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Chapter 1 - Introduction 

Nutrients are crucial to sustaining the life of aquatic ecosystems.  Nitrogen (N) and phosphorus (P), and 

their respective chemical forms, are two of the most influential nutrients in stimulating primary 

production.  Phytoplankton feed on N and P forms that are either introduced to or recycled through the 

water system, and in turn are fed on by zooplankton such as krill or shrimp. The energy gained by 

phytoplankton consumption is transferred through the food web from small fish and mollusks, to larger 

fish, to sea mammals, and even to humans.  However, these nutrients crucial for supporting life in the 

water can be just as much toxic as they are healthful.   

At the base of the food web, where N and P nutrients feed primary producing phytoplankton to support 

the rest of the food web, toxic species of phytoplankton are also feasting – and thriving – off of these 

nutrients.  When exposed to nutrient-rich waters, these toxic phytoplankton can rapidly grow, forming 

dense, toxin-releasing colonies known as harmful algal blooms (HABs).  In addition to the anoxic 

conditions created by these HABs, their toxins can make their way through the food web, accumulating 

into the tissues of shellfish and other fish, and consequently threatening the health of marine 

ecosystems while poisoning marine mammals and humans alike.  

The growth, distribution, and toxicity of HABs are influenced by a complex interaction of ecology, 

nutrients, and local environmental forces. It is important to understand these components to evaluate 

current management efforts, expand the knowledge base, and formulate new strategies to control 

them. 

1.1 Ecology of Microcystis aeruginosa 

Microcystis aeruginosa is one of the most common harmful algal-blooming species in the world 

(Moisander et al., 2009; Straub et al., 2011), yet its growth dynamics are poorly understood.  Unlike 

other phytoplankton, M. aeruginosa is not true algae, but rather photosynthetic bacteria known as 

cyanobacteria, named after the color of their blue-green algal blooms. Cyanobacteria are the most 

ancient of phytoplankton species, and they thus have a wide distribution and diverse dynamic that 

makes understanding their growth mechanics complicated (O’Neil et al., 2011). While M. aeruginosa 

commonly inhabits freshwater lakes during eutrophic seasons, it can also be found in estuarine systems 

and along marine coasts, and it is continuing to increase in frequency and intensity around the world 

(Davis et al., 2009; Lehman et al., 2013).  It has only recently started to infest water bodies in Northern 
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California, blooming for the first time in the brackish waters of the San Francisco Bay estuary in 1999, 

and in the fresh waters of the Copco and Iron Gate reservoirs of the Klamath River in 2005, making 

consistent returns in health-concerning abundance levels every year (Lehman et al., 2013; Moisander et 

al., 2009). Of special concern is the introduction of M. aeruginosa in the San Francisco Bay estuary, as 

this is indicative of its global spread not only geographically, but from its common freshwater habitat 

and into harsher, more saline conditions. Toxic strains of M. aeruginosa release highly noxious 

metabolites from their blooms, which are absorbed by zooplankton, clams, and juvenile fish, and are 

subsequently spread throughout all trophic levels, causing detrimental and sometimes lethal effects to 

aquatic wildlife and their ecosystems.  

As part of the Microcystis genus, M. aeruginosa is one in a spectrum of Microcystis species, although 

growth and response patterns may be similar between them. Some studies reviewed in this document 

examine M. aeruginosa among its Microcystis counterparts.  For the sake of clarity, the term Microcystis 

as it is discussed in study results will refer to a range of Microcystis species that includes M. aeruginosa. 

1.2 Nutrient Influences on Microcystis aeruginosa 

As a primary producer, M. aeruginosa depends on N and P forms for food.  Nutrient-rich wastewater 

effluents discharged from wastewater treatment plants and into aquatic ecosystems, like the San 

Francisco Bay Estuary, are loading them with N and P that can spur harmful algal blooms (HABs) 

dominated by cyanobacteria.  P has traditionally been accepted as having a dominant role in primary 

production, and as such, it has been commonly considered the limiting nutrient in freshwater 

ecosystems (O’Neil et al., 2011). Consequently, current management efforts are stringently regulating P 

loads in wastewater effluents, dramatically decreasing eutrophication potential and increasing the N-to-

P (N:P) concentration ratio (Paerl et al., 2012). An example of P regulation increasing the N:P ratio can 

be observed in the San Francisco Bay Estuary,  where the N:P ratio has almost doubled in the past 35 

years, from a dissolved inorganic N-to-total P (DIN:TP) ratio of 2 in 1975 to almost 4 in 2010 by weight 

(SFBRWQCB, unpublished). This approach can be concerning, however, as recent research suggests that 

N may be just as influential, if not more influential, as P, in promoting cyanobacterial blooms like M. 

aeruginosa (O’Neil et al., 2011).  

Although more stringent N regulation in wastewater is being considered, a growing amount of research 

suggests that toxic M. aeruginosa strains actually dominate under low N:P ratios (Beversdorf et al., 

2013; Chaffin et al., 2011; Fuhimoto et al., 1997; X. Liu et al., 2011; Y. Liu et al., 2011; Marinho et al., 



3 

 

2007; Orihel et al., 2012; Otten et al., 2012; Smith, 1983; Xu et al., 2010).  Thus, expensive regulation of 

wastewater effluents may actually exacerbate the growing problem of M. aeruginosa by manipulating 

nutrient concentrations into lower N:P ratios that can benefit the cyanobacterium.   

1.3 Local Environmental Influences on Microcystis aeruginosa 

In addition to the influence of N and Ps loadings, environmental forces driven by the growing threat of 

climate change may provide for a more ideal habitat for M. aeruginosa, explaining its worldwide 

increase in abundance. Factors such as water temperature, sunlight, turbidity, salinity, and water 

velocity—among others—may complement or surpass the role of nutrients in influencing the growth, 

toxicity, and distribution of M. aeruginosa.  

With a comprehensive examination of the role of nutrients respective of other environmental factors on 

M. aeruginosa, a clearer understanding of the growth, toxicity, and distribution dynamics of this 

cyanobacterium may offer valuable insight into effective strategies for controlling these potentially 

devastating blooms. 

1.4 Management Efforts to Control Microcystis aeruginosa 

Management of toxic strains of M. aeruginosa is a complicated task because its mechanisms of growth 

and toxicity, in addition to what influences those mechanisms, are not yet fully understood. Moreover, 

conflicting theories as to these influences clutter the realm of scientific literature, and little research has 

been conducted for M. aeruginosa in marine waters due to its abundant freshwater invasions. Although 

P is heavily regulated in both point and non-point sources of pollution, the concurrent and almost 

synchronized global expansion of M. aeruginosa suggests a different, perhaps more comprehensive 

approach to managing its growth and distribution may be more effective.  

With the recent spread of M. aeruginosa to Northern California waters, considerations for the cause of 

this onset revolve around possible flawed or insufficient management strategies surrounding nutrient 

regulations and the influential factors associated with climate change.  The potential of innovative and 

efficient management options in managing M. aeruginosa can increase with a clarified understanding of 

the drivers behind M. aeruginosa dominance in aquatic systems. Whether to treat the M. aeruginosa 

problem directly through biotic or abiotic biomass removal or indirectly through nutrient manipulations 

and policy adjustments must be analyzed by well-informed decision-makers to guide these management 

strategies.  
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1.5 Research Focus 

Despite being one of the most common harmful algal-blooming species within the most ancient genus 

of phytoplankton, the mechanisms behind the growth, distribution, and toxicity of Microcystis 

aeruginosa cyanobacteria are poorly understood. The toxins released by M. aeruginosa blooms can 

devastate aquatic ecosystems and be lethal to the organisms that inhabit them and benefit from their 

services. Phosphorus has traditionally been considered the limiting nutrient of freshwater ecosystems, 

thus stringent control of both point and non-point sources of discharge have significantly reduced its 

input into these ecosystems.  However, the threat of M. aeruginosa is continuing to grow, making 

consistent returns and expansions on a global scale, afflicting not only freshwater systems in which it is 

commonly found, but also more saline aquatic ecosystems in estuaries and along marine coastlines.  

This global expansion suggests that other factors may be more influential than phosphorus in the 

dominance of toxic M. aeruginosa, with studies supporting the significant influences of N and local 

environmental factors intensified by climate change in M. aeruginosa regulation.  Nonetheless, 

conflicting theories and study results create a tangled and unreliable web of information in the realm of 

scientific literature.  A comprehensive examination into the influences of N, P, and the environmental 

factors associated with climate change can identify trends and clarify the drivers behind M. aeruginosa 

expansion for effective management strategies in controlling their growth, distribution, and toxicity in 

aquatic ecosystems.   

This research will explore the ecology of M. aeruginosa (Chapter 2 - Ecology and Toxicity of Microcystis 

aeruginosa) in order to effectively explore role of N and P in its growth, distribution, and toxicity 

(Chapter 3 - Nutrient Influences). Additionally, relative to N and P, local environmental influences on M. 

aeruginosa will be explored in the context of climate change (Chapter 4 - Environmental Influences).  

Currently, the dynamics between M. aeruginosa, nutrients, and the surrounding environment on its 

growth, toxicity, and distribution are poorly understood. M. aeruginosa is a relevant environmental 

concern that threatens the health of both aquatic ecosystems and humans, and its current, global 

expansion in the face of climate change renders it a contemporary threat necessary of a comprehensive 

investigation. Through a clear understanding of the influencing factors behind the growth of M. 

aeruginosa, more appropriate and effective management strategies can be developed to improve 

control of toxic, and potentially devastating, blooms (Chapter 5 - Research Conclusions and 

Management Recommendations). 
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Chapter 2 - Ecology and Toxicity of Microcystis aeruginosa 

Microcystis aeruginosa is comprised of a dynamic physiology, resulting in a complex relationship with its 

environment that can be difficult to simplify. Thus, the mechanisms behind its growth, toxicity, and 

distribution are poorly understood, despite being one of the most common and ancient genera of 

harmful algal blooms (HABs) in the world (O’Neil et al., 2011; Moisander et al., 2009; Montagnolli et al., 

2003; Straub et al., 2011). As cyanobacteria, it is a prokaryotic species that uses chlorophyll to convert 

light into energy, resembling its eukaryotic photosynthetic counterparts, and hence its misnomer 

identification as “algae”. Among those algal counterparts are diatoms and dinoflagellates, which, along 

with cyanobacteria, comprise the most abundant and harmful phytoplankton species in the world, 

afflicting aquatic ecosystems with toxic blooms (Gilbert et al., 2005; Vasconcelos, 2006). 

Like other primary producers, M. aeruginosa feeds off of nutrients that are either introduced to or 

cycled throughout the water, and, with the help of sunlight, rapidly blooms in dense colonies under 

eutrophic conditions. Not all strains of M. aeruginosa are toxic, nor are all strains colony-forming (Ma et 

al., 2013). However, even non-toxic strains of M. aeruginosa can be fatal, as sufficient concentrations of 

nutrients can result in rapid, dense bloom formations that block sunlight from penetrating aquatic 

ecosystems and create anoxic conditions during nighttime respiration, resulting in fish kills and an 

overall decrease in biodiversity (O’Neil et al., 2011). Moreover, M. aeruginosa has a unique relationship 

with nitrogen (N), phosphorus (P), and its environment in comparison to diatoms, dinoflagellates, and 

other cyanobacteria (explored further in Chapter 3 - Nutrient Influences).  Unlike most cyanobacteria, it 

is a non-diazotrophic species, meaning it does not fix N from the atmosphere, yet little evidence 

suggests this is a constraint or a disadvantage (Beversdorf et al., 2013; Smith, 1983.). This inability to fix 

N may be indicative of a unique relationship M. aeruginosa shares with N and N-fixing phytoplankton for 

survival in N-limited aquatic ecosystems, or in aquatic ecosystems where availability of N is insufficient 

to satisfy phytoplankton nutritional needs. The magnitude of the M. aeruginosa problem is increasing 

with its expanding presence in the environment, influenced by its toxicity, population dynamics, and 

physiology within the phytoplankton realm.  

2.1 Presence in the Environment 

Although M. aeruginosa is most common in freshwater ecosystems, it can also be found in the saltier 

waters of estuarine systems and marine coasts (Belyk et al.,2012; Beversdorf et al., 2013; Lehman et al., 

2013; Montagnolli et al., 2003; Robson and Hamilton, 2003). It is believed that the majority of M. 
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aeruginosa enters estuarine and marine ecosystems through flushing of Microcystis-contaminated 

streamflows and runoff from freshwater systems, where it is then able to survive and establish itself in 

the harsher conditions of more brackish waters (explored further in Chapter 4 - Environmental 

Influences) (Miller et. al., 2010).  Such cases of Microcystis-polluted freshwater infiltrating brackish 

ecosystems have been documented in the Swan River estuary of Western Australia, the St. Lucie River 

estuary in Florida (Ross et al., 2006), and the San Francisco Bay estuary and Monterey Bay of California, 

during the wet season (Lehman et al., 2013; Lehman et al., 2005; Miller et al., 2010 Mosiander et al., 

2009; Robson and Hamilton, 2003). However, some cases have detected in situ growth in brackish 

waters, as observed in Puget Sound in the State of Washington (Lehman et al., 2005).  

M. aeruginosa has typically been observed to bloom annually during the warmer months, beginning in 

May and ending after November (Lehman et al., 2013; Lehman et al., 2005; Xiu et al., 2011; Yoshida et 

al., 2007).  However, dense blooms M. aeruginosa have also been observed in the winter months 

between December and February (Tas et al., 2006). Though these blooms are often ephemeral, they are 

also extensive, and their ability to degrade aquatic ecosystems has relevant consequences (Miller et al., 

2010). During these blooms, toxic taste and odor compounds released degrade the quality of water, 

which can cause severe ecological, economical, and public health impedances; aquatic wildlife is 

harmed, recreational and fishery markets are impacted, and drinking water is contaminated (Lehman et 

al., 2013; Ma et al., 2013). Additionally, its dense, noxious, and photosynthetic biomass causes a lethal 

combination of toxic and hypoxic conditions (Brooks and Ganf, 2001; Ma et al., 2013; O’Neil et al., 2011) 

which favors M. aeruginosa dominance by altering the food web competition amongst the 

phytoplankton community (O’Neil et al., 2011) and lowering biodiversity by poisoning or suffocating 

sensitive fish species and other local benthic organisms (Montagnolli et al., 2003; Vasconcelos, 2006). 

The presence of M. aeruginosa in estuarine and marine waters can be especially concerning due to its 

potential to threaten the health and balance of aquatic ecosystems and their wildlife, devastate marine 

fisheries, and harm human health via seafood vectors through its release of toxic metabolites, which is 

explored further in Section 2.2: Toxicity of Microcystis aeruginosa. 

M. aeruginosa blooms are fast becoming a global health concern, increasing in frequency and intensity 

around the world (Davis et al., 2009; Lehman et al., 2013). Recurrent, toxic Microcystis blooms have 

been reported in Europe, Asia, Africa, Australia, and North and South America (Miller et al., 2010), 

leaving Antarctica the only continent without reported affliction (O’Neil et al., 2011). M. aeruginosa was 

only recently discovered in Northern California, blooming for the first time in the brackish waters of the 



7 

 

San Francisco Bay estuary in 1999, and in the fresh waters of the Copco and Iron Gate reservoirs of the 

Klamath River in 2005. Since those years, M. aeruginosa has been making consistent, annual returns at 

levels considered to have moderate probability for adverse health effects to humans in recreational 

waters by the World Health Organization (Mosiander et al., 2009). With this recent spread to Northern 

California waters, considerations for the blame of this onset revolve around understanding nutrient 

interactions with M. aeruginosa, local environmental dynamics, and the influential factors associated 

with climate change 

2.2 Toxicity of Microcystis aeruginosa 

Toxic strains of M. aeruginosa release highly potent hepatotoxins, or toxins damaging to the liver, called 

microcystins, which can severely impact the health of aquatic wildlife. M. aeruginosa is a high producer 

of microcystins and is one of the most widespread freshwater hepatotoxic species in the world 

(Monchamp et al., 2014). Recurrent, microcystin-releasing blooms have been reported on every 

continent but Antarctica (Miller et. al, 2010; O’Neil et al., 2011), suggesting that the threat of toxic M. 

aeruginosa strains has extended globally. Over 65 structural variants of microcystins exist with various 

ranges in toxicity (Montagnolli et al., 2004), with microcystin-LR (MC-LR) as one of the most toxic and 

most commonly associated variants with toxic blooms (Fischer and Dietrich, 2000; Pouria et al., 1998). 

