


The following chapter will define and explain the forecasting models and how they
attempt to quantify specific changes in implied volatility, such as a significant difference
in call and put implied volatility, and the intuition behind why certain changes may lead

to stock price forecasting accuracy.
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Chapter 3: The Models

Chapter 3 presents four different “Forecasting Models”. These linear regression
models are developed with the intent of finding a statistically significant relationship
between today’s call and/or put implied volatility with tomorrow’s change in the
underlying price. The existence of such a relationship could be used to earn higher than
expected returns and provide evidence against the Weak Form Market Efficiency
Hypothesis.

As current or potential traders, we are not necessarily concerned with significant
coefficients or goodness-of-fit values. True interest and value lies with a model that
explicitly tells us when to buy or sell a security. So in addition to the statistical data from
the regression models, buy and sell “signals™ are developed. These signals are then used
to examine the “real world” outcome of the trading strategies il they were employed
during the sample period. The thesis hypothesizes that the AMD forecasting models not
only have significant estimated regression coefficients, but the next day returns on AMD
are significantly different from expected returns and in agreement with expectations: a
buy signal today results in positive returns tomorrow while a sell signal today results in a
decrease in the price of AMD stock tomorrow. The thesis also hypothesizes that because
these results depend on microstructure inefficiencies in the market they are less likely to
be evident for the case of the OEX.

Chapter 3 is divided into two sections. The first section looks at the relationship
between call/put implied volatility and returns on the underlying for the same trading day.

Correlation matrices are used to give evidence for the assumptions regarding the role of
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demand/supply dynamics in the AMD options market and also how these assumptions are
not evident in the OEX market. The second section details the four regression models
used to forecast returns. These “Forecasting Models” relate today’s call/put implied
volatility to tomorrow’s return on the underlying. Corresponding trading strategies are
then developed along with an evaluation of their statistical significance and of their

ability to accurately forecast next day returns.

Same Day Relationship

As outlined in Chapter 1, it is expected that changes in call and put implied volatility
have a statistical relationship with changes in the price of an equity for the same trading
day. These changes in implied volatility are caused by demand/supply dynamics and are
independent of changes in the options’ price caused by other Black-Scholes price
determinant variables. This relationship and thus this market microstructure are not the
same for the case of options on the OEX.

Options are a tool used by investor to hedge positions in the underlying. When
investors buy stock they can hedge their purchase by either selling calls or buying puts.
From the discussion of demand/supply dynamics, it follows that an increase in the
number of call sellers, resulting from an increase in the number of buyers of the
underlying, reduces the price of call options independent of other factors and thus a
corresponding decrease in call implied volatility will occur. For the case of puts, an

increase in buyers will increase the implied volatility when a corresponding increase in
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demand for the stock exists. An opposite movement in the implied volatility of calls and
puts is evident when the price of the stock decreases.

The price of calls is positively correlated with the price of the underlying. However,
the implied volatility of call options on AMD is negatively correlated with the price of
AMD stock during the same trading day. This is an important distinction to be made. It
is possible for the price of the option to increase while its implied volatility. This is
because there are two forces at work here: the Black-Scholes variables that affect the
price of the option and the specific, irregular occurrence of microstructure market
inefficiency in AMD options that affect the implied volatility.

The notion of a volatility smile can be used to gain insight into the assumptions
regarding the role of demand/supply dynamics in affecting implied volatility. As shown

below, a volatility smile is a plot of implied volatility as a function of its strike price.

Implied
Volatility
Strike Price

Stock' Price
The smile has been developed by traders as a way to account for imperfections in the
Black-Scholes model. In-the-money and out of-the-money options tend to exhibit greater
implied volatility than do at-the-money options.

From the volatility smile, as the price of the stock increases, more call option series
move in-the-money and thus their implied volatility would tend to increase. But this

result is counter to the demand/supply dynamics assumption regarding changes in
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implied volatility in relation to changes in the price of a stock during the same trading
day. However, this fact does not counter the thesis’ assumptions. It can be viewed as
evidence for the strength of demand/supply dynamics in the options when the data is
viewed on a daily basis.

