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The synchronization of chaotic systems has received a great deal of attention. However, most
of the literature has focused on systems that possess invariant manifolds that persist as the
coupling is varied. In this paper, we describe the process whereby synchronization is lost in
systems of nonidentical coupled chaotic oscillators without special symmetries. We qualitatively
and quantitatively analyze such systems in terms of the evolution of the unstable periodic orbit
structure. Our results are illustrated with data from physical experiments.

1. Introduction

Systems of several interacting nonlinear elements
present a very rich variety of behavior. Of par-
ticular interest has been the phenomenon of chaos
synchronization. Most of the relevant literature has
considered coupled systems of identical elements for
which the dynamics can be understood in terms
of an invariant synchronization manifold. In this
paper, we discuss a more general method of analysis
of coupled systems and apply it to an experimen-
tal system. In particular, we focus on the process
of desynchronization, with special emphasis on sys-
tems of nonidentical coupled oscillators. We draw
particular attention to this case, since it represents
almost every experimental situation of interest: in
practice, it is very difficult to prepare sets of truly
identical oscillators in physical systems. Further-
more, in biological systems, natural oscillators oc-
cur with considerable variability. For example, even
within each of several different classes of neurons, no

two individual neurons are identical. Our methods,
which are applicable to experimental data, form the
foundation for discussing synchronization in non-
identical coupled chaotic systems in a more general
context without making reference to special sym-
metries or invariant manifolds. We illustrate our
results with both numerical calculations and exper-
imental data from electronic circuits.

The synchronization of coupled chaotic oscilla-
tors, a phenomenon first noticed many years ago
[Fujisaka & Yamada, 1983] is most conveniently
described in terms of a synchronization manifold:
when synchronized, the time evolution occurs on a
restricted set embedded in the full state space. For
systems of coupled identical elements, this synchro-
nization manifold is contained within a plane (or hy-
perplane) of symmetry and exists for a wide range
of coupling. However, for systems that do not pos-
sess special symmetries, such as systems of coupled
nonidentical elements, this invariant synchroniza-
tion manifold may become extremely complicated
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or even be destroyed as the degree of coupling is
decreased.

Previous work has focused on systems of identi-
cal coupled elements for which the synchronization
manifold M persists for a large range of coupling
and can be easily identified. On M, the individ-
ual components evolve identically in time, and are
said to exhibit identical synchrony [Pecora & Car-
roll, 1990]. As the coupling decreases from a fully
synchronized state, a bubbling bifurcation [Ashwin
et al., 1994, 1996; Venkataramani et al., 1996a,
1996b] occurs when an orbit within M (usually of
low period [Hunt & Ott, 1996]) loses transverse sta-
bility. In the presence of noise or small asymme-
tries, a typical trajectory quickly approaches and
spends a long time in the vicinity ofM, but makes
occasional excursions. As the coupling is further de-
creased, the blowout bifurcation [Ott & Sommerer,
1994] is observed when M itself becomes trans-
versely unstable (on average).

The concept of (differentiable) generalized syn-
chrony (GS) [Afraimovich et al., 1986; Rulkov et al.,
1995; Kocarev & Parlitz, 1996; Hunt et al., 1997] ex-
tends these ideas. GS relaxes the condition that the
state variables evolve identically, and only requires
that they be functionally related. However, as the
coupling is reduced, this function may become ex-
tremely complicated. In particular, if the system
lacks special symmetries (as in the case when the
coupled elements are not identical),M may not ex-
ist, or its structure may be so complicated that the
practical identification of bubbling-type or blowout-
type bifurcations is impossible. In this situation,
the work described above does not carry over, and
a more general description of the desynchronization
process beyond the state of generalized synchrony
is needed.

We find that the entire desynchronization
process can be fruitfully studied by considering the
evolution of the system’s unstable periodic orbit
(UPO) structure as the coupling is varied over a
large range [Barreto et al., 2000; So et al., 2000].
Our analysis, discussed in Sec. 3, provides both a
qualitative and a quantitative understanding of the
desynchronization process, with the advantage of
not making reference to invariant manifolds. We
introduce in Sec. 2 the numerical and experimental
models that have been used in this work, and in
Sec. 4 we report the first experimental verification
of these theoretical results.

2. Systems

We will describe the phenomenology of desyn-
chronization in a general unidirectionally coupled
system of nonidentical chaotic maps.1 Consider a
system of the form:{

x→ f(x)
y → G(x, y; c) .