Other common variants of microcystins include microcystin-RR (MC-RR) (Gan et al., 2012), and 

microcystin-YR (MC-YR) (Srivastava et al., 2012). While the role of microcystins is still unknown, their 

impacts on other phytoplankton, invertebrates, and vertebrates—including marine mammals and 

humans—have been clearly observed. Though microcystins were once considered a freshwater public 

health issue from recreational and home use of water from contaminated lakes, rivers, and reservoirs, 

the growing incidences of M. aeruginosa in estuarine and marine habitats have created a widespread 

concern through expanding potential vectors for microcystin exposure to wildlife and humans, and 

ultimately degrading aquatic ecosystems and their ecosystem services.  

2.2.1 Toxicity to Aquatic Invertebrates and Vertebrates 

Large-scale, microcystin-producing blooms of M. aeruginosa are common along the Pacific Coast of the 

United States each year during the summer and fall seasons, particularly in various lakes and rivers in 

the states of Washington, Oregon, and California (Miller et al., 2010). Microcystins released from these 

blooms have the potential to flow into the Pacific Ocean and contaminate the adjacent marine waters 

(Miller et al., 2010). As toxic strains of M. aeruginosa are consumed by zooplankton, microcystins begin 
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to biomagnify in their spread through higher trophic levels as they make their way through the food 

web. Bioaccumulation of microcystins has been observed in the tissues of both freshwater and saltwater 

invertebrates and vertebrates, including mussels, crustaceans, corals, and fish (Miller et al., 2010).  

Aquatic invertebrates and vertebrates serve as significant carriers for microcystins.  Bioaccumulation of 

microcystins in invertebrates was demonstrated in a laboratory study exposing bivalves (clams, oysters, 

mussels) and snails to microcystins via toxic M. aeruginosa presence in seawater tanks of low exposure, 

at 2,195 parts per billion (ppb) microcystins, and high exposure, at 10,600 ppb microcystins (Miller et al., 

2010).  One of the highest microcystin concentrations ever recorded from an in situ sample was at 2,900 

ppb in the freshwaters of Pinto Lake, California, in 2009; the World Health Organization (WHO) limit for 

microcystin concentrations for drinking water is 1 ppb (Miller et al., 2010). After 96 hours of microcystin 

exposure, the seawater tanks were continuously flushed out with fresh seawater until the 21
st

 day of the 

study. 

Clams, oysters, and mussels demonstrated the highest microcystin bioaccumulation in their 

gastrointestinal tissues, reaching up to 1,324 ppb in the high exposure tank after one day of exposure 

(Miller et al., 2010). Clams contained 183 ppb microcystins in their gastrointestinal tissues up to 14 days 

after microcystin exposure, and mussels contained 30.5 ppb microcystins in their gastrointestinal tissues 

21 days after exposure.  Although microcystin concentrations in the bivalve tissues decreased after 

initial exposure, the presence of microcystins after 17 days of continuous flushing with fresh seawater 

demonstrates a slow depuration rate, or cleansing ability, of the bivalves (Millet et al., 2010). 

Although aquatic invertebrates and vertebrates can be carriers of microcystins, microcystin intoxication 

has also expressed harmful impacts on their function, including the health of crustaceans, fish, and small 

aquatic turtles, or terrapin. Uptake of microcystins through consumption has demonstrated changes in 

the metabolism in microcrustaceans (Montagnolli et al., 2003); hepatopancreas cell death, kidney 

damage, and mortality (in acute doses) in carp and rainbow trout (Fischer and Dietrich et al., 2000); and 

mortality of terrapin (Nasri et al., 2008). Even species of bacteria, protozoa, and other phytoplankton, 

including diatoms and green algae, are susceptible to microcystin poisoning which inhibit their 

proliferation and can severely alter the structure of the food web, giving dominance to M. aeruginosa 

(Ginn et al., 2010; Montagnolli et al., 2003; Sedmak and Eleršek, 2006).  

Most microcystins released by M. aeruginosa are particularly harmful to mammals because of their 

promotion of liver damage and tumors (Montagnolli et al., 2003). This toxic effect poses a serious 
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concern for marine mammals that feed on shellfish, crustaceans, and juvenile fish and absorb the 

accumulated toxins in their tissue (Miller et al., 2010; Mosiander et al., 2009).  

2.2.2 Toxicity to Marine Mammals 

Consumption of microcystins can be fatal to aquatic mammals, having been associated with liver failure 

in federally threatened southern sea otters along the Pacific Coast who rely on potentially affected 

mollusks and other invertebrates for food (Lehman et al., 2013; Miller et al., 2010). The first known case 

of microcystin intoxication and mortality of a marine mammal was reported in 1999 for a southern sea 

otter off the Pacific Coast in Monterey Bay, California.  However, recognition for microcystin-induced 

fatalities in marine mammals did not begin until 2007, when eleven sea otters were found dead and 

dying from microcystin poisoning in North America’s largest marine sanctuary in Monterey Bay (Miller et 

al., 2010). Furthermore, these deaths were not documented in published scientific literature until 2010 

(Miller et al., 2010). Up until 2012, thirty-one cases of microcystin-induced fatalities for the southern sea 

otter were recorded along the California coast (USFWS, unpublished). Most of these cases were located 

in Monterey Bay, although Estero Bay and Big Sur along California’s central coast also have confirmed 

cases of microcystis-induced mortalities in southern sea otters. Each of these cases of dead and dying 

sea otters was found to have hepatic lesions suggestive of acute liver failure (Miller et al., 2010). 

Postmortem examination of their bodies by the California Department of Fish and Game Water Pollution 

Control Laboratory confirmed the presence of microcystins in their damaged liver tissues, with 

concentrations ranging between 1.36 to 348 ppb wet weight for the first twenty-one mortalities 

reported between 1999-2008 (Miller et al., 2010). Their livers demonstrated similar damage consistent 

with microcystin-positive livers in humans and animals of other reports, including necrosis and 

hemorrhaging (Davis et al., 2009; Miller et al., 2010; Montagnolli et al., 2003; Nasri et al., 2008; Yoshida 

et al., 2007).  

Carcasses of southern sea otters from microcystin poisoning were found in clusters around areas where 

microcystin-contaminated plumes could have been discharged from freshwater systems, including river 

mouths, coastal ponds, harbors, and embayments (Miller et al., 2010). Additionally, the locations of sea 

otter carcasses along the northern central coast of Monterey Bay to the southern central coast of Estero 

Bay suggests that multiple point-sources of microcystin exposure to marine habitats exist along 

California’s coast. This distribution further supports that many of the M. aeruginosa communities and 

their resultant microcystins present in the brackish waters of California’s coast originate from discharged 

contaminated freshwater outflows, and is indicative of the potential freshwater origins of M. aeruginosa 
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found in other brackish and marine ecosystems around the globe, including the Swan River estuary in 

Australia, the Patos Lagoon estuary in southern Brazil, and the Baltic Sea in Europe (Belyk et al., 2012; 

Montagnolli et al., 2003; Robson and Hamilton, 2003).  

Microcystins are emerging as a serious health threat to sea otters with the growing trend of microcystin-

related poisonings since 2007. It is believed that a combination of trophic transfer through preying on 

microcystin-positive marine invertebrates feeding on contaminated organisms of lower trophic levels, 

and the flushing of microcystin-contaminated freshwater into the estuarine waters of the California 

coast, are the two principal routes of exposure for these sea otters (Miller et al., 2010). The injury and 

death of sea otters from microcystin poisoning along the California Coast is indicative of similar harm 

that can happen to other marine mammals as well as humans, as seafood sources are shared from the 

same region and amongst the same invertebrate species that demonstrated slow depuration of 

microcystins after absorption.  Additionally, human utilization of the same coastal habitat in Monterey 

Bay is also common for direct-contact water recreation, fishing, and tourism, expanding their risk of 

harmful exposure (Millet et al., 2010).  

2.2.3 Toxicity to Humans 

Humans are also at risk of microcystin poisoning from consumption of microcystin-contaminated 

shellfish and fish, and from direct contact with consumption of microcystin-contaminated waters. Due 

to the history of M. aeruginosa in freshwater habitats, most studies on the effects of microcystins on 

humans are associated with exposure from recreational use in freshwater habitats or drinking 

contaminated water, since large populations utilize freshwater and microcystins tend to be in high 

concentrations in their more stagnant waters (Backer et al., 2009). Human outbreaks of microcystin-

related illness have been sporadic and less clear than impacts on animals, as many studies are 

conducted in laboratories (Backer et al., 2009). However, acute exposure to microcystins has resulted in 

severe injury and deaths from massive hepatic hemorrhages, liver failure, and neurological disruptions 

in humans (Davis et al., 2009; Nasri et al., 2008; Pouria et al., 1998; Yoshida et al., 2007). 

The first reported and probably most infamous case of fatal microcystin poisoning in humans happened 

in Carauru, Brazil, in 1996 (Pouria et al., 1998). A haemodialysis unit used inadequately treated water 

from a local reservoir containing toxic cyanobacteria blooms to treat 126 patients. All 126 patients 

experienced varying degrees of signs and symptoms consistent with acute neurotoxicity and subacute 

hepatotoxity, 60 of which resulted in death (Pouria et al., 1998). Although the species of cyanobacteria 
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was not identified, it was later confirmed that toxins in the tainted water used for dialysis were the 

same microcystin variants that can be produced by M. aeruginosa, which was one of the genera of 

cyanobacteria commonly known to inhabit the local reservoir from which the contaminated water was 

extracted (Pouria et al., 1998). In addition, histological examinations of affected livers were found to 

have characteristics similar to damage observed in animals poisoned by microcystins. Almost 

immediately after exposure to the contaminated water, neurological symptoms became evident, 

consisting of vertigo, mild deafness, visual disruptions and blindness, and grand mal convulsions. In 

addition, massive swelling of the liver, upper abdominal pain, and gastrointestinal bleeding occurred 

(Pouria et al., 1998).   

Though the microcystin poisoning event in Carauru was extreme, it does not necessarily reflect the 

degree of harm for common human exposure to microcystins. Exposure through recreational activities 

in afflicted waters has resulted in far less severe symptoms, though they include skin irritation and 

temporary respiratory problems from aerosolized microcystins (Backer et al., 2009). Healthy individuals 

likely will suffer no adverse effects from periodic, acute exposure to microcystins through recreational 

activities (Backer, et al., 2009). Consumption of microcystins, however, through contaminated seafood 

or accidental ingestion during recreational activities, may lead to more severe hepatotoxic or 

neurological concerns. There is no specific treatment for microcystin poisoning in humans, and dialysis 

on animals afflicted with microcystin poisoning has shown to be ineffective (Pouria et al., 1998). Thus, 

exposure to microcystins still remains a relevant public health concern (Backer et al., 2009).  

2.3 Population Dynamics and Physiology 

The population dynamics of M. aeruginosa and its physiology are still much of a mystery that is being 

explored, although nutrient and climatic environmental factors likely play a large role in influencing 

growth, toxicity, and distribution (explored further in Chapter 3 - Nutrient Influences and Chapter 4 - 

Environmental Influences).  Additionally, it is the mechanisms controlling the physiology of M. 

aeruginosa that often lead to its dominance in aquatic systems.  As discussed in Section 2.2: Toxicity of 

Microcystis aeruginosa, M. aeruginosa populations can be comprised of numerous genotypes consisting 

of both toxic and non-toxic strains (Davis et al., 2009; Ma et al., 2013; Srivastava et al., 2012; Yoshida et 

al., 2007). Toxic strains are believed to contain clusters of microcystin synthetase genes encoded in their 

DNA, such as mcyA or mcyB, which allows for the production of microcystins (Ginn et al., 2010; Yoshida 

et al., 2007). While toxic and non-toxic strains can coexist in dense blooms, how they interact with 

components of their environment may shift dominance of certain strains over others, thereby 
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potentially shifting the toxicity of their blooms (explored in Chapter 3 - Nutrient Influences) (Davis et al., 

2009; Yoshida et al., 2007). Further, M. aeruginosa can exist in colonial or non-colonial populations, 

which may be associated with or influence the release of microcystins (Ma et al., 2014). Both the 

colonial and non-colonial populations of M. aeruginosa can vertically migrate in water columns, thereby 

giving M. aeruginosa a competitive advantage over other phytoplankton for the acclimation of nutrients 

and sunlight (Brooks and Ganf, 2001). Thus, M. aeruginosa is a resilient species with a diverse set of 

functions that enables its injurious dominance in aquatic ecosystems. 

 2.3.1 Colony Formation 

Much is unknown about what drives the existence of M. aeruginosa into colonial populations or 

populations of non-colonial, single-cells. Generally, it has been observed that M. aeruginosa exists as 

single or paired cells under laboratory conditions, while it takes on the colonial form under conditions of 

the natural environment (Gan et al., 2012; Ma et al., 2014). Thus, it has been hypothesized that local 

environmental conditions stimulate colony formation, perhaps as a defense mechanism, which are not 

incorporated into the controlled conditions of cultured laboratory studies.  

Colonial populations are the cause of dense blooms that can create adverse eutrophic and toxic 

conditions. Larger colonies have been observed to be associated with more genotypes of toxic 

Microcystis species, including toxic strains of M. aeruginosa, while smaller colonies are associated with 

more non-toxic genotypes (Gan et al., 2012). Thus, the presence of microcystins may be an integral 

factor in the formation of large colonies. A 2012 study found that exposing Microcystis to two common 

microcystin variants, MC-LR and MC-RR, at environmentally relevant concentrations often found in 

freshwater systems (0.25–10 µg l
-1

), increased the size of Microcystis spp. colonies up to 2.7 times after 

six days of exposure (Gan et al., 2012). Reduction of microcystin exposure consequently decreased 

colony size. This finding supports a previous study that found exposure of MC-LR, MC-RR, and MC-YR at 

very high concentrations (500 µg l
-1

) not only significantly increased colony size of M. aeruginosa, but 

that even non-colonial strains of M. aeruginosa began to form colonies with high microcystin exposure 

(Sedmak and Eleršek, 2006). In addition, a study by Beversdorf et al. (2013) also observed high 

concentrations of microcystins when M. aeruginosa reached abundance in a eutrophic lake in Wisconsin 

during the growing season. 

 However, dense colonies of M. aeruginosa do not always indicate a high concentration of microcystins. 

Cells of M. aeruginosa have been observed to retain microcystins within their structures until 
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senescence or external stressors rupture the cell membranes, thereby causing the release of 

microcystins into the water column. Concentrations of microcystins released by M. aeruginosa have 

increased by up to 90% upon exposure to environmental stressors (explored further in Chapter 4 - 

Environmental Influences) (Ross et al., 2006). Nonetheless, M. aeruginosa is a high microcystin 

producer, where it has been observed to release high concentrations of microcystins relative to biomass 

compared with other cyanobacteria (Monchamp et al., 2014). These findings of colony size growth and 

toxin release upon stress suggest the potential protective role of microcystins to M. aeruginosa from 

external threats. This protective role is further supported by the positive correlation of mucilage in the 

presence of microcystins (Gan et al., 2012). Although the role of microcystins is still largely unknown, 

evidence suggests that while microcystins may be toxic to other aquatic life forms throughout the food 

web, they are intimately involved in strengthening and protecting microcystin producers, including M. 

aeruginosa (Gan et al., 2012; Ginn et al., 2010).  