If we assume the volatility smile to exist, then the demand/supply forces that affect the
same day relationship must be strong enough to counter the relationship defined by the
volatility smile. These microstructure dynamics may only occur for a brief period of time
(i.e. one trading day) and then over the long-term (i.e. until the option expires) the
relationship can be defined by the smile. Shown below is the correlation between returns
on the underlying and call/put implied volatility. The implied volatility data is calculated
in the same manner as it is in the forecasting models. A complete description of the data

is in the following section.

Correlation
Implied Volatility Data

Call IV, Put IV, C H-V; P H-Iv, C>h P> Gy C ARy P AR;
R(AMD) -0.179 0.103 -0.261 0.217 -0.175 0.353 -0.323 0.245

R(OEX) -0.065 -0.012 -0.087 -0.002 0.001 -0.015 -0.091 0.002

Forecasting Models

The forecasting models analyze the relationship between today’s option implied
volatility and tomorrow’s return on the underlying. Four separate regression models are
presented to give evidence for and to define the nature of this statistical relationship

which will then be used to forecast returns on the underlying.
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The models’ assumptions are generated based on the idea that options can be used as a
speculative tool. An investor with “inside” knowledge regarding a stock and thus
knowledge about near term movements in the price of the stock can utilize and profit
from this information by buying or selling options today. If an investor knows that a
stock’s price will rise tomorrow, he can purchase calls or sell puts today. If the increase
in demand for calls and/or supply of puts if great enough to affect their pricing structure,
a model may be developed to quantify these types of changes caused by the market’s
microstructure. In the regression analysis today’s call and put implied volatility are the
independent variables and tomorrow’s return on the underlying is the dependent variable.

The estimated coefficient for the call implied volatility variables is expected to be
significantly greater than zero. An increase in call demand can be viewed as information
entering the market regarding future changes in the price of the underlying. If this
information does not enter the actual market for the stock, rather only the options market,
then the options’ price reflects information not contained in the stock’s price. Under the
Efficient Markets Hypothesis, a stock’s price incorporates all information at all times.
But if we can extract information about the stock’s price that is not currently incorporated
into it, an inefficiency may be found. For the case of call implied volatility, a positive
coefficient implies that the stock is currently undervalued and once the information
contained in the options’ price enters the stock market, the price of the stock will
increase.

The same logic also implies to the relationship of today’s put implied volatility with
tomorrow’s returns on the underlying. If information enters the options market and not

the stock market through an increase in demand for puts, this may lead to the possibility
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that the stock is currently overpriced. The absence of this information in the stock market
may lead to a decrease in the price of the stock once the “new” information is revealed.
A corresponding increase in put implied volatility might then allow for a forecast of
future decreases in the price of the stock. A significantly negative coefficient on the put
implied volatility independent variable quantifies this relationship and is thus expected in
the subsequent regression models.

The hypothesis regarding the statistical significance of the implied volatility
coefficients is in accordance with the speculative and forward-looking nature of options.
It also illustrates how the thesis is force to assume not only a violation in the Strong Form
Efficient Markets Hypothesis, but in the widespread occurrence of such illegal trading
activity. The forecasting models attempt to capitalize on information that is not currently
incorporated in the price of the stock but is incorporated in the price of the options. The
following four regression models attempt to capture and quantify market information by
modeling implied volatility in such a way that the independent variable data reflects

changes in the demand/supply dynamics of the options market.