(1a)

Systems such as Eq. (1) are known in the mathe-
matical literature as skew products or extensions.
Here we assume that the coupling is such that at
c = 1, the x and y dynamics are in a state of gener-
alized synchrony (i.e. y = φ(x)) [Afraimovich et al.,
1986; Rulkov et al., 1995; Kocarev & Parlitz, 1996]
and that at c = 0, the x and y dynamics are com-
pletely independent of one another. f and G may
be of any dimension. For illustration of our theo-
retical results, we use in our discussion below the
simplest case

G(x, y; c) = cf(x) + (1− c)g(y) (1b)

and take f and g to be quadratic maps with differ-
ent parameters. (Another simple option is to use
dissimilar Hénon maps.) Our arguments are not
specific to these choices, and our experimental sys-
tem is in fact more complicated.

For our experimental system, we constructed
two nearly identical circuits D and R based on the
generalized Duffing equation

d2x

dt2
+ ν
dx

dt
+NL(x) = A sin(t) (2)

where NL(x) is a nonlinear term, typically NL(x) =
(x3 − x). In our circuits the nonlinear element
was constructed with standard resistors and diodes.
The response of this nonlinear element is shown in
Fig. 1. A nondimensional parameterization of the
equations of our circuits is

d2x

dt2
+ α
dx

dt
− (βx3 + γx) = δ sin(t) (3)

where α = 0.124, β = 0.238 and γ = 1.00. Each cir-
cuit received a common sinusoidal input, the zero-
phase of which was also used to trigger stroboscopic
measurements. In order to break the symmetry, the
amplitude δ of the sinusoidal input to the response

1It has been shown that unidirectional and bidirectionally coupled systems are locally equivalent. See [Josić, 1998].
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Fig. 1. Current versus voltage curve for the nonlinear ele-
ment used in our circuits. The same element was used for
both the driving and the responding circuits. A polynomial
expansion used to fit this curve would include both first- and
third-order terms.

Fig. 2. State space attractors of the driving (X, black) and
responding (Y , red) circuits when uncoupled. Both circuits
are driven from the same sinusoidal input but at different
amplitudes, resulting in nonidentical attractors. Data was
acquired stroboscopically at the zero phase of the sinusoidal
input.

circuit R was larger than that used for the driver
D (δR = 17.98 and δD = 13.08). Accordingly, the
attractors are different, as shown in Fig. 2.

The state of each circuit is described by a pair
of measurable voltages which we denote by the vec-

tors X(t) and Y(t); that is, X(t) = (x1(t), x2(t))
T ,

with x2 ∝ ẋ1, and similarly for Y(t). The circuits
are diffusively coupled together in a driver/response
fashion as follows:

Ẋ = D(X)

Ẏ = R(Y) + d ·M(X−Y)
(4)

where M is a 2 × 2 matrix and d is a scalar. For
the current work, we use

M =

(
0 0

0 1

)
. (5)

Identical synchrony occurs for d → ∞ in this cou-
pling scheme.

The circuits were constructed to be chaotic
for relatively low input frequencies (1–10 Hz), and
therefore care was taken to choose low leakage
capacitors for the integrator stages and to signifi-
cantly isolate them from external electrical noise.
In addition, the circuits were maintained at con-
stant temperature (±0.1 C), as acquisition runs
typically lasted many minutes to hours. Both the
coupling and asymmetry are externally voltage-
programmable through the use of a four-quadrant
analog multiplier (Analog Devices AD633). Data
was acquired with 16-bit precision using a com-
puter acquisition board (National Instruments
PCI-MIO16Xe10).

The largest experimentally accessible coupling
was d = 9 V, but in this work we only consider a
range of d from 1 to 0 V. At d = 0 V, the com-
ponents oscillate independently. Additional details
of this experiment, along with detailed circuit di-
agrams, will be published elsewhere [Chubb et al.,
2001].

3. Phenomenology of
Desynchronization and the
Decoherence Transition

We now describe the process of desynchronization.
Our goal is to understand the evolution of the over-
all periodic orbit structure as the coupling is de-
creased and synchronization breaks down. Briefly
stated: in the absence of special symmetries, the
UPOs first undergo a complicated migration apart
from one another, after which an important set of
new UPOs develops through a series of bifurcations.