Mucilage is associated with colonial populations of M. aeruginosa, which forms defensive sheaths that 

protect against zooplankton grazing and viral and bacterial attacks (Ma et al., 2014). Studies have shown 

that the release of mucilage can be a reactionary mechanism to the presence of heterotrophic bacteria 

and flagellate grazing, in which extensive buildups of mucilage have been observed on cells of colonial 

Microcystis species (Ma et al., 2014). It is this mucilage that may also help M. aeruginosa populations 

aggregate. Aggregation of M. aeruginosa also increases its floating velocity, allowing dense colonies to 

float to the surface and shade out other phytoplankton from essential sunlight, giving it a competitive 

advantage over other phytoplankton genera and enabling its dominance in aquatic ecosystems (Lehman 

et al., 2013; Ma et al., 2014). This floating mechanism is due to intracellular gas vesicles in M. aeruginosa 

cells that allow it to control vertical migration in water columns depending on light and nutrient 

conditions (Brooks and Ganf, 2001; Miller et al., 2010; Ross et al., 2006). Colonial populations are 

typically surface dwellers, while single M. aeruginosa cells have been observed to be uniformly 

distributed vertically in water columns (Ma et al, 2014). Nevertheless, both forms of M. aeruginosa are 

able to control their buoyancies for nutrient and sunlight acclimation.  

2.3.2 Buoyancy 

The ability for M. aeruginosa to sink to lower depths of the water column and float to the surface 

demonstrates a competitive advantage over other phytoplankton for the acquisition of essential 

resources. During thermal stratification, available nutrients in N and P sink to the hypolimnion of an 

aquatic ecosystem, or to the coldest, bottom layer. As a result, surface waters become depleted of 
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available nutrients. M. aeruginosa is capable of exploiting thermally stratified conditions and scavenging 

for separated nutrients in the stratified layers of the water column, as it is equipped with gas vesicles 

that can fill up or deflate depending on light and nutrient availability. Upon conditions of nutrient 

limitation in N and P, gas vesicles of M. aeruginosa tend to lose volume, and subsequently the cells 

begin to migrate deeper into the water column where more nutrients have accumulated (Brooks and 

Ganf, 2001). Conversely, an inverse relationship has been observed with sunlight; under conditions of 

limited solar irradiance, gas vesicles tend to increase in volume and cells of M. aeruginosa begin to rise 

to the surface as they regain buoyancy (Brooks and Ganf, 2001). Thus, buoyancy is promoted under 

nutrient-rich and light-limiting conditions, allowing M. aeruginosa to float to the surface and shade out 

other phytoplankton for available sunlight.  

 2.3.3 Nitrogen Fixation 

Most cyanobacteria are diazotrophic, or capable of N fixation (N2-fixation). Accordingly, diazotrophic 

cyanobacteria have a competitive advantage over other phytoplankton during N limitation. Under 

limiting N conditions, diazotrophic cyanobacteria can fix N from the atmosphere and convert it into 

bioavailable forms of dissolved inorganic N (DIN) for sustaining their populations. Consequently, 

diazotrophic cyanobacteria can dominate an aquatic ecosystem under N-limited conditions while the 

non-diazotrophs are outcompeted, as they have access to an unlimited supply of N from the 

atmosphere.  

M. aeruginosa often dominates aquatic ecosystems in the form of toxic blooms, which has been 

observed particularly under N-limited conditions (Dolman et al., 2012; Fujimoto et al., 1997; Lehman et 

al., 2013; Monchamp et al., 2014; Paerl et al., 2011, 2012; Schindler et al., 2008; Smith, 1983). However, 

unlike most cyanobacteria, M. aeruginosa is also non-diazotrophic, and it therefore cannot acquire N 

from the atmosphere when N concentrations are deficient in the water column. Thus, there is much to 

be understood about M. aeruginosa and its interaction with nutrients that enables it to thrive under N 

deficiency (explored further in Chapter 3 - Nutrient Influences).  

Several studies have supported theories that non-diazotrophs can use diazotrophic cyanobacteria as 

sufficient sources of N to promote and sustain blooms during N-deficient conditions (Anderson et al., 

2008; Mulholland et al., 2006). Like other phytoplankton, M. aeruginosa can coexist with and be just as 

abundant as N2-fixing cyanobacteria during N-deficiencies (Smith, 1983; Paerl et al., 2012), where it can 

potentially thrive off of N introduced to the water column through N2-fixation (Beversdorf et al., 2013). 
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A recent study in a eutrophic lake, Lake Mendota, of Wisconsin, examined the relationship between M. 

aeruginosa and the diazotrphic cyanobacteria, Aphanizomenon, relative to total dissolved phosphorus 

(P) and total dissolved N concentrations (Beversdorf et al., 2013). Large N2-fixation events were led by 

Aphanizomenon. Days where N2-fixation was high, Aphanizomenon was most abundant, and initial N 

availability in the water column was considered low, near an N:P ratio of 7:2 by weight (discussion N:P 

ratios is presented in Chapter 3 - Nutrient Influences).   After the N2-fixation events, Aphanizomenon 

declined and M. aeruginosa reached maximum abundance. Following weeks without N2-fixation events, 

N:P ratios reached as high as 100:1 (Beversdorf et al., 2013), which suggests N2-fixation may be able to 

replenish an N-deficient water system with enough bioavailable N to support non-diazotrophic 

cyanobacteria like M. aeruginosa.  

The theory behind N2-fixation providing enough bioavailable N to sustain non-diazotrophic 

phytoplankton has its holes.  Beversdorf et al. (2013) also observed three N2-fixing events where initial 

N:P ratios were high, at  >30:1 by weight, providing a more ambiguous relationship between non-

diazotrophs utilizing N inputs from diazotrophs.  Additionally, a separate, 15-year study examining the 

relationship between Aphanizomenon and M. aeruginosa as part of the North Temperate Lakes Long 

Term Ecological Research Program observed that M. aeruginosa was more closely associated with low 

N:P ratios, while Aphanizomenon was more associated with higher N:P ratios  (Beversdorf et al., 2013), 

suggesting that M. aeruginosa can thrive without diazotrophic aid during N-limitation.    

The role of N2-fixation in the production of sufficient, “new” N inputs in aquatic ecosystems has its 

skeptics (Paerl et al., 2011; Thad and McCarthys, 2010). Diverse studies have observed that N2-fixation 

meets far less than 50% of an ecosystem’s N demands (Paerl et al., 2011). Rather, it has been proposed 

that natural N-cycling and subsequent N regeneration in water columns takes precedence over N2-

fixation in sustaining M. aeruginosa when N concentrations in bioavailable forms are low (Monchamp et 

al., 2014; Paerl et al., 2012). Nevertheless, the coexistence of the non-diazotrophic M. aeruginosa with 

diazotrophic cyanobacteria, despite evidence that each should have different nutrient requirements in 

the water column, suggests a potentially significant relationship M. aeruginosa shares with N and 

diazotrophs. Further studies should be conducted to explore the role of diazotrophs in supporting M. 

aeruginosa during N-deficient conditions. 

 

 



16 

 

2.4 Summary 

M. aeruginosa blooms are increasing with frequency and intensity on a global scale, showing patterns of 

expansion in aquatic ecosystems on every continent except for Antarctica. These blooms carry a severe 

degradation potential, inflicting freshwater, brackish, and marine ecosystems with a lethal combination 

of anoxic conditions and the release of toxic hepatotoxins known as microcystins that can injure biota in 

all trophic levels.  Research has observed several strategies M. aeruginosa has developed to maintain 

dominance in aquatic ecosystems, giving them a distinct advantage over other phytoplankton. These 

strategies include dense colony formation and supplemental microcystin release to potentially protect 

against predators from grazing, vertical migration to hunt for nutrients less accessible to other 

phytoplankton under nutrient deficient conditions, and potentially utilizing N from diazotrophs during 

N-deficiencies.  

Whether or notN2-fixation is involved in the mechanism M. aeruginosa uses to obtain N, research is 

indicating that M. aeruginosa can dominate aquatic ecosystems under N-limited conditions. While the 

strategies in colony formation and vertical migration that M. aeruginosa has developed may aid in 

sustaining itself under nutrient stress, Chapter 3 - Nutrient Influences explores in depth the specific 

influences that the principal nutrients in ecosystem productivity, N and P, have on the growth, toxicity, 

and distribution of M. aeruginosa.  
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Chapter 3 - Nutrient Influences  

 

Nutrients are fundamental in shaping and sustaining phytoplankton communities. Nitrogen (N) and 

phosphorus (P), and their respective chemical forms, are two of the most influential nutrients in 

sustaining primary production in aquatic ecosystems.  Availability of N and P influences phytoplankton 

growth, biomass, and species composition (Xu et al., 2010). Seasonal shifts of phytoplankton 

communities from diatoms to cyanobacteria and dinoflagellates and vice versa have been consistent 

with shifts in N and P availability in aquatic ecosystems (McCarthy et al, 2009; Paerl et al, 2011). 

Depending on regulations managing the N and P inputs of nutrient sources, management of rapidly 

increasing HABs—and, more specifically, M. aeruginosa—may be possible through manipulating N and P 

loads to favor non-harmful phytoplankton growth. N and P have different roles in influencing the 

presence of M. aeruginosa. Therefore, how the availability of N and P influences the growth, 

distribution, and toxicity of M. aeruginosa must be understood first to effectively manage its blooms.  

Nutrient influences on M. aeruginosa are not simply a matter of N and P availability in aquatic 

ecosystems. The forms of N and P also play a role in phytoplankton community structure, and hence the 

presence of M. aeruginosa in those communities.  Thus, the individual role of N and P on the growth, 

distribution, and toxicity of M. aeruginosa must be understood before examining the influence of both 

nutrients together. Additionally, theories in ecological stoichiometry propose that the influence of N and 

P availability on phytoplankton communities may go beyond the issue of respective N and P 

concentrations in the water column. Rather, it has been suggested that N:P ratios have a vital role in 

controlling the presence of M. aeruginosa.  

3.1 Role of Nitrogen  

Research is showing that cyanobacteria typically dominate aquatic ecosystems in N-limited conditions, 

or in conditions where availability of N is too insufficient to satisfy phytoplankton nutritional needs, 

thereby restricting or limiting their growth and ability to sustain themselves. In many cases, 

cyanobacteria dominance during N-limitation can be explained by their N2-fixing capabilities, an 

advantage other phytoplankton are not equipped with, which can theoretically offset the N-deficiencies 

in the water column and satisfy their nutritional needs (Beversdorf et al., 2013). However, many non-

diazotrophic cyanobacteria species, like M. aeruginosa, also tend to dominate the phytoplankton 

community during periods of N-limitation (Dolman et al., 2012; Fujimoto et al., 1997; Lehman et al., 

2013; Monchamp et al., 2014; Paerl et al., 2011; Schindler et al., 2008; Smith, 1983). For example, Paerl 
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et al. (2011) observed the dominance of Microcystis species during the summer and fall bloom periods 

in China’s third largest freshwater lake, Lake Taihu, for two years in a row in 2008 and 2009, despite 

periods of chronic N-limitation. More recently, Lehman et al. (2013) observed peak Microcystis 

abundance in both fresh and brackish waters of the San Francisco Bay estuary occurring at N 

concentrations considered low for the estuary (0.442-1.77 mg L
-1

 nitrate (NO3-) and 0.0129-0.103 mg L
-1

 

ammonium (NH4+)). This pattern of M. aeruginosa dominance during N-limitation suggests a superior 

ability for it and other non-diazotrophic cyanobacteria to compete for N over other phytoplankton 

despite the type of aquatic ecosystem (Fujimoto et al., 1997; Paerl et al., 2011; Smith, 1983). 

Furthermore, Marinho et al. (2007) observed growth trends that demonstrate M. aeruginosa can 

produce more biomass per unit of N than diatoms, thereby rendering it easier to dominate an 

ecosystem over other phytoplankton that require more N to achieve the same level of biomass. 

However, it is important to consider N beyond a single unit in controlling phytoplankton communities; 

the chemical forms of N available as nutrients can play different roles in influencing the growth of M. 

aeruginosa, and it would be a negligent oversight to simplify them as a single factor to manage. 

3.1.1 Bioavailable Chemical Forms to Microcystis aeruginosa 

The chemical forms of N are just as crucial in controlling phytoplankton communities as the availability 

of the nutrient itself (McCarthy et al., 2009; Monchamp et al., 2014). Part of what makes understanding 

the influence of nutrients on M. aeruginosa difficult is the inconsistent results studies are publishing on 

their role in stimulating its growth, toxicity, and distribution. While research has supported that M. 

aeruginosa and other cyanobacteria typically demonstrate biomass dominance in phytoplankton 

communities under N-limitation, other studies are finding an increase in N creates favorable conditions 

for M. aeruginosa and other cyanobacterial HABs (Davis et al., 2009; Ma et al., 2014; McCarthy et al., 

2009; Mosiander et al., 2009). For example, Ma et al. (2014) observed that N additions, from as low as 4 

times (6.20 mg L
-1

) to as high as 32 times (49.6 mg L
-1

) that of ambient concentrations, to samples of 

phytoplankton communities from Lake Taihu, China, increased the total proportion of Microcystis 

biomass relative to the phytoplankton communities which they comprised.  Alternatively, N additions 2 

times and below the ambient N concentrations had no significant effect on Microcystis proportion 

within the phytoplankton communities. These inconsistencies can be due to multiple factors, including 

strain type and the supplementary influence of local environmental forces (explored further in Chapter 

4 - Environmental Influences). However, some chemical forms of N are more available to M. aeruginosa 
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than others, which can significantly influence its growth response and potentially determine whether M. 

aeruginosa will dominate or be outcompeted by other phytoplankton.  

M. aeruginosa is an effective competitor for inorganic, reduced forms of N, showing a particular affinity 

for ammonium (NH4+) (Chaffin et al., 2011; Lehman et al., 2013; X. Liu et al., 2011; Mosiander et al., 

2009; McCarthy et al., 2009; Paerl et al., 2011). This is because ammonium is more bioavailable to M. 

aeruginosa and other cyanobacteria than the oxidized forms of N, nitrate (NO3-) and nitrite (NO2-), 

because less energy is required to assimilate it (Dugdale et al., 2007; Paerl et al., 2011). Thus, an 

increase in phytoplankton biomass, despite low N concentrations in the water, can be explained by the 

availability of various forms of N in the water and which of these forms species of phytoplankton are 

effective competitors for. Typically, it is the non-diazotrophic cyanobacteria like M. aeruginosa that 

prefer ammonium, while diatoms prefer nitrate (X. Liu et al., 2011; McCarthy et al., 2009; Monchamp et 

al., 2014). Cyanobacteria, including M. aeruginosa, has widely been observed to have positive growth 

trends with increasing NH4+:NOx ratios in eutrophic, freshwater lakes around the world, including in the 

United States, Canada, and China (Donald et al., 2013; X. Liu et al., 2011; McCarthy et al., 2009). 

Increasing NH4+:NOx ratios indicate that the proportion of ammonium is larger than the proportion of 

nitrate and nitrite, thereby providing M. aeruginosa with the appropriate form of N to outcompete 

other phytoplankton. Thus, low availability of nitrate coupled with a sufficient supply of ammonium 

typically creates favorable conditions for M. aeruginosa (X. Liu et al., 2011). Collo and Harrison (2014) 

observed ammonium concentrations of approximately 45 mg L
-1

 (2500 µM) to optimally support M. 

aeruginosa and other cyanobacterial growth. However, as a superior N-competitor in general, 

ammonium concentrations as low as 0.009 mg L
-1

 have been sufficient enough to support Microcystis 

blooms in the freshwater Steilacoom Lake in Washington (Lehman et al., 2013).  

Despite the form of N being critical in influencing phytoplankton composition, many studies observing 

the role of N in assembling phytoplankton communities often only use nitrate as the source of N, which 

could under or overestimate the degree of N limitation for species under observation (X. Liu et al., 

2011). A high concentration of N could yield different results in phytoplankton growth responses, 

depending on the amount of oxidized N (NOx) or ammonium available in that concentration. For 

example, McCarthy et al. (2009) analyzed the influence of nutrient availabilities on phytoplankton 

community structure using ten and four-year nutrient datasets for two shallow, subtropical, eutrophic 

lakes: Lake Okeechobee, of the United States (Florida), and Lake Taihu, of China, respectively. Results 

demonstrated a trend that the cyanobacteria proportion of the phytoplankton community increased 
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with increasing total N-to-total P (TN:TP) ratios in Lake Okeechobee, while the cyanobacteria proportion 

decreased with increasing TN:TP ratios in Lake Taihu (further discussion on nutrient ratios is provided in 

Section 3.3: Nitrogen-to-Phosphorus Ratios). Microcystis species were only present in, and dominated, 

the phytoplankton in Lake Taihu at a range from 68-99% of the entire community. Dominance of 

Microcystis species occurred as TN:TP ratios began to decrease, which is consistent with research trends 

demonstrating M. aeruginosa dominance under N-limitation (Dolman et al., 2012; Fujimoto et al., 1997; 

Lehman et al., 2013; Monchamp et al., 2014; Paerl et al., 2011 2012; Schindler et al., 2008; Smith, 1983). 