Forecasting Model 1: “Simple”
R(Underlying) = a + ; R(Call 1V); + 5 R(Put IV)y; + &

The Simple Model is just that. It contains daily changes in the data for the entire
sample period. Tomorrow’s (day t) returns on the underlying is regressed against today’s
(day t-1) change in call and put implied volatility. Since all the data is incorporated and
there is no attempt to find irregular periods of implied volatility caused by market

microstructure, the model is expected to and is the weakest in terms of statistical
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significance. However, the estimated coefficients (f; and £) are opposite in sign to what
the correlation is for call/put implied volatility and returns on the same day. The fact that
pi is positive and f is negative (though not statistically significant) in the Simple Model
is an indication that the assumptions regarding the information contained in options,
when used as a speculative tool, may be justified. These preliminary results lead to the
idea that if the independent variables can be correctly specified, the signs on their
estimated coefficients will not only be in line with expectations but will be significant

which then may lead to forecasting accuracy.

Forecasting Model 2: “High-Implied Volatility”
R(Underlying); = a + g; R(Call H-1V)¢; + > R(Put H-1V); + &

The High-Implied Volatility Model allows for an analysis of the relationship between
tomorrow’s returns on the underlying and only with specific episodes of high-implied
volatility today. “High” is defined as a trading day where the change in implied volatility
is greater than one standard deviation above its sample mean. A dummy variable
regression model is used so that the defined events retain their value in the estimation
process while all other events are assigned a value of zero and thus have no impact on the
calculations.

It is expected that the estimated coefficients are in accordance with the hypothesis
(positive for call IV and negative for put I'V) and also, more importantly, their absolute
values should be greater than the corresponding coefficients in the Simple Model. If the
pricing of the options is affected to a greater degree (i.e. greater daily change) then so

should the price of the underlying change by a greater amount. The weakness in the
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model lies in the fact that these larger changes in implied volatility may not necessarily
be caused by market microstructure. It may be more reasonable to assume that the high-
implied volatility changes are caused by an increase in actual volatility in the price of the
underlying. Implied volatility by definition is an estimate of volatility. Therefore if stock
price volatility is high, so will be implied volatility. Even though the results are in line
with expectations, since increased actual volatility only indicates greater price dispersion
(up or down) and not a one directional change, the forecasting results may and should be

weaker and less reliable than the subsequent models.

Forecasting Model 3: “Call vs. Put”

R(Underlying); = a + f; R(Call H-IV vs. Put); + 8, R(Put H-IV vs. Call); + &

The weakness in the previous model leads to the intuition behind the Call vs. Put
Model. By examining call and put implied volatility in terms relative to each other, it is a
safer assumption that the model is uncovering changes in options prices caused by
demand/supply dynamics and not by the volatility in the underlying.

By definition the implied volatility variable in the Black-Scholes model is the same
for both calls and puts in most circumstances.' © Volatility affects the price of calls and
puts in the same way and thus there is only one estimation of volatility (implied
volatility) which is thus used for the pricing models of both calls and puts. From this

definition it follows that if the volatility estimation is different in the two types of options

YA case where puts are priced higher than calls is when the underlying is difficult to borrow. If an investor is unable
to “short” a stock, the same position can be obtained by buying a put. Since the market-makers are in a similar
position, they are less willing to sell puts since they cannot hedge the position through a short sell of the underlying.
The net result is the price of puts is raised reflecting a reluctance of the market makers to sell them. This price disparity
between calls and puts should therefore not be inferred as an occurrence in line with the model’s definition of the
independent variables. Since AMD stock during the sample period was “easy to borrow”, this circumstance did not
occur and all pricing discrepancies are caused by the model’s overall assumptions
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it cannot reflect a difference in opinion about future volatility. It must therefore reflect a
force outside the pricing model’s variables that is affecting the market price of the
options. This force is assumed here to be the market microstructure. For example,
simple demand/supply dynamics dictates if an abundance of call buyers and put sellers
enter the market, the price of calls will go up and the price of puts will go down. This
fact will have the same result on implied volatility since all other pricing parameters are
the same for both calls and puts and as mentioned earlier are always known with
certainty. Since market microstructure can be the only cause for dispersion in call and
put implied volatility, this model is the best hope for quantifying such demand/supply
affects on the options market’s pricing structure. It is thus the best hope for uncovering
information from the options market that is not currently incorporated in the price of the
stock in its separate market.