In the special case when f = g in Eq. (1b),
the synchronization manifold M is simply the line
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x = y. It is invariant and attracting at c = 1
and remains so until the bubbling bifurcation oc-
curs at a critical value of c, cbu < 1. In the more
general case f 
= g, x = y is by construction in-
variant and attracting for c = 1. However, im-
mediately upon decreasing c, x = y is no longer
invariant. In Fig. 3, generated numerically with
dissimilar quadratic maps for f and g, we show the
evolution of the attractor of Eq. (1) as the coupling
is decreased to zero. Observe that the attractor
spreads out as shown in the two magnified views.
(This figure is to be compared to Fig. 5 below,
which was generated with experimentally measured
data.) We first see an apparently multivalued struc-
ture appear (top magnification). As the coupling
is decreased, we observe a transverse Cantor-like
structure in the attractor followed by a “fattening”
or “smearing” of the striations as the Lyapunov di-
mension of the attractor increases to 2.0 (bottom
magnification). It is remarkable that this attractor
smearing appears to occur well before any embed-
ded UPO loses its transverse stability. In fact, we
observe a large range of c over which the periodic
orbits migrate apart but do not undergo any bifur-
cations [Astakhov et al., 1999; Barreto et al., 2000].

The geometry of this migration depends on the
invertibility of the driver [So et al., 2000]. If the
driver is invertible, this migration of UPOs may
result in the loss of differentiability of the (general-
ized) synchronization manifold [Badii et al., 1988;
Pecora & Carroll, 1996; Hunt et al., 1997; Stark,
1997]. In Fig. 3, the driver is noninvertible.

To continue the description of the desynchro-
nization phenomenology, it is useful to define U to
be the set of unstable periodic orbits present on
the line x = y when c = 1 (this definition applies
whether or not f = g). Note that the orbits of
U correspond exactly to those of the driver and
that their number remains constant for all values
of coupling because of the unidirectional coupling.
For f = g, these UPOs remain fixed in place along
x = y, but for f 
= g, they migrate apart as de-
scribed above. In both cases, as c is decreased from
1, the orbits’ stability properties evolve, but they re-
main transversely attracting until a bubbling-type
bifurcation is encountered.2 This typically corre-

sponds to a period-doubling (pitchfork) bifurcation
of a low-period orbit in U , and leads to the creation
of new orbits outside of U . As the coupling is fur-
ther reduced, more and more periodic orbits in U
lose their transverse stability in a similar fashion,3

leading to the creation of additional orbits. As
this process proceeds, the external UPOs simulta-
neously undergo period-doubling cascades to chaos,
thus creating even more new orbits.4 We call the set
of new orbits created in this fashion the emergent
set [Barreto et al., 2000].

The emergent set increases in size and complex-
ity as the coupling is further decreased (see our nu-
merical results in Fig. 3 and experimental results in
Fig. 5). This notion can be quantified in terms of
topological entropy (for details, see [Barreto et al.,
2000]). Intuitively, as more and more UPOs are
created outside of U , the topological entropy of the
emergent set grows, attains a positive value, and
continues to increase. At a particular value of cou-
pling, the emergent set’s topological entropy equals
and then surpasses the topological entropy of the
driver. We call this process the decoherence transi-
tion. Topological entropy is not an extensive quan-
tity: if h(A) denotes the topological entropy of a set
A, we have h(A ∪ B) = max(h(A), h(B)). There-
fore, the decoherence transition corresponds to an
abrupt increase in the topological entropy of the
entire coupled system.

Although the decoherence transition is not as-
sociated with any obvious visual features in the at-
tractor evolution (in Fig. 3 it occurs between the
fourth and fifth panels on the left), it does have the
advantage of being a quantifiable and experimen-
tally measurable transition which applies to coupled
nonidentical chaotic elements. For example, the
experimental measurement of the bubbling and/or
blowout bifurcation is accomplished by observing
excursions from a synchronization manifold whose
identification is only practical if f and g are identi-
cal, or very nearly so. If f and g are significantly dif-
ferent, the UPO migration described above obscures
these bifurcations. The decoherence transition, on
the other hand, has the advantage of not requiring
the identification of a synchronization manifold for
its measurement in practical situations.