Although the species composition of the cyanobacteria in both lakes were not the same (Microcystis 

species were either not present or negligible in abundance in Lake Okeechobee), McCarthy et al. (2009) 

acknowledge that the chemical forms of N available in the total N concentrations of both lakes could 

explain why non-diazotrophic cyanobacteria showed opposite growth responses to increasing TN:TP 

ratios between the lakes. This could potentially explain why the current realm of scientific literature is 

publishing different conclusions on the influence of nutrient availabilities on M. aeruginosa growth and 

distribution, particularly for N.  

Although M. aeruginosa is a better competitor for ammonium over nitrate, it does not necessarily 

signify a negative response pattern to direct nitrate inputs (Davis et al., 2009; Yoshida et al., 2007). 

Typically, as the proportion of nitrate increases as part of the total N concentration in an aquatic 

ecosystem, the species composition of phytoplankton communities shifts from non-diazotrophic 

cyanobacteria, like M. aeruginosa, to other phytoplankton, like diatoms, as a result of the low 

assimilation rate M. aeruginosa has for nitrate (McCarthy et al., 2009). The low assimilation rate for 

nitrate in M. aeruginosa allows phytoplankton with a higher assimilation rate to outcompete M. 

aeruginosa and dominate a phytoplankton community (X. Liu et al., 2011). However, if fed nitrate 

directly without any competition from other phytoplankton, particularly under N-limited conditions, M. 

aeruginosa has shown significant, positive response patterns demonstrating rapid growth and 

subsequent biomass abundance (Davis et al., 2009; Ma et al., 2014; Yoshida et al., 2007). Furthermore, 

while there is generally a positive correlation between N inputs and growth rate, toxic and non-toxic 

strains of M. aeruginosa have expressed different response patterns to inputs of nitrate and other N 

forms.   

 3.1.2 Role of Nitrogen on Toxic and Non-Toxic Strains 

As discussed in Chapter 2 - Ecology and Toxicity of Microcystis aeruginosa, toxic and non-toxic strains 

of M. aeruginosa can coexist in the same phytoplankton community (Davis et al., 2009; Ma et al., 2013; 
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Srivastava et al., 2012; Yoshida et al., 2007). While M. aeruginosa typically responds positively to direct 

N inputs, its toxic and non-toxic strains may have different response patterns to N.  

Although M. aeruginosa has shown to have a low assimilation rate for nitrate, its toxic strains may be 

superior competitors for nitrate and other forms of N than its non-toxic counterparts. Yoshida et al. 

(2007) conducted a study measuring the size of the potentially toxic M. aeruginosa populations carrying 

the microcystin synthetase gene, mcyA, relative to total M. aeruginosa populations without the 

synthetase gene during periods of rapid nitrate loadings in the freshwater lake, Lake Mikata, of Japan, 

from July 2004 to October 2005. Strains of M. aeruginosa with the mcyA gene responded the most to 

rapid increases of nitrate during the summer growing seasons. The mcyA strains had the fastest growing 

rate of the strains of M. aeruginosa, rapidly increasing its abundance from 0.5% to 6% of the total M. 

aeruginosa populations during accelerated nitrate loadings from 0.00177-2.21 mg L
-1

 in September 

2004, and from 8.5% to 35% with accelerated nitrate loadings from 0.0265-0.522 mg L
-1

 in August 2005. 

No significant correlation was observed between M. aeruginosa and temperature, although warmer 

temperatures combined with higher nitrate levels seemed to generate higher bursts of abundance in 

general (the role of temperature is discussed further in Chapter 4 - Environmental Influences).  

Other studies outside of the field have suggested that nitrate uptake is positively correlated with 

microcystin production. Several lab studies have also shown consistent results that increases in nitrate 

loads not only increases the growth rate and toxicity of toxic M. aeruginosa, but that higher nitrate 

concentrations favor toxic strains over non-toxic strains (Beversdorf et al., 2013; Davis et al., 2009). 

Davis et al. (2009) conducted a study in Lake Champlain, a freshwater lake bordering northern Vermont, 

New York, and Quebec, subjecting M. aeruginosa samples to experimental nutrient manipulations in 

order to examine the dynamics between toxic strains, this time carrying the mcyD microcystin 

synthetase gene, and non-toxic strains during various nutrient conditions. Results demonstrated that 

direct treatments of 1.24mg L
-1

 (20µM) nitrate significantly increased the growth rate of the mcyD 

strains over non-toxic strains by 40%.  

Whether observed in situ or in lab culture experiments, toxicity of M. aeruginosa has been positively 

correlated with an increase in nitrate concentrations in many studies (Lee et al., 2000). Although nitrate 

inputs have demonstrated positive growth responses showing particular favor toward toxic strains of M. 

aeruginosa, it is important to remember that many studies default to nitrate as their only source of N 

for nutrient experimentation or observation. Thus, nitrate may not be the most influential chemical 

form in influencing growth of toxic strains, particularly in the field with other phytoplankton competitors 
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(X. Liu et al., 2011). N inputs with ammonium have also shown similar favor to toxic strains. Ha et al. 

(2009) observed M. aeruginosa populations comprising toxic, mcyA-carrying strains, and non-toxic 

strains, in the freshwaters of Hirosawa-no-Ike pond of Kyoto City, Japan. Mixed concentrations of 

nitrate, nitrite, and ammonium enhanced overall microcystin concentrations by promoting the growth 

of toxic M. aeruginosa strains carrying the mcyA gene over non-toxic strains. Thus, it is perhaps that 

toxic strains of M. aeruginosa outcompete non-toxic strains for N in general, despite the chemical forms 

available. Microcystin content of M. aeruginosa blooms has been reported to be up to two-to-three 

times higher while growing under non-N-limited conditions than under conditions of N-limitation 

without regard to specific N form (Lee et al., 2000). 

Many studies observing the positive correlation of N on toxic strains of M. aeruginosa do not 

acknowledge how different chemical forms of N may impact the formation of toxic blooms in aquatic 

ecosystems. Couple studies observing the relationship between N inputs and toxic strains with studies 

including competitive diatoms, dinoflagellates, and other phytoplankton found in the field, and the 

probability of dominance of toxic M. aeruginosa strains becomes more ambiguous. Nevertheless, 

research is strongly supporting that rapid and high N loadings play a significant role in favoring the 

growth of toxic strains within the M. aeruginosa communities.  

While M. aeruginosa typically grows slower under nitrate due to its low assimilation rate, sufficient 

amounts of nitrate may render an aquatic ecosystem N-sufficient, thereby providing M. aeruginosa with 

enough nitrate to sustain itself without being completely outcompeted by more effective nitrate 

assimilators in the absence of ammonium. Additionally, N-limited M. aeruginosa may respond more 

positively to nitrate and other N forms than in N-sufficient conditions. For example, Mosiander et al. 

(2009) observed M. aeruginosa increased in abundance to both nitrate and ammonium inputs in the San 

Francisco Bay estuary and the Copco and Iron Gate Reservoirs in California during N-limited summers.  

In fact, the relative proportions of nitrate and ammonium in the water column may alter the degree of 

preference M. aeruginosa has for them.  

3.1.3 Ammonium Inhibitory Effects 

While ammonium is the preferred N source for M. aeruginosa, studies in and out of the field have 

observed that under N-limitation, starved M. aeruginosa responds positively to surges in nitrate levels 

by rapidly increasing its biomass (Davis et al., 2009; Lee et al., 2000; Yoshida et al., 2007). Thus raises the 

question of whether or not the physiological dependence on ammonium versus nitrate remains the 
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same under N-sufficient conditions as under N-deficient conditions (SFBRWQCB, unpublished). 

Yoshiyama and Sharp (2006) observed that phytoplankton growth in the nutrient rich Delaware Estuary 

does not follow a linear trend. Rather, biomass reached its peak at relatively low nutrient concentrations 

and decreased as nutrient concentrations became saturated.  

This concept of High Nutrient Low Growth (HNLG) is not an isolated phenomenon. While it has been 

theorized that saturated nutrient levels can exceed the assimilative capacity of phytoplankton (Xie et al., 

2002), rich concentrations in ammonium may enable an inhibiting factor in phytoplankton in the uptake 

of other nutrients (Dugdale et al., 2007; Parker et al., 2012). The San Francisco Bay estuary has shown a 

declining trend in primary productivity despite heavy ammonium loadings from wastewater treatment 

plant effluents (Parker et al., 2012). Ammonium concentrations are increasing in many aquatic 

ecosystems that serve as discharge points for wastewater effluent, as wastewater treatment plants 

(WTPs) that lack advanced secondary treatment of their effluents primarily discharge N in the form of 

ammonium (Parker et al., 2012). This is a particular issue in the San Francisco Bay, where 75% of its 

wastewater effluents are treated to the secondary level, rendering ammonium-rich discharge into the 

San Francisco Bay estuary.  

Parker et al. (2012) observed that the daily discharge of 15 metric tons of primarily ammonium into the 

Sacramento River from the Sacramento Regional Wastewater Treatment Plant (SRWTP) led to a 60% 

decrease in primary production. In addition, it was observed that phytoplankton production consistently 

demonstrated a shift from nitrate uptake upstream of the SRWTP to solely ammonium uptake 

downstream.  While the shift in uptake from nitrate to ammonium could be due to the preference some 

phytoplankton has for ammonium (Lehman et al., 2013), the uptake rates of ammonium also decreased 

as ammonium concentrations increased, inhibiting overall primary production. The results of Parker et 

al. (2012) support an existing hypothesis in scientific literature that elevated concentrations of 

ammonium not only inhibit the uptake of nitrate, but that higher concentrations of ammonium also 

suppress its own uptake, leading to an overall decrease in primary productivity.   

Many cyanobacteria have been observed to use ammonium preferentially under N-limitation, yet 

ammonium concentrations have also demonstrated inhibitory or suppressive mechanisms of nitrate 

uptake and a consequential decrease in aquatic primary productivity in phytoplankton communities 

(Dugdale et al., 2007; Parker et al., 2012). Dugdale et al. (2007) observed that phytoplankton in the San 

Francisco Bay estuary do not rapidly uptake nitrate unless ammonium levels are within or below the 

range of 0.018-0.072 mg L
-1

 (1-4µM).  Britto and Kronzucker (2002) refer to ammonium as a paradoxical 
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nutrient; one which is used preferentially in N-limited conditions, yet is considered a growth hindrance 

at saturating levels.  Thus, high concentrations of ammonium may suppress the uptake of nitrate and 

ammonium during phytoplankton productivity.  However, differences in the physiology of 

phytoplankton taxa render unique response patterns to ammonium that cannot be generalized across 

the entirety of phytoplankton communities. Collos and Harrison (2014) observed that M. aeruginosa and 

other cyanobacteria can grow optimally at ammonium concentrations of approximately 45 mg L
-1

 

(2,500µM), while being able to tolerate concentrations as high as 234 mg L
-1

 (13,000µM) without 

showing inhibitory effects, far exceeding the growth and tolerance thresholds of four other classes of 

microalge:  Prymnesiophyceae, Diatomophyceae, Raphidophyceae, and Dinophyceae. While the 

potential nitrate uptake-inhibiting effects ammonium has on M. aeruginosa have not been frequently 

studied, it is important to be aware of the potential role reversal of ammonium in inhibiting the growth 

of M. aeruginosa when ammonium concentrations are considered high for its physiological tolerance. 

3.1.4 Role of Nitrogen Stress on Toxicity 

Although there is evidence that toxic strains of M. aeruginosa outcompete non-toxic strains with rapid 

inputs of N during N-limited conditions, it may actually be a lack of N that contributes to more toxic 

populations of M. aeruginosa. Culture-based lab studies have demonstrated that short-term N stress 

can stimulate microcystin gene expression in Microcystis (Beversdorf et al., 2013).  

The NtcA protein, also known as the global N regulator factor, is a key regulator for N metabolism and 

carbon (C) metabolism in cyanobacteria (Ginn et al., 2010; Kuniyoshi et al., 2011). This protein acts by 

binding to the DNA sequence of M. aeruginosa and other cyanobacteria to allow for the assimilation of 

N. NtcA is produced in the presence of ammonium, which is increased under N stress (Ginn et al., 2010). 

Regions in the DNA of M. aeruginosa containing sequences for the microcystin synthetase genes, 

mcyA/D, have been indentified to have potential binding sites by NtcA (Ginn et al., 2010). When NtcA 

binds to these microcystin promoter regions, microcystins are synthesized (Kuniyoshi et al., 2011).  

2-oxoglutarate (2-OG), an enzyme in M. aeruginosa cells, has been observed to increase in 

concentration during N deficits (Kuniyoshi et al. 2011). Kuniyoshi et al. (2011) found that the binding of 

NtcA to the mcyA promoter region in M. aeruginosa DNA is enhanced in the presence of 2-OG. Thus, the 

accumulation of 2-OG acts as a signal for N-starvation, and subsequently activates the synthesis of 

microcystins. 



25 

 

The results of Kuniyoshi et al. (2011) support findings by Ginn et al. (2010), who observed that under 

periods of N stress, NtcA binding sites enable ntcA genes to activate in the DNA sequence of M. 

aeruginosa. ntcA genes transcribe the NtcA protein, which allow it to fulfill its function in N regulation. 

In this study, the transcription levels of ntcA and the microcystin synthetase gene, mcyB, were examined 

under N-excess, N-limited, and N-starved conditions. The transcription levels for ntcA and mcyB 

increased by 4.07 and 14.09 times, respectively, in N-limited cells compared to cells in N-excess 

conditions.  For N-starved conditions, transcription levels for ntcA and mcyB increased by 2.36 and 9.70 

times, respectively, indicating that more NtcA proteins are binding to microcystin promoter regions in 

M. aeruginosa DNA during N-stress. 

These results strongly suggest that N plays a key role in the synthesis of microcystins in toxic strains of 

M. aeruginosa. The presence of ammonium assists in the production of NtcA proteins, which have 

demonstrated to facilitate and augment the synthesis of microcystins under conditions of N stress.   

3.1.5 Role of Nitrogen on Colony Formation 

Most studies on Microcystis have explored the role of N in growth and toxicity, but the role of N in 

colony formation has been far less explored. Ma et al. (2014) treated samples of phytoplankton 

communities including Microcystis from Lake Taihu, China, with various nutrient manipulations, and 

compared results against control samples. M. aeruginosa was among the main Microcystis species 

comprising the sample phytoplankton communities.  

Additions of total N (TN) alone, ranging from concentrations of 3.1-49.6 mg L
-1

, promoted comparatively 

large colonies, ranging from approximately 105-210µm in diameter and promoting overall Microcystis 

biomass (Ma et al., 2014). The lower concentrations of TN sustained larger-sized colonies, yet all colony 

sizes from TN treatments of any concentration were significantly larger than colonies formed by total P 

(TP) alone (the role of P in colony formation is explored further in Section 3.2.4: Role of Phosphorus in 

Colony Formation). Interestingly, when TN was mixed with TP, only concentrations of N lower than 

7.75-13.95 mg L
-1

 led to the formation of large Microcystis colonies (Ma et al., 2014). Concentrations 

higher than this range significantly decreased colony size and led to the formation and distribution of 

single cells rather than colonies. It has been described that under an inadequate nutrient supply, 

Microcystis cells synthesize more extracellular polysaccharides (EPS), which compose the protective 

sheaths associated with their colonies. Thus, conditions of N-limitation have demonstrated the 

formation of larger Microcystis colonies, and consequently denser Microcystis biomass, suggesting that 
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N saturation has the opposite effect. Additionally, in the absence of P, it appears Microcystis colonies 

can sustain large colonies at higher N concentrations, indicating a potential substitution of P for N when 

P is deficient.  