The development of the model’s independent variables requires calculating the daily
difference between R(Call IV) and R(Put IV). The sample mean and standard deviation
of this new time-series is then calculated. “Call H-IV vs. Put” is defined as a trading day
where R(Call IV) minus R(Put IV) is greater than one standard deviation above its
sample mean. The change in call implied volatility on the trading day in which the
defined event occurred is then used in the regression using the dummy variable
technique. Similarly, “Put H-IV vs. Call” identifies episodes where the difference is
greater than one standard deviation below its sample mean. Once again, only the actual
put implied volatility change for the trading day is used when its disparity with call

implied volatility is in accordance with the above definition. Below is a table
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summarizing the statistics for the call and put implied volatility data incorporated in

Model 3.
AND ‘Model 3 Independent Variables _
Model 3 Data Summary Statistics for R(Call 1V) and R(Put IV)
«when Model 3 defined event occurs in.sample .
R(Call IV) - R(Put IV) R(Call V) -+ . . R(Putlv)
Mean 0.0032 HOATAS i SRR LY
Max 0.9796 o OIBBAB e LR 063191
Min -0.8792 .-0.0326.. " . Sl 200123
Std. Dev. 0.1872 04321 SOABAT
Count 252 28 il 1 . : :'18_

Forecasting Model 4: “AR Shocks”
R(Underlying); = a + f; R(AR Call H-1V)y; + 5; R(AR Put H-IV); + &

The AR Shocks Model assumes the two implied volatility time-series follow a first-
order autoregressive process or RAV); = a+ pR(IV)e + & The parameter p is the first-
order serial correlation coefficient. Since the paper focuses on the importance of daily
changes in implied volatility, this type of time-series estimation is a logical approach.
Also, from the discussion on random walks, simple time-series forecasting techniques
have a greater chance of accuracy when dealing with volatility of prices when compared
to the forecasts of actual prices. The following table shows that the AR(1) estimation

results are statistically significant.

AMD Call IV AMD Put IV OEX Call IV OEX Put IV
o -0.405 -0.403 -0.151 -0.338
Std. Error 0.058 0.059 0.083 0.079
t-stat -6.889 -6.783 -1.811 -4.274
Prob. p=0 0% 0% 7.23% 0%

While this estimation is not intended or assumed to be the best model to forecast

implied volatility, the results appear to be significant enough for the purpose of
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Forecasting Model 4. The results of the model appear to show that high-implied
volatility today predicts low-implied volatility tomorrow (p is significantly less than zero
at the %1 level for all time-series accept OEX Call IV).

Forecasting Model 4 uses the residuals from the AR(1) estimation process. The
residuals are viewed as “shocks” or unexpected changes in implied volatility. But what if
there are shocks large enough such that they were the result of changes in the options
demand/supply dynamics and not the result of changes in actual volatility in the
underlying? These are the types of daily changes in implied volatility that the model
attempts to uncover. “AR H-IV” is defined as a daily change in implied volatility where
the residuals from the corresponding AR(1) estimation are greater than one standard
deviation above their sample mean. The dummy variable technique is used once again so
that only specific R(Call/Put IV) data that corresponds to a day where the model’s
defined event occurs is used in the regression. Below is a table summarizing the statistics

for the AR(1) time-series estimation residuals and the implied volatility data used in

Model 4.
ANMD ‘Model 4 Indepiendent Variables- . -
Model 4 Data SummaryStaf:s!rcsforR(CalHWand R(PD?IIW. :
Call AR(1)  Put AR(1) when Model 4 defined event occurs in sample’ |
Residuals  Residuals CCR(Calllv) . R(Putlv)
Mean 0 0 e oY o I e S ) [ I
Max 0.4778 0.4333 2075846 LT R AU Gliaihang
Min -0.5712 -0.3595 - 10,0697 : ~ 0.0665
Std. Dev. 0.1193 0.1038 0.1174 0.1106
Count 250 250 25. 28

