will not, in general, be the same as the

test statistic for a test that local correlation is zero at x0. In this regard, statistical

inference differs from the linear case.

Second, this analysis suggests that players tend to peak in ability around the

age of 28.25, somewhat later than the age of 26 that is often reported in the liter-

ature. If we consider baseball players approximately one year older and younger

than, respectively, 28.25, the null hypotheses H0: ρ(27.25) = 0 and H0: ρ(29.25) =
0 are strongly rejected with a test statistics of approximately 12.9585 and −6.3978,

respectively.

We have illustrated a single inferential procedure. Additional inferential

techniques are also available, for example, on β using the asymptotics in Theorem

2.1. Additionally, it is possible to test H0: ρ(x1) = ρ(x2) for x1 � x2; see, for

example, Hamrick and Taqqu (2008b) or Hamrick and Taqqu (2008a). For more

information, see Fan and Gijbels (1996) and Mathur (1998).

3.3 Local Correlation as an Unnecessary Complication

There’s an old adage that championships in baseball are won on “pitching and de-

fense,” rather than hitting. Is this claim really true? How well does team success
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Figure 9: A scatterplot of team Earned Run Average versus team Win-
ning Percentage for major league baseball teams over the period from

1921 to 2009.

correlate with measures of team pitching, defense, and hitting? What insights, if

any, can the local correlation function add to standard linear parametric methods?

For this analysis, we use data for every team in major league baseball, for

every season from 1921 (when full abandonment of “dead ball era” practices oc-

curred) through 2009. For each team, we computed the proportion of games won for

the season (Win Percentage). We also compiled statistics to capture team pitching,

fielding, and hitting ability during the season. We used team Earned Run Average
(ERA) as our measure of pitching success. For fielding, we use the (admittedly im-

perfect) measure of the team’s Fielding Percentage (FP). The hitting measure was

OPS, on base plus slugging percentage. It is generally accepted as the best single

statistic for capturing overall hitting performance. In each of these three analyses,

the sample size is n = 1906 observations.

The scatterplot in Figure 9 above illustrates the relationship between team

Win Percentage and our pitching measure, team ERA. The plot indicates that the

relationship between the two variables is plausibly linear. The standard Pearson

correlation coefficient here is -0.532, indicating a moderately strong inverse rela-

tionship between the two variables. Unsurprisingly, the more earned runs a team

allows, the fewer games they tend to win.

Computing the local correlation function, as well as the affiliated local mean,

local slope, and local standard deviation functions, yields results as illustrated in

Figure 10. Note in this case that the local correlation function is essentially flat;

the correlation is basically constant across the entire range of the ERA data. The
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Figure 10: The estimated local correlation function ρ̂ , local mean func-

tion m̂, local slope function m̂′, and local scedastic function σ̂ when

nonlinearly regressing team Winning Percentage against team Earned
Run Average.

indicated local correlation for all values of ERA of approximately -0.50 is in rough

accord with the computed Pearson correlation of -0.532. The local mean function

appears almost exactly linear, indicating that a linear model is appropriate for these

data. While the local slope and local scedastic functions do show that the relation-

ship between team Win Percentage and team ERA has some minor deviations from

strict linearity and homoscedasticity, quick perusal of the vertical scales of these

graphs shows that such departures from the standard assumptions are negligible.

The standard linear model appears to be adequate to examine these data; use of

local correlation procedures is an unnecessary complication in this situation.

Two similar computations, using the fielding measure Fielding Percentage
and the hitting measure OPS, respectively, as predictors of Win Percentage reveal

essentially the same pattern. Namely, the local correlation function is flat, the local

mean function is approximately linear, and the local slope and scedastic functions

are small in magnitude. In the interests of brevity we do not reproduce these graphs

here; they are similar to the graphs in Figure 10. Standard linear techniques are

appropriate to answer the research question.
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Using the traditional linear approach, we can compute the three (constant)

Pearson correlation coefficients between the predictors and Win Percentage. The

results are given in the table below:

Covariate Dependent Variable Pearson Correlation

ERA (pitching) Win Percentage -0.532

FP (fielding) Win Percentage 0.263

OPS (hitting) Win Percentage 0.499

Note from these three sample correlations that, taken alone, pitching per-

formance (as measured by ERA) is the best single predictor of a team’s success at

winning ball games. The sample correlation between Fielding Percentage and Win
Percentage is much lower, although this may reflect the fact that Fielding Percent-
age is a poor measure of a team’s defensive ability. But it may reflect the reality

that it is pitching, and not defense, that wins championships.

4 Conclusions
In this paper, we have introduced and illustrated the use of a fully nonparametric

nonlinear regression model and its associated local correlation function. In addition

to describing a method for estimating the functions that govern the nonlinear regres-

sion model, we stated a number of asymptotic results that facilitate the construction

of confidence intervals and hypothesis testing.