 As discussed in Chapter 2 - Ecology and Toxicity of Microcystis aeruginosa, the formation of 

Microcystis colonies may serve as a defense mechanism under stressed conditions, which protect 

against grazing and bacterial and viral attacks. With some studies observing a positive correlation 

between N availability and buoyancy, colony formation of N-limited Microcystis cells also increases its 

buoyancy potential by combining its cells and their gas vesicles into a large mass, thereby increasing its 

total gas vesicle volume. Additionally, large, buoyant colonies shade out other phytoplankton while 

being able to store more nutrients (Ma et al., 2014), which could explain why dominance of M. 

aeruginosa is typically observed under conditions of lower N concentrations and overall N-limitation. N-

limitation could create conditions stressful enough for dense colony formation, which consequently 

gives M. aeruginosa a competitive advantage over other phytoplankton. 

3.1.6 Role of Nitrogen on Buoyancy 

It was discussed in Chapter 2 - Ecology and Toxicity of Microcystis aeruginosa that conditions of 

nutrient limitation causes the gas vesicles in M. aeruginosa cells to lose volume, thereby decreasing 

their buoyancy. However, as with growth and toxicity, M. aeruginosa buoyancy responds differently to 

different levels of N and P. Brooks and Ganf (2001) subjected M. aeruginosa cultures to various 

treatments of nitrate. At 0 mg L
-1

 (0µM) nitrate, M. aeruginosa was severely N-limited and was unable to 

metabolize carbohydrates in its cells, resulting in a decrease in gas vesicle volume and a loss in 

buoyancy. At 0.310 mg L
-1 

(10 µM) nitrate, gas vesicles in M. aeruginosa cells began to increase with light 

exposure, but buoyancy could not be sustained due to continued insufficient metabolism of increased 

carbohydrates. At the highest dose of nitrate, 6.20 mg L
-1

 (100 µM), N was no longer considered limiting, 

and gas vesicle volumes increased further in M. aeruginosa cells with light exposure, and metabolism of 

carbohydrates was sufficient enough to provide and sustain buoyancy.  

Buoyancy capability in M. aeruginosa has been positively correlated with nutrient availability in previous 

studies (Brooks and Ganf, 2001), but the concentrations of each nutrient necessary to provide and 

sustain buoyancy may differ. Brooks and Ganf (2001) demonstrated that as N concentrations approach 

N-sufficiency, the capability for buoyancy in M. aeruginosa cells increase. The role of P in M. aeruginosa 

buoyancy is discussed in Section 3.2.4: Role of Phosphorus on Buoyancy.  
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3.2 The Role of Phosphorus 

Phosphorus (P) has been widely implicated as having a dominant role in controlling freshwater primary 

production, eutrophication, and HAB formation, leading to tight regulation on P inputs from agricultural, 

urban, and industrial sources (Paerl et al., 2011). However, recent studies have observed that P 

reductions alone are not enough to stop eutrophication and the formation of HABs (McCarthy et al., 

2009). This result can further be attested in the continued expansion of M. aeruginosa and other 

cyanobacterial HABs on the global scale (Miller et. al, 2010; O’Neil et al., 2011; Paerl and Otten, 2013), 

despite current efforts to control P loadings in aquatic ecosystems in some parts of the world (Paerl et 

al., 2011). Research is suggesting that N is far more influential in controlling the growth and functions of 

M. aeruginosa than P. Nonetheless, like N, M. aeruginosa utilizes P to sustain itself, although the roles of 

P in the growth, toxicity, and distribution of M. aeruginosa are not all similar.  

3.2.1 Bioavailable Chemical Forms to Microcystis aeruginosa 

Unlike N, P does not occur in numerous bioavailable forms in aquatic ecosystems (McCarthy et al., 

2009). P is available to phytoplankton as phosphate (PO4
3
-), and for the sake of simplicity, will be 

referred to as “P” throughout this text.  

M. aeruginosa has demonstrated a superior ability to compete for P, particularly during P-limited 

conditions in which it is able to utilize its vertical migration and buoyancy functions to forage for less 

accessible P in the lower depths of the water column and from sediment release. Further, evidence 

suggests that M. aeruginosa and other cyanobacteria can absorb and store P in external portions of its 

cells as polyphosphate granules, and can use this stored P to persist through periods of prolonged P 

deficiency—a competitive advantage other phytoplankton are not equipped with (Lewin et al., 2003; 

Otten et al., 2012; Paerl et al. 2012). However, this ability to use stored polyphosphate granules as a P 

source has been debated by Saxton et al., (2012), who found no shift in the ratio of P stored in the 

surface-intracellular interface of M. aeruginosa and P stored intracellularly, despite observing M. 

aeruginosa under a range of P concentrations. Nonetheless, M. aeruginosa demonstrated no significant 

change in growth rate under various P treatments, suggesting its ability to successfully respond to 

various P concentrations. This ability to adapt to various P concentrations, whether from its ability to 

use stored P or some other unexplored mechanism, in addition to the more influential role of N in its 

growth, toxicity, and distribution, may explain why M. aeruginosa and other cyanobacterial HABs are 

expanding despite current management efforts to control P loadings in aquatic ecosystems. 



28 

 

3.2.2 Role of Phosphorus on Toxic and Non-Toxic Strains 

Although the presence of N appears to favor toxic strains of M. aeruginosa over non-toxic strains, the 

role of P in influencing the proportion of toxic and non-toxic strains seems much less significant, and 

much less defined. Recall from Section 3.1.2: Role of Nitrogen on Toxic and Non-Toxic Strains that 

Yoshida et al. (2007) observed toxic, mcyA-carrying strains of M. aeruginosa responding to rapid nitrate 

loadings in Lake Mikata, Japan, by increasing in abundance by as much as 12 times, more than any non-

toxic strain of M. aeruginosa in the study. Conversely, Yoshida et al. (2007) observed no correlation 

between P and the growth of toxic M. aeruginosa strains.  Similarly, Ha et al. (2009) deemed P irrelevant 

in promoting the growth of toxic, mcyA-carrying M. aeruginosa strains over non-toxic strains in 

Hirosawa-no-Ike pond in Kyoto, Japan, while results from the same study observed N favoring the 

growth of toxic strains. Even more extreme, Beversdorf et al. (2013) acknowledges that P has been 

negatively correlated with microcystin production.  

While P has a significant function in controlling freshwater primary production, this recognition and 

subsequent stringent regulation of P (Paerl et al., 2012) may have deemphasized its role in M. 

aeruginosa growth characteristics and emphasized the significance of N. Davis et al. (2009) found that 

0.119 mg L
-1

 (1.25 µM) P yielded significantly higher growth rates up to double that of control samples 

for both toxic, mcyD-carrying Microcystis strains, and non-toxic strains sampled from Lake Ronkonkoma 

and Lake Champlain in the Northeast United States, both of which were P-limited at the time of 

sampling. Interestingly, the same P treatments on two P-rich Northeast U.S. lakes, Lake Agawam and 

Mill Pond, yielded no change in Microcystis growth (Davis et al., 2009). Thus, both toxic and non-toxic 

Microcystis strains appear to have similar growth response patterns to P when under P-limited 

conditions, suggesting that Lake Mikata of Yoshita et al. (2007) and Hirosawa-no-Ike pond of Ha et al. 

(2009) may not have been P-limited at the time of their studies. However, when P was coupled with 

enhanced temperatures greater than 25°C, the growth rates for toxic strains of Microcystis increased in 

Lake Champlain, Mill Pond, and Lake Agawam by 170%, 125%, and 20%, respectively, yielding the 

highest growth rate for any treatments including N (the role of temperature is discussed further in 

Chapter 4 - Environmental Influences).  

Past studies have considered P as being the primary influence in increasing microcystin concentrations 

in aquatic ecosystems (Ha et al., 2009), and the findings of Davis et al. (2009) support that notion when 

coupled with warmer temperatures above 25°C. While other research is showing that P does not have 
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the same influential degree as N in favoring the growth of toxic M. aeruginosa strains over non-toxic 

strains, this could be due to various degrees of P-limitation and temperatures in different studies.   

3.2.3 The Role of Phosphorus on Colony Formation 

Ma et al. (2014) observed that P has a much less significant role in Microcystis colony formation than N. 

While TN was observed to promote and sustain large Microcystis colonies, all inputs of TP alone, from 

0.164-2.624mg L
-1

, led to a decrease in colony sizes, resulting in significantly smaller colony sizes than 

control colonies with no nutrient treatments and colonies subject to N treatments, at ranges from 35-

105µm in diameter. The higher concentrations of TP promoted the smaller range of colony sizes. When 

mixed with TN, TP concentrations higher than 0.41-0.74mg L
-1

 promoted the growth and distribution of 

single cells, rendering the colonial form of Microcystis almost entirely absent.  

These results suggest that the less limiting the nutrient availabilities of N and P, the smaller the colony 

sizes will be.  However, when N and P are mixed, the threshold for which Microcystis transitions from 

colony formation to single cell formation is lowered. Since research has suggested that Microcystis 

forms colonies as a defense mechanism to stressed conditions, the lower threshold for transitioning 

from colony formation to single cell distribution in the presence of both N and P, as opposed to one 

nutrient over the other, indicates the potential for Microcystis to be less nutrient stressed when both 

nutrients are accessible. Thus, despite evidence supporting the more influential role of N in Microcystis 

growth, toxicity, and distribution, a high concentration of N and a low concentration of P may not fully 

satisfy the nutritional needs to persist without stress. A combination of N and P together creates optimal 

nutritional conditions for M. aeruginosa to thrive.  

3.2.4 Role of Phosphorus on Buoyancy 

As with N, P-limitation causes the gas vesicles in M. aeruginosa cells to lose volume, with the greater 

degree of limitation resulting in a greater loss in volume. Brooks and Ganf (2001) observed a similar 

trend in gas vesicle volumes with additions of P as they observed with N. At 0 mg L
-1

 (0µM) P, M. 

aeruginosa cells demonstrated decreased gas vesicle volume and an increase in carbohydrates. At 0.047 

mg L
-1

 (0.5µM) P, both gas vesicle volume and carbohydrates increased, rendering no change in the 

proportion of cells that could float. The highest dose of P at 0.950 mg L
-1 

(10µM) showed a significant 

increase in gas vesicle volume and buoyancy, although carbohydrate accumulation continued to render 

some loss of buoyancy in cells. Like with N, all P treatments required light exposure to demonstrate 

buoyancy capabilities in the M. aeruginosa cells. Though Brooks and Ganf (2001) did not treat M. 
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aeruginosa cells beyond 0.950 mg L
-1

, it is reasonable to assume that increased P inputs would have led 

to higher metabolism rates of accumulated carbohydrates, further increasing buoyancy capabilities.  

3.3 Role of Combined Nitrogen and Phosphorus  

It is important to note that concentrations of N and P included from the field studies in this text are 

being added relative to N and P already present in the water samples. Depending on how N or P-limited 

a water sample may be likely renders varying degrees of growth response when new N or P is added. 

However, examining the individual roles of each nutrient can indicate the potential roles they have in 

the abundance of M. aeruginosa when mixed in various proportions to one another. Various 

concentrations of N and P can shape phytoplankton communities, and it has commonly been observed 

that cyanobacteria like M. aeruginosa dominate when N concentrations become low enough to be 

deemed the limiting nutrient. Many times, the proportion of N and P in aquatic ecosystems are 

observed as N:P ratios, where aquatic ecosystems with low N:P ratios tend to favor dominance by M. 

aeruginosa and other cyanobacteria.  

 3.3.1 Role of N:P Ratios 

Ecological stoichiometry or resource ratio theory suggests that different phytoplankton species 

dominate under different proportions of nutrients in an aquatic ecosystem. This concept is justified by 

the idea that organisms like phytoplankton internally allocate critical nutrients like N and P in different 

proportions depending on the physiological structures that form their biomass (Sterner and Elser, 2002). 

If the resource ratio theory is an accurate representation of all phytoplankton relationships with the 

environment, it can presumably predict ecological outcomes – and in the case of M. aeruginosa – which 

ratios would render its toxic blooms so they can be avoided through nutrient management.  

The Redfield ratio is the atomic ratio of C:N:P that is often observed in marine seston (both living and 

non-living particulate matter). Coined after an oceanographer, Alfred Redfield, he noted that the atomic 

ratios of C:N:P in marine seston were consistently at 106:16:1 after extensive research analyzing marine 

biomass samples from numerous marine regions (Sterner and Elser, 2002). As focus on this research is 

on the nutrient influences of N and P, the atomic N:P ratio of 16 would theoretically be the optimum 

resource ratio for phytoplankton growth. However, despite much evidence that supports the Redfield 

ratio theory, not all phytoplankton have been observed to grow optimally at the Redfield ratio (Sterner 

and Elser, 2002). 
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N:P ratios can be expressed in two forms – by mass (mass:mass) or by moles (mole:mole), otherwise 

referred to as an atomic ratio. Thus, a mass ratio and an atomic ratio can have different numerical 

values. It is important to realize that N:P ratios do not describe the amount of nutrients in an aquatic 

ecosystem, but only measure the relative concentrations in proportion to one another. Two aquatic 

ecosystems can have the same ratios, whether expressed in mass or in moles, but one can be nutrient 

limited while the other can be nutrient rich. Thus, it should be recognized that low N:P ratios do not 

always refer to N-limited aquatic ecosystems, although this can also be the case. 

3.3.2 Low N:P Ratios on Toxic and Non-Toxic Strains  

Recall from Section 3.1.2: Role of Nitrogen on Toxic and Non-Toxic Strains that studies observed that 

toxic strains of Microcystis favor N additions more than non-toxic strains, indicating a superior ability to 

compete for N. This difference would suggest that high concentrations of N would promote a larger 

proportion of toxic to non-toxic strains in a Microcystis community. Otten et al. (2012) observed that 

toxic strains of Microcystis carrying the mcyE gene in Lake Taihu, China, were significantly favored in 

Microcystis communities under atomic N:P ratios less than approximately 61:1 (40:1 by mass), resulting 

in the toxic strains comprising more than 44% of the Microcystis communities. While this ratio exceeds 

the atomic ratio threshold of 44:1 for Microcystis abundance supported by Smith (1983), Fujimoto et al. 

(1997), Marinho et al. (2007), and Xu et al. (2010), among others, it is comparatively small to the other 

atomic N:P ratios used in the study, which peaked at 220:1 (140:1 by mass) and rendered only 11% of 

the toxic, mcyE-carrying strain comprising the Microcystis communities (Otten et al., 2012). 

 The results of Otten et al. (2012) do not necessarily contradict the findings in section 3.1.2 supporting 

N-enrichment favoring toxic Microcystis strains. Although atomic N:P ratios on the lower end of the 

study favored toxic Microcystis strains, these ratios were also rendered replete in both N and P, at 

concentrations of 3.62mg L
-1

 N and 0.23 mg L
-1

 P, associated with the lowest atomic ratio tested at 44:1. 

In contrast, the highest atomic ratio tested at 220:1 was considered less nutrient rich, at 2.56 mg L
-1

 N 

and 0.02 mg L
-1

 P. These results support findings by Orihel et al. (2012), who also found that 

microcystins from toxic cyanobacteria occurred in peak concentrations only under low N:P ratios 

coupled with nutrient replete concentrations after analyzing 246 Canadian lakes.   
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 3.3.3 Low N:P Ratios on Growth  

The dominance of cyanobacteria including M. aeruginosa in aquatic ecosystems have been attributed to 

low N:P ratios (Beversdorf et al., 2013; Chaffin et al., 2011; Fuhimoto et al., 1997; X. Liu et al., 2011; Y. 

Liu et al., 2011; Marinho et al., 2007; Orihel et al., 2012; Otten et al., 2012; Smith, 1983; Xu et al., 2010). 

Smith (1983) proposed M. aeruginosa and other cyanobacteria do not dominate aquatic ecosystems 

until the N:P atomic ratio is approximately 44:1  or smaller (29:1 by mass ratio) after analyzing the 

phytoplankton biomass composition from 17 lakes worldwide during the growing season. Atomic N:P 

ratios below 44:1 in these lakes were deemed as N-limited and not at a 44:1 proportion of high 

concentrations considered nutrient rich for these lakes. This dominance of M. aeruginosa and other 

cyanobacteria in these lakes was attributed to their superior competitive ability for N than other 

phytoplankton and is supported by other studies examining M. aeruginosa dominance under N-limited 

conditions coupled with low N:P ratios.  