It is expected that the resulting estimated coefficients from the data defined by Model
4 have absolute values that are significantly larger than the corresponding values in the

Simple Model. This fact would support the data specification for it increases the
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statistical relationship between returns on the underlying and implied volatility. It can
then be assumed that the data specification succeeds in uncovering market dynamics in
line with the thesis’ overall assumptions. Also, it should be noted that the mean values of
the independent variables in Model 4 are significantly larger at the 1% level than those in
Model 3. This fact represents greater daily change in the variables for the tested days and
thus may represent greater market microstructure dynamics that affect implied volatility.
This then may lead to Model 4 having greater forecasting accuracy do its increased

ability to uncover and analyze such affects in the options market.

Forecasting Models Regression Output and Analysis

Review of equations used in regression analysis:

1. Simple: R(Underlying), = e+ g; R(Call IV),, + £ R(Put IV).; + &

2. HighIV:  R(Underlying), = a + f; R(Call H-IV),, + £; R(Put H-IV).; + &

3. Call vs. Put: R(Underlying), = a+ £; R(Call H-IV vs. Put),, + £, R(Put H-IV vs. Call).; + &

4. AR Shock: R(Underlying),= a+ £ R(AR Call H-IV),.; + £ R(AR Put H-IV),.; +

In the tables on the following page, the estimated coefficients are shown for each of
the independent variables with the percentage probability of each estimated coefficient
equaling zero shown below. The goodness-of-fit value (R?) is shown for each model in
the far right column. The dependent variable in the models is the daily returns on the
underlying (AMD or OEX). The independent variables that coincide with each

forecasting model are shown on the top line.
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AMD

15.5% 52.5%

Call V4 Put Vi1 C H-IVii P H-IVi4 C > Py P> Cs4 C AR P AR+ R2

Forecast Models

Simple 0.031 -0.033 0.048

24.2% 23.9%
High IV 0.122 -0.086 0.059
217% 5.18%
Call vs. Put 0.097 -0.119 0.044
2.21% 2.13%
AR Shock 0.151 -0.135 0.064
0.11% 0.21%
OEX
CalllVge PutlVey CH-WVig PH-IViy C>Pyy P>Chi CARn1 P ARk R?

Forecast Models

Simple 0.028 -0.015 0.059

0.95% 4.56%
High IV 0.029 0.007 0.029
8.21% 53.8%
Call vs. Put 0.023 -0.001 0.033
2.93% 96.1%
AR Shock 0.024 0.008 0.022

For the case of AMD, the estimated coefficients’ signs are all in agreement with the
hypothesis. However, the Simple Model generates coefficients that are statistically
insignificant from zero (probability of equaling zero is 24.2% and 23.9% for call and put
implied volatility respectively). This result should not be surprising. The Simple Model
incorporates daily data for the entire sample period. Since any success in the forecasting
of stock returns is difficult at best, it is highly improbable if not impossible that success
could be achieved for every trading day. This fact highlights the importance of correctly
specifying changes in implied volatility in order to identify changes caused by market
microstructure.

The significance and sign (positive for Call IV and negative for Put IV) on the
coefficients in AMD Forecasting Models 2-4 suggests that certain changes in implied
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volatility today may contain information about the directional movement in the price of
AMD stock tomorrow. This information and statistical relationship between the data will
be the basis for refuting the Weak Form Market Efficiency Hypothesis.

The same results do not hold for the case of the OEX. All but one of the coefficients
(C > Py) are statistically insignificant from zero at the 5% confidence level. As
discussed in Chapter 1, the OEX example is included as contrary evidence for the
importance of a specific type of options market microstructure needed to affect implied
volatility in such a way that daily changes in the data may and can reflect an introduction

of information into the market.

Evaluation of AMD Forecast Models
Three different methods are presented in an effort to evaluate the Forecasting Models.
Evaluation is based on the models’ statistical accuracy and on their ability to provide a

profitable trading strategy.