2We extend the concept of bubbling to the asymmetric case f �= g by defining it as the point where the first orbit in U loses
stability.
3Additional orbits external to U may be created by saddle-node bifurcation; these may then exchange stability with their
corresponding orbits in U via a transcritical bifurcation.
4Similar behavior is also seen in bidirectionally coupled systems; see [Astakhov, 1997].
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Fig. 3. Attractor evolution as the coupling between elements is decreased to zero for numerical data. Dissimilar quadratic
maps f(x) = 1.7−x2, g(y) = 2.0−y2 are used in Eq. (1). The striations and the smearing of the attractor structure described
in the text are plainly visible in the magnifications on the right as the coupling c is decreased. The decoherence transition is
observed at c = 0.435.
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Fig. 4. Numerical results: topological entropy versus coupling for the system in Eq. (1) with f(x) = 1.7−x2, g(y) = ag− y2,
and cases ag = 2.0, 1.7 and 1.6. In all cases the topological entropy is equal to that of the driver (dotted line) for coupling
values above the decoherence transition (heavy arrows).

Locating the decoherence transition involves
measuring topological entropy from trajectory data.
Methods for doing this exist in the literature and
involve the measurement of average local expan-
sion rates. An amount of data similar to that
needed to obtain reliable Lyapunov exponents is re-
quired [Eckmann & Ruelle, 1996]; for details, we
refer the interested reader to [Barreto et al., 2000].
To illustrate the results, we apply these methods
to a system of coupled quadratic maps. We take
f(x) = 1.7 − x2, g(y) = ag − y2, and consider the
cases ag = 2.0, 1.7 and 1.6. Figure 4 shows the
topological entropy of the system versus coupling
for these cases. In all cases, a clear transition (ar-
rows) is evident where the topological entropy in-
creases abruptly due the increasing complexity of
the emergent set.

4. Experimental Results

We now report both the experimental observation
of the qualitative desynchronization scenario de-
scribed in Sec. 3 and the quantitative calculation of
the decoherence transition from experimental data.

Trajectory data was obtained from coupled elec-
tronic circuits as described in Sec. 2.

The process of desynchronization is illustrated
in Fig. 5 for experimentally recorded data from
our coupled asymmetric generalized Duffing oscil-
lator circuits. As described in Sec. 3, a Cantor-like
attractor structure develops as the coupling is de-
creased from d = 9.00 V to d = 1.00 V. This struc-
ture is shown for d = 1.00 V in the red magnified
view. As d is further decreased, these striations are
seen to “fatten” or “smear.” The smearing can be
seen by comparing the structure in the blue magni-
fication (for d = 0.75 V) to that in the red magnifi-
cation. For successively lower values of the coupling
d, trajectories are seen to spend less time near the
diagonal, thus indicating that the emergent set is
developing and becoming more complicated.

The methods referred to above for measuring
the decoherence transition can be readily applied
to experimentally acquired data. The results for
our coupled Duffing circuits are shown in Fig. 6.
In order to measure local expansion rates, we esti-
mate the local Jacobians along trajectories from fits
of nearby trajectories [Eckmann et al., 1986]. All
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Fig. 5. Attractor evolution as coupling is decreased for diffusively coupled circuits (experimentally measured data). As d is
decreased from the largest accessible value, d = 9.00 V, to d = 1.00 V, the attractor develops transverse Cantor-like structure.
This is illustrated in the red magnified view of the attractor at d = 1.00. As coupling is further reduced, this structure
becomes smeared, as illustrated in the blue magnified view of the attractor at d = 0.75. When uncoupled (d = 0), there is no
correlation between the X and Y dynamics.
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Fig. 6. Experimental results. The topological entropy is plotted as a function of coupling strength. The two largest Lyapunov
exponents L1 and L2 are also plotted for comparison. The decoherence transition occurs when an abrupt increase in the
topological entropy is observed (arrow). For this system, the transition occurs between d = 0.35 and d = 0.40 V.

other steps in the analysis are the same as in the nu-
merical case [Barreto et al., 2000]. We confirm using
numerically generated data that the analysis using
reconstructed Jacobians yields the same results as
when full Jacobian information (from knowledge of
the map) is used [Chubb et al., 2001]. We find for
our experimental data that the effective decoher-
ence transition occurs at a coupling value within the
interval [0.35, 0.40], i.e. between the fourth and fifth
plots in Fig. 5. Note that there is no obvious visible
signature of the decoherence transition in the at-
tractor structure. For comparison, we also plot the
two largest Lyapunov exponents versus coupling in
Fig. 6.

5. Conclusion

The emergent set framework and the subsystem de-
composition developed here are quite general and
apply to coupled systems of nonidentical elements
for which previously studied bifurcation frameworks
may be inappropriate. Furthermore, the effective
decoherence transition can be estimated for such

systems from experimental data, and we report here
the first such results.
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