Marinho et al. (2007) observed the competitive abilities between mixed cultures of M. aeruginosa and 

the diatom species Aulacoseria distans under manipulated atomic N:P ratios of 15:1 and 3:1. The 

reduction of the ratios from 15:1 to 3:1 was accomplished by decreasing the concentrations of N, 

resulting in smaller N:P atomic ratios that were more N-limited. Biomass production of M. aeruginosa 

per unit N was observed to be more than one order of magnitude than A. distans. While M. aeruginosa 

biomass production was proportional to the amount of nitrate available leading to higher biomass 

yielded at the higher N:P ratios, the exponential growth of M. aeruginosa lasted longer than A. distans 

under the lower N:P atomic ratios of 3:1 than 15:1 (Marinho et al., 2007). Xu et al. (2010) observed a 

similar dominance trend for lower N:P ratios, where M. aeruginosa samples from Meiliang Bay, China, 

dominated the phytoplankton community when conditions were N-limited at atomic N:P ratios less than 

approximately 30:1. The longer exponential growth and the production of more biomass per unit N for 

M. aeruginosa observed by Marinho et al. (2007) may explain its tendency to dominate under N-limited 

conditions of low N:P ratios.  

While cyanobacteria have typically been observed to dominate under low N:P ratios representing N-

limitation, low N:P ratios have also been shown to favor dominance of M. aeruginosa over other 

cyanobacteria. Fujimoto et al. (1997) observed that an increase in the atomic N:P ratio in the freshwater 

lake, Lake Kasumigaura, Japan, had shifted the algae community from M. aeruginosa to the filamentous 

cyanobacteria, Phormidium tenue in the summer growing season. After collecting samples from the 

Lake, the competitive abilities for N and P between M. aeruginosa and P. tenue were observed in mixed 
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cultures under atomic N:P ratios of 11, 22, 44, and 89 along a temperature gradient. Similar to the 

findings of Smith (1983), M. aeruginosa dominated mixed cultures where the atomic N:P ratios were less 

than 44, however this dominance was only observed when temperatures were between 25°C and 30°C. 

Temperatures outside of this range did not result in dominance of M. aeruginosa despite the N:P ratio 

(the role of temperature in M. aeruginosa growth is further explored in Chapter 4 - Environmental 

Influences). Lower concentrations of N promoted more rapid growth than the higher concentrations, 

indicating that M. aeruginosa can outcompete P. tenue for N during N-limitation, rendering its 

dominance under the lower and more N-limited N:P ratios. 

3.3.4 Reliability of N:P Ratios versus N and P Concentrations 

The reliability of N:P ratios in predicting phytoplankton community structure over concentration levels is 

a debated subject in scientific literature. Factors such as the proportion of the chemical forms of N 

present in an aquatic ecosystem, the ambient concentrations of nutrients already in an aquatic 

ecosystem, water temperature, and the species of phytoplankton being observed with their respective 

competitive abilities can determine the role of specific N:P ratios on promoting Microcystis growth less 

static and more dynamic.  

An 11-year study in Lake Taihu, China, conducted by X. Liu et al. (2011) observed Microcystis species 

peaked in dominance of phytoplankton communities by over 50% under three parameters: when 

conditions were N-limited with an atomic N:P ratio of less than approximately 46:1(30:1 by mass), when 

the NH4+:NO3- ratio was less than approximately 5:1 (less than 1 by mass), and when water 

temperatures were between 25°C to 30°C. While the atomic N:P ratio of 46:1 is slightly higher than the 

ratio threshold of 44:1 defined by Smith (1983), X. Liu et al. (2011) also considered the relevancy of 

nutrient forms and temperature at valuing the N:P ratios that generated peak dominance, which could 

shift the ratio values when those parameters are altered. This hypotheses is supported by Chaffin et al. 

(2011), who observed Microcystis abundance in Lake Erie under both high and low atomic N:P ratios 

while the presence of ammonium was at a constant concentration above 0.24 mg L
-1 

 (1.80 μM), likely 

due to regeneration from internal cycling. Chaffrin et al. (2011) attribute the shrinking N:P ratios on 

nitrate depletion from phytoplankton uptake, while the proportion of ammonium in the total N 

concentration remained at a constant and adequate supply to support Microcystis growth. 

Consequently, the concept of low N:P ratios supporting Microcystis growth may become more irrelevant 

under aquatic ecosystems that are contain adequate supply of ammonium.  
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While many studies have attributed low N:P ratios under N-limitation on the dominance of Microcystis, 

Y. Liu et al. (2011) observed the influence of N:P ratios on cultured M. aeruginosa cells under an 

abundant supply of N and P. Interestingly, the effect of the N:P ratios on M. aeruginosa growth 

depended on the concentrations of N and P. When N was fixed at a concentration of 10 mg L
-1

, the 

optimum atomic N:P ratio that yielded the highest biomass and the longest exponential growth 

occurred at 16:1, consistent with the Redfield ratio. However, when P became the fixed nutrient 

concentration at 1 mg L
-1

, the ratio that yielded the highest biomass and longest exponential growth 

occurred at an atomic ratio of 40:1. Thus, an ample supply of both N and P within an aquatic ecosystem 

rendered the most biomass growth.  While both of these ratios still fell under the N:P ratio of 44:1 

proposed by Smith (1983), these results suggest that concentration of the nutrients alters the nutrient 

ratio at which M. aeruginosa is most favored.  

In addition to the findings by Y. Liu et al. (2011), Xu et al. (2010) also observed that the growth rates of 

M. aeruginosa did not depend on specific N:P ratios, but rather on  the concentrations of N and P in 

aquatic ecosystems. At a fixed P concentration of 0.02mg L
-1

, cultured M. aeruginosa demonstrated slow 

growth at atomic N:P ratios ranging from 4:1-32:1. However, at a fixed P concentration of 0.20 mg L
-1

, 

the optimum atomic N:P ratio for M. aeruginosa growth was 32:1. P fixed at 2.00 mg L
1 

showed maximal 

growth of M. aeruginosa at various atomic N:P ratios ranging from 4:1-64:1, suggesting that at a high 

starting concentration of P, the concentrations of N resulting in even a low N:P ratio of 4:1 were 

sufficient enough for M. aeruginosa to reach optimal growth rates (Xu et al., 2010). Thus, N and P 

concentrations may play a more significant role in controlling M. aeruginosa blooms than mere ratios.  

If it is true that N and P concentrations are a more accurate predictor in shaping phytoplankton 

communities than N:P ratios, the consistent results of M. aeruginosa dominating under low N:P ratios 

would counter that claim. Yet, a different perspective considers the possibility that low N:P ratios are 

actually a result of M. aeruginosa dominance. It is a prevalent notion in scientific literature that M. 

aeruginosa is a superior competitor for N, particularly ammonium. M. aeruginosa can uptake N in larger 

proportions than P (Paerl et al., 2012), and at significantly faster rates than other phytoplankton. 

Recalling from Section 3.3.3: Low N:P Ratios on the Growth, Marinho et al. (2007) further observed that 

the N:P ratios that M. aeruginosa were subjected to reduced on their own, significantly more than the 

N:P ratios that A. distans were subjected to. Marinho et al. (2007) owed this natural reduction in the N:P 

ratio to the uptake of nutrients, particularly to the rapid uptake of N from M. aeruginosa. Although 

nutrient uptake was faster and higher in M. aeruginosa cultures than in A. distans cultures, the 
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proportion of N and P uptake did not change in the culture mediums despite various N:P ratio 

treatments, as intracellular N:P ratios did not vary significantly within M. aeruginosa.  

Xie et al. (2002) also observed a natural reduction in the N:P ratio after observing M. aeruginosa blooms 

in Lake Donghu, China, although this reduction is blamed on M. aeruginosa scavenging for stored P in 

lake sediments, releasing P into the water column and ultimately bringing P concentrations nearer to N 

concentrations. Dense blooms of M. aeruginosa were positively correlated with P concentrations in the 

water column. Additionally, M. aeruginosa was observed under ratios both over and under the atomic 

N:P ratio of 44:1 defined by Smith (1983), thereby deeming the resource ratio theory inapplicable to 

predicting blooms in this study.  

Whether or not N:P ratios play a role in promoting M. aeruginosa or if it is the other way around, the 

fact remains in scientific literature that M. aeruginosa is often observed to dominate under low N:P 

ratios, particularly when conditions are N-limited. A clear link between nutrient ratios and the growth, 

toxicity, and distribution of HABs is difficult to establish due to a number of other factors potentially 

overriding the influence of static N:P ratios, including the availability of N forms and local environmental 

factors that could influence the phytoplankton community more than nutrient availability (Davidson et 

al., 2012). Furthermore, as of yet, no molecular mechanism has been discovered in which phytoplankton 

can perceive and react to specific nutrient ratios (Marinho et al., 2007). Thus, no universal N:P ratio for 

optimal M. aeruginosa growth and sustainment definitively exists, and nutrient management for M. 

aeruginosa control should focus on the concentration availabilities of N and P as a more accurate 

approach for controlling blooms than ratios.  

3.4 Summary 

N and P are critical in shaping and sustaining phytoplankton communities. The chemical form of N and P 

may be just as influential in controlling the growth, toxicity, and distribution of M. aeruginosa as the 

availability of the nutrients themselves. M. aeruginosa has a particular affinity for ammonium as it 

requires less energy to assimilate, suggesting that higher concentrations of ammonium in an aquatic 

ecosystem could favor its dominance in phytoplankton communities. Additionally, research is 

demonstrating that N has a more influential role in the functions of M. aeruginosa than P. Toxic strains 

of M. aeruginosa appear to outcompete non-toxic strains for N, resulting in a larger proportion of toxic 

strains in Microcystis communities under the presence of higher N concentrations. However, M. 

aeruginosa in general is a better competitor for N than other phytoplankton, where it can uptake higher 
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proportions of N than P over other phytoplankton. This superior ability to compete for N allows M. 

aeruginosa to thrive under N-limited conditions by not only outcompeting other phytoplankton for N, 

but also by growing more biomass per unit N available. Further, N-limitation to the point of M. 

aeruginosa being N-stressed can lead to dense colony formation and the production of microcystins as a 

potential defense mechanism to survive under harsher conditions. 

While M. aeruginosa depends on P for growth, it appears far less influential in controlling its functions. 

Evidence has suggested that P favors toxic strains over non-toxic strains when coupled with warmer 

temperatures, while other studies have shown no relationship in the favoring of toxic strains or 

production of microcystins. These discrepancies could be due to the degree of P limitation and 

temperatures in these studies. Under P-limitation, both toxic and non-toxic strains of M. aeruginosa 

have demonstrated significant growth response patterns to P additions, although P inputs also appear 

negatively correlated with colony size and positively correlated with the distribution of M. aeruginosa as 

single cells. Further, research suggests that M. aeruginosa can store P in its external portions of its cells 

for later use under P-limited conditions, a potential competitive advantage over other phytoplankton. 

In nature, N and P are found in proportions relative to one another, dissolved in the water of aquatic 

ecosystems. Some evidence suggests that M. aeruginosa can substitute P for N under P limitation, as 

demonstrated by the lower N required to transition M. aeruginosa from colony formation under 

nutrient stressed conditions to single cell distribution under nutrient sufficiency when in the presence of 

P. While M. aeruginosa has demonstrated dominance under N-limitation, the resource ratio theory 

suggests that it is the specific ratios of N and P that influence presence of M. aeruginosa, based on the 

idea that phytoplankton internally allocate N and P in different proportions based on their physiological 

structures. Additionally, the Redfield ratio theory suggests that most phytoplankton require optimal 

growth at an atomic N:P ratio of 16:1. Neither the resource ratio theory or the Redfield ratio theory 

appear to support the growth of M. aeruginosa, although M. aeruginosa commonly dominates 

phytoplankton communities under low N:P ratios coupled with N-limited conditions. However, this 

dominance could largely depend on other phytoplankton species and chemical forms of N present, 

which can potentially shift dominance to other phytoplankton species that can better compete for the 

chemical N forms available. Different concentrations of N and P have been shown to shift the N:P ratio 

values at which optimal growth is achieved, and some evidence supports the notion that rapid uptake of 

N and P by M. aeruginosa is actually the cause of low N:P ratios being linked with M. aeruginosa 

presence. Thus, current, albeit limited, research has not identified a specific and universal N:P ratio 
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under which M. aeruginosa thrives best. Rather, it appears that concentrations of nutrients is a more 

accurate predictor of the growth, toxicity, and distribution patterns of M. aeruginosa and should be 

focused on more over N:P ratios for nutrient management.  

To make predicting and managing the presence of M. aeruginosa even more complex, nutrients may not 

even be the most influential factors in the growth, toxicity, and distribution of M. aeruginosa in aquatic 

ecosystems. Depending on the nutrient availability and the setting of the aquatic ecosystems, 

environmental factors such as temperature, precipitation, and salinity may be more influential in 

controlling the presence of M. aeruginosa.  

  



38 

 

Chapter 4 - Environmental Influences 

The unfortunate truth in understanding the growth, toxicity, and distribution of M. aeruginosa is that it 

is a multidimensional issue controlled by a simultaneous mixture of influential forces. It is not a simple 

matter of a magical nutrient ratio to avoid, but rather an amalgamation of nutrient availability and the 

local environmental forces that define the conditions of an aquatic ecosystem. Climatic forces including 

changes in temperature, precipitation, and salinity can be exacerbated by the overarching threat of 

climate change, creating a time of more extreme conditions in which M. aeruginosa can thrive more 

than before. Even more concerning is the evidence of M. aeruginosa demonstrating adaptive 

capabilities to changes in the local environment in spite of harsher, more stressful conditions.  

4.1 Role of Temperature in Regulating Microcystis aeruginosa  

Of all the potentially influential factors controlling the presence of M. aeruginosa, temperature is the 

least debated. In general, cyanobacteria prefer warmer temperatures, often blooming during the 

warmest periods of the year, usually in the summer and early fall months, deemed as the summer 

growing season (Davis et al., 2009; Lehman et al., 2008; Xiu et al., 2011). This pattern of cyanobacterial 

preference to warmer temperatures can be observed often when the phytoplankton community in 

many freshwater systems shifts from diatoms to cyanobacteria during the warmer seasons (Davis et al., 

2009). In fact, Microcystis specifically has been observed to outcompete other phytoplankton as 

temperatures become warmer (Davis et al., 2009; Fujimoto et al., 1997). One potential reason for being 

able to outcompete other phytoplankton is higher water temperatures increase thermal stratification in 

aquatic ecosystems, thereby reducing vertical mixing and causing nutrient limitation near the water 

surface. Buoyant phytoplankton, like Microcystis, can use its vertical migration techniques to hunt for 

less accessible nutrients within the water column, giving it an advantage over other phytoplankton 

during under warmer and stratified conditions (Lehman et al, 2013). Additionally, Microcystis has a high 

Q10, or temperature coefficient that measures the change in growth from increasing temperature by 

10°C (Lehman et al., 2013). Many studies have concluded that the optimal temperature for growth and 

photosynthesis for harmful cyanobacteria like Microcystis is at or above 25°C (Davis et al., 2009). This 

optimal temperature value is consistent with the findings by Davis et al. (2009), Fujimoto et al. (1997), 

and X. Liu et al. (2011), discussed in Sections 3.2.2: Role of Phosphorus on Toxic and Non-Toxic Strains 

and 3.3.4: Reliability of N:P Ratios versus N and P Concentrations, where Microcystis abundance, 

dominance, and growth peaked at temperatures between 25°C and 30°C, given the appropriate nutrient 

dynamics.   
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4.1.1 Role of Temperature on Toxic and Non-Toxic Strains 

Similar to Nitrogen (N), warmer temperatures have also demonstrated favorable selection for toxic 

strains of Microcystis over non-toxic strains. Davis et al. (2009) in Section 3.3.2: Role of Phosphorus on 

Toxic and Non-Toxic Strains affirmed that elevated temperatures coupled with phosphorus (P) loadings 

led to the highest growth rate and abundance for toxic Microcystis strains than any other nutrient and 

temperature treatment applied in their study of four Northeastern U.S. freshwater lakes. Elevating only 

the ambient surface water temperatures by approximately 4°C led to significantly higher growth rates 

for mcyD-carrying Microcystis cells than non-toxic cells, in five out of six (83%) of the experiments 

conducted (two lake experiments were observed twice in two years).  In contrast, elevated 

temperatures only increased the growth rates of non-toxic strains in two of the experiments, while even 

decreasing the growth rate of non-toxic strains in three of the experiments. Additionally, from Section 

3.1.2: Role of Nitrogen on Toxic and Non-Toxic Strains, Yoshida et al. (2007) observed growth bursts of 

toxic mcyA-carrying strains of M. aeruginosa during warmer, summer months in Lake Mikata, Japan, 

when temperatures were between 27°C and 30°C.  