1. Statistical Analysis

The first method is a statistical analysis of forecast errors. The mean absolute error
(MAE), the root mean squared error (RMSE), and the Theil Inequality Coefficient (TIC)
are used to test the accuracy of the models. In order to evaluate the results, the statistical
data is compared to the same tests performed on data form two time-series models of
AMD returns. The two time-series are a one period auto-regressive, AR(1), and a one

period auto-regressive moving average model, ARMA(1,1). If the market for AMD
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stock is efficient, then these two time-series models should be close to the best possible
means by which AMD returns can be forecasted. The time-series models then provide a

basis for which the thesis’ models can be judged in relative terms.

AMD
MAE RMSE TIiC

Forecasting Models

Simple 0.03089 0.04359 0.85984
High 11V 0.03058 0.04311 0.80822
Call vs. Put 0.03123 0.04353 0.82841
AR Shocks 0.03045 0.04258 0.79596
Time-Series Models

AR(1) 0.03021 0.44264 0.93572
ARMA(1,1) 0.03025 0.04425 0.94481

When different models are used to predict the same dependant variable, the one with
the smaller MAE, RMSE or TIC is judged to be superior for forecasting purposes. From
the table above, it can be seen that the implied volatility models provide more accurate
predictions of daily returns on AMD than do the time-series models. This fact in of itself
is not enough to refute the Weak Form Market Efficiency Hypothesis. However, it does
provide evidence that there is a significant link between today’s implied volatility and
tomorrow’s change in stock price and thus if nothing else it gives credibility to the

Forecasting Models inherent assumptions and to this type of financial research.

2. Mean Returns

The second method used to evaluate the accuracy and validity of the forecasting models
deals with actual returns on AMD and the hypothetical returns made possible by the
models. The defined events in the each of the models can be equated to a trade signal.

This signal can tell the trader when to buy or sell a stock in accordance with the thesis’
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hypothesis. For example, if the difference between daily change in call and put implied
volatility is greater than one standard deviation above its mean, a buy signal will result
and the trader can buy the stock on the close today with the expectation it will rise
tomorrow. If there is a “shock” in put implied volatility and not in the calls (reasons for
this are discussed later), a sell signal will result. This type of “real world” analysis of the
models can provide the best evidence for or against their usefulness and thus whether or
not they can be used as evidence against market efficiency.

The daily return on AMD following a buy or sell signal is compared to the mean daily
return on AMD over the entire sample period. The daily mean return on AMD is
considered here to be the expected daily return. Any statistically significant difference in
the return from its mean value can thus be considered to be unexpected. The table on the
following page reports the mean returns for the buy an sell signals for each of the
forecasting models. The number of trading signals for each model along with the number
of overlaps is also included. An overlap is defined as a day with both a buy and sell
signal. The High-Volatility Model has an inherent weakness in that it may only identify
events where actual volatility in the underlying is high. This weakness results in the
particularly large number (50% of total signals) of overlaps. Simultaneous buy and sell
signals are of obviously no use to a trader. For this reason, the mean return values for
this model and for the AR Shock Model are calculated only for the days where an overlap
does not occur. This process allows the test resuits to focus only on the days where
demand/supply dynamics are the probable cause of changes in implied volatility and not

actual stock price volatility.
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AMD
Forecast Model Mean Return # of Signals Overlap
High Volatility
CALL 0.00351** 46
PUT -0.01211 45
23
Call vs. Put
CALL 0.01148 25
PUT -0.02651 18
0
AR Shocks
CALL 0.01836 18
PUT -0.02379 21
7
AMD SAMPLE MEAN RETURN = -0.00249
CALL = Buy Signal PUT = Sell Signal
** Mean Return insignificantly different from AMD mean return at the 5% level

The mean return following a specific event in implied volatility is in agreement with
the thesis” hypothesis: modcl-spccificd cvents in call implied volatility torecast positive
returns while put implied volatility can be used to forecast negative returns. Only the
mean return for the Call High-Volatility model is insignificantly different from the AMD

sample mean return.