We used this regression model and the local correlation function to analyze

three situations in sabermetrics. First, we have characterized the relationship be-

tween Command and ERA as unlikely to be linear in nature. In particular, our non-

parametric analysis suggests that the local correlation between Command and ERA
is relatively large and negative for relatively small values of Command and declines

to zero as higher percentiles of Command are considered. We used nonlinear re-

gression to determine that the age of peak performance in baseball, as measured by

standardized OPS (on-base percentage plus slugging percentage), is more likely to

be 28.25 than 26 or 27. Finally, we used nonlinear regression to verify that various

models of success in baseball—say, using team earned run average, team fielding

percentage, or team OPS to explain team winning percentage—are perfectly well-

managed by typical linear regression models. In this sense, the software described

in Appendix A can be quickly used to check if a linear regression model is plausible

for some set of candidate independent and dependent data.

While we have illustrated use of nonlinear regression models (and their at-

tendant local correlation functions) in the context of several sabermetric examples,
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future research efforts might focus on the use of nonlinear regression to explain phe-

nomena in other sporting venues, such as tennis, football, and soccer, or economic

matters related to a particular sporting enterprise.

A A Guide to the Software
The software used to execute the nonlinear regression in this paper was written in

MATLAB. We briefly outline its use in this section of the paper. To obtain the

software, contact the first author by emailing him at hamrickj@rhodes.edu.

The MATLAB functions necessary to generate m̂, σ̂ , β̂ and ρ̂ are gathered

in a directory called NonlinearRegressionDir. The user’s data should be placed

in either a MATLAB data file called, for example, Sports.mat, or in a CSV file

called, for example Sports.csv. We will assume that the MATLAB data file con-

tains a two-column MATLAB array called Sports. The first column of the array

contains the covariate X (e.g., Command) and the second column contains the de-

pendent variable Y (e.g., ERA). Each row then corresponds to one joint observation

of X and Y . A description of how to deploy the software follows.

First, invoke MATLAB. Add the directory NonlinearRegressionDir di-

rectory to MATLAB’s working path. For purposes of specificity, we will assume

that the directory is located in the MyHomePath subdirectory:

addpath(’C:\MyHomePath\NonlinearRegressionDir’);

Then load the data—we assume the use of a MATLAB data file—into the MAT-

LAB workspace:

load(’C:\MyHomePath\Sports.mat’);

The MATLAB workspace now contains the array Sports. Next, define the MAT-

LAB vectors X and Y appropriately:

X = Sports(:,1); Y = Sports(:,2);

Next, let us define a set of target points for which estimates of the val-

ues of the local correlation function ρ̂ , the local mean function m̂, the local slope

function β̂ , and the local scedastic function σ̂ are desired. Suppose that you want

101 equally-spaced estimates of the aforementioned functions from the first to the

ninety-ninth percentile of the X data; that is, from xmin = F̂−1
X (0.01) to xmax =

F̂−1
X (0.99), where F̂X is the empirical cumulative distribution function of the data
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in the column associated with the covariate X . To work with this set of target points,

enter

num targets = 101;

x min = prctile(X, 1.0);

x max = prctile(X, 99.0);

x 0 = linspace(x min, x max, num targets);

The MATLAB variable x 0 is now a column vector with the target points.

The following command estimates the local correlation at the targets points x 0 and

plots the estimate of the local correlation function and the other functions (the local

mean, local slope, and local scedastic functions) that define the local correlation

function (see, for example, Figure 3):

plot flag = 1;

[Rho, Beta, Sigma, StdRho] = CorrCurve(Y, X, x 0, plot flag);

The function CorrCurve returns the following data.

• Rho, an array (of length num targets) of local correlation estimates;

• Beta, an array (of dimension num targets by 3) of local regression coef-

ficients. The first column corresponds to the local mean m̂ along the target

points, the second column corresponds to the local slope estimates β̂ along

the target points, and the third column corresponds to 1/2! times the esti-

mate of the second derivative of the regression function m̂(2) along the target

points.

• Sigma, an array (of length num targets) of local residual standard deviation

estimates; and

• StdRho, an array (of length num targets) of local standard deviations of the

estimator ρ̂(x), to be used in establishing confidence intervals around ρ̂(x).

To examine the data, type Rho, Beta, Sigma, or StdRho at the MATLAB

command prompt. To access particular values of these functions in MATLAB,

simply evaluate the function at the position in the array corresponding to value of

interest. For example, if 3.00 is the 38th member of the array Rho, then execut-

ing Rho(38) in the command prompt will display the value of the estimated local

correlation function at 3.00. It may be necessary to manipulate the code control-

ling x 0 to guarantee that the functions ρ̂ , β̂ , etc., can be evaluated at that point.

Another option is to fit a spline to, for example, the pairs {x0, ρ̂(x0)}, either using
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MATLAB or some other computer algebra system. To save the estimation results

to a MATLAB data file called, for example, Results.mat, type

save ’C:\MyHomePath\Results’ Rho Beta Gamma StdRho;

To verify that the QQ and PP plots of the distributions of bootstrapped val-

ues of ρ̂ at some particular point are, in fact, approximately normal even under

when the number of data are finite, enter the following into the MATLAB prompt:

num boot = 1000;

BootstrapLocalCorr(Y, X, num boot);

The QQ and PP plots will be displayed automatically. They should look similar to

the examples in Figure 8 of Section 3.2.
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