Much like the concept of nutrient ratios, there are exceptions to the optimal temperature range for 

toxic Microcystis growth and abundance.  Davis et al. (2009) observed in one experiment that toxic 

Microcystis strains doubled in growth rate at temperatures less than 20°C, and Yoshida et al. (2007) 

observed significant subpopulations of toxic M. aeruginosa at temperatures as low as 13.8°C. Further, 

Tas et al. (2006) observed toxic M. aeruginosa blooms in the Golden Horn Estuary in Turkey between 

December 1998 and February 1999, a period of cooler temperatures outside of the typical summer 

growing period. These deviations from the understood optimal temperature range can potentially be 

explained by the additive roles of other influential factors, including nutrients and other environmental 

forces.  

Nonetheless, there is generally a positive correlation between cyanobacteria blooms and warmer 

temperatures. The predicted global increase in temperatures of 1.8°C by the end of this century due to 

climatic warming (Xiu et al., 2011) is especially concerning, as Microcystis blooms including M. 

aeruginosa can show up more prevalently. With studies supporting the notion that warmer 

temperatures favor toxic strains of Microcystis, a global increase in temperature would theoretically 

shift a larger proportion of Microcystis blooms to its toxic form, while sustaining these blooms for longer 

periods (Xiu et al., 2011). This upward trend in global temperatures could explain the seemingly 

simultaneous expansion of Microcystis on the global scale. A global increase in temperatures goes 
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beyond heating surface water temperatures, where it can lead to more extreme weather events, such as 

extended dry and wet seasons, exacerbating other environmental forces associated with drought and 

heavy precipitation that can create more suitable conditions for M. aeruginosa blooms.  

4.2 Role of Precipitation in Regulating Microcystis aeruginosa 

The frequency and abundance of harmful cyanobacterial blooms are expected to increase with the 

environmental forces associated with climate change (Lehman et al., 2013). This increase has already 

been observed over the past decade, and interestingly, cyanobacterial HABs like Microcystis are 

expanding into harsher aquatic environments which were considered uninhabitable (Lehman et al., 

2005, 2013; Miller et al., 2010; Mosiander et al., 2009; Robson and Hamilton, 2003; Ross et al., 2006). 

Typically, freshwater cyanobacteria are not associated with estuarine environments due to limited 

tolerance of salinity (Robson and Hamilton, 2003). However, extended rainfall can function not only as a 

transporter of cyanobacterial HABs into more brackish waters, but it can also act as a saline diluter, 

creating estuarine conditions more inhabitable for a species prone to freshwater. Though generally 

associated with freshwater lakes, Microcystis blooms have been observed in the Golden Horn Estuary in 

Turkey (Tas et al., 2006), the St. Lucie River Estuary in Florida (Ross et al., 2006); the San Francisco Bay 

Estuary and Monterey Bay California (Lehman et al., 2005, 2013; Miller et al., 2010), and the Swan River 

Estuary of Western Australia (Robson and Hamilton, 2003), among others.  

Robson and Hamilton (2003) observed that M. aeruginosa bloomed for the first time in the Swan River 

Estuary in February 2000, following a record amount of rainfall the previous month. While cyanobacteria 

had generally never exceeded 5,000 cells mL
-1

, toxic M. aeruginosa peaked in density at over 1,000,000 

cells mL
-1

 after heavy rainfall and freshwater river inflow transported M. aeruginosa from adjoining 

wetlands and flushed much of the brackish water out of the estuary, reducing salinity from 35% to as 

low as 4% in some areas (Robson and Hamilton, 2003). While salinity levels were eventually replenished 

to levels of the pre-storm event, more frequent and intense summer storms induced by the global 

temperature rise associated with climate change can create suitable conditions for M. aeruginosa 

blooms to recur in habitats atypical of hosting HABs.  

It is believed freshwater flushing from heavy precipitation events also served as a transport mechanism 

for M. aeruginosa to reach the San Francisco Bay Estuary and Monterey Bay (Miller et al., 2010). 

However, while heavy precipitation can transport M. aeruginosa into and temporarily dilute a brackish 

aquatic ecosystem, it can also create a less suitable habitat for it and other HABs to form. Lehman et al. 
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(2013) observed that toxic Microcystis and its respective microcystins were less prevalent in the San 

Francisco Bay Estuary in the wet years of 2004 and 2005 than in the dry years of 2007 and 2008. Wet 

years were characterized by heavy precipitation, which in turn increased streamflow, water velocity, 

vertical mixing, and turbidity (suspended solids) in the San Francisco Bay Estuary. Increased water 

velocity and vertical mixing not only disaggregates existing Microcystis colonies, but they also do not 

allow Microcystis the residence time it needs to colonize (Lehman et al., 2013). Although the wet years 

in this study demonstrated lower M. aeruginosa densities and microcystin concentrations due to 

flushing , Ross et al. (2006) observed that physical injury to Microcystis cells can spur the release of 

microcystins, after observing a 95% increase in microcystin concentrations after subjecting mcyB-

carrying M. aeruginosa to ultrasonification. Thus, increased water velocity and mixing, while having a 

flushing effect, can also create more toxic conditions in areas where Microcystis blooms already exist, 

even if only temporarily. Dry years were characterized by low streamflow, low turbidity, and warmer 

water temperatures, peaking at 25.6°C, within the optimal temperature range for Microcystis growth 

(Davis et al., 2009). With little precipitation in the dry years, the decrease in water velocity and vertical 

mixing allows light to penetrate deeper through the water surface, providing ample residence time and 

sunlight for Microcystis to colonize.  Further, decreased water velocity and flushing elevates inorganic 

nutrient concentrations, particularly ammonium, the preferred Microcystis nutrient source, from 

reduced dilution of wastewater discharge. 

Both extreme and extended wet and dry seasons influenced by global climate change can enable 

conditions more suitable for Microcystis growth and abundance than before.  Seasonal variation in 

Microcystis densities in aquatic ecosystems renders nutrient concentrations secondary in importance to 

local environmental forces, particularly if the ecosystem is already rich in nutrients (Lehman et al., 

2008).  

4.3 Role of Salinity in Regulating Microcystis aeruginosa  

It was discussed in Sections 3.1.2: Role of Nitrogen on Toxic and Non-Toxic Strains and 3.2.2: Role of 

Phosphorus on Toxic and Non-Toxic Strains that the degree of N or P-limitation influences the degree of 

the growth response of Microcystis when exposed to those nutrients. Research suggests that salinity 

may play a role in the tendency of aquatic ecosystems to be more N or P-limited. Blomqvist et al. (2004) 

made the observation that marine ecosystems tend to be more N-limited, while freshwater ecosystems 

tend to be more P-limited. In marine ecosystems, more iron (Fe) is sequestered by the higher sulfide 

content from sea salt, which reduces the number of Fe atoms to precipitate P. Two Fe atoms are needed 
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for the precipitation of one P molecule, but the Fe:P ratio is typically less than 2 in anoxic marine waters. 

Freshwater ecosystems typically have a Fe:P ratio greater than 2, which facilitates a much higher rate of 

P removal. Thus, N-limitation is more typical in more saline ecosystems, while P-limitation is more 

typical in freshwater ecosystems. However, there are exceptions to this scenario: In the summer 

growing season of 2007, Mosiander et al. (2009) observed that the brackish waters of the San Francisco 

Bay Estuary were richer in N (both NOx and ammonium), while the freshwaters of the Klamath River 

Reservoir were richer in P. Even so, as M. aeruginosa has demonstrated successful establishment in both 

freshwater and saline conditions, management efforts for nutrient enrichment may require different 

approaches between coastal marine and freshwater ecosystems.  

 4.3.1 Salinity Stress on Toxicity 

Although Microcystis blooms have been present in both saline and freshwater ecosystems, higher 

salinity concentrations create more stressful conditions for cyanobacteria like M. aeruginosa to survive 

(Lehman et al., 2013; Mosiander et al., 2009, Ross et al., 2006; Tonk et al., 2007). This could explain why, 

in most cases, Microcystis is theorized to have been transported from freshwater influxes into coastal 

marine and estuarine ecosystems instead of originating in situ.  

Stressful conditions created by higher salinity content have been observed to spur the release of 

microcystins from M. aeruginosa. Ross et al. (2006) sampled mcyB-carrying M. aeruginosa from St. Lucie 

River Estuary in Florida, subjecting various samples of approximately 1.05 x 10
8
 cells to 50 ml of 

seawater treatment, or water with 32% salinity. While 1.05 x 10
8
 cells in 50 ml of in situ estuarine water 

yielded approximately 3.5 µg L
-1

 microcystins, treating 1.05 x 10
8
 cells to 50 ml of seawater increased 

microcystin concentrations by 80% to approximately 6.3 µg L
-1

 after 5 hours of exposure. Similarly, Tonk 

et al. (2007) observed toxic M. aeruginosa began to release microcystins when salinity exceeded 10 g L
-1

 

as a result of cell leakage or lysis, indicating a reaction from saline-induced stress. These results suggest 

that even when Microcystis is transported from freshwaters into estuarine ecosystems, brackish water 

stress can stimulate microcystin release.   

4.3.2 Salt Tolerance of Microcystis aeruginosa  

While wet seasons can temporarily dilute a brackish water system into a more suitable habitat for 

Microcystis growth, M. aeruginosa has been observed keep its residence in brackish water systems at 

their typical salinity levels. For example, M. aeruginosa has made consistent, annual returns in the San 

Francisco Bay Estuary ever since its discovery in 1999, where salinity varies between 0.1 g L
-1

 and 9.1 g L
-
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1
 (Mosiander et al., 2009), even reaching as high as 18 g L

-1
 in parts of the western delta (Lehman et al., 

2013). M. aeruginosa has demonstrated salt tolerance from 9.8 g L
-1

 (Orr et al., 2004) to 15 g L
-1

 

(Mosiander et al., 2009), with Tonk et al. (2007) observing continued growth at levels as high as 17.5 g L
-

1
 for up to nine days. Freshwater cyanobacteria typically have low tolerance for salinity, however, the 

increasing presence of M. aeruginosa in more estuarine systems suggests Microcystis should no longer 

be considered solely a freshwater species. Lehman et al. (2013) and Mosiander (2009) suggest that M. 

aeruginosa could have very well evolved to tolerate higher levels of salinity. The concept of M. 

aeruginosa adaptation to local environmental factors is gaining traction in scientific literature, which 

could explain the complexity in pinpointing common parameters suitable for Microcystis abundance.  

4.4 Adaptations to the Local Environment 

Studies on the genetic diversity of M. aeruginosa are not as prevalent as studies focusing on nutrient 

and environmental influences. In fact, only one published study exists on the genetic diversity of M. 

aeruginosa for brackish water ecosystems (Mosiander et al., 2009). Comparisons of strains from 

different ecosystems are important because they could provide information on the routes of 

cyanobacterial HAB introductions and whether or not different ecosystems select for different ecotypes. 

For example, M. aeruginosa strains have been observed to have unique genetic “fingerprints” in 

different aquatic ecosystems, giving rise to the question of whether the strains observed are introduced 

into the ecosystems, or if local environmental factors selected for those strains to prevail over a mixture 

of other strains.  

Mosiander et al. (2009) compared strains of M. aeruginosa in the brackish waters of the San Francisco 

Bay Estuary and the freshwaters of the Klamath River Reservoir. The San Francisco Bay Estuary and the 

Klamath River Reservoir are comprised of different and almost contrasting characteristics, yet both of 

these ecosystems have consistently supported M. aeruginosa blooms since their discoveries in 1999 and 

2005, respectively. In the San Francisco Bay Estuary, N concentrations (NOx and ammonium) were lower 

than in the Klamath River Reservoir, while pH and light visibility were lower. In the Klamath River 

Reservoir, P, pH, and light visibility were greater (Mosiander et al., 2009).  

Consequently, distinct differences in the genotypes of M. aeruginosa, both toxic and non-toxic, were 

found in each ecosystem, suggesting that unique subpopulations of M. aeruginosa occupy the San 

Francisco Bay estuary and the Klamath River Reservoir. Environmental differences between the these 

ecosystems suggest environmental regulation may play a role in the selection of different strains of M. 
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aeruginosa, perhaps even leading to the development of different ecotypes (Mosiander et al., 2009). It 

is possible that the increase in M. aeruginosa on the global scale could be due to adaptations to the local 

conditions, where strains of M. aeruginosa are becoming more suited to their environment. Thus, while 

the concept of locally adapting to the environment complicates the identification of trends that 

influence Microcystis growth, toxicity, and distribution, it also implies that toxic Microcystis blooms are 

resilient to changes in local environmental conditions, allowing it to persist and expand spatially and 

temporally.  

4.5 Summary 

Environmental factors may regulate the presence of M. aeruginosa more than the availability of 

nutrients, particularly if an ecosystem is already nutrient rich. Temperature has significant influence in 

promoting and sustaining Microcystis abundance. Increased surface water temperatures between 25°C 

and 30°C have been deemed the optimal temperature range to maximize Microcystis growth and 

abundance, likely due to advantageous nutrient-harvesting capabilities in thermally stratified waters, 

and the high Q10 of Microcystis. Additionally, temperatures near and within this range have also been 

shown to favor toxic strains of M. aeruginosa over non-toxic strains. Although temperature may be 

principal in importance in influencing toxic Microcystis blooms in many cases, studies have supported 

that a combination of both nutrients and elevated temperatures provides maximum growth responses, 

and therefore management efforts for Microcystis cannot separate these two components.  

Precipitation has also demonstrated significant control over the distribution and intensity of Microcystis 

blooms. Extreme precipitation events can temporarily dilute and flush the brackish waters of estuarine 

and coastal marine ecosystems, creating conditions more suitable for the once-deemed freshwater 

cyanobacteria. In addition, inflated freshwater streamflows into these ecosystems from precipitation 

events can serve as a transporting mechanism for Microcystis into brackish water ecosystems, where in 

situ origination would not be typical. In contrast, heavy precipitation events can also serve as a 

detriment to Microcystis colonization. Increased precipitation leads to increased water velocity and 

vertical mixing by means of flushing, which not only can disaggregate existing Microcystis colonies, but it 

can also prevent the ample residence time needed for Microcystis to colonize.   

It has been observed that dry weather conditions are more suitable for M. aeruginosa inhabitation in 

aquatic ecosystems. A lack of precipitation reduces water velocity and vertical mixing, allowing deeper 

sunlight penetration through the water surface, providing sufficient residence time, sunlight, and 
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temperature ranges for Microcystis to colonize. Moreover, the lack of vertical mixing and flushing 

elevates the inorganic nutrient concentrations, making conditions more nutritionally favorable for 

primary production. 

The fact that both extreme wet and dry weather conditions can positively correlate with increased 

abundance and distribution of M. aeruginosa is especially concerning due to the impending issue of 

climate change. Global temperature is expected to increase by 1.8°C by the end of the century, which 

can significantly influence the magnitude of environmental forces. Environmental forces associated with 

climate change can lead to more extreme weather events, including warmer temperatures and 

extended wet and dry seasons, and must be accounted for when considering management options for 

Microcystis blooms. 

While M. aeruginosa is typically deemed as a freshwater cyanobacterium, its ever-growing presence in 

brackish and coastal marine ecosystems demonstrates a tolerance for higher salinity levels. While 

salinity can induce stress and subsequent microcystin release in Microcystis cells, M. aeruginosa has 

been observed to tolerate salinities as high as 15 g L
-1

 –even maintaining temporary growth at acute 

levels as high as 17.5 g L
-1

.  