3. Right or Wrong

The third method of evaluation looks at the number of correct signals. A correct buy
signal produces returns the following day that are greater than AMD’s mean return while
a sell signal is defined as correct when the following day’s returns are less than AMD’s
mean return. By using a simple binary calculation (correct = 1, incorrect = 0), a

“successful” trading strategy should have a mean signal value greater than 50%.
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AMD
# of Trades # Correct % Correct
(Signals -Overlaps)
Forecast Model
High Volatility

CALL 23 10 43.48%
PUT 22 11 50.00%

Call vs. Put
CALL 25 13 52.00%
PUT 18 14 77.78%

AR Shocks
CALL 18 10 55.56%
PUT 21 18 85.71%

The above results, relative to each other, are in line with what was expected based on
the results from the regression analysis. The High-Volatility Model is the weakest
performer. 50% correct may be the best possible and logical expected outcome since
results can only be associated with price dispersion and not directional movement in the
underlying. Since the AR Shocks Model identified periods of changes in implied
volatility that were significantly larger than those in the Call vs. Put Model, it was
assumed earlier that this may lead to better forecasting results due to possible greater
demand/supply dynamics in the options market. From the “% Correct” indicator, this
appears to be the case in this evaluation.

The buy signals are less reliable than the sell signals and appear to be too close to the
50% barrier to allow a trader to be confident in their overall performance abilities.
However, the sell signals appear not only to be accurate based on expected mean returns,
but also on the overall amount of times they are simply correct and thus may be the best

possible chance of refuting the Efficient Markets Hypothesis.
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Chapter 4: Conclusion

A Final Story

AMD stock began 1999 rising in price in anticipation of a positive earnings report for
the fourth quarter of 1998. From the graph below, it can be seen that when earnings were
announced the morning of January 14, they were far below expectations. This new
information entering the market caused AMD stock to suffer a one-day loss in value of

almost twenty percent.
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After the market assimilated this new information, the price of AMD stock traded in a
relatively small price range. Instead of around thirty dollars per share, the market (post-
earnings) valued AMD at around twenty-two dollars per share.

On Friday, January 29 a customer entered the options market and purchased five
thousand February 22 % calls for an average price of 1.875 dollars. During the course of
the trade (the customer placed five separate orders of one thousand contracts each), the

price of AMD stock actually moved down a quarter of a point. The massive increase in
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demand for calls caused their price to increase even though the price of the underlying
decreased. This irregular pricing dynamic resulted in the implied volatility of AMD calls
exploding to the upside from fifty to almost seventy while the put implied volatility
remained constant at fifty.

During a quiet, routine-filled day, a trade of five thousand, at-the-money, front month
contracts results in numerous questions and intrigue amongst the market-makers. “Why
is this guy buying so many calls?” “There is no news pending and AMD just came out
with earnings.” “I don’t know but the calls sure were a good sale at two bucks with the
stock below twenty-three.”

On Monday February 1, 1999 the AMD options traders awoke to the following
headline and story that answered their questions.

“Gateway to use AMD Chips on New PC”

NEW YORK, February 1 (Reuters) - PC maker Gateway Inc. will use

Advanced Micro Devices Inc. AMD computer chips, instead of those of

Intel Corp. INTC, on a new line of machines it plans to launch in March,

PC Week reported. The North Sioux City, S.D. company, a long-time Intel

loyalist, will use Advanced Micro Devices' K6-3 chip on the new line,

sources told the weekly computer trade publication. Gateway plans to

offer the new, AMD-equipped computer at a cheaper price than it could if

it used Intel chips, PC Week said.
This definitely positive news for AMD resulted in the stock’s price increasing over two
dollars per share. The stock market’s actions could hardly be deemed inefficient. On the
close of trading Friday, the stock’s price reflected all publicly known information and
once this new information entered the stock market the price of AMD reacted
accordingly. But if we were analyzing the options market using Forecasting Model 3 and

4, we would have noticed either a disparity in call and put implied volatility and/or a

“shock™ to the call implied volatility daily change time-series due to the sudden increase
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in demand. Using the tools provided by this thesis, the actual reason for AMD’s future
rise in price would not have be known, but a buy signal would have been generated that

did in fact result in significantly positive, higher than expected earnings.

Concluding Comments

Finding inefficiency in a financial marketplace is a difficult task. If anyone were
fortunate enough to find the perfect trading strategy, we would never hear about it. The
lucky individual would be lounging on the beach, enjoying a cool drink with an umbrella
sticking out the top and counting his millions of dollars. If inefficiency is found, it must
be kept a secret. Assume for a moment that my models are one hundred percent accurate.
As soon as the word gets out, everyone will be trading with them. But before you realize
it, the opportunity to profit will be gone. The stock market will begin to react to the
information in the options market immediately rather than some time in the future. When
any risk-less, profitable trading opportunity is acted upon by numerous individuals, the
market evolves and “learns” how to incorporate more information quicker resulting in a
more precise pricing of the underlying. Maybe someone will make a quick dollar, but
sustained risk-less profits are essentially impossible.

Take for example the case of Long-Term Capital. Long-Term Capital is a hedge fund
whose leaders (two Nobel Prize winners in economics) believed they developed a
forecasting model that generated guaranteed profits. In the beginning, their model
resulted in extremely high returns. But in the late 1998, market conditions changed

dramatically and the fund lost nearly four billion dollars (most of which was highly
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leveraged by banks and brokerage houses). Even the most gifted traders and economists
can fail miserably in attempts to find a foolproof trading strategy that provides higher
than expected profits over the “long-term”.

It was foolish and possibly arrogant of Long-Term Capital to rely so heavily on a
purely quantitative market analysis for its decisions. I would be even a bigger fool if I
did the same with my models. But from an academic standpoint they do appear to
provide evidence of a statistical link between information contained in today’s options
prices with tomorrow’s price on the underlying. The assumptions and the logic are quite
straightforward. Options by nature are forward looking. This combined with the fact that
equity options have become an increasingly popular investment tool leads to the
hypothesis that it is possible for options markets to contain information that the stock
market does not. The trick is to find a model that identifies and deciphers this subtle
information in the price of options.

The statistical significance and the signs on the estimated coefficients in the AMD
Forecasting Models regression analysis provide the best evidence that call and put
implied vblatility related to expected future price dispersion and to expected future
directional movements in the underlying. The OEX data is presented to illustrate that
even if all of the assumptions hold for AMD, they do not hold for all types of options
markets. The differentiating factor between the two markets is their microstructure. The
market must be such that the forces of supply and demand can significantly affect the
options pricing structure in ways that are independent of other Black-Scholes options’

price determinants.

47



In the mean return analysis of the Forecasting Models it did appear that they might
have the ability to provide consistent, higher than expected returns over the long run. A
buy signal resulted in returns higher than the sample mean AMD return and the sell
signal resulted in lower returns. The percentage of correct signals leads to the conclusion
that while profitable, the models remain a risky strategy. If the percentage correct is only
slightly higher than fifty percent, one extremely bad signal will wipe out all previous
gains. But how many times out of a hundred do you have to be right in order to deem a
trading strategy useful and thus refute the Market Efficiency Hypothesis? In the case of
Long-Term Capital, they might have been right the first ninety-nine trades and then on
the hundredth trade they lost everything and more.

If it is difficult to find a risk-less trading strategy, it may be even more difficult to
actually conclusively prove that a risk-less, profitable strategy actually refutes the
Efficient Markets Hypothesis. As soon as someone thinks they have all the answers, the
market changes and new theories must be formed. However, the models in this thesis do
provide some evidence against the Weak Form Market Efficiency Hypothesis. The weak
form states that past pricing data information cannot be used to forecast returns. The
assumption for the most part has been that “all past information” refers to information in
the stock market itself. Derivatives (options) are “derived” from the stock market. It
follows that data from this market should also be included in any test of stock market

efficiency.
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