To make matters even more complex, M. aeruginosa has demonstrated local adaptive capabilities to its 

environment. Because M. aeruginosa can grow in abundance in ecosystems comprised of unique and 

sometimes contrasting characteristics, different genotypes have been discovered in subpopulations 

occupying different ecosystems. This discovery suggests that Microcystis can consist of a diverse mixture 

of genotypic strains, where the local environmental conditions can select for particular strains to thrive. 

Thus, the influential factors in nutrients and environmental forces may vary depending on the strain of 

M. aeruginosa occupying an ecosystem.  
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Chapter 5 - Conclusions and Recommendations 

Understanding the influential factors behind the growth, toxicity, and distribution of M. aeruginosa is a 

complex undertaking that is still in the process of being clarified. While research has demonstrated 

some trends that can identify more influential nutrient and environmental conditions in regulating 

Microcystis blooms, a considerable amount of research still needs to be done in more refined areas. 

Nonetheless, what can be concluded about the nutrient and environmental regulation of M. aeruginosa 

derived from existing research can generate recommendations for more precise plans of action in 

learning about—and controlling—toxic Microcystis blooms.  

5.1 Conclusions  

M. aeruginosa is a species of cyanobacteria that can exist in both toxic and non-toxic form. While both 

forms threaten aquatic ecosystems with dense biomass blooms that result in eutrophication, toxic 

strains of M. aeruginosa also expel potent hepatotoxins, also known as microcystins, into the aquatic 

environment. Microcystins are emerging as a serious health threat to aquatic ecosystems and organisms 

who benefit from their services, having been linked to liver failure and death in the federally 

endangered southern sea otter—and, in extreme cases—in humans.   

Although blooms from M. aeruginosa are commonly characterized as a freshwater problem, M. 

aeruginosa has extended into brackish and marine coast ecosystems, expanding simultaneously in all 

three ecosystems on a global scale while making consistent, annual returns. As of yet, Antarctica is the 

only continent to not report M. aeruginosa blooms. This global expansion and recurrence of M. 

aeruginosa brings attention to the nutrient and climatic dynamics that influence its blooms; identifying 

the most influential factors will help define management strategies to control M. aeruginosa blooms 

and protect the aquatic ecosystems they infest.  

5.1.1 Conclusions on Nutrient Influences 

M. aeruginosa, like other phytoplankton, depends on nitrogen (N) and phosphorus (P) as nutrients for 

growth. N has demonstrated a significantly more influential role in regulating M. aeruginosa growth, 

toxicity, and distribution in aquatic ecosystems than P. While cyanobacteria are typically a superior 

competitor for N than other phytoplankton, M. aeruginosa has also been shown to outcompete other 

genera of cyanobacteria for N under laboratory experiments. Accordingly, M. aeruginosa consumes a 

larger proportion of N than P during nutrient uptake over other phytoplankton species. Furthermore, it 
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has demonstrated growth characteristics that suggest it grows more biomass per unit N consumed than 

diatoms. As a result of its superior competitive ability for N and its rapid growth upon N consumption, 

M. aeruginosa is typically dominant under N-limited conditions, persisting under N-limitation while 

other phytoplankton species starve. 

The chemical forms of N are critical in determining the presence of M. aeruginosa in phytoplankton 

communities. M. aeruginosa has an affinity for the ammonium N form, whereas it grows slower under 

oxidized forms of N, particularly demonstrated in nitrate. Accordingly, phytoplankton communities have 

demonstrated a shift from diatoms to cyanobacteria comprised of M. aeruginosa when the proportion 

of NH4+:NOx increases. Ammonium also has growth-inhibiting effects on phytoplankton, although 

cyanobacteria including M. aeruginosa have exhibited a much higher tolerance for ammonium growth-

inhibition than other phytoplankton classes, including Prymnesiophyceae, Diatomophyceae, 

Raphidophyceae, and Dinophyceae. Thus, ammonium is likely the most influential nutrient form that 

favors M. aeruginosa abundance and dominance.  

Toxic strains of M. aeruginosa have also demonstrated a superior ability to compete for N over its non-

toxic counterparts, which suggests that the more N-rich an aquatic ecosystem is, the larger the 

proportion of toxic M. aeruginosa strains comprising the phytoplankton community than non-toxic 

strains. However, N-limitation to the point of N-stress has demonstrated the ability to stimulate the 

synthesis of microcystin by M. aeruginosa, suggesting that N-stress can lead to higher microcystin 

concentrations. 

Despite the more influential role of N in regulating growth and toxicity of M. aeruginosa, both N and P 

play vital roles in its vertical migration abilities. Under nutrient stress for both N and P, M. aeruginosa 

loses its buoyancy and sinks to lower depths of the water column. While this vertical sinking allows M. 

aeruginosa to forage for less accessible nutrients, it also results in less sunlight exposure necessary for it 

to survive.  Additionally, nutrient-stress conditions rouse M. aeruginosa to form dense colonies, whereas 

under nutrient enrichment, M. aeruginosa distributes itself as single cells. Thus, colony formation of M. 

aeruginosa may be a defense mechanism under conditions of nutrient stress, where it can gain more 

buoyancy and shade out other phytoplankton lacking vertical migration capabilities by colonizing itself 

into dense blooms. However, even in colony formation, N demonstrates a more influential role. Studies 

have demonstrated that higher concentrations of N are needed than P to fulfill the nutrient quota for M. 

aeruginosa to cross the threshold from nutrient-starved colony formation to nutrient-satisfied single-cell 

distribution. 
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The prevalent theory on resource ratios for the optimal growth and abundance of M. aeruginosa 

suggests that M. aeruginosa exhibits dominance in an aquatic ecosystem under atomic ratios lower than 

44:1. The more influential role of N than P in regulation of M. aeruginosa growth and abundance can 

justify its dominance under low N:P ratios, implying conditions of N-limitation. However, as N:P ratios 

are merely the proportion of N to P in an aquatic ecosystem regardless of concentration value, 

conditions with low N:P ratios can still be replete in both N and P. While it is true M. aeruginosa 

dominance is typically observed under low N:P ratios under 44:1, studies have shown that the N:P ratios 

for optimal growth can change given different starting concentrations of N or P already dissolved in the 

water, ranging from as low as 4:1 to as high as 64:1. Optimal growth for M. aeruginosa has been 

demonstrated under a larger range of N:P ratios when nutrient concentrations of N and P are higher, 

where its growth can peak under lower ratios than under nutrient-deficient conditions, suggesting that 

concentration values of N and P and the chemical forms of N should be the focus of nutrient 

management rather than attempting to identify a universal N:P ratio or range of N:P ratios that favor M. 

aeruginosa. Further, no molecular mechanism has been identified in which phytoplankton can react to 

specific nutrient ratios. The association of low N:P ratios with M. aeruginosa has instead been theorized 

to be due to its observed ability to uptake larger proportions of N to P and its consequential lowering of 

N:P ratios under laboratory studies, indicating a preferential uptake for N.  

5.1.2 Conclusions on Environmental Influences 

Local environmental forces on aquatic ecosystems can be more influential on M. aeruginosa regulation 

than nutrients. In particular, conditions most favorable for the growth of M. aeruginosa include warm 

surface water temperatures ranging from 25°C to 30°C, stagnant water conditions with low flushing and 

turbidity, and ample sunlight exposure. These climatic factors are most associated with extended dry-

weather seasons, which are projected to intensify with climate change. To complicate the regulation of 

M. aeruginosa blooms even further, M. aeruginosa has exhibited adaptive qualities to its local 

environment, becoming more tolerant of conditions once considered harsher for survival, particularly in 

the more saline waters of brackish and coastal marine ecosystems.  Thus, management of M. aeruginosa 

will require a multi-faceted approach that may have to be adapted to different locations.  

5.2 Management Recommendations  

The influential forces regulating M. aeruginosa represent a complex interaction between nutrient 

availability and local environmental forces. Even within the sole realm of nutrients lies a complex 
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chemistry of N forms that have different roles in influencing phytoplankton communities. Consequently, 

many research studies attempting to understand the nutrient dynamics behind M. aeruginosa growth 

and abundance result in unclear and sometimes conflicting conclusions about the role of N and P in M. 

aeruginosa regulation. The conclusions summarized in Sections 5.1.1: Conclusions on Nutrient 

Influences and 5.1.2: Conclusions on Environmental Influences derived from an extensive review of 

scientific literature define significant trends in nutrient dynamics that influence M. aeruginosa 

regulation and are the basis for the following recommendations: 

5.2.1 Refine Research Areas 

Management of M. aeruginosa must consider nutrient dynamics, including chemical form and their 

individual concentrations, with respect to the local environmental forces within the ecosystems M. 

aeruginosa resides. Therefore, researchers observing the relationship between N, P, and M. aeruginosa 

should refine their focus on chemical N forms, concentrations, and local environmental factors in their 

studies when making conclusions about N and P influences on M. aeruginosa growth, toxicity, and 

distribution.  

Many studies only use nitrate to observe nutrient influences on M. aeruginosa, which can oversimplify 

and create misleading conclusions about the role of N in M. aeruginosa regulation. As M. aeruginosa has 

a particular affinity and high tolerance for ammonium and a slow assimilation rate for NOx, more studies 

observing trends in the concentrations of these N forms that spur optimal growth would further define 

distinct roles N, P, and their concentration values have in influencing the presence of M. aeruginosa 

blooms. More published support in observing influential trends of nutrient forms would inform decision 

makers of which chemical forms to prioritize regulation for and offer potentially more feasible 

management solutions than regulating for all forms of N.  

Researchers should also be mindful of the local environmental conditions present in their studies when 

observing the nutrient roles on M. aeruginosa regulation. Environmental variables can potentially 

influence the presence of M. aeruginosa more so than the presence of available N and P and their 

respective chemical forms. Thus, it is important that local environmental variables, including water 

temperature, sunlight exposure, salinity, and competition from local phytoplankton species are 

measured in conjunction with nutrient forms and their concentrations. Aquatic ecosystems in locations 

prone to environmental conditions favorable for M. aeruginosa growth likely increase the role of N and 

P in M. aeruginosa regulation and may require more stringent nutrient management plans. However, it 
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is possible that M. aeruginosa can adapt to the local conditions from which they originate, requiring 

specialized management approaches for different aquatic ecosystem types and their locations. 

Steering future studies on the role of N and P in the growth, toxicity, and distribution of M. aeruginosa 

to incorporate measurements on chemical forms and local environmental conditions can reinforce or 

further define the most influential nutrient trends in regulating M. aeruginosa blooms.  Consequently, 

management decisions for nutrient regulation in controlling M. aeruginosa blooms can be streamlined 

and made with more confidence.  

 5.2.2 Regulate Ammonium 

Nutrient regulation has primarily been focused on P removal (Paerl et al., 2011), largely ignoring N and 

its chemical forms. Wastewater effluent is a major source of nutrient loading into aquatic ecosystems; in 

the San Francisco Bay, publicly owned treatment works (POTWs) account for two-thirds of nutrient 

loading, and the only N constituent regulated is ammonia (NH3) (SFBRWQCB, unpublished), a toxic 

compound lethal to fish (Randall and Tsui, 2002).  

Ammonium being the preferred N source for cyanobacteria like M. aeruginosa necessitates a focus on 

removing ammonium from aquatic ecosystems. In addition to the preferential uptake of ammonium for 

M. aeruginosa, the inhibitory effects of ammonium on growth and nutrient uptake for other classes of 

phytoplankton create a dual advantage for the dominance of M. aeruginosa and other cyanobacteria 

with high tolerance levels to the inhibitory effects of ammonium. Furthermore, as ammonium is the 

ionic form of ammonia (together forming what is called total ammonia), removal of both ammonium 

and ammonia requires the same process of nitrification. Thus, POTWs should focus nutrient reduction 

efforts on reducing total ammonia concentrations in wastewater before being discharged into aquatic 

ecosystems, rendering conditions less favorable for M. aeruginosa dominance while simultaneously 

reducing toxic ammonia concentrations.  

Regulating N in addition to P is an expensive process in wastewater treatment. However, efforts focused 

on reducing total ammonia through nitrification can be significantly cheaper than reducing total N. 

Nitrification is the biological oxidation of ammonium to nitrite and from nitrite to nitrate via ammonia 

oxidizing bacteria (AOB). Conventional nitrification processes require much more energy in the aeration 

process and larger facilities due to longer solids retention times for nitrification to occur than removing 

biological oxygen demand (BOD) for the breakdown of biosolids and the subsequent removal of P. 

However, novel technologies are being piloted in treatment involving optimization of current POTW 
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infrastructure to reduce the energy for nitrification to occur, such as using enhanced screenings to 

remove biosolids, allowing more aeration energy for nitrification than BOD removal for the breakdown 

of the biosolids (SFBRWQCB, unpublished). While technologies in total ammonia removal may be unique 

to different treatment plants and their current infrastructure and capacity for optimization, POTWs 

should review developments in nitrification technologies that not only reduce total ammonia, but also 

reduce the expenses in capital and operations and maintenance.  

 5.2.3 Regulate Total Nitrogen 

While ammonium is the preferred N constituent for M. aeruginosa growth, M. aeruginosa has 

nonetheless demonstrated positive growth responses to nitrate loadings under N-limitation. Further, 

when ammonium is scarce, nitrite and nitrate may be the only sources of N for M. aeruginosa.  Although 

M. aeruginosa can dominate aquatic ecosystems under N-limitation, its toxic strains respond particularly 

well to N additions, including nitrate, suggesting that higher total N concentrations can shift Microcystis 

communities from non-toxic to toxic strains. The influence of N along with P on M. aeruginosa 

regulation has brought forth recommendations in scientific literature for stricter nutrient regulation on 

N and P (Otten et al., 2012; Paerl et al., 2012; SFBRWQCB, unpublished). Beyond M. aeruginosa and 

other cyanobacteria, increases in total N concentrations contribute to other harmful algal blooms 

(HABs), such as diatoms, that degrade aquatic ecosystems. Thus, removal of total N is a more definitive 

approach to preventing toxic M. aeruginosa blooms and other HABs.  

Many novel technologies being piloted for nutrient removal in wastewater effluents go beyond total 

ammonia removal to the removal of total N with more cost-effective potential than conventional total N 

removal methods. Total N is removed through deammonification, which utilizes biological nitrification to 

convert roughly half of the total ammonia concentration to nitrite using AOB in an aerobic process, 

followed by the denitrification of the remaining ammonia and nitrite to dinitrogen gas (N2) in an 

unaerated process that sometimes requires expensive and dangerous carbon inputs (SFBRWQCB, 

unpublished).  However, promising technology using anaerobic ammonia oxidizing bacteria, or 

Anammox, to denitrify ammonia to N2 gas (Montalvo et al., 2012) can significantly reduce oxygen and 

energy inputs by 50% and 60%, respectively, and completely eliminate the need for external carbon 

requirements (SFBRWQCB, unpublished).  

Anammox technology can also be combined with the use of zeolites, an abundant, natural silicate 

material that adsorbs ammonium, allowing AOB and Anammox to colonize zeolites and create a biofilm 
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that deammonifies N to N2 gas (Montalvo et al., 2012; SFBRWQCB, unpublished). This method would 

allow a passive, downward-flow reactor in which zeolites pass vertically through an aerated section for 

nitrification of total ammonia through AOB, followed by the passage through an unaerated section 

allowing Anammox to denitrify the N into N2 gas, minimizing the need for expansive facility space that 

may not be available for POTWs.  

Anammox are slow growing bacteria, with a doubling time of 11 days, requiring more space for longer 

retention times (SFBRWQCB, unpublished). Consequently, Anammox technology might not be applicable 

to most POTWs and their current infrastructure. Nevertheless, POTWs should shift priorities on 

regulating total N along with P in their wastewater effluents, while monitoring deammonification 

technologies as they develop for future application.  

5.3 Summary 

 A comprehensive examination of the influences of N, P, and the environmental factors associated with 

climate change has identified trends behind the drivers of the growth, toxicity, and distribution of M. 

aeruginosa. Effective management strategies in controlling the growth, toxicity and distribution of M. 

aeruginosa should start with refined areas in research focusing on the chemical N forms, concentrations 

of N and P, and the local environmental factors present during M. aeruginosa blooms. Additionally, 

management efforts in nutrient regulation from POTWs should focus on monitoring developing 

technologies for efficiently removing ammonium or total N from wastewater effluents.  
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